
Master Thesis

Tabular Information Extraction

Tobias Matysiak

23.10.2019

Albert-Ludwigs-Universität Freiburg im Breisgau
Technische Fakultät



Writing Period
23. 04. 2019 – 23. 10. 2019

Examiner
Prof. Dr. Hannah Bast

Adviser
Niklas Schnelle



Abstract

Searching for content in knowledge bases can involve some challenges, especially
for inexperienced users. On the one hand, they need to know the underlying data
structure (mostly represented by an ontology), on the other hand, they need to
know how to query the knowledge base. This thesis introduces a web application
called Knowledge Base Table Extractor (KBTE) that is able to generate SPARQL
queries for Freebase and Wikidata back-ends to retrieve information in a tabular
form. For this, the thesis provides a simple tabular description format for specifying
table definitions like city | country | population as input. KBTE tries to find
a table matching which maps each column keyword to a class or property of the
knowledge base and relates the columns to each other. Unlike keyword search and
question answering approaches, it is not focused on matching entities. The algorithm
for table matching exploits the combined use of a search index and a column graph.
The search index is used for the mapping part, the column graph is used to find
relations between two columns.
Furthermore, the thesis provides three datasets for evaluation. One is created from
tables of Wikipedia, the other two contain hand-crafted table definitions. The eval-
uation compares the table matching algorithm used by KBTE with a simple baseline
algorithm. The results can confirm the better performance of the former.

Zusammenfassung

Das Suchen nach Inhalt in Wissensdatenbanken kann einige Hürden mit sich brin-
gen, insbesondere für unerfahrene Benutzer. Auf der einen Seite müssen sie die zu-
grundeliegende Datenstruktur kennen (welche meist durch eine Ontologie dargestellt
wird), auf der anderen Seite müssen wie man Anfragen an die Wissensdatenbank
macht. Diese Abschlussarbeit stellt eine Webanwendung namens Knowledge Base
Table Extractor (KBTE) bereit, welche in der Lage ist, SPARQL Anfragen für Free-
base und Wikidata Backends für das Abrufen von Informationen in tabellarischer
Form zu generieren. Dazu stellt die Arbeit ein einfaches Tabellenbeschreibungs-
format zur Verfügung, mit welchem Tabellendefinitionen wie city | country |
population als Input eingegeben werden können. KBTE versucht ein Tabellen-
Matching zu finden, welches dem Schlüsselwort jeder Spalte eine Klasse oder Eigen-
schaft aus der Wissensdatenbank zuweist und die Spalten zueinander in Beziehung
setzt. Im Gegensatz zu Keyword Search und Question Answering Ansätzen ist
KBTE nicht auf das Matchen von Entitäten fokussiert. Der Tabellen-Matching-
Algorithmus nutzt den kombinierten Gebrauch eines Suchindex und eines Spal-
tengraphs aus. Der Suchindex wird für das Zuweisungsproblem benutzt, der Spal-
tengraph wird benutzt, um Beziehungen zwischen zwei Spalten zu finden.
Außerdem stellt die Arbeit drei Datensätze für die Evaluation bereit. Der eine ist aus
Wikipedia-Tabellen erstellt, die anderen beiden enthalten manuell erstellte Tabellen-
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definitionen. Die Evaluation vergleicht den Tabellen-Matching-Algorithmus, welcher
von KBTE benutzt wird, mit einem einfachen Ausgangsalgorithmus. Die Ergebnisse
bestätigen die bessere Leistung des ersteren.
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1 Introduction

In times of increasing amounts of information, it becomes more and more necessary
to keep this information in a structured form. This structure may be a knowledge
base specifying an ontology as its structure. An ontology is a model that represents
data by a set of concepts within a domain and the relationships among those con-
cepts. There are many ontological knowledge bases, e.g. the Freebase, Wikidata or
DBPedia. Often it is not easy for non-expert users to extract the desired information
from a knowledge base. It is necessary to know both the underlying ontology, i.e.
the classes and properties, and how to query the data using the standard query lan-
guage SPARQL. Many papers try to tackle this problem by providing query builders
[1, 2], question answering [3, 4] or keyword search [5, 6] approaches which simplify
access to the data.
This thesis focuses on the extraction of information in tabular form. It presents the
web application KBTE (Knowledge Base Table Extractor) which, given a structured
table definition in a tabular description format, generates a SPARQL query for dif-
ferent knowledge base back-ends. KBTE supports the two collaborative knowledge
bases Freebase1 which was already shut down in 2016 and Wikidata2, a knowledge
base of the Wikimedia Foundation. The SPARQL query then yields the content
for this table from the respective knowledge base back-end. Assuming, someone
is interested in a table containing global cities together with their countries and
populations, the table definition may look as follows:
city | country | population

Listing 1.1 shows a SPARQL query for Wikidata to retrieve the defined table. A
non-expert user would encounter the problem of finding the correct classes and
properties for each column in order to formulate such a query. For Wikidata, the
intended classes and properties for the particular columns would be the item Q515
for the column city and the properties P17 and P1082 for the columns country and
population. The columns country and population should be related to the column
city, because they are properties of instances of the class Q515. In another formula-
tion of the table definition, it would also be possible to relate the column population
to the column country.
Listing 1.2 shows a SPARQL query that leads to the same defined table for Freebase.
In this case, the column country is not represented by a property but by the Freebase

1https://developers.google.com/freebase/
2https://www.wikidata.org
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Chapter 1 Introduction

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
4 SELECT DISTINCT ?city_name ?country_name ?population WHERE {
5 ?city wdt:P31 wd:Q515 .
6 ?city wdt:P17 ?country .
7 ?city wdt:P1082 ?population .
8 ?city rdfs:label ?city_name .
9 ?country rdfs:label ?country_name .

