Efficient Semantic Search
on Very Large Data

Dissertation zur Erlangung des Doktorgrades
der Ingenieurwissenschaften (Dr.-Ing.)
der Technischen Fakultat der
Albert-Ludwigs-Universitat Freiburg

vorgelegt von
Bjorn Buchhold

Albert-Ludwigs-Universitat Freiburg
Technische Fakultét
Institut fiir Informatik
2017

Abstract

This thesis is about efficient semantic search on very large data. In particu-
lar, we study search on combined data, which consists of a knowledge base
and a text corpus. Entities from the knowledge base are linked to their oc-
currences within the text, so that queries can be answered with the help of
all structured information from the knowledge base and all unstructured in-
formation available in the text corpus. This deep integration through entity
occurrences and the possibility to fully take advantage from it within queries
distinguishes our work from previous approaches. We introduce Broccoli, a
novel kind of search engine that can be set up for any knowledge base and
text corpus that are linked through recognized entity occurrences and that
provides a convenient way of searching the data through its user interface.

Further, we present QLever, a query engine for efficient combined search on a
knowledge base and text. We call QLever’s query language SPARQL+Text.
This language extends SPARQL, the de-facto standard for knowledge-base
queries, by two special predicates, gl:contains-word and gl:contains-entity. In
this way, we provide a standard interface to the search capabilities of Broccoli.
This ensures that our work can conveniently be used as a component in other
systems, e.g., for question answering. In terms of expressiveness, the entire
potential of the Broccoli search engine is retained and even extended so that
we provide full SPARQL support. Efficiency is a primary concern of our
work. Compared to state-of-the-art SPARQL engines, QLever is often faster
on classic SPARQL queries, and several orders of magnitude faster on the
SPARQL+Text queries it was specifically made for.

In this document, we summarize our contributions on, and the evaluation of,
the search paradigm itself, efficient indexing and query processing, as well as
machine-learned relevance scores that improve ranking of search results from
the knowledge base. In the process, we present the ten publications that
comprise this thesis. All of this research is directly applied in the creation of
our software systems, Broccoli and QLever. By doing so, we make sure that
our work yields open-source software that is accessible by the public and that
all of our experiments are easily reproducible.

Zusammenfassung

Diese Dissertation beschéftigt sich mit effizienter semantischer Suche auf sehr
groffen Daten. Im Speziellen betrachten wir Suche auf kombinierten Daten,
die einerseits aus einer Wissensdatenbank (Knowledge Base), andererseits aus
einem Textkorpus, bestehen.

Fiir unsere Zwecke ist eine Knowledge Base eine Sammlung von Tripeln,
bestehend aus Subjekt, Pradikat und Objekt. Jedes solche Tripel beschreibt
einen Fakt. So driicken beispielsweise die beiden Tripel <Pantheon> <is-a>
<Building> und <Pantheon> <located-in> <FEurope> aus, dass das Pan-
theon ein Gebédude in Europa ist. Wahrend Vorverarbeitungsschritten wer-
den die Entitdten (in der Regel Subjekte und Objekte, theoretisch sind auch
Pradikate moglich) dieser Knowledge Base im Textkorpus durch Entity Recog-
nition erkannt und disambiguiert. D.h. jedes Vorkommen einer Entitat wird
mit ihrer eindeutigen ID aus der Knowledge Base annotiert. Zum Beispiel im
folgenden Satz: The Augustan<Augustan Age> Pantheon<Pantheon> was
destroyed in a fire.

Unter Beriticksichtigung sowohl der Tripel der Knowledge Base als auch des
Textes lasst sich das Pantheon als eine der Antworten auf eine Anfrage nach
Gebéduden in Europa, die einmal in einem Feuer zerstort wurde, finden. Mit
jeweils nur eine dieser Datenquellen wére dies nicht moglich gewesen: Die
Knowledge Base enthélt nicht die eher spezifische Information, dass das Pan-
theon einmal in einem Feuer zerstért wurde, und aus dem Textabschnitt
geht nicht hervor, dass es sich bei “Pantheon” um das Gebéude handelt und
dass dieses in Europa steht. Anfragen dieser Art unterscheiden sich von
der klassischen Suche nach relevanten Dokumenten, werden aber jederzeit
vielfach von Nutzern grofser Suchmaschinen gestellt. Gerade im Rahmen von
Recherchen, egal ob durch Historiker, Anwilte, Recruiter, Journalisten, etc.,
tauchen Anfragen dieser Art immer wieder auf.

In dieser Dissertation prasentieren wir Broccoli, unsere neuartige Suchma-
schine, die fiir beliebige Kombinationen aus Knowledge Base und Textkorpus
aufgesetzt werden kann und Nutzern durch ihr User Interface eine prakti-
sche Moglichkeit bietet, solche kombinierten Daten zu durchsuchen. Somit
kénnen semantische Anfragen unter Betrachtung aller strukturierter Infor-
mationen aus der Knowledge Base und aller unstrukturierter Informationen
aus dem Textkorpus beantwortet werden. Die tiefgreifende Verbindung iiber
Vorkommen der Entitdten im Text und die Moglichkeit in Anfragen Infor-
mationen aus Text und Knowledge Base beliebig zu schachteln unterscheidet
unsere Arbeit dabei von bisherigen Ansétzen.

IT

Des Weiteren prasentieren wir QLever, ein System, das auf effiziente, kom-
binierte Suche auf Text und Knowledge Bases spezialisiert ist. Wir nennen
unsere Anfragesprache SPARQL+Text. Diese Sprache erweitert SPARQL,
den De-facto-Standard fiir Anfragen auf Knowledge Bases, um zwei kiinst-
liche Préadikate, gl:contains-word und ql:contains-entity. Auf diesem Weg
stellen wir eine standardisierte Schnittstelle zu den weitreichenden Einsatz-
moglichkeiten von Broccoli bereit. Somit kann unsere Forschung als Kom-
ponente in anderen Systemen, etwa fiir Question Answering, genutzt wer-
den. Ein Schwerpunkt unserer Arbeit liegt dabei auf Effizienz: Verglichen
mit state-of-the-art Systemen fiir SPARQL-Suche liefert QLever im Schnitt
schnellere Antwortzeiten fiir klassische SPARQL-Anfragen und ist auf Anfra-
gen, die SPARQL+Text nutzen und fiir die es speziell entwickelt wurde, um
Groéfenordnungen iiberlegen.

Dieses Dokument ist wie folgt aufgebaut: In Kapitel 1 stellen wir unser
Suchparadigma und die wichtigsten Beitrdge unserer Arbeit genauer vor. In
Kapitel 2 betrachten wir verwandte Ansétze aus der Forschung und von kom-
merziellen Suchmaschinen. Kapitel 3 listet die zehn Publikationen auf, die
diese kumulative Dissertation ausmachen und benennen jeweils die Art der
Publikation, ihren Inhalt und in welchem Umfang die einzelnen Autoren an
der Arbeit beteiligt waren. In Kapitel 4 beschreiben wir die Forschungs-
felder, denen unsere Publikationen zugeordnet werden kénnen: unsere Arbeit
am neuartigen Suchparadigma selbst (Kapitel 4.1), an effizienten Datenstruk-
turen fiir die Indizierung der Daten sowie an Algorithmen zur Beantwortung
von Anfragen (Kapitel 4.2) und zu maschinell gelernten Relevance Scores fiir
Tripel der Knowledge Base, die es uns erlauben Suchresultate sinnvoll zu
ranken (Kapitel 4.3). Fiir jedes dieser Forschungsfelder formulieren wir eine
priagnante Problembeschreibung, ordnen unsere Arbeiten neben verwandten
Ansétzen aus der Forschung ein, stellen unseren konkreten Losungansatz vor
und préasentieren die Ergebnisse unserer experimentellen Evaluation. Im An-
schluss an die Beschreibung der Forschungsfelder fassen wir kurz unseren
umfassenden Ubersichtsartikel zum Thema “Semantic Search on Text and
Knowledge Bases” zusammen (Kapitel 4.4). Die Arbeit schliefft mit einem
Fazit in Kapitel 5.

Unsere gesamte Forschung findet direkt in unseren Systemen, Broccoli und
QLever, Anwendung. Dadurch stellen wir sicher, dass unsere Arbeit als Open-
Source-Software der Offentlichkeit zugénglich ist und dass all unsere Experi-
mente reproduzierbar sind.

I1I

Acknowledgements

Foremost, I want to thank my supervisor Hannah Bast who provided invalu-
able guidance and support whenever I needed it. The way I now approach a
problem, think about it, and iterate on possible solutions has been decisively
influenced by you. I think one could say, that you made me the computer
scientist I am today and I hope that you can take this is as a compliment and
not as an accusation.

I am grateful towards all my colleagues and fellow PhD students, Elmar
Haufmann, Florian B&urle, Claudius Korzen, Patrick Brosi, Niklas Schnelle
and Markus Néather. I sincerely enjoyed our discussions over lunch — about
computer science and also just about everything else. I am deeply grateful
for your proofreading of parts of this thesis and of the included publications.
Even more importantly, I want to thank you for making my daily life as a
PhD student enjoyable: Thanks for playing football with me every Tuesday
and for evenings out.

With all my heart, I want to thank my beloved girlfriend Linda, who sup-
ported me throughout the years. I cannot imagine having accomplished this
without you and I hope there will be many years in the future during which
I can try to return the favor. Finally, I want to thank my family. I cannot
express how grateful I am for all the support during the last years and my
entire life.

v

Contents

Abstract

Zusammenfassung

Acknowledgements

1

Introduction
1.1 Contributions

Related Work

2.1 Search with (Semi-) Structured Queries
2.2 SPARQL Engines
2.3 Semantic Web Search oL
2.4 Commercial Search Enginesand KBs

Publications
3.1 Peer-Reviewed Publications
3.2 Other Publications

Research Topics

4.1 Semantic Full-Text Search with Broccoli
4.2 Efficient Indexing and Query Processing
4.3 Relevance Scores for Knowledge-Bases Triples
4.4 Survey: Semantic Search on Text and Knowledge Bases

Conclusion

References

11

v

11
12

15
15
19

20
20
32
46
52

55

57

1 Introduction

This thesis describes a novel search paradigm for search in text and knowledge bases
and the various components and research topics that empower a system for efficient
and effective querying of such combined data. There is an emphasis on efficiency, but
indirectly this also leads to improved effectiveness: the larger the data we can search
whilst maintaining convenient response times, the better the results.

Assume someone is looking for buildings in Furope that once were destroyed in a fire.
This is called an entity query, a query for things. Entity queries are different from classic
document queries, where a search engine finds documents about the query keywords.
However, a large part of search engine queries are actually about entities. Queries like
the example above are typical for people doing research on a topic. For historians,
journalists, recruiters, and many more, it is very common to seek information about
things or people that satisfy certain criteria. In a study on a large query log from a
commercial web-search, Pound, Mika, and Zaragoza, (2010) have found that for nearly
60% of queries, entities were the primary intend of the query and that more than 12%
were of the same kind as our example.! Additionally, such queries can contribute to
question answering systems as an important component.

We answer these queries using data that consists of a knowledge base (KB) on the one
hand, and of a text corpus on the other hand. Modern knowledge bases are collections
of high-precision statements (sometimes also denoted as facts) and can be queried with
exact semantics. Recent and very specific information, however, is usually not included
in them but only available as free text. Thus, we rely on both sources and leverage the
strengths of either to overcome the weaknesses of the other. In our publication (Bast
et al., 2012a), we have argued for the importance of this search paradigm.

To provide an intuition of how our approach works, let us now look at how the Pantheon
in Rome, a reasonable match for our example query, can be returned as one of the results.
Text, which states that it was once destroyed by fire, is widely available. Some passages
are obvious, for example in the Wikipedia article about the building itself:

Wikipedia article: Pantheon

[...] The Augustan Pantheon was destroyed along with other buildings in a huge
fire in 80. [...]

However, one does not solely want to rely on finding the information in articles specifically
about the entity. There is usually much more useful information available in other
documents as well. For example, even within Wikipedia the following article about
the Roman emperor Hadrian also contains the fact we are looking for:

ITo reach the very high figure of 60%, they include queries for a particular entity (e.g., pantheon)
that make up 40% of queries and are arguably very similar to classic document queries.

Wikipedia article: Hadrian

[...] In Rome, the Pantheon, originally built by Agrippa but destroyed by fire in 80,
was rebuilt under Hadrian in the domed form it retains to this day. |...]

In both text snippets we have underlined mentions of entities. Ideally, we want to make
use of all, or at least most, such entity mentions. They can significantly improve search-
result quality compared to just searching in documents directly about the entity: fewer
relevant entities are missed and finding more hits for obvious cases helps ranking them
better. For example, one can show results with the most prominent (most frequently
mentioned) fires first. On top of that, results can be accompanied with better text
snippets to display a compelling result with text passages that make it clear why a
certain entity was returned.

Both example text snippets contain the crucial information about a fire, but they lack
the information that the Pantheon is a building and that it is located in Furope. This
is exactly where a knowledge base can be of great help. Consider the following excerpt
from Freebase? (Bollacker et al., 2008):

Knowledge base excerpt

< Pantheon> <Architect> <Apollodorus_of Damascus>
< Pantheon> <is-0> < Building>

< Pantheon> <located-in> < FEurope>

<Panther> <is-a> <Animal>

It contains what is missing in the above text snippets to correctly identify the Pantheon
as one of the results to the query. Such knowledge bases have become widely available in
recent years. They are created manually as community efforts, automatically extracted
from text, or as a combination of the two. The knowledge is usually represented as a
collection of triples, each consisting of a subject, a predicate, and an object.

A suitable search engine has to combine the information from these two sources in an ef-
fective and efficient way. In Section 4.1 we discuss our system Broccoli (Bast et al., 2012b;
Bast and Buchhold, 2013; Bast et al., 2014b) and how we establish this combination. A
screenshot of the example query in Broccoli is depicted in Figure 1.

The Broccoli search engine enables its users to search for queries like the one from our
example and thus effectively helps researching a topic. Its user interface and context-
sensitive suggestions play an important part for that as we describe in more detail in
Section 4.1.3. However, there are also downsides to this design: The query language

2The example actually uses the style of FreebaseEasy, our own sanitized version of Freebase with
human-readable entity names. See Section 4.1.3 for how we derived it.

Your Query:

Building X%

> occurs with X — destroy* fire X
v Classes: located in X — Europe x
Location (1143) N
S (367) Hits: 1-20f276
Tourist attraction (104) Royal Opera House
L-30f38 Knowledge Base: Royal Opera House

Royal Opera House: is a building; located in Europe.
V Instances:

Document: Royal Opera House
Royal Opera House (58) . .

the theatre was again destroyed by fire.

Pantheon (34)
Christiansborg Palace (23)
1-30f276 Pantheon

Knowledge Base: Pantheon
V Relations: Pantheon: is a building; located in Europe.
occurs-with <Anything> Document: Hadrian
Architect <Person> (189) the Pantheon,
near-travel-destination <Location> (94) destroyed by fire in 80, was rebuilt under Hadrian in the
19667 domed form it retains to this day.

Figure 1: A screenshot of our example query. The boxes on the left-hand
side can be used to restrict or relax the query. Suggested items are context
sensitive to the current query. The actual results, including snippets that
explain why an item matches, can be found on the right.

contains features and restrictions that are mostly motivated by the user interface. Thus,
while the search backend can be queried directly over HTTP and hence used as an API,
the non-standard query language is a limiting factor, especially for its potential as a
component in other systems, e.g., for question answering.

In contrast, limitations due to a non-standard query language are not an issue for classic
knowledge-base queries that do not involve text search. There, SPARQL? has evolved
as a standard. It has a syntax similar to that of SQL and allows the specification of
patterns which should be matched in the knowledge base. These patterns are expressed
as a set of triples, where subject, predicate and object can be replaced by variables. For
example, a query for buildings in Europe can be written as:

Query 1: Basic SPARQL

SELECT ?b WHERE {
?b <is-a> <Building> .
?b <located-in> < Furope>

/

Shttp:/ /www.w3.org/ TR /rdf-sparql-query

The result of this query is a list of buildings. If we had selected more than one variable,
the result would be a list of tuples, where each matching combination would appear in
that list as its own tuple.

Natively, SPARQL has no support for text search. Only regular expressions can be used
to match entire literals in the KB. Several existing SPARQL engines have developed
their own extensions to support keyword text search in those literals. However, they
usually stop at this rather shallow combination of knowledge-base data and text and do
not support a deep integration through entity occurrences. Consequentially, there is no
support to search for co-occurrence between two entities. In particular, queries may not
include variables (and thus subqueries) to match within text. In principle, it is possible
to emulate a deeper combination by adding artificial predicates to the KB. We explain
this in detail in Section 2.2. However, queries then quickly become very inefficient. We
quantify this difference in performance when we evaluate our system in Section 4.2.4.

Therefore, we propose an extension to SPARQL. We simply add two special-purpose
predicates: gl:contains-word, which allows words and prefixes to be linked to text records,
and gl:contains-entity, which allows this linking for entities and variables. Thus, the query
triples ¢t ql:contains-word fire and ¢t ql:contains-entity ?x mean that the word fire and
the entity ¢z occur in text record #t. The first predicate is very similar to extensions that
have been made to existing SPARQL engines, the second predicate, however, makes our
query language significantly more powerful. Note that we only extend the query language
but do not recommend explicitly adding these predicates to the knowledge base. For our
system, we take a text corpus (in addition to the KB) with recognized entity occurrences
as input and use the special-purpose data structures described in Section 4.2.3 to index
the text for efficient retrieval.

We call this query language SPARQL+Text and formulate the example query as:

Query 2: SPARQL+Text

SELECT ?b TEXT(?t) WHERE {
?b <is-a> <Building> .
?b <located-in> < Furope> .
2t gl:contains-entity 2b .
2t ql:contains-word "destroy* fire"

/

ORDER BY DESC(SCORE(?%t))

Apart from the special ¢l:contains- predicates, Query 2 displays further additions to the
SPARQL language, that we have made for convenience. Without them, the variable ¢t
from the example matches a numeric ID for fitting text records. While this is enough to
answer the queries just fine and to retrieve the Pantheon and other relevant buildings,
the additions can make the result a lot more useful. TEXT(?t) allows selecting matching

text passages for the text record variable 7t as result snippets. SCORFE(?t) yields a score
for the text match that can be selected or used to obtain a proper result ranking, as done
in the example query.