10 FILTER (lang(?city_name) = "en") .
11 FILTER (lang(?country_name) = "en") .
12 }

Listing 1.1: SPARQL query for Wikidata

1 PREFIX fb: <http://rdf.freebase.com/ns/>
2 SELECT DISTINCT ?city_name ?country_name ?population WHERE {
3 ?city fb:type.object.type fb:location.citytown .
4 ?city fb:type.object.name ?city_name .
5 ?country fb:type.object.type fb:location.country .
6 ?country fb:type.object.name ?country_name .
7 ?city fb:location.location.containedby ?country .
8 ?city fb:location.statistical_region.population ?m_population .
9 ?m_population fb:measurement_unit.dated_integer.number ?population .

10 }

Listing 1.2: SPARQL query for Freebase
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1.1 Definitions of Terms

type location.country. It is then related to the column city by using the property
location.location.containedby in an additional triple.

1.1 Definitions of Terms

This thesis uses terms that can vary depending on the knowledge base.

KBTE is able to use either Freebase or Wikidata as knowledge base. To make KBTE
work with different knowledge bases, this thesis focuses on the similarities of them
and tries to generalize differences. This section states important definitions that are
used throughout the thesis.

KBTE uses the concepts of classes and properties to describe columns of a table. In
the resulting SPARQL query a column can be either represented by a class or by a
property of the knowledge base. The content of the single column cells are instances
of a class or values of a property, depending on the respective column.

Knowledge base data is often stored as RDF dump. The Resource Description
Framework3 (RDF) is a specification of the World Wide Web Consortium (W3C)
that is used to represent data in triples. A triple (or n-tuple with n = 3) is a line
of data with the structure subject predicate object .. In a triple, a subject
is linked through a predicate to an object. In this way, facts can be expressed in
a natural language sentence: Berlin (subject) is located in (predicate) Germany
(object).

Table 1.1 gives an overview of Freebase-specific and Wikidata-specific terms for the
general concepts of entities, classes and properties.

The terms used for Freebase, are described in [7]. In Freebase, entities are called
objects. Each object has a unique machine ID called mid. For example, the mid of
the city Berlin is m.0156q. The concept of a class is expressed by Freebase types. A
Freebase object can have multiple types. In order to form facts, Freebase properties
are used to link objects with to objects or values. To represent n-ary relations
with n > 2, Freebase uses Compound Value Types (CVTs). Within the scope of
this thesis, they are called mediator classes or mediators. For example, the mediator
location.geocode is used to link geographic coordinates to a location. by the property
location.location.geolocation.

In Wikidata, as described in [8], entities are represented as Wikidata items. Each
item has a unique identifier called qid. For example, the qid of the city Berlin is
Q64. An item A can be an instance of another item B, turning item B into a class
and item A into an instance. The data model of Wikidata consists of triples in the
form item property value representing a (claimed) fact or claim. Together with
references, a claim forms a statement.

3https://www.w3.org/TR/rdf-concepts/
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Chapter 1 Introduction

Concept Freebase Wikidata
Instance
or Entity

Freebase Object
(used as subject

with the
property

type.object.type)

m.0156q (“Berlin”) Wikidata Item
(used as subject

with the
property P31 )

Q64
(“Berlin”)

Class Freebase Type
(used as object

with the
property

type.object.type)

location.citytown
(“City/Town/Vil-

lage”)

Wikidata Item
(used as object

with the
property P31 )

Q515
(“city”)

Property Freebase
Property

location.statistical_
region.population
(“Population”)

Wikidata
Property

P1082
(“popula-
tion”)

Table 1.1: Terms used by Freebase and Wikidata with examples

1.2 Problem Definition

An input table is represented by a structured table definition specified in a tabular
description format.

The problem of translating a table definition with a set of columns into a SPARQL
query can be split up into the following sub problems:

Column matching Each column definition has to be matched to a class or property
of the knowledge base model. Column matching again is a sub task of table matching.

Relations between columns For each column, it has to be determined to which
other column it should be related. There is just one column, the so called master
column, which should not be related to another column in order to relate most (or
all) other columns to this master column. A further part of this sub problem is to
find the most appropriate master column.

Table matching Table matching combines the problems of column matching and
finding relations between columns. The aim is to find a mapping where each column
is mapped to a tuple. The first value of the tuple contains the column to which the
current column relates (relations between columns). The second value is the best
matching class or property of the knowledge base for the column’s definition (column
matching). For the introductory example, a possible table matching for Wikidata
of the table definition city | country | population would be
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1.3 Overview of the tool

city -> (None, Q515),
country -> (city, P17),
population -> (city, P1082)

Here, the column city is used as the master column and the columns country and
population relate to city.

Figure 1.1 illustrates the matching of the exemplary table definition to Wikidata
classes and properties.

Query generation Generation of the SPARQL query from the table matching
represents the last sub problem of the table translation. According to the table
matching, we have to find the connecting relations between the matched pairs of
columns.

Figure 1.1: Table matching example for Wikidata

1.3 Overview of the tool

The back-end of KBTE consists of three key parts:

• A module for reading the input table definition. For this purpose the the-
sis specifies a tabular description format. In addition to defining table
columns, it allows column-wise setting of a filter, an order and an explicit
linking to another column.

• A column graph whose nodes represent the objects of the knowledge base
that can be used as table columns (classes and properties). The edges of the
graph represent the matchings between columns according to certain templates.
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Chapter 1 Introduction

The column graph is used to find possible interpretations of how the defined
columns are related to each other.
• A search index consisting of a document-term matrix with tf-idf features. For

this, the documents correspond to the classes and properties of a knowledge
base and the terms are created out of the trigrams of their respective names.

For the translation of a table definition, the column graph and the search index
are used in combination in order to find a table matching. The implementation of
KBTE is described in more detail in chapter 3.
In chapter 4, the performance of the table matching algorithm of KBTE is analyzed
on different datasets comparing to a baseline algorithm. The first dataset contains
table definitions which have been created from tables of Wikipedia. Another two
datasets, one for Freebase, one for Wikidata, contain a small number of hand-crafted
table definitions together with their intended classes and properties. They are used
for a more qualitative comparison between the algorithms.
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2 Related Work

This thesis is related to the field of semantic search on knowledge bases. This data
searching technique does not only look for literal matches of the input words, but
it also determines the intent or contextual meaning of the input. Referring to [9],
textual semantic search can be divided into searching on text in natural language,
searching on structured data such as knowledge bases or searching on a combination
of text and structured data. These data types can be searched by keyword search,
structured search or natural language search (e.g. question answering).
In keyword search on knowledge bases, the aim is to generate a SPARQL query
or matching items ordered by relevance given a sequence of keywords as input.
Considering the graph structure of the knowledge base, these keywords have to be
matched to nodes of the graph (i.e. entities) first. It is then tried to find a minimum
connected tree or subgraph that covers all matched nodes. This problem is similar
to the Group Steiner Tree problem (GST), which is NP-complete.
Approaches for keyword search on knowledge bases either focus on solutions to this
problem, others present query builders such as FreeQ [1] or GraFa [5]. FreeQ is
an interactive query interface for incremental query construction on Freebase and
GraFa is a faceted browsing interface for Wikidata. The authors of [6] present a
keyword search approach which is focused on exploiting parallelism. It does not use
the GST model but introduces a concept called Central Graph. It further presents
a real-time search engine for Wikidata called WikiSearch.
Question answering on knowledge bases also aims for the generation of a SPARQL
query. The basic approach for question answering again involves matching parts of
the question to entities. In addition, it is also tried to recognize relations of the
knowledge base in parts of the question that connect two entities (relation extrac-
tion). Recognizing relations is a harder problem than recognizing entities because
relations can have different formulations in natural language.
In [10], the process of question answering is divided into the following tasks:
• question analysis: a syntactic analysis of the question using techniques like

part-of-speech-tagging (POS-tagging) and named entity recognition (NER)
• phrase mapping: identification of resources that correspond to phrases of the

question
• disambiguation: determination which of the identified resources from phrase

mapping are the right ones
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Chapter 2 Related Work

• query construction: construction of a SPARQL query
• querying distributed knowledge: retrieving information from several knowledge

bases
There exist numerous approaches for question answering on knowledge bases like
Freebase and Wikidata. Aqqu [3], an approach for Freebase, creates query can-
didates by matching the input question to certain templates. The candidates are
then ranked according to their similarity with the question as determined by sev-
eral interwoven machine learning models trained using manually generated question
answer pairs. Platypus [4], a multilingual system for Wikidata, uses a grammatical
analyzer and a template-based analyzer to parse questions. The analyzers convert
the question into logical representations. These representations are ranked by their
likelihood.
The approach presented in this thesis has certain similarities to keyword search and
question answering approaches. It also tries to match parts of the input to objects
of a knowledge base and tries find connecting relations. But unlike keyword search
and question answering, the approach of this thesis matches columns of the input
to classes and properties only and not to entities. Furthermore, it does not use a
sophisticated ranking method.

8



3 Implementation

This chapter describes the implementation details of the tool KBTE. KBTE takes a
user defined table definition as input, that is in a specific tabular description format.
In order to generate a SPARQL query out of this table definition, the tool has to find
a linking class or property for each defined column. This is implemented as using
the search index of KBTE. Additionally, the columns have to be matched with each
other in such a way that each column, except one master column, is related to
another column. The relatedness between classes or properties of a knowledge base
is defined by various templates and implemented as a so called column graph.

3.1 Tabular Description Format

tabledef = columndef (separator columndef)*
columndef = string [filter] [order] [link]
filter = "(" comparator (string | number) ")"
order = "[" ("asc" | "desc") ("," number) "]"
link = "->" number

separator = "|"
string = CHAR+
number = DIGIT+
comparator = "!=" | "<=" | "<" | ">=" | ">" | "="

Listing 3.1: Specification of the tabular description format in standard EBNF no-
tation

The specified tabular description format allows input of the table definition in a
structured way. A structured table input is advantageous for KBTE, because it
contains certain constraints which simplify the generation of the SPARQL query.
The most important constraint is that columns correspond to a class or property of
the knowledge base ontology. Listing 3.1 shows the specification of the format. A
valid table definition consists of at least one table column. Columns are separated by
the vertical bar character. To each column a filter, an order and a link can optionally
be added. A filter is written in round brackets, an order in square brackets. A
link can be used to force the tool to relate the column to a specific column, which
simplifies the matching progress and corrects or prevents an unwanted interpretation

9



Chapter 3 Implementation

of the input. In this way, a user of KBTE could utilize links to disambiguate a table
definition. For example, in the table definition city | country | population ->
0 the population column is explicitly linked to the first column (city, column with

index 0). The alternative table definition city | country | population -> 1
would relate population to country.