Like this, Query 2 can retrieve everything about buildings in Furope that were destroyed
in a fire that is displayed as hits in Figure 1. The first two triple patterns in the query are
responsible for using the knowledge base to restrict the answer to buildings in Europe,
the last two patterns describe the text match to restrict the answer to entities that occur
with the prefix destroy* and the word fire.

We have developed QLever (pronounced “clever”), a query engine with full support for
efficient SPARQL+Text search. Its novel index and query processing allows efficient
answering of complex queries over billions of triples and text records. In Section 4.2 we
describe this system and its technical contributions that allow highly efficient queries
over very large combined data.

In the following we list the most important contributions of our work. For each of them
we point the reader towards the section of this document that discusses the work in more
detail. Our individual publications are listed in Section 3. The underlying research topics
are presented in more detail in Section 4.

1.1 Contributions

With QLever and Broccoli, we have developed two fully-usable systems. The main fo-
cus of our work is on indexing and efficient query processing, but we have also tackled
problems that improve the effectiveness and usability of the search.

QLever SPARQL-+Text engine: We have developed a query engine with support for
the SPARQL language with small but effective extensions which we call SPARQL~+Text.
Query times are faster or similar to those of state-of-the-art engines for pure SPARQL
queries and faster by several orders of magnitude for SPARQL+Text queries. QLever
is open source: https://github.com/Buchhold/QLever and still actively developed to
this day. We cover our work on QLever in Section 4.2 of this document.

Broccoli search engine: We have developed the Broccoli search engine. Technically
a predecessor to QLever, it only supports a subset of SPARQL (tree-shaped queries
without variables for predicates). However, many additional features improve usabil-
ity. For instance, Broccoli allows exploring knowledge bases due to its context sensitive
suggestions for incremental query construction. It is available at http://broccoli.cs.
uni-freiburg.de. The Broccoli search engine also features its own natural language
processing and novel interface which are not part of this thesis but other lines of research
conducted in our group. We cover our work on Broccoli in Section 4.1 of this document.

Indexing and Query Processing: The index data structures and algorithms behind
Broccoli and especially QLever are by far the most efficient for SPARQL+Text queries.
They are valuable on their own and may also find application in other systems than our

https://github.com/Buchhold/QLever
http://broccoli.cs.uni-freiburg.de
http://broccoli.cs.uni-freiburg.de

own, either directly or as adaptations of the main ideas behind them. In Section 4.2, we
summarize these ideas and present the results of our evaluation.

Triple Scores: We have established a novel task and benchmark for computing rele-
vance scores for KB triples with type-like predicates. Such a score measures the degree
to which an entity “belongs” to a type. For example, Quentin Tarantino has various
professions, including Film Director and Actor. The score for Director should be higher
than the one for Actor, because that is what he is famous for, whereas as an actor, he
mostly had cameo appearances in his own movies. These scores are crucial for ranking
some queries within the Broccoli search engine (e.g., for a query for actors or a query
for all professions of a person). Apart from an effective method for computing them,
our research has lead to the very lively triple scoring task (21 participating teams) at
the 2017 WSDM Cup, see http://www.wsdm-cup-2017.org/triple-scoring.html. We
cover our work on these scores in Section 4.3 of this document.

Freebase Easy: We have created a knowledge base that is derived from Freebase (Bol-
lacker et al., 2008). The most obvious difference is our use of readable entity identifiers
that make it possible for humans to directly look at and understand triples. This is
impossible in the original. Our derivation also allows for simpler queries. Thus, it is used
as KB in the current version of the public demo of the Broccoli search engine. The exam-
ples throughout this document, e.g., the KB excerpt in the introduction, use data from
FreebaseEasy because of its great readability. We describe our work on FreebaseEasy
and its application to Broccoli in Section 4.1.3 of this document.

Survey: We have published an extensive survey on Semantic Search on Text and Knowl-
edge Bases. An important contribution is a classification of the numerous systems from
this broad field according to two dimensions: the type of data (text, knowledge bases,
combinations of the two) and the kind of search (keyword, structured, natural language).
Following that classification, we identify and describe basic techniques that recur across
the systems of a class as well as important datasets and benchmarks. We summarize this
in Section 4.4 of this document.

http://www.wsdm-cup-2017.org/triple-scoring.html

2 Related Work

Semantic search is a broad field. We cover that in great detail in our extensive survey
(Bast, Buchhold, and Haussmann, 2016). This section, more narrowly, relates our work to
other approaches that efficiently answer queries over combined data. Such data consists
of both: a knowledge base and text. The technical intricacies of particular systems are
discussed later in this document, within their respective subsections of Section 4.

Here we distinguish four categories of related work: (1) approaches that answer (semi-)
structured queries that contain parts to match in the KB and keywords to match in a
text corpus, (2) SPARQL Engines that search knowledge bases and their extensions to
text search, (3) systems for semantic web data and their particularities, (4) commercial
web search engines and how they integrate knowledge base data to improve their results.

2.1 Search with (Semi-) Structured Queries

Broccoli is one of several systems that search in combinations of a text corpus and a
knowledge base, where occurrences of entities from the KB have been linked (identified
and disambiguated) in the text. Usually, the query language of such systems allows users
to specify which parts of the query should be matched in the text and which parts should
be matched in the KB. As such, a lot of the intelligence still has to be supplied by the
user. A component that perfectly interprets and translates keyword or natural language
queries would be the perfect addition and enable very powerful systems. Sadly, such a
component is still up in the air.

Early systems use separate query engines for KB and text. A classic inverted index
(usually from existing search engine software like Lucene*) is used for the text with
the following addition: Just like for each normal word, there is also an inverted list of
sorted document IDs for every entity. The KB part is handled by off-the-shelf SPARQL
engines. Succeeding systems refine this idea but do not fundamentally deviate from
it. For example, the strategy can be improved by adding additional inverted lists that
represent entire classes of entities. In that case, there may be inverted lists for buildings
or even buildings in Furope. There are many variants and extensions to this general
idea. We describe concrete systems and their strengths and drawbacks w.r.t. efficiency
in Section 4.2.2 and experimentally compare these ideas to our work in Section 4.2.4.

An important difference between all prior systems and our work is that the methods based
on a classic inverted index only yield document centric results. Thus, for our example
query, such systems would return a list of matching documents or snippets which state
that a building in Europe was destroyed in a fire. It is left to the user to figure out which
buildings are mentioned. It is also entirely possible that many of those hits talk about
the same building, making it very hard for a user to obtain a proper list.

“https://lucene.apache.org/core/

Broccoli and QLever can return both, lists of matching documents and lists of matching
entities. Further, we are also able to provide sensible rankings for either. Note how prop-
erly ranking a list of possible result entities is entirely impossible when query results are
documents rather than entities. Our work on indexing and query processing (described
in Section 4.2) makes this possible with roughly the same efficiency as classic keyword
search with a classic inverted index.

Compared to different lines of research (e.g., those described in the following subsections),
systems following this approach have huge potential but several drawbacks. Result qual-
ity is very high (see Section 4.1.4). However, to achieve that, it is necessary that a user
is able to ask the perfect query (or some component is able to infer it). Further, text
and knowledge base have to be linked perfectly and contain the necessary information.

Another issue are non-standard query languages. So far, there is no standard for semi-
structured queries with parts supposed to match in the KB and parts supposed to match
in a text corpus. Our system QLever comes close by supporting the SPARQL language
with a very small, but powerful, set of extensions.

2.2 SPARQL Engines

Popular systems for SPARQL queries, like Sesame (Broekstra, Kampman, and Harmelen,
2002) or Jena®, are built as layers on top of systems that actually store the triples, often
relational databases. As all SPARQL queries can be rewritten to SQL; see the work by
Elliott et al., (2009), support for them has been added by most relational databases. In
contrast to classic relational databases, so-called triple stores are purpose-built for storing
the triples that comprise knowledge-base data. Consequently, efficiency of such SPARQL
engines vastly depends on these underlying systems. In Section 4.2.2 we describe the most
efficient systems from industry and research and their relation to our work on efficient
indexing and query processing.

What distinguishes our work (apart from very fast query times) is the deep integration
of text search. The SPARQL language does not include keyword search natively. It
does, however, allow literals from the knowledge base to be filtered by regular expres-
sions. However, complex regular expressions to filter on textual literals are prohibitively
inefficient to use for keyword search on large amounts of text.

Since classic keyword search is often a highly useful feature, it has been added by several
SPARQL engines and frameworks. Usually, they introduce a special predicate that allows
keyword search in KB literals. In Jena, this predicate is called text:query and in the
efficient triple store Virtuoso®, which we describe in more detail in Section 4.2.2, it
is called bif:contains (where bif means build-in function). With this, queries like the
following can be answered:

Shttps://jena.apache.org
Shttps:/ /virtuoso.openlinksw.com /

Query 3: Example bif:contains

SELECT ?b WHERE {
?b <is-a> <Building> .
?b <located-in> <Furope> .
?b <description> ?d .
2d bif:contains "destroy*’ fire’"

Notice how this is not identical to our example from above. It relies on the knowledge
base having description literals for building entities and that those contain the necessary
information. It is not intended to search for occurrences of entities anywhere in a large
text corpus. For our example, the fact that the Pantheon was once rebuilt after being
destroyed in a fire, is not mentioned in the description of the Pantheon in the Freebase
KB (Bollacker et al., 2008).

However, it is possible to fully emulate SPARQL+Text Search. Three possibilities are
depicted in Figure 2.

Emulating SPARQL-+|Text Search with SPARQL Engines

I. Without extensions:

<record:125> <contains-entity> < Pantheon>
<record:128> <contains-entity> <Augustan_ Age>
<record:123> <contains-word> <word:destroyed>
<record:123> <contains-word> <word:fire>

II. With keyword search in literals (loses expressiveness):

< Pantheon> <texrt> "The Augustan Pantheon was destroyed
along with other buildings in a huge fire in 80

<Augustan_Age> <text> "The Augustan Pantheon was destroyed
along with other buildings in a huge fire in 80

ITI. With keyword search in literals (lossless):

<record:125> <contains> <Pantheon>
<record:123> <contains> <Augustan_Age>
<record:125> <text> "The Augustan Pantheon was destroyed
along with other buildings in a huge fire in 80"

Figure 2: Three emulation strategies that enable classic SPARQL engines to
answer SPARQLText queries (with limited efficiency).

The first possibility just uses standard SPARQL without any extensions. We simply add
all text records and words as entities to the KB and add a triple with an explicit contains-
entity and contains-word predicate for every word- and entity-occurrence. The second
possibility makes use of the common extensions for keyword search in literals which we
have mentioned above. We simply connect each entity to a literal that represents the
entire text literal. However, this strategy has a drawback: the information that the
entities <Pantheon> and <Augustan Age> co-occur is lost. In fact, all information
about co-occurrence between entities is lost in this way. The third strategy overcomes
this issue. We now introduce an explicit entity for each text record and connect it to its
text literal with another triple.

Neither strategy is perfectly suited for efficiency. We compare the performance of QLever
against state-of-the-art systems on pure SPARQL queries and SPARQL+Text emulated
this way in our publication of QLever (Bast and Buchhold, 2017) and present an excerpt
with the main results in Section 4.2.4. While QLever is also faster on many classic
SPARQL queries, the gap widens significantly when its native support for SPARQL+Text
is compared against the emulations.

In terms of result quality, the above strategies emulate (parts or all of) the search ca-
pabilities of our systems QLever and Broccoli. They are not as powerful w.r.t. user
convenience, because retrieving result snippets and the number of matches would still
have to be added separately, but overall, the emulations deliver the same results as our
systems. This quality is examined in Section 4.1.4 and especially in our publication (Bast,
Buchhold, and Haussmann, 2017). A different take on SPARQL+Text has been demoed
under the name RDF Xpress (Elbassuoni, Ramanath, and Weikum, 2012) that supports
approximate matching of string literals via a special-purpose language model (Elbassuoni
et al., 2009). Efficiency does not play a major role for that work and the overall search
paradigm is similar to the text extensions of Virtuoso and Jena. However, it would still
be interesting to compare the advanced ranking function and its implications for result
quality on our typical queries. Sadly, we could not find publicly available software to do
S0.

Of course, our work does not fully subsume previous work on SPARQL engines. These
engines deal with important topics that we ignored for QLever so far: Data inserts
and thus incremental index updates, as well as distribution across several machines are
very important topics. While we do not see principal problems that would make this
impossible, the process is not trivial either and we have not concerned ourselves with it
yet. There is also a large body of research on reasoning on knowledge-base data (e.g.,
infer subclasses information on the fly) and on certain data analysis tasks (e.g., how two
entities connected over n hops in the data graph). Specialized systems can naturally
outperform our work on those queries.

10

2.3 Semantic Web Search

The Semantic Web contains a vast amount of structured and semi-structured data. The
data from the Semantic Web is often also called linked open data (LOD), because contents
can be contributed and interlinked by anyone. This happens in two ways. First, as
documents with triples (similar to the example knowledge base excerpts used throughout
this document) that can link to each other, just like ordinary web pages can link to each
other. Secondly, through semantic markup embedded in web pages. For example, a
website about a movie that mentions its director and actors can make the information
readable to machines by adding additional tags to the HTML source that are not shown
to a reader. There are multiple widely used formats for semantic markup. We describe
them in Section 2.1 of our survey (Bast, Buchhold, and Haussmann, 2016).

As such, the Semantic Web also consist of both, textual and structured knowledge-base
data. Searching it thus initially seems to be very closely related to our work. However,
a closer look reveals that systems for semantic web search usually have to focus on very
different problems than we do.

The nature of the Semantic Web leads to two major challenges for search: (1) The sheer
amount of data” requires very efficient solutions and (2) the absence of a global schema
(information about the same entity can use different names or identifiers of that entity
and different predicates can have the same or similar meanings) makes structured lan-
guages like SPARQL only suited for querying subsets (in which the schema is somewhat
consistent), if at all.

Therefore, typical systems for semantic web search usually process that data in ways that
are similar to classic keyword- and web search. The basic idea is to store all data from
triples in an inverted index. A (virtual) document per subject entity is created, that
consists of all corresponding predicates and objects as text. Then, keyword queries are
issued and results are ranked like for classic keyword search. This is very efficient, and
works despite the inconsistent schema problem. Well-researched ranking techniques for
keyword search can help to improve search quality. However, it still does not compare to
the precise query semantics offered by SPARQL queries on consistent knowledge bases.
Semplore (Wang et al., 2009) is a typical system following this approach.

More advanced systems aim at improving search quality while retaining high perfor-
mance. Blanco, Mika, and Vigna, (2011) examine several variants to index the virtual
documents. In particular, valuable information is lost if predicates are dropped entirely
or just mixed with objects in the virtual documents. They use the fielded inverted index
of MG4J (Boldi and Vigna, 2005) and examine trade-offs between query time and result
quality. Such a fielded index and BM25F (Zaragoza et al., 2004), which is an extension
of the well-known BM25 ranking function, were originally developed for classic keyword
search and to let matches in titles or URLs contribute more to the score of a document

"While there are no current estimates available, the subsets examined by Meusel, Petrovski, and
Bizer, (2014) and Guha, Brickley, and MacBeth, (2015) suggest that the number of triples in form of
semantic markup has reached hundreds of billions.

11

than matches somewhere in the body. This can be applied to semantic web search in
several ways. With dedicated fields for subject, predicate, and object, the structure is re-
tained — at the cost of query time. However, the preferred way for their use-case discards
most of this structure for the sake of efficiency: Index fields are only used to group triples
by predicate importance and to boost the important ones in the ranking function. For
standard keywords queries, this allows queries that are as fast as for a vanilla inverted
index but with significantly better result quality.

Siren (Delbru, Campinas, and Tummarello, 2012) is another system in that vein. It is
built on top of the popular text search engine library Lucene® and supports queries that
correspond to star-shaped SPARQL queries. There is one variable at the center and
several triples can be connected to it, but not longer chains of triples. In those queries,
predicate and object names can be matched via keyword queries. There are inverted lists
for words in predicate names and for words in object names. Each index item contains
information about the triple to which it belongs, namely: the ID of the subject entity,
the ID of the predicate, the ID of the object (only for words in object names), and the
position of the word in the predicate or object. Standard inverted list operations can
then be used to answer a query for all entities from triples containing, e.g., author in the
predicate name, and john and doe in the object name.

In summary, systems for searching the Semantic Web may solve a similar problem to ours
as they answer queries over combined data that consists of triples and text alike. However,
the different circumstances make the typical techniques very different. Searching the large
and inconsistent Semantic Web is much harder and thus systems aim for much less precise
results.

2.4 Commercial Search Engines and KBs

As we have argued in the introduction, the queries we answer are very relevant to actual
users and they can be answered very well with knowledge bases and text. Thus, commer-
cial web search engines obviously also follow this approach. Unfortunately, there are no
publication that disclose their entire efforts. But from the user experience and existing
publications it is possible to make an educated guess.

We focus on Google Search? as of 2017. We believe that a query is classified and answered
by several subsystems. Depending on the individual results and the confidence in them,
the final result page is compiled. While it always contains the well-known 10 blue links
as the result of keyword search, often there is an extra section at the top with relevant
information from one of the special subsystems. There are hand-compiled answers show-
ing nicely edited information for many queries. For example, for the query actors won
oscar, or during events like the last FIFA World Cup, such compilations are displayed
prominently. In the following, we focus on automated efforts to answer semantic queries.

8http://lucene.apache.org
https://www.google.com

12

http://lucene.apache.org
https://www.google.com

Buildings » Europe

| L

The Shard Eiffel Tower Commerzban.. Mercury City
London Paris Tower Tower
Frankfurt Moscow

Figure 3: Additional section at the top of the search result page for the query
buildings in Europe from Google Search Jun 2017

The query buildings in Furope displays pictures of popular buildings together with the
city in which they are located. Figure 3 shows this augmentation of the result page. As
the top indicates, it is a list of buildings restricted on Europe. This suggests that the
query is answered with the help of a knowledge base.

Also, Google has been rather transparent on their efforts concerning knowledge bases and
published several papers. In 2010 Google acquired Metaweb, the company behind the
Freebase KB. While Freebase (Bollacker et al., 2008) consists of manual user-submitted
contributions and semi automated integrations of other publicly available data (e.g.,
from GeoNames'? or MusicBrainz'!), Google has continued development of its internal
knowledge base, the Knowledge Graph (Singhal, 2012). More recently, they have also
published research on automatic knowledge-base construction. Their Knowledge Vault
(Dong et al., 2014) is an effort to extract triples from web content and to fuse the results
from several extractors and previously known triples. Their KB data delivers precise
results for many queries and its value is apparent for many queries.

We have seen this in Figure 3 for the query buildings in Furope and many queries work
similarly, e.g., american actors or director martian. Even formulations as natural lan-
guage questions are answered in the same way, e.g. Who directed the Martian?.

Additionally, some queries directly find tables that answer the query very well. For
example, the query french actors who won an oscar directly matches a table with that
exact content. We attribute this to the work behind WebTables (Cafarella et al., 2008).

Ohttp://www.geonames . org
"http://linkedbrainz.org/rdf/dumps/20150326/

13

http://www.geonames.org
http://linkedbrainz.org/rdf/dumps/20150326/

Google also answers natural language questions from annotated text. This is usually done
in an extractive way: the answer is found in text with annotated entities. This happens,
for example, for queries like When was the first antibiotic discovered? for which Google
currently outputs:

But it was not until 1928 that penicillin, the first true antibiotic, was discovered by
Alexander Fleming, Professor of Bacteriology at St. Mary’s Hospital in London.

Especially, this extractive question answering from text and the queries from before,
that can are answered directly from the KB, already accomplish similar things as our
kind of search. However, we cannot observe anything for complex queries and see no
answers that are derived from combinations of KB and text, yet. For the query from
our introduction, buildings in Furope that were destroyed in a fire we just get textual
matches and, in general, results that are not very satisfying. For example, the search
returns documents about buildings that were destroyed in WW2 or London buildings
that were destroyed in a fire.

In summary, Google Search has many powerful subsystems at its disposal and already
works very well for many queries. However, they obviously have to be relatively con-
servative with new features and only introduce them once they are very solid, in order
to not jeopardize the search experience. Thus our work goes significantly further than
current commercial search engines when searching on combined data. Of course, an in-
tegration of another subsystem to search combined data is not easy — but it is absolutely
not unthinkable to happen in one way or the other within the near future.

14

3 Publications

In the following two subsections we present publications that have already been published
in, or accepted to, peer reviewed conferences and journals, and one publication that has
not gone through peer review but still describes relevant parts of our work. Within each
section, publications are listed in chronological order. For each publication, we provide a
short description of its kind (full paper, demo paper, extensive survey) and contents. We
also specify what part of the work can be attributed to which of the authors (as authors
are usually in alphabetical order by convention).

3.1 Peer-Reviewed Publications

In the following, we list our peer-reviewed publications. Two papers have been accepted
for inclusion in the conference proceedings and a journal respectively, but have not yet
been published.

A Case for Semantic Full-Text Search
SIGIR-JIWES 2012 (Bast et al., 2012a)

Hannah Bast, Florian Bdaurle, Bjorn Buchhold and Elmar Haussmann

Position paper that introduces the Semantic Full-Text Search paradigm
for search in text and knowledge bases. We argue how knowledge bases
and text corpora both have their strengths and weaknesses but can com-
plement one another very well.

The paper is covered in Section 4.1 of this document.

All authors wrote the paper and conducted the research that backs up
the ideas presented in this position paper.

15

An Index for Efficient Semantic Full-Text Search
CIKM 2013 (Bast and Buchhold, 2013)

Hannah Bast and Bjérn Buchhold

Full research paper that presents and evaluates the index behind the
Broccoli search engine. The index is tailor-made from scratch to effi-
ciently support search in text linked to a knowledge base. This yields
significantly faster query times than previous work.

The paper is covered in Sections 4.1 and 4.2 of this document.

Both authors conducted the research. Bjorn Buchhold provided all im-
plementations. Both authors designed the evaluation benchmark, Bjorn
Buchhold conducted the evaluation. Both authors wrote the paper.

Easy Access to the Freebase Dataset
WWW 2014 (Bast et al., 2014a)

Hannah Bast, Florian Baurle, Bjérn Buchhold and Elmar Haussmann

Demo paper that presents our publicly-available adaption of the Freebase
KB. We derive a version that can be searched more easily and whose
triples are readable for humans. We provide a web application that
offers convenient access.

The paper is covered in Section 4.1 of this document.

Hannah Bast, Bjorn Buchhold and Elmar Haussmann conducted the re-
search. Bjorn Buchhold and Elmar Haussmann implemented the ideas.
Florian Baurle adapted the user interface of Broccoli for the web appli-
cation. Hannah Bast, Bjorn Buchhold and Elmar Haussmann wrote the

paper.

Semantic Full-Text Search with Broccoli
SIGIR 2014 (Bast et al., 2014b)

Hannah Bast, Florian Bdurle, Bjorn Buchhold and Elmar Haussmann

Demo paper that presents the Broccoli search engine, its interactive user
interface, and public API.

The paper is covered in Section 4.1 of this document.

All authors conducted the research on the search paradigm and general
system design. All authors wrote the paper.

16

Relevance Scores for Triples from Type-Like Relations
SIGIR 2015 (Bast, Buchhold, and Haussmann, 2015)

Hannah Bast, Bjorn Buchhold and Elmar Haussmann

Full research paper that describes how to compute relevance scores for
knowledge base triples. The scores can be used to properly rank results
of entity queries on a knowledge base. We present and evaluate several
models to learn these scores from a large text corpus and design a crowd-
sourcing task to create a benchmark for triple scoring.

The paper is covered in Section 4.3 of this document.

All authors conducted the research, designed the crowdsourcing exper-
iment and the evaluation. Bjérn Buchhold and Elmar Haussmann pro-
vided all implementations. All authors wrote the paper.

Semantic Search on Text and Knowledge Bases
FnTIR 2016 (Bast, Buchhold, and Haussmann, 2016)

Hannah Bast, Bjorn Buchhold and Elmar Haussmann

Extensive survey (156 pages) over the huge field of semantic search on
text and knowledge bases.

The paper is covered in Section 4.4 of this document.

All authors contributed in deciding the overall structure and scope of
the survey. All authors surveyed the literature and prepared summaries
for systems to include or exclude. All authors wrote the survey.

17

WSDM Cup 2017: Vandalism Detection and Triple Scoring
WSDM 2017 (Heindorf et al., 2017)

Stefan Heindorf, Martin Potthast, Hannah Bast, Bjorn Buchhold and
Elmar Haussmann

Overview paper for the WSDM Cup 2017 and its two tasks, vandalism
detection and triple scoring.

The paper is covered in Section 4.3 of this document.

Stefan Heindorf and Martin Potthast organized the vandalism detection
task. Hannah Bast organized the Triple Scoring task. Hannah Bast,
Bjorn Buchhold and Elmar Haussmann established the triple scoring
task, created a benchmark via crowdsourcing and defined sensible evalu-
ation metrics. Stefan Heindorf, Martin Potthast and Hannah Bast wrote
the paper.

QLever: A Query Engine for Efficient SPARQL-+Text Search
Accepted to CIKM 2017 (Bast and Buchhold, 2017)

Hannah Bast and Bjorn Buchhold

Full research paper that describes the QLever query engine for efficient
SPARQL+Text search. It introduces a novel knowledge-base index, im-
proves upon our text index from (Bast and Buchhold, 2013) and intro-
duces new algorithms for planning and executing SPARQL-+Text queries.

The paper is covered in Section 4.2 of this document.

Both authors conducted the research. Bjorn Buchhold provided all im-
plementations and conducted the experiments. Both authors wrote the

paper.

18

A Quality Evaluation of Combined Search on a Knowledge Base
and Text
Accepted to KI Journal (Bast, Buchhold, and Haussmann, 2017)

Hannah Bast, Bjorn Buchhold and Elmar Haussmann

Research paper that describes a detailed quality evaluation and error
analysis of our search paradigm.

The paper is covered in Section 4.1 of this document.

All authors designed the evaluation and analysed results. Bjorn Buch-
hold and Elmar Haussmann performed most of the manual evaluation
and error analysis. All authors wrote the paper.

3.2 Other Publications

In the following, we list a publication that has not been published in peer-reviewed
proceedings. However, we still consider it relevant to this thesis and find it important to
adequately attribute author contributions to the Broccoli system. Further, it provides a
good overview of the research that underlies some of the peer-reviewed publications from
before.

Broccoli: Semantic Full-Text Search at your Fingertips
CoRR 2012 (Bast et al., 2012b)

Hannah Bast, Florian Bdaurle, Bjorn Buchhold and Elmar Haussmann

Research paper that describes the Broccoli system and all of its ma-
jor components. These components includes the basic idea behind its
efficient index, its natural language processing (contextual sentence de-
composition) and its interactive user interface.

The paper is covered in Section 4.1 of this document.

All authors conducted the research on the search paradigm and general
system design. Hannah Bast and Bjorn Buchhold conducted the research
on efficient indexing and query processing, Bjérn Buchhold implemented
it. Hannah Bast and Elmar Haussmann conducted research on the con-
textual sentence decomposition, Elmar Haussmann implemented it. All
authors designed the user interface, Florian Biurle implemented it. Flo-
rian Béurle, Bjorn Buchhold and Elmar Haussmann implemented a data
preprocessing pipeline to load a text corpus and a knowledge base into
the search system. All authors performed the evaluation and wrote the

paper.

19

4 Research Topics

In the following we summarize the research topics to which we contributed while devel-
oping our systems.

4.1 Semantic Full-Text Search with Broccoli

The Broccoli search engine allows what we call Semantic Full-Text Search. The query
language is closely tailored towards the user interface (recall Figure 1 from the intro-
duction). Strictly speaking, it is a subset of SPARQL (restricted to tree-shaped queries
with exactly one selected variable at the root, and not using variables for predicates)
but extended by the special occurs-with predicate. This predicate can be used to specify
co-occurrence of a class (e.g., building) or instance (e.g., Pantheon) with an arbitrary
combination of words (e.g. “destroyed fire”), other instances (e.g., Rome), and/or further
sub-queries (e.g., roman emperors that were assassinated).

Technically, this covers only a subset of the SPARQL+Text search described in the
introduction (which, in contrast, is fully supported by our more recent system, QLever,
which we cover in Section 4.2). However, we have gone great lengths to provide an
appealing user experience and to improve the quality of the search results of Broccoli.

In our publication (Bast et al., 2012a), we have first argued that we want to leverage the
strengths of both, knowledge bases and text, to overcome the weaknesses of each other
and our system, Broccoli, applies this idea in practice. In addition, its semantic full-
text search paradigm also emphasizes the importance of suggestions for construction and
meaningful result snippets. Context-sensitive suggestion during query construction are
absolutely crucial as users cannot be expected to know the exact names of the entities and
their relations in the knowledge base. Meaningful result snippets are equally important.
In the following, we consider an example query in order to demonstrate how essential
these snippets can be.

The system owes its name Broccoli to a query for plants with edible leaves where it
matches entities that, according to the KB, are plants and that occur together with the
words edible and leaves in the text corpus. This correctly finds broccoli as one of the
results. However, such a search may also yield incorrect answers: Imagine a text passage
like “Rhubarb stalks are edible, but its leaves are toxic.” which also has occurrences of a
plant and the two words we are looking for.

In Section 4.1.3 we will briefly explain how natural language processing can help to avoid
these mistakes in the first place. Still, we cannot guarantee perfect precision. If our
system returns a long list of matching plants, somewhere down the list, false positives
are bound to appear. However, with the help of good result snippets, a user can quickly
assess the reliability of each hit with minimal effort (and thus will hopefully not eat
rhubarb leaves because of our search engine).

20

4.1.1 Problem Statement

We want to make queries like the example buildings in Europe that were destroyed in a
fire possible and allow users to conveniently retrieve this information from combinations
of knowledge base and text. We are dedicated to build a system, where a user does not
require prior knowledge of either KB or text corpus and query results should be of the
highest quality possible. In addition, we want transparency: If it is obvious to the user
why any particular hit has been returned, false positives are much less harmful than if
they were provided by a black-box system.

4.1.2 Related Work

We have discussed other systems for search with (semi-) structured queries on combina-
tions of text and knowledge base in Section 2.1 and will elaborate on their indexing and
query processing further in Section 4.2.2.

Here, we want to differentiate our work on Broccoli and Semantic Full-Text Search from
lines of work that answer similar queries, but approach the problem in a different way.
Most notably, there have been two benchmarks that feature tasks whose queries resemble
ours: the TREC Entity Track and the SemSearch Challenge.

The TREC Entity Track (Balog et al., 2009; Balog, Serdyukov, and Vries, 2010) featured
queries searching for lists of entities, just like in our work. They are particularly interested
in lists of entities that are related to a given entity in a specific way. Thus, the task is
called "Related Entity Finding". This means that they focus on a particular subset of
the queries supported by Broccoli (and by extension also by QLever). A typical query
is airlines that currently use boeing 747 planes. Along with the query, the central entity
(boeing 747) as well as the the type of the desired target entities (airlines) were given.
The benchmark predates our work and was not continued, but we have used the queries
in our evaluation described in Section 4.1.4 to demonstrate the strengths of Broccoli and
its search paradigm.

In 2011, the SemSearch Challenge (Blanco et al., 2011) featured a task with keyword
queries for a list of entities (for example, astronauts who landed on the moon). These
queries are of the same kind as ours and we have used them to evaluate both, the result
quality (see Section 4.1.4) and efficiency (see Section 4.2.4) of our work.

We provide more details on those benchmarks in our survey (Bast, Buchhold, and Hauss-
mann, 2016). The major difference to our work is the kind of query. The systems that
competed on these benchmarks all work with keyword queries, whereas our queries build
upon explicit knowledge-base facts as known from SPARQL. This also leads to different
techniques that are being used. In systems that ran on those benchmarks, entities are
usually associated with a bag of words (e.g., through virtual documents as we have de-
scribed for semantic web search in Section 2.3) and then ranked for the keyword query.

21

Type information (e.g., airlines in the example above) is usually only used to filter results
and systems do not make use of advanced knowledge-base data.

In contrast, our systems require a structured query. While this can be considered a
limitation, if we are provided with such a query, the search is more powerful and can
yield results of higher quality as we point out in our evaluation in Section 4.1.4.

4.1.3 Approach

The Broccoli system and all its components are described in our publications (Bast et al.,
2012b), (Bast and Buchhold, 2013) and (Bast et al., 2014b). Here, we provide a high-
level overview and elaborate on unpublished improvements to our context-sensitive query
suggestions which allow iterative query construction. We also describe FreebaseEasy, our
own adaption of the Freebase (Bollacker et al., 2008) knowledge base, which has originally
been published in (Bast et al., 2014a).

In principle, Broccoli can be set up for any knowledge base and text corpus. Our pre-
processing is organized in a pipeline and its components can be adjusted for the input
at hand. We use Apache UIMA'? to manage our pipeline. Thus, each component has
a clearly defined interface and we specify which data it produces or modifies. Further,
UIMA allows us to easily scale our preprocessing to multiple processors and across several
machines through its Asynchronous Scaleout capabilities.

In practice, we have put a large focus on our components for Wikipedia text and we show
our preprocessing for this input in Figure 4. We parse an official Wikipedia dump (in
XML format) to obtain the full text of each article and to transform knowledge about
sections boundaries, linked Wikipedia pages (and thus entities), and similar information
from markup into external data structures that reference positions in the text. After
running a tokenizer, we use third-party software (configurable) to perform a constituent
parse that also gives us part-of-speech tags. This information is needed later by the
entity recognizer and especially by further NLP steps. Afterwards, we link all direct and
indirect mentions of entities to their respective entries in the KB. In Wikipedia articles,
first occurrences of entities are already linked to their Wikipedia page. Whenever a part,
a synonym, or the full name of that entity is mentioned again in the same section (or
one of its subsections), we recognize it as that entity. When we encounter references
(anaphora) we assign them to the best matching entity. Pronouns, like he, she, it, his
or her, are assigned nearest preceding entity of matching gender and mentions of the
<type>, e.g., the building, to the last matching entity of that type. For text corpora
other than Wikipedia, state-of-the art approaches for named entity recognition and dis-
ambiguation, such as Wikify! (Mihalcea and Csomai, 2007) or the work by Cucerzan,
(2007) or Monahan et al., (2014) can be used instead.

Finally, we obtain semantic contexts from the text. We employ contextual sentence de-
composition (Bast and Haussmann, 2013), an approach for open information extraction,

2https://uima.apache.org/

22

https://uima.apache.org/

UIMA - Pipeline

|

-~

Figure 4: The pre-processing pipeline to create an instance of the Broccoli
search engine from a KB and a Wikipedia XML text corpus, slightly simpli-
fied.

to split sentences into multiple contexts. We also unite items inside enumerations with
the sentence preceding the enumeration. Intuitively, the words inside such a context
semantically belong together. The special occurs-with predicate of the query language
of Broccoli specifies co-occurrence within these semantic contexts. We have also ex-
perimented with other text segmentations, e.g., using sentences, paragraphs or entire
documents and demonstrate the benefit of the semantic contexts in (Bast, Buchhold,
and Haussmann, 2017).