The following table definition depicts a more detailed variant of the example in
chapter 1:

city [asc, 2] | country (="Germany"@en)| population (>= 100000)[desc,
1] -> 0

The table is constrained to cities of the country Germany with a population of
at least 100000 inhabitants. In addition, the table is arranged by population in
descending order first (optional second parameter in square brackets, lower numbers
are prioritized), and by city in ascending second. An explicit link is also used here.

3.2 Search index

In order to fill a table with information of a knowledge base, it is necessary to know
how to retrieve the content of single table columns. In the simplest case, this is
achieved by using classes and properties of the knowledge base. For KBTE, infor-
mation about the classes and properties has been collected in a data structure that
allows quick access given a keyword. For example, assuming an index for Wikidata,
the keyword city should result in a list of classes and properties containing the class
key Q515 (“city”) as first element. Alternatives with a lower popularity would be
the classes Q1549591 (“big city”) or Q1093829 (“city of the United States”). So the
index ensures, that a non-expert user doesn’t need to know the exact knowledge base
object. It has to be mentioned that the current implementation does not take the
class hierarchy of Wikidata into account yet. At the moment, only direct instances
with the property P31 (“instance of”) are considered as class. Subclasses with the
property P279 (“subclass of”) are not considered which leads to wrong popularity
counts. For example, the class Q1093829 (“city of the United States”) has more
direct instances than Q515 (“city”) which can be problematic for particular column
definitions.

In order to create the index, the collection of all classes and properties is converted
to a document-term matrix of tf-idf features using the Python library scikit-learn1.
In this matrix, the classes and properties correspond to the documents. The matrix
describes the frequency of terms that occur in these documents, where the terms
are the single trigrams created from the particular labels of classes and properties.
An n-gram is a slice of length n of a text sample and trigrams are the special case
for n = 3. For example, the set of all trigrams of the word mountain would be

1https://scikit-learn.org/stable/index.html
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3.2 Search index

[mou, oun, unt, nta, tai, ain]. Figure 3.1 shows an example table containing
the term frequencies for three example Wikidata items used as documents. The doc-
ument set contains the three Wikidata objects with the labels mountain, mountain
range and mountain pass. Figure 3.2 illustrates the document-term matrix A with
their L2-normalized tf-idf scores resulting from that table. The scores are calculated
by the formula tf -idf(t, d) = tf(t, d) · idf(t), where the term frequency tf(t, d) is the
number of occurrences of a term t in a document d, n is the total number of docu-
ments in the document set and idf(d, t) = ln( 1+n

1+df(d,t)) + 1. The document frequency
df(d, t) is the number of documents in the document set that contain the term t.
Together with the number of triples used as counts of the classes and properties,
the document-term matrix is used to find the most popular exact knowledge base
object for a column name of the table definition. The search index calculates a
relevance score for each document to a given input string (e.g. the column name).
A column name can be represented as a vector q by the terms of the search index.
The relevance score then is the result of the dot product q · A>, where A is the
document term matrix. Since A is stored as a sparse matrix, the calculation is
efficient even with a lot of documents. In order to yield the final popularity score,
the relevance score of each class and property is multiplied by its respective count
(number of triples).
Assuming a table definition mountain | range which should result in a table of
mountains and the mountain range they’re belonging to, the column names moun-
tain and range have to be linked to a document contained in the search index.
Figure 3.2 gives an example for the calculation of the relevance score for the input
“range”. It shows the document-term matrix A with L2-normalized tf-idf scores, the
query vector qrange (also L2-normalized) and their dot product. The dot product
indicates that only the second document P4552 (“mountain range”) is relevant for
the column range with a score of 0.63. All values are rounded off to 2 digits.
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3.3 Column graph

3.3 Column graph

The column graph is another module which is used for finding the best matching
knowledge base classes and properties for a given table definition. The nodes of
the graph are the classes and properties and the edges are added according to cer-
tain templates. The edges indicate, whether two exact column definitions can be
matched with each other and contain the count for this match. The Class-Property
template and the Class-Class template are the two basic templates. For Freebase,
it is necessary to introduce additional templates which can handle connections via
mediator classes. Figure 3.3 depicts an exemplary sub graph containing some Wiki-
data classes and properties that are connected according to the basic templates.
For example, the edge between the class Q515 and the property P17 has a count of
8552.

Figure 3.3: A sub graph of the column graph for Wikidata demonstrating exem-
plary relations between classes and properties
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3.3.1 Basic templates

Class-Property template (CP)

1 SELECT ?o WHERE {
2 ?s <is-a> [CLASS] .
3 ?s [PROPERTY] ?o .
4 }

Listing 3.2: Class-Property template

Listing 3.2 contains the SPARQL template for the Class-Property template (CP)
where the predicate <is-a> should be replaced by the knowledge base specific prop-
erty for class instances. For Wikidata this would be the property P31 (“instance
of”), for Freebase it would be type.object.type (“Type”).
The CP template indicates if a property can be applied on a class. This will be the
case if the corresponding SPARQL query delivers at least one result (the number of
results corresponds to the count). For example, the template would imply an edge
in the column graph between the Wikidata class Q515 (“city”) and the property
P17 (“country”) because a city is part of a country. In contrast, the property P50
(“author”) is not related to Q515, because a city has no author.