We then produce input from which we can build our index and process queries as de-
scribed in (Bast and Buchhold, 2013). This is a crucial part of the Broccoli system, but
we defer this for now and describe our work on indexing in more detail in Section 4.2.
Iterative query construction with context-sensitive suggestions

One important part of Broccoli is how its user interface (UI) guides the user through
its context-sensitive suggestions. This allows iterative construction of complex queries,

23

without prior knowledge of the KB and how exactly certain predicates, types or entities

are called.
occurs-with ¥ — tallest X

occurs-with ¥ — destroy* fire %

Vv Instances: Vv Instances:

Burj Khalifa (340) Royal Opera House (58)
Empire State Building (203) Old Parliament Building (Quebec) (52)
Chrysler Building (104) Pantheon (34)
1-3of 267 1-30f167

v Classes: Vv Classes:

Location (267) Location (167)
Structure (267) Structure (167)
Skyscraper (226) Tourist attraction (26)
1-30f41 1-30f47

v Relations: v Relations:

located-in <Location> (252) located-in <Location> (122)
architect <Person> (197) architect <Person> 97)
floors <Integer> (88) opened <Date> (82)
1-30f8 1-30f8

Figure 5: Context sensitive suggestion for incremental query construction in
the Broccoli search engine.

Figure 5 compares the context sensitive suggestions for highly similar, yet different two
queries. The query is depicted at the top and suggestions to incrementally extend or
refine it are shown in the three boxes. We distinguish instances (the entities matching
the current query), classes (super- and subclasses of matching instances) and relations
(KB predicates that are available for as many of the matching instances as possible).
In the concrete example, both queries are about buildings and thus all suggestions are
specific to that. However, there is also a difference between the two, due to their text part
(shown in yellow in the query above). Buildings that occur with the word tallest tend
to be skyscrapers, and have relations like the number of their floors, whereas buildings
that occur with destroy* fire are more often historic buildings. The important benefit is

that a user can find relevant relations even if she is not sure how exactly they are called
in the KB.

How we compute these suggestions is described in detail in (Bast and Buchhold, 2013).
In a nutshell, we solve the current query and then compute an additional join with our
is-a (type) relation to fill the classes box. To fill the relations box, we compute a join
with an artificial has-relations relation, that lists, for each entity, all relations it engages
in. After the joins we aggregate the types (or relations) and rank them by their counts,
i.e. for how many result instances they are available.

In practice, Broccoli uses another trick to improve the efficiency of these join-and-
aggregate operations. As this trick has not been published so far, we describe its technical

24

details here for the first time. The intuition behind the trick is that many instances share
the same set of types and relations. E.g., all buildings are also classified as structure and
location. While the most famous ones in our KB have additional types, e.g., skyscraper,
tourist attraction, etc., the long tail of less popular buildings has exactly these three
types. This becomes even more significant for types with many instances like the 11
million musical recordings where most not only have the exact same set of types, but
also the same set of relations they engage in.

We make use of this phenomenon and collect the most frequent set of types and connected
relations as patterns and assign IDs to them.

Efficient Relation Suggestions

Original content of has-relations:

Burj Khalifa (ID 2)
Burj Khalifa (ID 2)

architect (ID 1)
floors (ID 7)

has-relations
has-relations

Burj Khalifa (ID 2)
Dubai (ID 4)
Dubai (ID 4)
Eiffel Tower (ID 5)

has-relations
has-relations
has-relations
has-relations
has-relations

structural-height (ID 10)
country (ID 3)
population (ID 9)
architect (ID 1)
structural-height (ID 10)

Eiffel Tower (ID 5)

Empire State Building (ID 6)
Empire State Building (ID 6)
Empire State Building (ID 6)
Paris (ID 8)

Paris (ID 8)

(1) Pattern ID to relations:

1 1,7,10 Pattern 1
2 3,9 Pattern 2

(2) Entity ID to pattern ID:
2 1 Burj Khalifa

architect (ID 1)

floors (ID 7)
structural-height (ID 10)
country (ID 3)
population (ID 9)

has-relations
has-relations
has-relations
has-relations
has-relations

architect + floors + structural-height
country + population

Pattern 1

4 2 Dubai Pattern 2
6 1 Empire State Building Pattern 1
8 2 Paris Pattern 2

(3) Has-relations without entities covered by patterns:

5 1 Eiffel Tower
5 10 Eiffel Tower

architect
structural-height

Figure 6: The Trick used by Broccoli to further speed-up relation suggestions.
Here we assume unrealistically few relations for the sake of a clear example
with only two patterns.

25

We than index three things as shown in Figure 6: (1) a mapping from pattern ID to
represented relations or types, (2) the pairs of entity ID and pattern ID, and (3) the
classic KB predicates between entity ID and relation/type ID, but only for those entities
with infrequent (or unique) patterns. Note that only entities that exactly match a relation
or type pattern make use of them. All others, even with very slight deviations, are kept
in the classic lists (3). Like this, we can now join the list of instances matching the
query with lists (2) and (3). These two lists are, in combination, still much shorter than
the original list where each entity would has many associated types/relations. In the
concrete example from Figure 6, we can think of a query for buildings that yielded the
result list [2, 5, 6]. We now join this list with lists for (2) and (3) that have sizes 4 and
2. Even if the effect is not very apparent in the small example, we can still observe that
this is better than joining with the original list of size 12.

To compute the final suggestions, we can then simply iterate over matched patterns and
accumulate the counts for each of the relations (or types) represented by the patterns.
The trick works so well, because we are only interested in counts for each relation (or type)
and not the pairs of instance and relation/type. Those pairs can instead be obtained by
a separate query after the suggestion has been added to the current query.

Adaption of the Freebase KB

The current demo of Broccoli (broccoli.cs.uni-freiburg.de) uses FreebaseEasy, a
knowledge base derived from Freebase (Bollacker et al., 2008). The original Freebase KB
offers the largest number of useful facts out of all publicly available general-knowledge
KBs. Size is important. For example, in early versions of Broccoli we worked with the
original YAGO KB (Suchanek, Kasneci, and Weikum, 2007). However, if a query for
movies with Johnny Depp retrieves only six movies, such results are not what a user
should expect. Unfortunately, the larger Freebase KB is, unlike YAGO, not well suited
for our kind of search in its unmodified state for three reasons:

1. Entities are identified by machine identifiers such as ns:m.01zzdz for the Pantheon.
Readable names are only available through an extra join with the ns:type.object.name
predicate and names do not uniquely identify an entity.

2. Many relations are not binary in nature. Think of a relation like won-award. It
could associate winners with awards. However, there is a lot of additional useful
information like the year when the award was given or the title of the winning
work. As this is hard to express in triples, Freebase therefore introduces so-called
mediator objects. In our example, winner, award, year, etc. all connect to the
mediator object with predicates according to their role. This is very useful for
relations that just do not have a binary nature (an extreme example is nutrients
per 100g which only makes sense if at least a food, a nutrient, and an amount are
connected). However, Freebase takes this idea very far and even uses mediators
for relations like sibling or member of. Below, we demonstrate how queries quickly
become very complicated that way.

26

broccoli.cs.uni-freiburg.de

3. Freebase also contains information that is not particularly useful for our kind of
search. For example, some relations are simply duplicated under another name
(e.g., rdfs:label duplicates ns:type.object.name).

These three points are all very problematic for a user interface like the one for Broccoli.
Therefore, we have adapted Freebase to our needs, made the simplified KB publicly
available and published our work in (Bast et al., 2014a). The process is algorithmic and
thus automated to go far beyond what we could have done for a manual adaption.

Let us compare the SPARQL version of the query siblings of the Beatles over both KBs:

Query 4: Siblings of Beatles

On Freebase:

PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT DISTINCT 7personname WHERE {
?beatlesld ns:type.object.name "The Beatles"@en .
?mem ns:music.group membership.group 7beatlesld .
?mem ns:music.group membership.member ?beatle .
?beatle ns:people.person.sibling s 7sib .
?person ns:people.person.sibling s 7sib .
?person ns:type.object.name ?personname

}

On FreebaseEasy:

SELECT 7sibling WHERE {
7beatle <Member of> <The Beatles> .
?sibling <Sibling> 7beatle .

}

Query 4 shows the difference between the formulations of the same query over the original
Freebase KB and and over our derivation, FreebaseEasy. For Freebase, the query has to
use extra type.object.name predicates to deal with otherwise unreadable machine IDs for
the result entities and the entity The Beatles and it has to deal with mediator objects for
the sibling and group membership relations. In contrast, the second query is much easier
to understand and much better to build in an interactive fashion like in the Broccoli Ul
We acknowledge that some of the information in Freebase is lost that way, but the overall
user experience is increased immensely.

The major challenges to derive FreebaseEasy are automatically resolving mediator objects
and finding expressive, canonical names to use as entity IDs. Additionally, we compute
a score for each entity. The scores are mostly based on the FACC corpus by Gabrilovich,
Ringgaard, and Subramanya, (2013) that recognized and linked Freebase entities in the

27

Clueweb12 (ClueWeb, 2012) corpus. We describe the exact process in our publication
(Bast et al., 2014a).

4.1.4 Experimental Results

We have evaluated both, efficiency and result quality of our system. Efficiency experi-
ments can be found in (Bast and Buchhold, 2013) and on much larger data (ten times as
much text and a KB larger by several orders of magnitude) in our more recent publication
(Bast and Buchhold, 2017). We also summarize the results in Section 4.2.4. In this sec-
tion, we present the results of our quality evaluation (Bast, Buchhold, and Haussmann,
2017).

As data we use all text from the English Wikipedia, obtained via download.wikimedia.
org in January 2013 and the original YAGO (Suchanek, Kasneci, and Weikum, 2007)
knowledge base. We are particularly interested in the strength of our occurs-with pred-
icate, rather than in evaluating the quality of a particular knowledge base. Thus the
small size of YAGO and the incompleteness of its relations is not an issue.

We have evaluated our search on three datasets. Two of these query benchmarks are from
past entity search competitions, described in Section 4.1.2: the Yahoo SemSearch 2011
List Search Track (Blanco et al., 2011), and the TREC 2009 Entity Track (Balog et al.,
2009). The third query benchmark is based on a random selection of ten Wikipedia List
of ... pages. Wikipedia lists are manually compiled by humans, but actually they are
answers to the same kind of semantic queries that Broccoli answers.

The first two benchmarks use keyword queries (e.g., astronauts who walked on the moon
or siblings of Nicole Kidman). Wikipedia lists have a title that resembles such a keyword
query (List of unicorn startup companies). For all of them, we have manually generated
queries using a target type'3 (e.g. Astronaut or the more general Person) and the occurs-
with predicate to specify co occurrence with words (e.g. walked moon) and/or entities
(e.g. sibling <Nicole Kidman>). We have relied on the interactive query suggestions of
the user interface of Broccoli, but did not fine-tune queries towards the results.

Table 1 shows the impact of scope of text records and thus of our natural language
processing. Respectively, our occurs-with predicate requires matches within sections,
sentences, and the semantic contexts derived as described in Section 4.1.3.

We regard set-related and ranking-related measures. In the following, we briefly describe
how the measures are calculated. This description has been written at the same time in
the original publication (Bast, Buchhold, and Haussmann, 2017) from which the table is
taken, and therefore is replicated into this document:

Our set-related measures include the numbers of false-positives (#FP) and false-negatives
(#FN). We calculate the precision (Prec.) as the percentage of retrieved relevant entities
among all retrieved entities and the recall as the percentage of retrieved relevant entities

Bcalled class in the screenshots in Figures 1 and 5

28

download.wikimedia.org
download.wikimedia.org

| F1 [RPrec | MAP |nDCG|

sections 0.09 0.32 0.42 0.44
SemSearch | sentences 0.35 0.32 0.29 0.49
contexts 0.43% 0.52 0.45 0.48
sections 0.08 0.29 0.29 0.33
TREC sentences 0.37 0.62 0.46 0.52
contexts 0.46x% 0.62 0.46 0.55
sections 0.21 0.38 0.33 0.41
WP lists sentences 0.58 0.65 0.59 0.68
contexts 0.64x 0.70 0.57 0.69

Table 1: Performance of Broccoli on the three benchmarks SemSearch, TREC,
and Wikipedia lists when running on sections, sentences or contexts. Adapted
from (Bast, Buchhold, and Haussmann, 2017). The * and { denote a p-value
of < 0.02 and < 0.003, respectively, for the two-tailed t-test compared to the
figures for sentences.

among all relevant entities. We calculate the F-measure (F1) as the harmonic mean of
precision and recall.

For our ranking-related measures, we simply ordered entities by the number of match-
ing segments. R-precision (R-Prec), mean average precision (MAP), and normalized
discounted cumulative gain (nDCG) are then calculated as follows: Let PQFk be the per-
centage of relevant documents among the top-k entities returned for a query. R-precision
is then defined as PQR, where R is the total number of relevant entities for the query.
The average precision is the average over all PQi, where 7 are the positions of all relevant
entities in the result list. For relevant entities that were not returned, a precision with
value 0 is used for inclusion in the average. We calculate the discounted cumulative gain

(DCQG) as:

#rel rel(7)
DCG = —_

where rel(i) is the relevance of the entity at position ¢ in the result list. Usually, the
measure supports different levels of relevance, but we only distinguish 1 and 0 in our
benchmarks. The nDCG is the DCG normalized by the score for a perfect DCG. Thus,
we divide the actual DCG by the maximum possible DCG for which we can simply take
all rel(i) = 1.

We observe that there is a significant improvement in F-measure when using semantic
contexts over sentences. However, for the ranking-based measures this advantage dimin-
ishes. In our publication (Bast, Buchhold, and Haussmann, 2017), we examine this in
more detail and show how the semantic contexts are particularly helpful to filter out false
positive results.

29

It is not easy to compare Broccoli against the systems that participated in the original
competitions from which our queries are taken. First of all, the competitions have already
been completed and, unfortunately, there is no perfect ground truth available for them.
This is the case, because their judgments are based on pooling: All participants submit
their results and human judges only rate the relevance of what is in that pool. This
works well for the challenge but does not guarantee that a complete ground truth is
produced. If an entity has not been returned by any competing approach, it remains
without judgment — even if it is actually a highly relevant result to the query. Still, there
is no better benchmark available and we compare Broccoli to other participants of the
TREC Entity Track. At first, directly against the pooling-based judgments (assuming
anything not judged is not relevant) but then also against a ground truth extended by
our own judgments for hits returned by Broccoli.

| P@10 | R-Prec | MAP |[nDCG |

TREC Entity Track, best 0.45 0.55 n/a 0.22
Brocceoli, orig 0.58 0.62 0.46 0.55
Brocceoli, orig + miss 0.79 0.77 0.62 0.70
Brocceoli, orig + miss + corr 0.94 0.92 0.85 0.87

Table 2: Quality measures for the TREC benchmark for the original ground
truth, with missing relevant entities, and with errors from categories FP and
FN 3,4,5 corrected. Adapted from (Bast, Buchhold, and Haussmann, 2017).

In Table 2 we distinguish three runs. The run against the pooling-based judgments with-
out any modifications is marked as orig. The run for which we retrospectively labeled
our results that were not included in the original pool is marked as miss (for missing
judgments). This is the run that we would consider the fairest and thus most meaningful
comparison. Finally, we have performed a manual in-depth error analysis in our publica-
tion (Bast, Buchhold, and Haussmann, 2017). If we assume perfect auxiliary components
(i.e. perfect entity recognition, a perfectly precise and complete knowledge base, and a
perfect syntactic parse that serves as input for our natural language processing), we can
assess the theoretical potential of the search paradigm. We mark this hypothetical run
with all auxiliary errors corrected as corr.

Compared to the best performing run at TREC, our results are very strong. Note again,
that we consider miss the fairest comparison and here the difference, e.g., of 55% to
77% w.r.t R-Prec, is huge. However, we have to keep in mind that the conditions are
significantly different. Broccoli answers structured queries and, even if they were not
tuned towards the results, considerable human brainpower went into translating the
keyword descriptions into such queries.

Thus, for a truly fair comparison another component is needed that translates keyword
queries (or even better: natural language questions) into queries for Broccoli. Such a
component is another potential source of error. At the same time, our evaluation shows

30

that such a component may actually be well worth building. If it works decently, the
system can be expected to beat the competition. If it would work perfectly, and other
auxiliary components would do so as well, the (orig + miss + corr) column in Table 2
promises phenomenal potential.

31

4.2 Efficient Indexing and Query Processing

Our work on efficient indexing and query processing is a crucial aspect of all of our
systems and comprises most of the technical contributions presented in this thesis. Our
novel algorithms and data structures for SPARQL-+Text search are far more efficient
than related approaches.

There are two key publications: The first (Bast and Buchhold, 2013) describes the index
behind Broccoli that makes interactive queries of this kind possible. QLever (Bast and
Buchhold, 2017) builds upon this but integrates the functionality as an extension to the
SPARQL language. Hence, it is able to answer all queries that are possible in Broccoli,
but also more than this by providing full'* SPARQL support. Therefore, it requires a
more sophisticated index for the KB part and an advanced query planner that has to be
able to deal with our extensions for text search. On top of that, QLever makes significant
improvements to the text index that backs up Broccoli. In this section, we focus on the
most recent and furthest developed version of our indexing and query processing and
thus more on QLever than on Broccoli.

4.2.1 Problem Statement

We want to create an efficient query engine for SPARQL-+Text queries on very large
data. Recall that the query language is SPARQL extended by two special predicates:
gl:contains-word, which allows words and prefixes to be linked to text records, and
ql:contains-entity, which allows this linking for entities and variables. Query results can
be ranked by the quality of the text match and matching text snippets can be returned
as part of the result.

We want to match or improve upon the speed of state-of-the-art SPARQL engines for pure
SPARQL queries and to significantly outperform it on SPARQL+Text queries. Our data
structures and algorithms should handle arbitrary knowledge bases and text corpora.

4.2.2 Related Work

In Section 2, we have discussed how similar search paradigms relate to ours. We have
identified two areas with systems that are closely related and aim for efficiency for com-
parable kinds of queries: (1) SPARQL engines, that partially cover our query language
by nature and for which we can emulate the full spectrum of our queries (see Section
2.2) and (2) systems for (semi-) structured queries on combined data that answer similar
queries but usually return documents rather than entities (or tuples). Here, we take a
closer look at the data structures and algorithms used by those systems for each of the

1 QLever provides full SPARQL support in terms of the core of the language. Some advanced SPARQL
features still have to be added to QLever but we are not aware of anything that poses general problems
for our system and index architecture.