Class-Class template (CC)

1 SELECT ?p WHERE {
2 ?s <is-a> [CLASS1] .
3 ?o <is-a> [CLASS2] .
4 ?s ?p ?o .
5 }

Listing 3.3: Class-Class template

The other basic template is the Class-Class template (CC). Compared to the CP
template, it is not only a quantitative template because there is the additional inter-
est in finding the property with the highest count for the variable ?p. This property
connects the two classes. For example, the top three connecting properties for the
Wikidata classes Q515 (“city”) and Q6256 (“country”) would be P17 (“country”)
first, P1376 (“capital of”) second and P131 (“located in the administrative territo-
rial entity”) third (compare with the first edge in Figure 3.3).

3.3.2 Extraction of the column graph data

For KBTE, the column graph data is extracted directly from the RDF dumps of
Wikidata and Freebase. In these dumps statements are stored in triples of the
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form <subject> <predicate> <object> .. It is necessary to iterate twice over
the full dump. In the first run, a large dictionary is built which maps each sin-
gle entity of the knowledge base to a list of classes. For Freebase entities, the
relevant triples are <Entity> <http://rdf.freebase.com/ns/type.object.type
> <Class> . which have the property type.object.type as predicate. For Wikidata
entities, the triples which have the property P31 as predicate are in the form <
Entity> <http://www.wikidata.org/prop/direct/P31> <Class> .. After full
initialization, the entity dictionary occupies a large amount of RAM, around 45 GB
for Freebase.

In the second run, the entity dictionary is used to create the column graph edges
that match the basic templates CC and CP.

CC template

For all triples in the form <Entity1> <Property> <Entity2> ., the lists of all
classes of Entity1 and Entity2 are looked up in the dictionary and an edge from
every single class of Entity1 to every single class of Entity2 is created with the
property that is used as predicate. If an edge already exists, the corresponding
count number is incremented by 1.

CP template

For all triples in the form <Entity> <Property> <Value or other Non-entity> .,
an edge is created from every single class of Entity to the property used as predicate.
The edge counts are determined in the same way as in CC template case.

Class and property counts

Using the number of triples as count for edges is also applied on the nodes. These
node counts are used for calculating the popularity scores while searching the search
index described in section 3.2. For classes, two counts are created. Every triple that
has an entity as subject increments the subject count of all entity classes by 1. Every
triple that has an entity as object increments the object count of all entity classes
by 1. The count of a property is incremented every time the property is used as
predicate.

3.3.3 Freebase-specific templates

For Freebase a special case has to be handled because of mediator classes (or Com-
pound Value Types). For this, two additional cases have to be considered.
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Class-Mediator-Property template (CMP)

In the Class-Mediator-Property template (Listing 3.4), the property is used on the
mediator class which can be derived from the ID of the property. For example,
the mediator class of the property of location.geocode.latitude is location.geocode. It
has to be found a property which connects the given class on the left side with the
mediator class on the right side.

1 PREFIX fb: <http://rdf.freebase.com/ns/>
2 SELECT ?p WHERE {
3 ?s fb:type.object.type [CLASS] .
4 ?s ?p ?mediator .
5 ?mediator [PROPERTY] ?o .
6 }

Listing 3.4: Class-Mediator-Property template

Class-Property-Mediator template (CPM)

In the Class-Mediator-Property template (Listing 3.5), the property is used to con-
nect the given class to a mediator class. In this case, the most popular property of
the mediator class has to be found. This can be ambiguous because often multiple
mediator properties have the same count. For example, if a column is specified by
the property location.location.geolocation, the solving property can either be loca-
tion.geocode.latitude or location.geocode.longitude.

1 PREFIX fb: <http://rdf.freebase.com/ns/>
2 SELECT ?p WHERE {
3 ?s fb:type.object.type [CLASS] .
4 ?s [PROPERTY] ?mediator .
5 ?mediator ?p ?o .
6 }

Listing 3.5: Class-Property-Mediator template

3.4 Table matching algorithm

This section describes the algorithms which are used to find a solution for the table
matching problem as described in section 1.2. The main algorithm MatchTable
(see Algorithm 3.4) determines the mapping.
The basic idea for table matching is the pairwise matching of single column pairs.
The single column pair matching is done by the algorithm MatchPair. Match-
Pair exploits the combined use of the search index (section 3.2) and the column
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graph (section 3.3) in order to find the best matching classes and properties for a col-
umn pair. It is used by the main algorithm. For the main table matching algorithm
this section presents two versions. One is the baseline algorithm MatchTable-
Baseline and the other is the improved version MatchTable. MatchTable is
used for KBTE as default algorithm.
All three algorithms are described in the following.