32

two categories and summarize their basic techniques. We want to remark that there is
some overlap with our discussion of related work in the publication of QLever (Bast and
Buchhold, 2017) which has been written around the same time.

SPARQL Engines

As described by Elliott et al., (2009), SPARQL queries can be rewritten to SQL and all
the big relational databases now also provide support for SPARQL. In contrast, there are
also systems, often called triple stores, whose index and query processing are specifically
tailored towards SPARQL queries over knowledge-base data.

A fundamental idea for tailor-made indices for SPARQL engines is to index all possible
permutations of the triples. With triples consisting of subject (S), predicate (P) and
object (O) this leads to 6 (SPO, SOP, PSO, SOP, OSP, OPS) permutations in total.
This idea was first published for Hexastore (Weiss, Karras, and Bernstein, 2008) and
RDF-3X (Neumann and Weikum, 2008). Our engine, QLever, also makes use of this
idea. We want to remark that the two permutations PSO and POS suffice for many
semantic queries. In fact, all queries that do not use variables for predicates (and thus
all queries that can be asked in the Broccoli search engine) are supported with only those
two permutations.

In the following, we take a closer look at two systems: (1) RDF-3X, one of the original
systems that uses 6 permutations and that inspired several aspects of the knowledge-base
side of QLever and (2) Virtuoso!®, a commercial product (with an open-source version)
that is widely used in practice, e.g., for the public endpoint!6 for the DBPedia KB (Auer
et al., 2007), and in many SPARQL performance evaluations. Virtuoso builds full indices
for only the PSO and POS permutations, as described below.

The main idea behind RDF-3X is to index all six permutations of the triples as described
above. Queries then make sure to use the optimal permutation for each scan and thus
many join operations can be implemented as merge joins without explicitly sorting the
inputs before. Inspired by this work, we also follow the same general idea in our system
QLever. However, within each permutation we rely on our own data layout to further op-
timize the speed at which scan operations can be executed. Query execution in RDF-3X
is pipelined, that is, joins can start before the full input is available. This is further accel-
erated by a runtime technique called sideways information passing (SIP); see (Neumann
and Weikum, 2009). SIP allows multiple scans or joins that operate on common columns
to exchange information about which segments in these columns can be skipped. QLever
forgoes pipelining and SIP in favor of highly optimized basic operations and caching of
sub-results.

Virtuoso is built on top of its own full-featured relational database and provides both, a
SQL and a SPARQL front-end. There is no research paper but a very insightful article is

Shttps://virtuoso.openlinksw.com/
https://dbpedia.org/sparql

33

available online!”. Virtuoso builds PSO and POS permutations'® and additional partial
indices (SP, OP) to deal with variable predicates, albeit less efficiently than with the
more frequent variables subjects and objects. The partial indices cannot answer queries
on their own. For a triple pattern with variable predicate, they yield SP or OP (depending
on whether subject or object are given) pairs which can be used to access one of the two
full permutations (e.g., by sorting the matching pairs by P). If variable predicates are
very important for a particular application, the user can decide to also build full indices
for other permutations, thus trading index size for efficiency on that particular kind of
query. Since Version 7, the triples inside a permutation are stored column-wise.

In Section 2.2 we have mentioned that Virtuoso supports full-text search via its bif:contains
predicate and argued how this extension is less powerful than our extensions to SPARQL

but can be used to emulate them — with low efficiency, though. The functionality is

realized via a standard inverted index and allows query keywords to match literals from

the knowledge base. The approach is typical for keyword-search support in SPARQL

engines and also taken by Jena (see http://jena.apache.org/documentation/query/

text-query.html) and BlazeGraph (see http://wiki.blazegraph.com/wiki/index.

php/FullTextSearch). We want to remark again, that this does not support entity

occurrences anywhere in the text. Therefore these extensions are less powerful than

QLever’s and do not offer anything comparable to its gl:contains-entity predicate.

Systems for Queries on Combined Data

KIM (Popov et al., 2004) was the first system for combined search on a knowledge base
linked with a text corpus. KIM is based on a standard inverted index (and on off-the-shelf
search engine software) and builds inverted lists for knowledge-base entities. These lists
then contain the document IDs for an entity’s occurrences in the text. Thus, entities are
treated just like normal words. SPARQL queries are issued to a separate engine (again
off-the-shelf). Then a keyword query is constructed as conjunction of the keywords and
a disjunction of all result entities from the SPARQL query. This query is then issued to
the text search engine. The final query results are documents, not entities. Obviously,
this approach does not allow to arbitrarily mix and nest KB and text parts in the query.
As a more important drawback, it also becomes very inefficient when the result of the
SPARQL query is large and thus a very large disjunctive text query is build and has to
be processed by the text search engine.

Mimir (Tablan et al., 2015), which can be considered KIM’s successor, tries to overcome
the efficiency issue by adding more artificial terms to the index. These terms represent
entire classes of entities, e.g., there can be an inverted list for all entities of type person,
the more specific type politician, or according to our example for a category like buildings
in Furope. The natural limitation to this approach is, that one can only index a certain
amount of such lists. Available lists can be chosen to represent the categories of entities,

' http://vos.openlinksw.com/owiki/wiki/V0S/VirtRDFPerformanceTuning
18 Actually, Virtuoso stores quads instead of triples with an additional graph attribute and thus stores
PSOG and POGS permutations, but for the purpose of this explanation is does not matter.

34

http://jena.apache.org/documentation/query/text-query.html
http://jena.apache.org/documentation/query/text-query.html
http://wiki.blazegraph.com/wiki/index.php/FullTextSearch
http://wiki.blazegraph.com/wiki/index.php/FullTextSearch
http://vos.openlinksw.com/owiki/wiki/VOS/VirtRDFPerformanceTuning

that are most frequently used in queries, but they can never cover everything interesting
selectable via SPARQL. For arbitrary SPARQL queries, Mimir falls back to the same
inefficient approach as KIM.

ESTER (Bast et al., 2007) overcomes this problem. Unlike KIM and Mimir it does not
use a standalone (and off-the-shelf) SPARQL engine, but entities and their relations are
represented in artificial text documents, that are indexed in addition to conventional text
documents. The search yields 4-tuples (doc ID, word ID, position, score). SPARQL-like
queries can then be answered by a mix of positional and prefix search operations and,
in addition to well-known intersect operation on doc IDs, lists may also be re-sorted
and intersected on word IDs. However, like KIM and Mimir, search results are text
documents and not entities. Thus, none of these approaches is suited for processing
general SPARQL queries, which are entity-centric.

All three systems discussed above share some characteristics: Some semantic queries
can be very fast if they touch moderate numbers of entities, and especially Mimir and
ESTER benefit if sufficiently specific types (e.g., building rather than person) are used.
However, it is often possible to find queries that take very long to process. For Mimir
those are queries that involve a complex SPARQL part that still return many entities
and for ESTER the use of very unspecific types (high up in a hierarchy) and similar
relations can lead to very large lists that then have to be sorted to order them by word
ID so that they can be joined/intersected on that attribute. Finally, neither of those
systems provides true SPARQL support: the document centric approaches do not return
a list of entities, let alone tuples of multiple matching variables.

4.2.3 Approach

There are two cornerstones that make our systems efficient: indexing and query process-
ing. For the indexing, we have developed two data structures: a knowledge-base index
and a text index. Both indices are designed so that the data needed at any step dur-
ing query processing is stored contiguously and without any extra data in between. We
achieve this by introducing some redundancy. The query processing also consists of two
important parts. First, efficient execution trees have to be found. Therefore, we use a
dynamic programming algorithm in which we have to account for our special operations
for text search. Only after the optimal execution tree is found, we process the query and
make use of our index data structures to efficiently compute its results. In the following,
we describe the layout of our index data structures and the algorithms used for query
processing.

Knowledge-Base Index

The first pillar of our indexing is the knowledge-base index. Our system QLever (Bast
and Buchhold, 2017), makes full use of this data structure. The index behind Broccoli,
as described in (Bast and Buchhold, 2013), only uses the text index as explained later
(actually a slightly inferior predecessor of what is described for QLever and in this docu-

35

ment), and a simplistic knowledge-base index. This simple KB index just keeps two lists
of pairs of subject and object IDs; one list sorted by subject and the other one by object.

The knowledge-base index of QLever is more advanced. Like RDF-3X (Neumann and
Weikum, 2010) and Hexastore (Weiss, Karras, and Bernstein, 2008), we first sort the
triples (S = subject, P = predicate, O = object) in all possible ways and create six (SPO,
SOP, PSO, POS, OSP, OPS) permutations. For each permutation, we build multiple
lists of binary data. These lists are different from what is used by other systems. In
the following, we examine a PSO permutation for a Film_ Performance predicate as an
example. Other predicates and the five other permutations are handled in the same way.
Note that the user may choose to build all six or only two (PSO and POS) permutations.

Knowledge-Base Index

Example triples:

Brad Pitt (ID 6) Film Performance (ID 17) Troy (ID 57)
Brad Pitt (ID 6) Film Performance (ID 17) Twelve Monkeys (ID 59)
Bruce Willis (ID 8) Film Performance (ID 17) Die Hard (ID 12)
Bruce Willis (ID 8) Film_Performance (ID 17) The Sixth Sense (ID 55)
Bruce Willis (ID 8) Film _Performance (ID 17) Twelve Monkeys (ID 59)
Bruce Willis (ID 8) Film Performance (ID 17)

(ID 17)

Cameron Diaz (ID 11) Film Performance (ID 17) Annie (ID 4)

I. Pair index:

6 57 6 59 8 12 8 55 8 59

I1. a) Object lists:

file content: 57 59 12 55 59 ... 4
N
byte offset: zq T To X3

II. b) Subject + offset pairs:

file content: 6 x9g 8 x1 11 xo

byte offset: yo Y1 Yo
III. Blocks to access subject + offset pairs:

Block 1 first-S: 6 pos: yo
Block 2 first-S: 11 pos: ys

Figure 7: The components of our knowledge-base index, exemplified for the
PSO permutation for a Film Performance predicate. Originally published in
(Bast and Buchhold, 2017).

19Tf an application, like Broccoli, does not need to support variables for predicates, using only two
permutations is enough to answer all other queries.

36

For each predicate in the permutation, we build the binary lists shown in Figure 7. The
pair index (I.) is used when the full list for the predicate is needed during query processing.
This happens for SPARQL patterns like ?s <Film_ Performance> ?0. The object lists
(IT.a) are used when we only need the objects, e.g., <Brad_ Pitt> <Film_ Performance>
?0. Note that if we only needed subjects or predicates, we would use a different permu-
tation. The subject+offset pairs (II.b) and blocks (III.) are used to efficiently find the
byte offsets between which we have to read to get such a list of objects. For special cases
like "functional” predicates (only one object per subject) and predicates with only few
triples, the offsets can also point directly into the pair index. We explain this in detail
in our publication (Bast and Buchhold, 2017).

Text Index

Example text:

Text Record 123:
The Augustan<Augustan_ Age> Pantheon< Pantheon> was destroyed in a fire.

Text Record 234:
If a boiler< Boiler> is dry-fired it can cause catastrophic failure.

Text Record 520:
The Pantheon< Pantheon>, originally built by Agrippa<Marcus_Vipsanius_ Agrippa> but
destroyed by fire in 80, was rebuilt under Hadrian< Hadrian>.

Inverted lists for prefix fire*:

I. Word part (IDs: fire:17; fired:20):

Record IDs: ... 123 234 520
Word IDs: . 17 20 17
Scores: o 1 1 1

II. Entity part (IDs: Augustan age:12; Boiler:15;
Hadrian:43; Marcus_Vipsanius__Agrippa:52; Pantheon:60):

Record IDs: ... 123 123 234 520 520 520
Entity IDs: ... 12 60 15 43 52 60
Scores: . 1 1 1 1 1 1

Figure 8: The components of our text index, illustrated for an example text;
adapted from (Bast and Buchhold, 2017).

The second pillar of the indexing behind QLever is its text index. It is based on a classic
inverted index which stores, for each term, the sorted list of IDs of all documents (or text

37

records) it occurs in. These lists of record IDs can be extended to lists of postings, that
also contain additional items, e.g., scores or positional information. On top of that, Bast
and Weber, (2006) have shown how word IDs can be included to allow inverted lists per
prefix instead of per term with very little overhead, enabling highly efficient prefix and
faceted search. Inspired by this work, we also follow this approach and store word IDs.
This obviously gives us the opportunity to efficiently answer prefix queries, but more
importantly allows storing entity IDs (as word IDs) within our inverted lists.

We then augment our inverted lists by postings for all entities that co-occur in one of the
contained text records. Initially in (Bast and Buchhold, 2013), we interleaved such entity
postings in the inverted lists for each index term, but in (Bast and Buchhold, 2017) we
have shown that using separate lists has many benefits. These separate lists are depicted
as word part (I.) and entity part (II.) in Figure 8. Intuitively, one can think of this
entity part as pre-computation for all queries of the kind: all entities that occur with
<word>, except that we do not yet organize results by entity and do not yet aggregate
their frequencies. Instead, each entity will occur multiple times in an inverted list, if it
occurs in multiple corresponding text records.

All lists are stored compressed. We gap-encode record IDs and frequency-encode word
IDs and scores. Then we use the Simple8b (Anh and Moffat, 2010) algorithm to compress
the resulting lists of small integers.

Note that each text record can be included in several inverted lists and thus an entity
posting may be stored multiple times in our text index. The blowup factor induced by
this redundancy is determined by the average number of entities per text record. In
our experiments in (Bast and Buchhold, 2013) we have found this factor to be around 2,
which is tolerable. More importantly though, the latest version of our index alleviates the
problem further: The lists touched for each query are exactly what is needed to answer
the query; see (Bast and Buchhold, 2017), Section 4, for a detailed description of how
this is achieved. The blowup only impacts the size of the index on disk and not the size
of posting lists to read and traverse. As a byproduct of this, pure keyword queries, that
do not involve entities, are processed exactly like they were in a classic inverted index.
This is another advantage over Broccoli where the blowup factor affected all inverted
lists and thus caused the system to be slower on pure text queries (see Table 3 in Section
4.2.4).

Query Processing

For Broccoli, query processing is straightforward. Its user interface and query language
enforce that queries have a tree structure. We simply process these trees in a bottom-up
fashion and cache the results of subtrees for reuse. Each of these sub-results is simply a
list of entities. For snippet generation, we use a top-down approach and retrieve snippets
and other additional information to display for exactly those top-ranked results that are
shown in the UIl. Note that the computations made by this top-down approach would
be prohibitively expensive to yield all tuples as returned by a SPARQL query. However,

38

reconstruction for the few hits displayed in the Ul takes negligible time. Details on the
query processing in Broccoli can be found in (Bast and Buchhold, 2013).

The query processing of QLever is more intricate. Support for the full SPARQL language
means that we also have to (1) allow cyclic queries, (2) allow variables for predicates,
and (3) produce result tables, i.e. lists of tuples, not single entities. Neither of these
three requirements is fulfilled by the simplistic query processing in Broccoli. On top of
that, we want to be able to process all queries in the ideal way that leads to the fastest
execution time. We have found that some queries can be processed much faster when
planned properly compared to just solving Broccoli’s user-made queries from bottom to
top. QLever’s query processing thus has two parts: query planning and query execution.

A standard procedure for processing SPARQL queries is, just like for SQL queries, to
build execution trees that have operations as their nodes. Operations that do not take
any sub-results as their inputs (e.g., scans for index lists) become leaves, operations that
require one or more sub-results as their input (e.g., SORT or JOIN operations), become the
intermediate nodes. These trees are than processed in a bottom-up fashion to compute
the result to a query. For SPARQL queries, each triple pattern in the WHERE clause of
the query corresponds to a scan, each shared variable between triples corresponds to a
join. For QLever, this is a bit more complex: Its special-purpose predicates, ¢l:contains-
entity and gl:contains-word, do not each correspond to scanning an index list. Instead,
QLever’s special text index allows processing all triples pertaining to the same text record
variable in one go.

In the following, we look at the example query from the introduction (buildings in Europe
that were destroyed in a fire with its SPARQL+Text representation given as Query 2)
and how it is processed by QLever. For a more complex example with co-occurrence
between multiple entities, we refer the reader to (Bast and Buchhold, 2017).

Before we can construct the execution tree, we first interpret the SPARQL~+Text query
as a graph. Every triple pattern from the WHERE clause of the query corresponds to a
node in this graph. If a variable is shared between two or more patterns, we draw an
edge between their corresponding nodes. This is a standard approach and also taken
by RDF-3X (Neumann and Weikum, 2010). However, we have to account for the two
QLever-specific predicates and our operations for text search.

7b
{?b <is—a><Building>} [?b <located-in> <Europe>}

’b b

[WOI‘dSZ "destroy* fire" Vars:?b}

Figure 9: Graph for Query 2 from Section 1 (buildings in Europe that were
destroyed in a fire). Cliques formed by a shared variable for a text record
are collapsed into a single node.

39

Text operations naturally form cliques (all triples are connected via the variable for
the text record). We turn these cliques into a single node each, with the word part
stored as payload. This is shown in Figure 9 where the bottom node covers two triple
patterns from the original query (in particular, ¢ gl:contains-word "destroy fire*" and

2t ql:contains-entity ?b).

As a next step, we build execution trees from this graph. Inspired by the query planning
for RDF-3X, we use an approach based on dynamic programming. This is practice-proven
and has been studied well for relational databases (see (Moerkotte and Neumann, 2006)
for an overview).

‘ Record ‘ Score ‘ Building | ‘ Record ‘ Score ‘ Building
I

TEXT_ WITH_FILTER
#extra-out-vars: 0

words: "destroy* fire"
filter-column:0

JOIN
join-col left: 0
join-col right: 2

Building | Record ‘ Score ‘ Entity | ‘

Building |

JOIN

JOIN

join-col left: 0 SORTI. 3 join-col left: 0
join-col right: 0 gortacol; join-col right: 0
Building | ‘ Building | ‘ ‘ Record ‘ Score ‘ Enity ‘ Building | Landmark |

P: <is-a> P: <located-in> #extra-out-vars: 1 P: <is-a> P: <located-in>
O: <Building> O: <Europe> words: "destroy* fire" O: <Building> O: <Europe>

{SCAN (perm: POS)} {SCAN (perm: POS)} [TEXT_NO_FILTER} {SCAN (perm: POS)} {SCAN (perm: POS)}

Figure 10: Two (out of many possible) example execution trees for the query
from Figure 9. The right one is smaller, because of the complex Text with
Filter operation.

In the graph from Figure 9, every node corresponds to an index operation and every edge
corresponds to a possible join. Figure 10 depicts two (out of many possible) plans for
the example query. We find the optimal execution tree by starting with leaves. Leaves
directly correspond to nodes in the graph — there is a leaf in the execution tree for every
node in the query graph and vice-versa.?’ Then we iteratively connect two of these
subtrees by adding a join operation to create larger and larger trees. Since we use merge
joins, a sub-result, that is supposed to become an operand of a join, may have to be
prepared by a sort operation first. We add these sort operations whenever needed. In
this way, we enumerate all possible subtrees that cover two, three, etc. nodes of the
query graph. In the end, we want all leaves to be connected. At each step we compute
cost and size estimates for the intermediate execution trees and their results. We prune

20The special Text with Filter operation is an exception to the rule that nodes in the query graph
directly translate to leaves in the execution tree, but for the purpose of the explanation here, this special
case is not important.

40

away all execution trees that are surely inferior to others. For details on this process and
especially on our own estimators, we refer the reader to (Bast and Buchhold, 2017).

Both example execution trees in Figure 10 make use of one of the special text operations
available in QLever. The text operation in the left execution tree simply yields co-
occurring entities for the text part. Therefore it accesses the text index, and then arranges
matches by entity. Afterwards, joins are performed to arrive at the final result. The text
operation in the right execution tree takes a sub-result as input, here the list of buildings
in Europe, and filters the postings from the text index so that fewer matching elements
have to be arranged by entity. For the intricacies of our text operations, especially
when multiple entities are supposed to co-occur with each other, and the algorithms to
efficiently compute the result with the help of our text index, we refer the reader to (Bast
and Buchhold, 2017).

4.2.4 Experimental Results

In (Bast and Buchhold, 2013), we have evaluated the special-purpose index behind Broc-
coli against two possible ways of using an inverted index to answer similar queries. (1)
A classic inverted index with additional inverted lists for each type (e.g., building) in the
KB. Such a list contains all occurrences of entities of that type. In Table 3, we use Inv
to refer to this approach. (2) A classic inverted index with an additional forward index
(a mapping from record ID to all entities that occur within the record). In Table 3, we
use Map to refer to this approach.

Unfortunately, these experiments predate our work on QLever and thus QLever is not
included in the comparison. However, we summarize our more recent evaluation later
in this section which compares QLever to Broccoli (among state-of-the-art SPARQL
engines). When considered together, the two experiments also provide insight on how
QLever compares to the approaches based on a classic inverted index.

Our first experiments from (Bast and Buchhold, 2013) are conducted on all the text
of the English Wikipedia (from January 2012) and the original YAGO KB (Suchanek,
Kasneci, and Weikum, 2007). The Wikipedia text amounts to a 40 GB XML dump with
2.4 billion word occurrences, 285 million recognized entity occurrences, and 334 million
sentences which we decompose into 418 million text records with the natural language
processing used by Broccoli.

In the original publication, we have generated 8000 synthetic queries from 8 categories.
Here, we use a less fine-grained breakdown and report averages over 2000 pure text
queries and 5000 SPARQL+Text queries (more precisely: the subset of SPARQL+Text
supported by Broccoli as described in Section 4.1). For a detailed breakdown and in-
depth evaluation, we refer the reader to the publication itself.

The results in Table 3 are not surprising: For pure text search, the classic inverted index
is better than Broccoli because of the additional items inserted into the inverted lists by
Broccoli. As explained in Section 4.2.3, the more recent QLever is identical to Inv here,

41

Inv(m) | Map(m) | Map(d) | Broccoli(m) | Broccoli(d)

Text 21ms 26ms 44ms 57ms 107ms
SPARQL+Text || 898ms 197ms 54s T4ms 148ms
Index Size 16GB 11GB 11GB 14GB 14GB

Table 3: Comparison of Broccoli with other indexing strategies based on a
classic inverted index. We report average query times. Runs are marked
with (m) for runs with all index data in memory (in the file system cache of
the operating system, to be precise) and with (d) for runs where index data
has to be read from disk. The table is based on the results reported in Table
1 of our publication (Bast and Buchhold, 2013).

because all additional items are located within extra lists (to be precise, as the entity part
in Figure 8 from Section 4.2.3) and only read when needed. The benefit is demonstrated
later in Table 4 where we compare QLever against Broccoli. For SPARQL+Text queries,
Brocceoli performs much better than the baselines, though. Map actually comes fairly
close if all index data is in memory but it is still significantly slower than Broccoli. With
cold caches and index data read from disk, Map is incredibly slow. This is as expected,
because for each of the many involved text records, it has to read a list from a random
location on disk.

In (Bast and Buchhold, 2017), we have compared both of our systems against two state-
of-the-art SPARQL engines which we have already described in Section 4.2.2. To emulate
SPARQL+Text search, we make use of strategies explained in Section 2.2. We compare
QLever and Broccoli against RDF-3X using emulation strategy I from Figure 2, and Vir-
tuoso with bif:contains, its special-purpose predicate for full-text search, using emulation
strategy III.

In (Bast and Buchhold, 2017) we used queries from 12 categories. Each category contains
10 manually crafted queries with a clear narrative (like the examples used throughout
this document). We treat queries involving a prefix in separate categories in order to
avoid distortion of averages. This is necessary because of two reasons: They are not
supported by RDF-3X and they are significantly slower than other queries in Virtuoso.

The categories labeled SemSearch are translations of queries of the Yahoo SemSearch
2011 List Search Track (Blanco et al., 2011) and contain more than 10 queries. While we
used prefix search to formulate 10 of these queries, because it helps a lot for accurately
capturing the query intend, 49 queries only require conventional words. We mark the
prefix and word variants by P and W suffixes.

The categories One Scan and One Join contain simple queries that are directly answered
by a single scan and by two scans and one join operation, respectively. However, some
queries touch very large predicates and thus these “easy” queries can actually take con-
siderable time to process. Categories called Is-a + Text and Is-a + Prefix search for

42

occurrences of entities of a given type together with something matching in the text.
Queries from this class are very typical semantic queries. For example, queries for as-
tronauts who walked on the moon or for plants with edible leaves are formulated in this
way.

The example from the introduction, buildings in europe that were destroyed in a fire, also
contains an extra predicate (located in europe) to match in the KB. Therefore, we would
have included it in the Complex Mized category (albeit as one of the smallest queries
alongside others with significantly more query triples and complexity).

We perform experiments on two datasets and report the main results for both of them:
FreebaseEasy+Wikipedia and Freebase+ClueWeb. Each of them consist of a knowledge
base and a text corpus in which the entities have been linked.

FreebaseEasy+Wikipedia

This dataset consists of the text of all Wikipedia articles from July 2016 linked to our
FreebaseEasy knowledge base (Bast et al., 2014a). Entities have been linked to their
occurrences by the pipeline we use for Broccoli as described in Section 4.1.3. The KB
has 362 million triples, the Wikipedia text corpus has 3.8 billion word and 494 million
entity occurrences.

Table 4 lists the average query times for each of the 12 categories as well as the size
of the index on disk and the amount of memory that was used. Note that we report
the maximum memory used by the process. All runs started with an empty disk cache
(we explicitly cleared the disk cache of the operating system) but it is possible that it
has been used during the run. QLever is fastest across all categories and produces the
shortest query time for 89% of all individual queries.

The results are not surprising for SPARQL+Text queries, for which our systems QLever
and Broccoli were explicitly designed. However, it may come as a surprise that QLever
also performs best in other categories contain pure SPARQL queries. Most notably, there
is a large difference for the Compler SPARQL set. There are a couple of reasons for that.
The most obvious one is reflected in the index size without text, especially compared to
Virtuoso. We deliberately add redundancy in our knowledge-base index for the sake of
fast query times. The reason for this choice is that we are more interested in the total
index size, including the text index. Here, the size of knowledge-base data becomes less
and less relevant and effective compression of the text index is much more important.
Right now, we do not even compress the binary lists of our knowledge-base index. While
we may change this in the future, we will definitely choose a compression algorithm
that is optimized for speed, rather than space. Another possible reason for QLever’s
strength on the pure SPARQL queries is that our emulations insert many triples into
the KB. Thus, other systems effectively search a larger KB. Ideally, their indices should
ensure there this data is not touched for a pure SPARQL query and thus that there is no
significant impact on performance, but we cannot guarantee that. Finally, there are some
advanced features of Virtuoso and (partially also of) RDF-3X that have yet to be added

43

to QLever: insert and update operations, the ability to run in a distributed environment,
and so on. While we do not see principle problems and why the addition of those had
to significantly harm the performance of QLever, we also have to remark that the larger
palette of supported features may put Virtuoso at a disadvantage when comparing on
the kinds of queries QLever was made for.

RDF-3X | Virtuoso | Broccoli | QLever
One Scan 584 ms | 1815 ms | 162 ms 47 ms
One Join 743 ms | 2738 ms | 117 ms 41 ms
Easy SPARQL 98 ms 337 ms - 74 ms
Complex SPARQL || 3349 ms | 14.2 s - | 262 ms
Values + Filter 623 ms 430 ms - 59 ms
Only Text 12.1 s 15.0 s 427 ms 191 ms
Is-a + Word 1738 ms 941 ms | 178 ms 78 ms
Is-a + Prefix -| 20.5s 310 ms 118 ms
SemSearch W 1078 ms 766 ms | 196 ms 74 ms
SemSearch P - | 107.8 s 273 ms 125 ms
Complex Mixed 5876 ms | 13.6 s - | 208 ms
Very Large Text - | 3673 s 632 ms | 605 ms
Index Size 133GB | 124 GB | 39 GB | 73 GB*
Index w/o Text 17 GB 9GB | 8 GB? | 49 GB*
Memory Used?* 30 GB 45GB | 10 GB 7 GB

Table 4: Average query times for queries from 12 categories on Free-
baseEasy+Wikipedia. Originally published in (Bast and Buchhold, 2017).
All caches were cleaned before each run and index data had to be read from
disk. Similar to runs marked with (d) in Table 3.

Compared to RDF-3X, there is another trade-off we make. QLever keeps a significant
amount of metadata, and its entire vocabulary (an array of string items whose index
corresponds to the items ID used in the index) in RAM at all times. Thus it (and Virtuoso

21The size of the index files needed to answer the queries from this evaluation is actually only 52 GB.
Not all permutations of the KB-index are necessary for the queries, but Virtuoso and RDF-3X build
them as well and, unlike QLever, do not keep them in separate files.

22only supports two permutations and limited features

2390 GB for the permutations that are really needed

24 All systems were set up to use as much memory as ideally useful to them. All of them are able to
answer the queries with less memory used.

44

as well) requires several seconds® to start. RDF-3X, in contrast, has all relevant data
stored on disk. Even if this data is intelligently aligned, it still puts RDF-3X at a slight
disadvantage compared to the other two systems, especially when output for large results
has to be produced and string representations of these results have to be restored.

Freebase+ClueWeb

This dataset is based on FACC (Gabrilovich, Ringgaard, and Subramanya, 2013), which
is a combination of Freebase (Bollacker et al., 2008) and ClueWeb12 (ClueWeb, 2012)
where entity occurrences have already been linked to their KB representations by the
authors. The KB has 3.1 billion triples, the text corpus has 23.4 billion word and 3.3
billion entity occurrences. These numbers are roughly ten times larger than for the Free-
baseEasy-+Wikipedia dataset. Unfortunately, we could not successfully load a dataset of
this size into the other systems, because they failed to index it in reasonable time on our
available hardware (256 GB RAM and more than enough disk space). For Virtuoso, we
aborted the loading process after two weeks.

QLever cold cache | QLever warm cache
Only Text 1279 ms 840 ms
SemSearch W 390 ms 214 ms
SemSearch P 613 ms 339 ms
Complex Mixed 1021 ms 603 ms
Very Large Text 2245 ms 1849 ms

Table 5: Average query times for QLever for queries from the 5 hardest cate-
gories on Freebase+ClueWeb. Adapted from (Bast and Buchhold, 2017).

Table 5 shows the performance of QLever on the large Freebase+ClueWeb dataset for
queries of the 5 hardest, and thus most interesting, categories that involve text search. We
did not translate queries from other categories, because manual translation to the schema
of Freebase is quite time consuming. The results show that QLever has no problems with
scaling to a collection of these dimensions and we are confident that also a text corpus
larger by another order of magnitude would not cause any problems. However, we are
not aware of a text corpus of that dimension in which entity occurrences have been linked
to a KB.

ZFor the FreebaseEasy+Wikipedia dataset about 15 seconds are needed for startup, for Free-
base+Clueweb, startup can take up to a few minutes.

45

4.3 Relevance Scores for Knowledge-Bases Triples

Our work on Broccoli and SPARQL+Text search has a strong focus on user needs.
Efficiency is one major aspect of that, but so are result quality and ranking. In our
prototypes, we have identified an issue with ranking entity queries. Consider a SPARQL
query for actors®®. SPARQL without explicit ORDER BY does not require a particular
ordering of the result. With 428,182 actors in Freebase, a random (or lexicographical)
ordering of such a result list would most probably start with unknown actors and is
obviously not what a user wants to see.

A natural way to rank the result is to compute some form of popularity score (e.g., what
we did in (Bast et al., 2014a)) and order by that score. However, this gives us George
W. Bush as the top result. In Freebase, he is in fact listed as an actor and he even
has an IMDb page?” listing his occurrences in movies. Thus, this result is not wrong,
strictly speaking. Still, such a ranking clearly does not constitute a proper list of actors
as expected by a user. We want to remark that this can also happen when the correctness
of triples is even less debatable: Quentin Tarantino is much better known as a director
than as an actor, but he undoubtedly has frequent cameo appearances in his own movies.
Thus, the task is different from work that deals with inaccurate or conflicting KB triples.
To overcome the issue, we need a way to know how strongly an entity belongs to some
type. We compute relevance scores that capture exactly this. These scores can then be
combined with popularities to produce a sensible ranking.

This also goes the other way round: Think of a query for the professions of someone.
For instance, Barack Obama has taught law and worked at a Chicago law firm. He
rightfully has the professions lawyer and law professor in addition to politician. But
a query for his professions should bring up politician first, because that is what he is
world-famous for. The easier the query, the more apparently we benefit from such scores.
Accordingly, the simple query for actors reveals such a glaring issue. However, the idea
behind the scores also applies to complex queries and thus also to SPARQL+Text search.
For example, a query for politicians that went on to become leaders of large corporations
should rather find people known for being politician like the former German chancellor
Gerhard Schréder than former HP CEO Carly Fiorina, who once unsuccessfully ran for
the United States Senate but has a very strong signal for being a CEO from a Wikipedia
text corpus.

We have found that this problem occurs for all type-like predicates. We have already
used examples from a profession predicate, but the same thing happens for nationality
(many people have multiple legal nationalities or had different nationalities throughout
their lives), genre, ..., and also generic type predicates.

We have published a full research paper (Bast, Buchhold, and Haussmann, 2015) where
we identify this problem, create a benchmark and introduce several models to compute

26We use a similar example in our publication (Bast, Buchhold, and Haussmann, 2015). We reuse it
here, because it makes the problems that we are trying to solve very obvious.
http://wuw.imdb. com/name/nm0124133/

46

http://www.imdb.com/name/nm0124133/

such scores from a text corpus with linked entity occurrences (the same data model as
in all our work discussed in this thesis). Afterwards, we have also organized a task at
the 2017 WSDM Cup (Heindorf et al., 2017) where participants were asked to develop
algorithms that compute such scores.

4.3.1 Problem Statement

Given a type-like predicate, we want to compute a score for each of its triples, that cap-
tures how strongly the entity belongs to that type. Therefore we solve two subproblems:
(1) Create a benchmark based on human judgments. This allows us to assess the effec-
tiveness of models for the task. (2) Devise several models to compute such scores and
compare them on the benchmark.

4.3.2 Related Work

In general, our work has introduced a novel problem and we are not aware of other
efforts to produce the same scores. However, the need for such scores is not entirely new:
There are a couple of approaches to ranking knowledge-base queries that assume such or
similar scores as given and build ranking models on top of them. For example, Cedeno
and Candan, (2011) propose Ranked RDF, an extension to classical knowledge-base data
that accounts for scores associated with triples, and Elbassuoni et al., (2009) propose a
ranking model for SPARQL queries with possible text extensions based on Language
Models. Again, triples are expected to have relevance scores. Neither work discusses
methods to obtain high-quality scores for an existing KB.

Our problem is topic modeling where documents are automatically assigned one or more
topics. Classically, the topics are not known beforehand, but only a number of topics
to infer is given. A prominent approach to topic modeling is Latent Dirichlet Allocation
(LDA) by Blei, Ng, and Jordan, (2001). LDA assumes a generative model: For each word
in a document, first a topic ¢ is picked with probability P(t/doc) and then a word w is
picked with probability P(w/t). The special part is that the topic and word distributions
are assumed to have sparse Dirichlet priors. Intuitively, the use of these priors models
the assumption that a single document usually deals with only small subset of all topics
and that each topic only uses a specific part of the entire vocabulary.