3.4.1 Single column pair matching

Algorithm 3.1 shows the algorithm MatchPair which tries to match a single col-
umn pair and outputs a ranked list of the best matching classes and properties for the
two columns. The technical details of the function SearchIndex that is called in
the lines 5 and 11, has been described in section 3.2. It takes a string as main param-
eter and returns classes and properties ranked by a popularity score. An optional sec-
ond parameter which takes a class as input restricts the search results to be neighbors
of this class in the column graph. Another function ColumnGraphEdgeCount
which is called in line 14 only returns the count of the best template for an edge
between two classes or between a class and a property in the column graph. In this
way, it ensures that the pair matching results actually do yield results when they are
put in a SPARQL query with the respective basic template (CC or CP). For exam-
ple, in order to match the fuzzy column pair (city, country), one possible result
of MatchPair for Freebase would be (location.citytown, location.country)
because it fulfills both conditions necessary to be a pair match. The left column
definition city matches the label “City/Town/Village” of the class location.citytown
and the right column definition country matches the label “Country” of the class
location.country, which satisfies the first condition. The second condition is sat-
isfied as well, because location.citytown has an edge to location.country in the
column graph. For instance, they can be connected with the CC template us-
ing location.location.containedby as connecting property. In contrast to this valid
pair match, the pair (location.citytown, film.film.country) is not a valid
result. While the first condition is satisfied, the second is not because the class
location.citytown and the property film.film.country can not be applied on the CP
template.

3.4.2 Baseline algorithm for table matching

The baseline algorithm MatchTableBaseline (Algorithm 3.2) describes a basic
approach to the table matching problem. Given a table definition with n columns,
the algorithm tries to find a valid table matching. For each column definition, it
simply chooses the best matching class or property from SearchIndex (line 3) and
stores it in the mapping CM. After that, all possible column pairs (Ci, Cj), 0 ≤ i <
n, 0 ≤ j < n, i 6= j are tested for matches with the function MatchPair using
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Algorithm 3.1 Column pair matching algorithm
1: function MatchPair(column definitions leftcol, rightcol)
2: if leftcol is a KB class then
3: left column candidates LCC ← leftcol
4: else
5: LCC ← all results of SearchIndex(leftcol)
6: end if
7: for each leftcandidate in LCC do
8: if rightcol is a KB class or property then
9: right column candidates RCC ← rightcol

10: else
11: RCC ← all results of SearchIndex(rightcol, leftcandidate)
12: end if
13: for each rightcandidate in RCC do
14: count← ColumnGraphEdgeCount(leftcandidate, rightcandidate)
15: if count > 0 then
16: result← result + ((leftcandidate, rightcandidate), count)
17: end if
18: end for
19: end for
20: return result sorted by count
21: end function

the best match for both columns as input. The pair match results are then stored
in a nested dictionary PMR with Cj as first key, and Ci as second key in order to
preserve the mapping from column pairs to the results (line 9). For each column Cj,
the best left-side column Ci has to be found. It is the column which, from all pair
match results that use Cj on the right side, leads to the highest count. The resulting
mapping of best pair matches BPM (line 13) indicates to which other column Ci

a column Cj should be related. The master column is the one to which the most
other columns relate (line 16). In case of a tie, the column with the lower index in
the input table definition is taken. To get the final table matching, the values of the
mapping CM and BPM are combined in a tuple for each column (line 21). For the
master column the first value of the tuple is None, because it does not relate to any
other column (line 19).
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Algorithm 3.2 Baseline algorithm for table matching
1: function MatchTableBaseline(column definitions C with n columns)
2: for each column Ci in C do
3: column match CM [Ci]← best match of SearchIndex(Ci)
4: if no matches then
5: return no solution
6: end if
7: end for
8: for each column pair (Ci, Cj) with 0 ≤ i < n, 0 ≤ j < n, i 6= j do
9: pair match results PMR[Cj][Ci]←MatchPair(CM [Ci], CM [Cj])

10: end for
11: for each Cj in C do
12: find Cbest where count of PMR[Cj][Cbest] is maximized
13: best pair match BPM [Cj]← (Cbest, PMR[Cj][Cbest])
14: column frequency CF [Cbest]+ = 1
15: end for
16: master column mc← Cmax where CF [Cmax] is maximized
17: for each column Ci in C do
18: if Ci = mc then
19: tablematching[Ci]← (None, CM [Ci])
20: else
21: tablematching[Ci]← (BPM [Ci][0], CM [Ci)
22: end if
23: end for
24: return tablematching
25: end function

3.4.3 Improved table matching algorithm for usage in KBTE

It is expected that the baseline algorithm MatchTableBaseline often is not able
to find related columns for a specific column. The reason for this is that each column
is already matched to a class or property in the first step. To tackle this problem,
the column matching in the algorithm MatchTable (see Algorithm 3.4) takes a
potential relation between matched column classes and properties into account.
In the trivial case (lines 2 to 6) where the number of columns is n = 1, only an index
search is performed for the single column. The best matching knowledge base class
is chosen as a result.
In the other case, where n > 1, the dictionary PMR containing all pair match results
is created (line 9) as in the baseline algorithm. The important difference is that the
call of MatchPair now takes the columns as input and not their best matches.
The function RankedMasterCandidates iterates through PMR and returns an
ordered list MACOL of the table columns (line 11). The order is used for trying
each column as master column. It is counted how frequently a column is used as
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second key Ci, meaning for how many other columns it could stand on the left side
of a column pair. The columns are then sorted by the highest count, in case of tie,
the one with the lower index in the table definition is prioritized.
The function RankedClassesForMasterCandidate also iterates through PMR
and returns a dictionary MACLA which contains a ranking of the best matching
classes for each column (line 12).
In the next step, it is tested for the first master column candidate master (line 13)
together with its first matched class mc (line 15) whether all other columns of the
table definition have a pair match with mc. To find the best matching class or
property for a column based on the current values for master and mc, the function
FindRightColType is used (see Algorithm 3.3). The return value is added to the
column’s match for the final table matching (line 21). If a column does not have
pair matches with master, it will be added to a list of skipped columns SC (line 23).
For each skipped column skcol it is tried to find the best pair match with another
column that is already contained in the final table matching (lines 26 to 35). If it is
impossible to find a match for at least one skipped column, the table matching so
far will be discarded. The algorithm then continues with the next possible class mc
for master. On further failures for all other possible classes, the algorithm continues
with the next master column candidate until a final table matching is found or until
the search is exhausted and stops without solution.