At first glance, LDA may seem quite far from our problem. After all, we are already
provided with a very limited set of topics (types, in our case) for each document (entity,
in our case). However, an extension called LLDA (Ramage et al., 2009) is related more
closely. Originally, LLDA has been intended for retrieving snippets relevant to a specific
tag (label) from documents that, as a whole, have been assigned such tags by humans.
Queries for these tags can easily match appropriate documents, but it is not clear how to
retrieve relevant snippets for the specific tag. This is where LLDA comes in. Therefore,
it extends the model of LDA further by integrating the human labels. While we are not
interested in finding snippets, we can treat our available types like those human tags so

47

that the hidden variables for P(t¢/doc) somewhat reflect the relevance scores we seek for
our triples. In the following, we introduce our own, simpler but purpose-built generative
model and compare it to LLDA in our experiments; see Section 4.3.4 where we show that
it performs much better than LLDA.

4.3.3 Approach

Our approach consist of two steps. First, we create a high-quality benchmark for the
novel task, then we develop several models and evaluate them on the benchmark.

Creation of the Benchmark

In order to generate a benchmark, we need many judgments from multiple humans who
should ideally not be part of our team and thus make their judgments independently
from our intended use case. Therefore, we have set up a crowdsourcing task on Amazon
Mechanical Turk. We did this for two type-like predicates: profession and nationality.

We than designed the experiment in a way such that we gave a person (along with its
Wikipedia link) and all of its professions (nationalities, resp.) to each human judge. The
judge was asked to label all professions as either primary or secondary. Figure 11 shows
one instance of this task.

Person: Barack Obama wikipedia page

PRIMARY The person SECONDARY This is Unlabeled
is well-known for this no primary profession of Professions
profession or a typical the person.

example for people with

this profession.

% Politician (3]
% Lawyer &
% Law Professor @
% Author

% Writer (5]

| only used Wikipedia for my decision. | used other resources as well.

Figure 11: Condensed illustration of the crowd sourcing task. All professions
must be dragged into the box for primary or secondary professions. Originally
published in (Bast, Buchhold, and Haussmann, 2015).

48

We gave each instance (person) to seven independent judges. By counting the number of
primary votes we obtain a score between 0 and 7 for each person-profession combination.

Models to compute scores

In the following we always use the profession predicate as an example, but we want to
remark that everything is just as valid for other type-like predicates.

Our models are all based on text that we associate with entities. We use the text from
Wikipedia with all entity occurrences linked to their representation in the KB: exactly
the kind of data the Broccoli search engines operates on. Collecting all sentences (or
semantic contexts as described in Section 4.1.3) in which an entity occurs, gives us a
virtual document for that entity. We have found this virtual document to provide more
useful information than the Wikipedia article of the entity. On top of that, it can be used
for entities that do not have Wikipedia pages (if they have been recognized and linked
in the corpus). We have also considered models that were only based on knowledge-base
data, but found them not to work sufficiently well.

For each profession we could combine the virtual documents of all entities with that
profession, but we have found that we get better results if we limit the combination to
entities with only that one profession (modulo parent types in a type hierarchy). These
positive examples can serve as training data to learn models for each profession. It is
also possible to generate negative training examples by using text for entities that do not
have the profession at all.

In our publication (Bast, Buchhold, and Haussmann, 2015), we discuss several models,
variants and combinations. In the following we briefly explain the three most important
ones: (1) a binary classifier, (2) a model based on computing weighted indicator words
for each profession, and (3) a generative model.

The binary classifier is based on logistic regression. Features are word counts normalized
by the total number of word occurrences. We use positive and negative training examples
as explained above.

Our weighted indicator words are based on their ¢f-idf values within the virtual document
of a profession (the df is calculated across the collection of all virtual entity documents).
We rank all words by that value and assign 1/rank as their weight. To make a decision
for the professions of a given entity, we go through the virtual text document of that
entity and, for each of its professions, sum up the corresponding word weights.

Our generative model is based on the same process as discussed for LDA and LLDA in
Section 4.3.2: We assume each document is generated by the following process: Pick a
profession with probability P(prof/doc), then pick a word with probability P(word/prof).
However, we set the Dirichlet priors aside. Thus, our model is similar to the one under-
lying pLSI (Hofmann, 1999) with the difference, that we infer P(word/prof) directly from
the virtual document for the profession. We then perform a maximum likelihood estimate
for the probabilities for a person’s professions. Similar as in pLSI, we use expectation
maximization to iteratively approximate these likelihoods.

49

4.3.4 Experimental Results

To match our benchmark, we map the output of all runs to scores in the range between
0 and 7. Table 6 compares various approaches on two measures: Accuracy-2 (fraction of
scores that differ from the human judgments by at most 2) and the Average Score Differ-
ence (ASD) from the judgments. In our publication (Bast, Buchhold, and Haussmann,
2015), we also examine rank-based measures and a second predicate, nationality, and we
perform a refined analysis where we examine which popularity brackets are the hardest.

In this document, we also restrict ourselves to the most important approaches: First is
a simple baseline that works as follows: The profession (resp. nationality) that is first
mentioned literally in the Wikipedia article of the person gets the highest score 7, all
others get a score of 0. LLDA (Ramage et al., 2009) is the approach from the literature
which is most similar to ours (see Section 4.3.2). We compare these approaches against
the three model discussed in Section 4.3.3: the Binary Classifier, Weighted Indicators
and our Generative Model. We also consider a combination of the generative model and
the binary classifier (Combined) and a Control Group that consists of another batch of
human crowd-sourcing workers which we asked to judge the triples from the Benchmark
again.

| | Accuracy-2 | ASD |

First 53% 2.71
LLDA 68% 1.86
Binary Classifier 61% 2.09
Weighted Indicators 75% 1.61
Generative Model 7% 1.61
Combined (GM + Classifier) 80% 1.52
Control Group (Humans) 94% 0.92

Table 6: Accuracy-2 and Average Score Difference (ASD) for the profession
predicate. Adapted from (Bast, Buchhold, and Haussmann, 2015) and the
slides of the talk at SIGIR 2015 held by the author of this document.

The results reported in Table 6 are mostly as expected. Remarkably, weighted indicators
and our generative model both significantly outperform LLDA. This is certainly due to
the fact that our models were, unlike LLDA, developed for this exact use case, but it
also shows how less complex models can be very effective when properly tailored towards
the task at hand. The baseline, (First), is relatively weak. While this is partially due to
its simplicity, there is another major factor at work: Just like our Binary Classifier, it
produces a binary decision and we map that to 0 or 7. This is obviously not ideal if we
compare against gradual scores. Especially, mapping scores to 2 or 5 would always be
beneficial for the Accuracy-2 measure. This is highlighted by the fact that the Binary

50

Classifier, while weak on its own, can be used in combination with the other models to
further improve the score.

As one would expect, a control group of human judges also did not perfectly agree with
the scores obtained from the initial judges. This is not surprising given the way scores
were derived, and given the nature of the task, where minor differences in scores lie in the
eye of the beholder. However, their performance shows that there is a natural limit to
how well approaches are expected to perform and that this cap is below 100% accuracy

or 0 ASD.

Still, even our best approaches cannot fully compete with humans. The results obtained
by participants in our triple scoring task at the 2017 WSDM Cup confirm this. The best
of the 21 teams that submitted valid results reach Accuracy-2 of 82%, 80%, 80% and ASD
of 1.50, 1.59, 1.61. These results are very similar to our own strongest models, whereas
only the best of them (Ding, Wang, and Wang, 2017) slightly outperforms them. That
winning system built an ensemble consisting of the three models introduced by us and
described in this document (binary classifier, weighted indicator words and the generative
model) and a fourth component based on paths in the Freebase KB. The key idea behind
this fourth component is to build another binary classifier, but this time with paths
that connect two entities as features and not based on their occurrences in text. While
this approach slightly outperforms our models in isolation (and our basic combination),
the fact that the competition winner still relies on our models in its ensemble further
emphasizes their value.

Given how difficult it was for us, and all participants in the WSDM cup, to reach the
same quality as human judges, we suspect that another step towards significantly better
scores is very hard. In the extreme case, an approach would require nearly the same level
of sophistication in understanding the text corpus that humans reach — and that is still
a dream of the future for NLP in general.

Still, our scores are already good enough to yield a huge improvement in the Broccoli
search engine. The way we integrated them so far is very simplistic: We only use the
relevance scores for queries without a text part, because queries with text part already
have useful (albeit imperfect) scores. In absence of scores for a text match, we bring our
relevance scores for matching triples and the popularity scores from FreebaseEasy (see
Section 4.1.3) for the entity to the same range and compute the sum of the two. The
development of an advanced integration, in particular one that also makes use of the
relevance scores for queries with text (where they are just as valid), is interesting future
work.

51

4.4 Survey: Semantic Search on Text and Knowledge Bases

Semantic Search is a very broad field. Even when we set aside search in images, audio, or
video and restrict ourselves to search on text and knowledge bases, there is an abundance
of research. On first sight, some lines of work are so different that they appear to
be entirely unrelated to one another. We have published an extensive survey (Bast,
Buchhold, and Haussmann, 2016) in which we shed light onto that situation. Our main
contribution is a classification of systems along two dimensions: the kind of data to
search in, and the kind of queries to answer.

Keyword Structured Natural Lang.

Search Search Search
Text Keyword Search Structured Data Question Answering

on Text Extraction from Text on Text

KnOWIedge Keyword Search on Structured Search Question Answering
Bases Knowledge Bases on Knowledge Bases on Knowledge Bases
Combined Keyword Search Semi-Struct. Search | | Question Answering
Data on Combined Data on Combined Data on Combined Data

Figure 12: Classification of systems for semantic search on text and knowledge
bases according to (Bast, Buchhold, and Haussmann, 2016).

Figure 12 visualizes our classification of systems. Three kinds of data and three kinds of
queries create nine combination and thus classes to which we assign all systems. Within
each class, we can now identify basic techniques that are used and refined across all
systems. In the light of our classification, similarities and differences between the various
lines of research finally appear intuitive and reasonable.

At first glance, the dimensions of the classification are pretty self explanatory. However,
there is sometimes only a fine line between keyword search and natural language search
(question answering). For example, a query like building europe destroyed fire can be
interpreted to simply retrieve documents in which all those keywords occur. However, it
could also be seen as an abbreviation of the natural language question What are buildings
in Burope that were destroyed in a fire? This becomes even harder to decide for queries

52

like buildings in europe destroyed in fire. Thus, two systems may interpret the same
query in very different ways.

For our classification, we distinguish between keyword and natural language search, not
on the exact formulation of the query, but based on its intend and how systems interpret
the queries. If they just try to intelligently match keywords (or synonyms and other
semantically related words) somewhere in the data, we class them as doing keyword
search. If they infer a narrative as it would be expressed in a question, we class them
as doing natural language search. This distinction ensures that we classify systems that
use similar techniques together with each other.

Another important contribution of the survey is that it allows to quickly find relevant
datasets and benchmarks for a particular kind of data or search. For each kind of data,
we list the most important datasets and provide statistics that allow assessing their differ-
ences on first sight. For each of our nine classes, we list the most important benchmarks
and highlight the strongest contestants. This provides valuable insight concerning the
strength of approaches within a class but also helps to distinguish the various benchmarks
and competitions evolving around semantic search - something that can be as confusing
as the plethora of systems to newcomers to the field of semantic search.

The survey also provides another perspective on the work presented in this document by
widening the focus and regarding it alongside different approaches to semantic search.
Our work included in this thesis is classified as Semi-Structured Search on Combined Data
and so is most related work discussed here. However, some of that related work also falls
into the other classes that deal with combined data, especially into Keyword Search on
Combined Data. Classic SPARQL engines, naturally, fall into the class Structured Search
on Knowledge Bases.

In the future, we think the work presented in this document may also find application
in question answering. Currently, there are not many systems for Question Answering
on Combined Data and the class mostly contains work like IBM’s Watson (Ferrucci
et al., 2013), where data is not truly combined but instead many subsystems work on
different kinds of data. Our work, however, may be more interesting for extending today’s
approaches from the class Question Answering on Knowledge Bases so that they can also
make use of a text corpus linked to their KB. State-of-the-art systems, like Aqqu (Bast
and Haussmann, 2015), typically generate many candidate queries based on typical query
patterns. Then they use learning-to-rank techniques to choose the best query. Therefore,
features are based on the generated query candidate and the original question to answer.
In principle, it is thinkable that query patterns can be extended to include text search,
e.g., in the form of SPARQL-+Text queries, and our work would come in very handy for
that.

The survey is intended to also serve as a tutorial for newcomers to the field. Therefore,
we provide a focused overview of basic natural language processing tasks in semantic
search. For each task, we present the idea, list state-of-the-art approaches and important
benchmarks, and also point out where the tasks find application within semantic search.

93

Similarly, we also cover advanced techniques: ranking, indexing, ontology matching and
merging, and inference. For these, however, concrete algorithms often only find applica-
tion within few or even a single system.

54

5 Conclusion

We have introduced SPARQL+Text search for queries on a text corpus linked to a knowl-
edge base. In Section 4.1 we have shown how effective the kind of search is, on the
example of our search engine, Broccoli. Further, we have presented QLever, a highly
efficient, open-source query engine with full SPARQL+Text support. Since this is an
extension to SPARQL, the de-facto standard for knowledge-base queries, we provide a
standard interface to the search capabilities of Broccoli that can easily be set up for
special-purpose combinations of knowledge bases and text from various domains.

With Broccoli and especially QLever, we have developed the most efficient query engines
for this kind of search and comparable paradigms. In our experiments in Section 4.2,
we have shown that QLever works on the Freebase+ClueWeb dataset (23.4 billion word,
3.3 billion entity occurrences, and 3.1 billion KB triples) without problems. Further, we
have produced working and publicly available software and demos that allow reproducing
our experiments and integrating them as components in larger systems (e.g., for question
answering).

In the near future, there are many technical aspects that can be improved. State-of-the-
art SPARQL engines still contain many valuable features that have no corresponding
components in QLever. Especially index updates (INSERT and UPDATE operations)
and distributed setups have not been considered by us, yet. While we do not see funda-
mental problems to adopt practice-proven techniques from pure SPARQL engines, their
integration is not trivial either. Apart from that, some advanced parts of SPARQL (e.g.,
the OPTIONAL and GROUP BY keywords) are not supported yet but should be straight-
forward to implement. Further, QLever uses a very simplistic LRU (least recently used)
cache for queries and sub-queries that keeps a fixed number of queries. This simplis-
tic approach works very well in our use cases and experiments so far, but due to the
lack of large-scale non-synthetic query sets, we have not yet performed extensive experi-
ments with millions of queries as realistically asked by users or applications. With such
a dataset, we could certainly find ways to fine-tune our cache and improve performance
further.

As a more fundamental development, our relevance scores for triples, as presented in
Section 4.3, have to be integrated in a retrieval model. Currently, the scores improve
the public demo of the Broccoli search engine, but they only resolve glaring issues on
simple queries like the example query for actors. Thus, we are far from fully using their
potential. Every query that involves a type-like predicate (like a person’s profession)
can benefit from our machine-learned relevance scores, no matter how complex it is or
if it also involves text search. Such an integration includes consideration of the scores
in ranking functions, but is not limited to it: First of all, the scores also have to be
represented as part of the knowledge-base data. This is not possible as part of the
usual triples. Currently, Broccoli uses auxiliary data structures that use a key based on
the entire triple to access its score. Alternatives, like allowing quadruples and adding

55

mediator objects (as often done to represent n-ary relations in KBs; see Section 4.1.3)
all have their up- and downsides and many options should carefully be considered.

The most important kind of future work, however, presents the biggest challenge: a
truly user-friendly way to ask queries. The Ul of Broccoli is not ideal for non-expert
users and the SPARQL+Text language of QLever is clearly not intended for end-users.
The possibility to formulate queries as natural language questions and/or abbreviated as
keywords (similarly to how Google interprets many semantic queries today, e.g., What are
buildings in Europe? and buildings in europe yield the same KB result; see Section 2.4)
sounds very promising. Systems for question answering on knowledge bases (see Section
4.4) already solve a strongly related problem decently well. There is active research on
extensions that include a linked text corpus, but there is still a long way to perfection and
the addition of text makes this already hard task even harder. There are many ways to
formulate the same query and depending on those, the quality of the results our systems
return may vary by a large margin. In general, however, our systems are very well suited
to extend today’s approaches for question answering on KBs to also include text search
tomorrow.

If we can make the final step, and find a way to get from convenient user input to near-
perfect queries, our work can also improve upon state-of-the-art commercial web search
engines for such queries: By searching a KB and a text corpus in a combined way, we
can answer queries that cannot be answered on either source alone. This still fills a gap
in the current repertoire of all large search engines. However, what may seem like a tiny
final step, may as well be the biggest challenge of all.

56

6 References

Anh, V. N. and A. Moffat (2010). “Index Compression using 64-Bit Words.” In: Softw.,
Pract. Ezxper. 40.2, pp. 131-147. URL: http://dx.doi.org/10.1002/spe.948.

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives (2007).
“DBpedia: A Nucleus for a Web of Open Data.” In: ISWC/ASWC, pp. 722-735. URL:
http://dx.doi.org/10.1007/978-3-540-76298-0_52.

Balog, K., P. Serdyukov, and A. P. de Vries (2010). “Overview of the TREC 2010 Entity
Track.” In: TREC. URL: http://trec.nist.gov/pubs/trecl19/papers/ENTITY.
OVERVIEW. pdf.

Balog, K., A. P. de Vries, P. Serdyukov, P. Thomas, and T. Westerveld (2009). “Overview
of the TREC 2009 Entity Track.” In: TREC. URL: http://trec.nist.gov/pubs/
trec18/papers/ENT09.0VERVIEW. pdf.

Bast, H. and I. Weber (2006). “Type Less, Find More: Fast Autocompletion Search with
a Succinct Index.” In: SIGIR, pp. 364-371. URL: http://doi.acm.org/10.1145/
1148170.1148234.

Bast, H., A. Chitea, F. M. Suchanek, and I. Weber (2007). “ESTER: Efficient Search on
Text, Entities, and Relations.” In: SIGIR, pp. 671-678. URL: http://doi.acm.org/
10.1145/1277741.1277856.