Algorithm 3.3 Function for finding a class or property for the right column Cj

1: function FindRightColType(Ci, Cj, classi, pair match results PMR)
2: for each pairmatch in PMR[Cj][Ci] do
3: if pairmatch[0] = classi then
4: return pairmatch[1]
5: end if
6: end for
7: return None
8: end function
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Algorithm 3.4 Improved algorithm for table matching
1: function MatchTable(column definitions C with n columns)
2: if n = 1 then
3: bestClasses← SearchIndex(C0)
4: tablematching[C0]← (None, bestClasses0)
5: return tablematching
6: end if
7: if n > 1 then
8: for each column pair (Ci, Cj) with 0 ≤ i < n, 0 ≤ j < n, i 6= j do
9: pair match results PMR[Cj][Ci]←MatchPair(Ci, Cj)

10: end for
11: MACOL← RankedMasterCandidates(PMR)
12: MACLA← RankedClassesForMasterCandidate(PMR)
13: for each master column candidate master in MACOL do
14: master column classes MC ←MACLA[master]
15: for each class mc of MC do
16: clear tablematching
17: tablematching[master]← (None, mc)
18: for each Ci in C, Ci 6= master do
19: col2type← FindRightColType(master, Ci, mc, PMR)
20: if col2type exists then
21: tablematching[Ci]← (master, col2type)
22: else
23: add Ci to skipped columns SC
24: end if
25: end for
26: for each skcol in SC do
27: for each col1 with col1class in tablematching do
28: col2type← FindRightColType(col1, skcol, col1class, PMR)
29: if col2type exists then
30: tablematching[skcol]← (col1, col2type)
31: else
32: break
33: end if
34: end for
35: end for
36: if tablematching[Ci] exists ∀Ci ∈ C then
37: return tablematching
38: end if
39: end for
40: end for
41: end if
42: return no solution
43: end function

21



Chapter 3 Implementation

3.4.4 Complexity analysis

Assuming a knowledge base with nc classes and np properties, the result list of
SearchIndex would have size nc + np. In the worst case, where MatchPair
(Algorithm 3.1) takes two fuzzily defined columns as input, it enters the else clauses
of lines 5 and 11. It therefore iterates over two nested lists of the worst case size
nc + np and produces a list of size (nc + np)2. The complexity of MatchPair is
O((nc + np)2). The input of MatchTable is a table definition with nt columns.
Since nt usually ranges between 2 and 7, it can be seen as a constant factor. The
number of possible column pairs to be matched is nt · (nt − 1). So the pairwise
matching part of the algorithm has a complexity of O((nc + np)2). In the worst
case, the exhaustive search part has to iterate over each of nt master columns and
for each column over all nc classes. For each class over nt − 1 other columns and
for each other column over (nc + np)2 pair match results. The resulting number of
steps is nt · nc · (nt − 1) · (nc + np)2 = (n2

t − nt) · (n3
c + 2n2

cnp + n2
p). So the worst

case complexity of the exhaustive search part is O(n3
c) which is also the worst case

complexity of MatchTable.
Compared to that, the baseline table matching algorithm MatchTableBaseline
(Algorithm 3.2) has a complexity of O((nc + np)2).

3.4.5 Practical performance & optimizations

The complexity analysis showed that the number of classes and properties has a high
influence on the runtime of the table matching algorithm. Because of this, the per-
formance of KBTE can be improved by limiting the number of intermediate results.
Without limiting the result size of SearchIndex, it would always return a list of
size nc + np that contains all classes and properties of the knowledge base whereas
the majority would have a popularity score of 0. For this reason, SearchIndex is
adapted, in order to return only matches with a popularity score higher than 0. The
number of results of MatchPair is also limited to 5. Because of the limitation,
the complexity of MatchPair gets O(1). This also reduces the worst case com-
plexity of MatchTableBaseline to O(n2

t ). The complexity of MatchTable does
not change because the exhaustive search part still has a higher influence than the
pairwise matching part of the columns.
In practice, the performance of the improved algorithm should be acceptable because
the number of classes and properties is constant. Nevertheless, the table matching
should be slower for knowledge bases with a higher number of classes.

3.5 Query generation

To generate a SPARQL query, a variable is associated for each column. There is a
difference between column’s content instances that can either have labels (e.g. the
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column city) or values such as numbers or dates (e.g. population or release date).
If they have labels, an additional name variable is associated with the column.
Knowledge base entities are labeled by using a specific property. In Freebase it is
the property type.object.name, in Wikidata it is <http://www.w3.org/2000/01/rdf-
schema#label>.
The triples for the WHERE clause of the resulting SPARQL query are created
according to the templates which result from the table matching.
The result query is assembled by filling an SPARQL barebone query. The column
variables are inserted in the SELECT clause, the triples in the WHERE clause along
with optional filters and orders that have been declared in the table definition input.
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4 Evaluation

This chapter gives a description of the methods used to evaluate the application
KBTE. For evaluating the generation of SPARQL queries with tabular content there
is no well-known benchmark yet. Since KBTE tries to generate tables as used in
Wikipedia articles (e.g. list of largest cities, list of mountains by elevation), this
thesis provides a new dataset and evaluation method based on Wikipedia tables.
The dataset consists of selected Wikipedia table column headers which are extracted
from an English Wikipedia dump1 containing all articles and other pages. The aim
is to obtain a set of column headers per table that form table definitions in the
tabular description format described in section 3.1. These table definitions are used
as input for KBTE. The following section describes the selection criteria as well as
the evaluation method details and results.