Bast, H. and B. Buchhold (2013). “An Index for Efficient Semantic Full-Text Search.”
In: CIKM, pp. 369-378. URL: http://doi.acm.org/10.1145/2505515 . 2505689
Bast, H. and B. Buchhold (2017). “QLever: A Query Engine for Efficient SPARQL+Text
Search.” In: CIKM. URL: http://ad-publications. informatik.uni-freiburg.

de/CIKM_qglever_BB_2017.pdf.

Bast, H., B. Buchhold, and E. Haussmann (2015). “Relevance Scores for Triples from
Type-Like Relations.” In: SIGIR. URL: http://doi.acm.org/10.1145/2766462.
2767734.

Bast, H., B. Buchhold, and E. Haussmann (2016). “Semantic Search on Text and Knowl-
edge Bases.” In: FnTIR 10.2-3, pp. 119-271. URL: http://dx.doi.org/10.1561/
1500000032.

Bast, H., B. Buchhold, and E. Haussmann (2017). “A Quality Evaluation of Combined
Search on a Knowledge Base and Text.” In: Kiinstliche Intelligenz. URL: http://ad-
publications.informatik.uni-freiburg.de/KI_broccoli_quality_BBH_2017.
pdf.

Bast, H. and E. Haussmann (2013). “Open Information Extraction via Contextual Sen-
tence Decomposition.” In: ICSC, pp. 154-159. URL: http://dx.doi.org/10.1109/
ICSC.2013.36.

Bast, H. and E. Haussmann (2015). “More Accurate Question Answering on Freebase.”
In: CIKM, pp. 1431-1440. URL: http://doi.acm.org/10.1145/2806416.2806472.

Bast, H., F. Baurle, B. Buchhold, and E. Haussmann (2012a). “A Case for Semantic
Full-Text Search.” In: JIWES at SIGIR, p. 4. URL: http://dl.acm.org/citation.
cfm?id=2379311.

o7

http://dx.doi.org/10.1002/spe.948
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://trec.nist.gov/pubs/trec19/papers/ENTITY.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec19/papers/ENTITY.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec18/papers/ENT09.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec18/papers/ENT09.OVERVIEW.pdf
http://doi.acm.org/10.1145/1148170.1148234
http://doi.acm.org/10.1145/1148170.1148234
http://doi.acm.org/10.1145/1277741.1277856
http://doi.acm.org/10.1145/1277741.1277856
http://doi.acm.org/10.1145/2505515.2505689
http://ad-publications.informatik.uni-freiburg.de/CIKM_qlever_BB_2017.pdf
http://ad-publications.informatik.uni-freiburg.de/CIKM_qlever_BB_2017.pdf
http://doi.acm.org/10.1145/2766462.2767734
http://doi.acm.org/10.1145/2766462.2767734
http://dx.doi.org/10.1561/1500000032
http://dx.doi.org/10.1561/1500000032
http://ad-publications.informatik.uni-freiburg.de/KI_broccoli_quality_BBH_2017.pdf
http://ad-publications.informatik.uni-freiburg.de/KI_broccoli_quality_BBH_2017.pdf
http://ad-publications.informatik.uni-freiburg.de/KI_broccoli_quality_BBH_2017.pdf
http://dx.doi.org/10.1109/ICSC.2013.36
http://dx.doi.org/10.1109/ICSC.2013.36
http://doi.acm.org/10.1145/2806416.2806472
http://dl.acm.org/citation.cfm?id=2379311
http://dl.acm.org/citation.cfm?id=2379311

Bast, H., F. Béurle, B. Buchhold, and E. Haussmann (2012b). “Broccoli: Semantic Full-
Text Search at your Fingertips.” In: CoRR abs/1207.2615. URL: http://arxiv.org/
abs/1207.2615.

Bast, H., F. Béurle, B. Buchhold, and E. Haukmann (2014a). “Easy Access to the Free-
base Dataset.” In: WWW, pp. 95-98. URL: http://doi.acm.org/10.1145/2567948.
2577016.

Bast, H., F. Béurle, B. Buchhold, and E. Hauffmann (2014b). “Semantic Full-Text Search
with Broccoli.” In: SIGIR, pp. 1265-1266. URL: http://doi.acm.org/10.1145/
2600428.2611186.

Blanco, R., P. Mika, and S. Vigna (2011). “Effective and Efficient Entity Search in RDF
Data.” In: ISWC, pp. 83-97. URL: http://dx.doi.org/10.1007/978-3-642-25073-
6_6.

Blanco, R., H. Halpin, D. M. Herzig, P. Mika, J. Pound, H. S. Thompson, and D. T.
Tran (2011). “Entity Search Evaluation over Structured Web Data.” In: SIGIR-EOS.
Vol. 2011. URL: http://www.aifb.kit.edu/images/d/d9/E0S-SIGIR2011.pdf.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2001). “Latent Dirichlet Allocation.” In: NIPS,
pp. 601-608. URL: http://papers .nips . cc/paper/2070- latent - dirichlet -
allocation.

Boldi, P. and S. Vigna (2005). “MG4J at TREC 2005.” In: TREC. URL: http://mg4j .
di.unimi.it.

Bollacker, K. D., C. Evans, P. Paritosh, T. Sturge, and J. Taylor (2008). “Freebase:
A Collaboratively Created Graph Database for Structuring Human Knowledge.” In:
SIGMOD, pp. 1247-1250. URL: http://doi.acm.org/10.1145/1376616.1376746.

Broekstra, J., A. Kampman, and F. van Harmelen (2002). “Sesame: A Generic Architec-
ture for Storing and Querying RDF and RDF Schema.” In: ISWC, pp. 54-68. URL:
http://dx.doi.org/10.1007/3-540-48005-6_7.

Cafarella, M., A. Halevy, D. Wang, E. Wu, and Y. Zhang (2008). “WebTables: Exploring
the Power of Tables on the Web.” In: PVLDB 1.1, pp. 538-549. URL: http://www.
v1ldb.org/pvldb/1/1453916. pdf.

Cedeno, J. P. and K. S. Candan (2011). “RZDF Framework for Ranked Path Queries
over Weighted RDF Graphs.” In: WIMS, p. 40. URL: http://doi.acm.org/10.
1145/1988688.1988736.

ClueWeb (2012). “The Lemur Projekt”. URL: http://lemurproject.org/cluewebl2.

Cucerzan, S. (2007). “Large-Scale Named Entity Disambiguation Based on Wikipedia
Data.” In: EMNLP-CoNLL, pp. 708-716. URL: http://www.aclweb.org/anthology/
DO7-1074.

Delbru, R., S. Campinas, and G. Tummarello (2012). “Searching Web Data: An Entity
Retrieval and High-Performance Indexing Model.” In: J. Web Sem. 10, pp. 33-58.
URL: http://dx.doi.org/10.1016/j.websem.2011.04.004.

Ding, B., Q. Wang, and B. Wang (2017). “Leveraging Text and Knowledge Bases for
Triple Scoring: An Ensemble Approach.” In: WSDM Cup. URL: http://www.uni-
weimar . de /medien/webis/events/wsdm- cup- 17 /wsdmcupl7 - papers - final /
wsdmcupl7-triple-scoring/dingl7-notebook.pdf.

o8

http://arxiv.org/abs/1207.2615
http://arxiv.org/abs/1207.2615
http://doi.acm.org/10.1145/2567948.2577016
http://doi.acm.org/10.1145/2567948.2577016
http://doi.acm.org/10.1145/2600428.2611186
http://doi.acm.org/10.1145/2600428.2611186
http://dx.doi.org/10.1007/978-3-642-25073-6_6
http://dx.doi.org/10.1007/978-3-642-25073-6_6
http://www.aifb.kit.edu/images/d/d9/EOS-SIGIR2011.pdf
http://papers.nips.cc/paper/2070-latent-dirichlet-allocation
http://papers.nips.cc/paper/2070-latent-dirichlet-allocation
http://mg4j.di.unimi.it
http://mg4j.di.unimi.it
http://doi.acm.org/10.1145/1376616.1376746
http://dx.doi.org/10.1007/3-540-48005-6_7
http://www.vldb.org/pvldb/1/1453916.pdf
http://www.vldb.org/pvldb/1/1453916.pdf
http://doi.acm.org/10.1145/1988688.1988736
http://doi.acm.org/10.1145/1988688.1988736
http://lemurproject.org/clueweb12
http://www.aclweb.org/anthology/D07-1074
http://www.aclweb.org/anthology/D07-1074
http://dx.doi.org/10.1016/j.websem.2011.04.004
http://www.uni-weimar.de/medien/webis/events/wsdm-cup-17/wsdmcup17-papers-final/wsdmcup17-triple-scoring/ding17-notebook.pdf
http://www.uni-weimar.de/medien/webis/events/wsdm-cup-17/wsdmcup17-papers-final/wsdmcup17-triple-scoring/ding17-notebook.pdf
http://www.uni-weimar.de/medien/webis/events/wsdm-cup-17/wsdmcup17-papers-final/wsdmcup17-triple-scoring/ding17-notebook.pdf

Dong, X., E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
and W. Zhang (2014). “Knowledge Vault: A Web-Scale Approach to Probabilistic
Knowledge Fusion.” In: KDD, pp. 601-610. URL: http://doi.acm.org/10.1145/
2623330.2623623.

Elbassuoni, S., M. Ramanath, and G. Weikum (2012). “RDF Xpress: A Flexible Expres-
sive RDF Search Engine.” In: SIGIR, p. 1013. URL: http://doi.acm.org/10.1145/
2348283 .2348438.

Elbassuoni, S., M. Ramanath, R. Schenkel, M. Sydow, and G. Weikum (2009). “Language-
Model-Based Ranking for Queries on RDF-Graphs.” In: CIKM, pp. 977-986. URL:
http://doi.acm.org/10.1145/1645953.1646078.

Elliott, B., E. Cheng, C. Thomas-Ogbuji, and Z. M. Ozsoyoglu (2009). “A Complete
Translation from SPARQL into Efficient SQL.” In: IDFEAS, pp. 31-42. URL: http:
//doi.acm.org/10.1145/1620432.1620437.

Ferrucci, D. A.,; A. Levas, S. Bagchi, D. Gondek, and E. T. Mueller (2013). “Watson:
Beyond Jeopardy!” In: Artif. Intell. 199, pp. 93-105. URL: http://dx.doi.org/10.
1016/j.artint.2012.06.009.

Gabrilovich, E., M. Ringgaard, and A. Subramanya (2013). “FACC1: Freebase Annotation
of ClueWeb Corpora”. URL: http://lemurproject.org/clueweb12/FACC1.

Guha, R., D. Brickley, and S. MacBeth (2015). “Schema.org: Evolution of Structured
Data on the Web.” In: ACM Queue 13.9, p. 10. URL: http://queue.acm. org/
detail.cfm?id=2857276.

Heindorf, S., M. Potthast, H. Bast, B. Buchhold, and E. Haussmann (2017). “WSDM
Cup 2017: Vandalism Detection and Triple Scoring.” In: WSDM, pp. 827-828. URL:
http://dl.acm.org/citation.cfm?id=3022762.

Hofmann, T. (1999). “Probabilistic Latent Semantic Indexing.” In: SIGIR, pp. 50-57.
URL: http://doi.acm.org/10.1145/312624.312649.

Meusel, R., P. Petrovski, and C. Bizer (2014). “The WebDataCommons Microdata, RDFa
and Microformat Dataset Series.” In: ISWC, pp. 277-292. URL: http://dx.doi.org/
10.1007/978-3-319-11964-9_18.

Mihalcea, R. and A. Csomai (2007). “Wikify! Linking Documents to Encyclopedic Knowl-
edge.” In: CIKM, pp. 233-242. URL: http://doi.acm.org/10.1145/1321440.
1321475.

Moerkotte, G. and T. Neumann (2006). “ Analysis of Two Existing and One New Dynamic
Programming Algorithm for the Generation of Optimal Bushy Join Trees without
Cross Products.” In: VLDB, pp. 930-941. URL: http://dl.acm.org/citation.cfm?
1d=1164207.

Monahan, S., D. Carpenter, M. Gorelkin, K. Crosby, and M. Brunson (2014). “Popu-
lating a Knowledge Base with Entities and Events.” In: TAC. URL: http://www .
languagecomputer.com/news/28/15/TAC-KBP-2014 .html.

Neumann, T. and G. Weikum (2008). “RDF-3X: A RISC-style Engine for RDF.” In:
PVLDB 1.1, pp. 647-659. URL: http://wwuw.v1ldb.org/pvldb/1/1453927 .pdf.

99

http://doi.acm.org/10.1145/2623330.2623623
http://doi.acm.org/10.1145/2623330.2623623
http://doi.acm.org/10.1145/2348283.2348438
http://doi.acm.org/10.1145/2348283.2348438
http://doi.acm.org/10.1145/1645953.1646078
http://doi.acm.org/10.1145/1620432.1620437
http://doi.acm.org/10.1145/1620432.1620437
http://dx.doi.org/10.1016/j.artint.2012.06.009
http://dx.doi.org/10.1016/j.artint.2012.06.009
http://lemurproject.org/clueweb12/FACC1
http://queue.acm.org/detail.cfm?id=2857276
http://queue.acm.org/detail.cfm?id=2857276
http://dl.acm.org/citation.cfm?id=3022762
http://doi.acm.org/10.1145/312624.312649
http://dx.doi.org/10.1007/978-3-319-11964-9_18
http://dx.doi.org/10.1007/978-3-319-11964-9_18
http://doi.acm.org/10.1145/1321440.1321475
http://doi.acm.org/10.1145/1321440.1321475
http://dl.acm.org/citation.cfm?id=1164207
http://dl.acm.org/citation.cfm?id=1164207
http://www.languagecomputer.com/news/28/15/TAC-KBP-2014.html
http://www.languagecomputer.com/news/28/15/TAC-KBP-2014.html
http://www.vldb.org/pvldb/1/1453927.pdf

Neumann, T. and G. Weikum (2009). “Scalable Join Processing on Very Large RDF
Graphs.” In: SIGMOD, pp. 627-640. URL: http://doi.acm.org/10.1145/1559845.
1559911.

Neumann, T. and G. Weikum (2010). “The RDF-3X Engine for Scalable Management
of RDF Data.” In: VLDB J. 19.1, pp. 91-113. URL: http://dx.doi.org/10.1007/
s00778-009-0165-y.

Popov, B., A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov (2004). “KIM - A Seman-
tic Platform for Information Extraction and Retrieval.” In: Natural Language Engi-
neering 10.3-4, pp. 375-392. URL: http://dx.doi.org/10.1017/5135132490400347X.

Pound, J., P. Mika, and H. Zaragoza (2010). “Ad-hoc Object Retrieval in the Web of
Data.” In: WWW, pp. 771-780. URL: http://doi.acm.org/10.1145/1772690 .
1772769.

Ramage, D., D. L. W. Hall, R. Nallapati, and C. D. Manning (2009). “Labeled LDA:
A Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora.” In:
EMNLP, pp. 248-256. URL: http://www.aclweb.org/anthology/D09-1026.

Singhal, A. (2012). “Introducing the Knowledge Graph: Things, not Strings”. URL: https:
//googleblog.blogspot.de/2012/05/introducing-knowledge - graph-things-
not.html.

Suchanek, F. M., G. Kasneci, and G. Weikum (2007). “YAGO: A Core of Semantic
Knowledge.” In: WWW, pp. 697-706. URL: http://doi.acm.org/10.1145/1242572.
1242667.

Tablan, V., K. Bontcheva, I. Roberts, and H. Cunningham (2015). “Mimir: An Open-
Source Semantic Search Framework for Interactive Information Seeking and Discov-
ery.” In: J. Web Sem. 30, pp. 52-68. URL: http://www.sciencedirect.com/science/
article/pii/S1570826814001036.

Wang, H., Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran, Y. Yu, and Y. Pan (2009).
“Semplore: A Scalable IR Approach to Search the Web of Data.” In: J. Web Sem.
7.3, pp. 177-188. URL: http://dx.doi.org/10.1016/j.websem.2009.08.001.

Weiss, C., P. Karras, and A. Bernstein (2008). “Hexastore: Sextuple Indexing for Semantic
Web Data Management.” In: PVLDB 1.1, pp. 1008-1019. URL: http://www.v1ldb.
org/pvldb/1/1453965 . pdf.

Zaragoza, H., N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson (2004). “Microsoft
Cambridge at TREC 13: Web and Hard Tracks.” In: TREC. URL: http://trec.
nist.gov/pubs/trec13/papers/microsoft-cambridge.web.hard.pdf.

60

http://doi.acm.org/10.1145/1559845.1559911
http://doi.acm.org/10.1145/1559845.1559911
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1017/S135132490400347X
http://doi.acm.org/10.1145/1772690.1772769
http://doi.acm.org/10.1145/1772690.1772769
http://www.aclweb.org/anthology/D09-1026
https://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html
http://doi.acm.org/10.1145/1242572.1242667
http://doi.acm.org/10.1145/1242572.1242667
http://www.sciencedirect.com/science/article/pii/S1570826814001036
http://www.sciencedirect.com/science/article/pii/S1570826814001036
http://dx.doi.org/10.1016/j.websem.2009.08.001
http://www.vldb.org/pvldb/1/1453965.pdf
http://www.vldb.org/pvldb/1/1453965.pdf
http://trec.nist.gov/pubs/trec13/papers/microsoft-cambridge.web.hard.pdf
http://trec.nist.gov/pubs/trec13/papers/microsoft-cambridge.web.hard.pdf

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Contributions

	Related Work
	Search with (Semi-) Structured Queries
	SPARQL Engines
	Semantic Web Search
	Commercial Search Engines and KBs

	Publications
	Peer-Reviewed Publications
	Other Publications

	Research Topics
	Semantic Full-Text Search with Broccoli
	Problem Statement
	Related Work
	Approach
	Experimental Results

	Efficient Indexing and Query Processing
	Problem Statement
	Related Work
	Approach
	Experimental Results

	Relevance Scores for Knowledge-Bases Triples
	Problem Statement
	Related Work
	Approach
	Experimental Results

	Survey: Semantic Search on Text and Knowledge Bases

	Conclusion
	References