4.1 Evaluation with tables from Wikipedia

4.1.1 Creation of evaluation dataset

In order to create the evaluation dataset, this thesis used the Wikipedia dump of
October 10, 2018. It contains 18,665,935 pages, whereof 14,051,148 have the article
namespace. The single articles were parsed by the Python tool WikiTextParser2.
From each Wikipedia article, all tables found were extracted. In total 2,372,431 ta-
bles were extracted. For further processing, it was tried to remove all the parts from
the parsed tables, that are not part of the visible table content. Therefore all ref-
erences (<ref>...</ref>) and line breaks (</br>) in the table cells were removed.
Links ([[target]] or [[target|text]]) were replaced by their text if present, or
by their target otherwise. The expansion of templates ({{name|arg1|arg2|...}})
is not possible with WikiTextParser, so the templates were retained. Tables with
templates are therefore less suited for evaluation because of the following selection
criteria. Tables should have at least two rows in order that the first row can be in-
terpreted as column headers. Additionally, only tables with column spans and row
spans of 1 are suitable, because larger spans lead to the duplicate column headers in
the same table. For each column header, the search index of KBTE was searched for
matching classes and properties in any of the available knowledge bases. If there is

1https://dumps.wikimedia.org/enwiki/
2https://pypi.org/project/wikitextparser/
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at least one matching class or property, the “inKB”-attribute of the column header
will be set to TRUE. For each table it is counted how many columns have “inKB”-
attribute set to TRUE. Out of the extracted Wikipedia tables, only those tables
are chosen for the evaluation dataset which have a count larger than 2 and larger
than the total number of columns divided by 2. In this way 1,066,292 tables left for
potential KBTE input.

It has to be mentioned that many Wikipedia tables do not contain the context
to its articles, which results in more general table definitions. For example, the
article to the country Guinea contains a table about its regions and prefectures.
The produced table definition Region | Capital | Population has no relation to
Guinea. The context could be recovered by manually adding an additional column
with a filter of the article’s entity. A possible adapted table definition could be
Country(="Guinea"@en) | Region | Capital | Population. This is infeasible
for the large number of tables.

4.1.2 Evaluation method

To measure the performance of the table matching algorithm of KBTE, a query
translation is executed for each evaluation table in the dataset for both Freebase
and Wikidata back-end. The input table definition is created by the concatenation
of those column headers that have its “inKB”-attribute set to TRUE, separated by
vertical bar characters (|). For comparison, the same query translation are executed
using the baseline algorithm described in subsection 3.4.2. The generated SPARQL
queries are executed on Freebase and Wikidata back-ends running the query engine
QLever[11]. The evaluation is performed over a small subset of the first 5000 tables.

An execution can lead to the following outcomes:

1. KBTE produces an error (kbte-error).

2. KBTE successfully outputs a SPARQL query, but the execution of this query
on an appropriate knowledge base endpoint produces an error (sparql-error).

3. KBTE successfully outputs a SPARQL query, but the execution produces no
result rows (sparql-empty).

4. KBTE successfully outputs a SPARQL query and the execution produces re-
sult rows (sparql-full).

It has to be mentioned that the fourth outcome (sparql-full) for a table definition
does not imply a correlation between the content of the original Wikipedia table
and the table resulting from the SPARQL query.
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4.2 Evaluation with hand-crafted tables

Since the dataset with tables of Wikipedia only allows a purely quantitative evalu-
ation method, the datasets with hand-crafted tables have been created for a more
qualitative analysis. The datasets are shown in Table 4.1 for Freebase and in
Table 4.2 for Wikidata. Each dataset contains 15 table definitions along with the
same table definitions expressed with the exact intended classes and properties. It
was tried to use the same table definitions for Freebase and Wikidata. Due to differ-
ences in the ontologies of the two knowledge bases and the missing ability of KBTE
to recognize synonyms, some table definitions had to be slightly adapted. Also the
missing ability to use occupations with KBTE for Wikidata is handled in the tables
9 and 10 by applying filters.

4.3 Results and discussion

The results of Wikipedia dataset evaluation are summarized in Table 4.3. Out
of the 5000 evaluation tables, 3915 different table definitions were created. The
results show that a high percentage of the table definitions is not suitable at all
for KBTE to generate SPARQL queries. Comparing the baseline algorithm with
the improved algorithm (called KBTE in the tables), one can see that the improved
algorithm is able to generate more result yielding SPARQL queries for both Freebase
and Wikidata. The most working SPARQL queries which yield at least one result
are generated for Freebase using the improved algorithm (12.1%). However, the
majority of these generated queries still does not match the intention of the table
definition. For example, the table definition Year|Film|Role|Notes extracted from
the Wikipedia article of the actor Amitabh Bachchan is translated to the Freebase
table matching

{Film: (None, ’film.actor’), Year: (Film, ’award.award_nomination.
year’), Role: (Film, ’music.track_contribution.role’), Notes: (
Film, ’award.award_nomination.notes_description’)}

The table matching leads to results (sparql-full) but the column matchings are not
correct. The reason is that a column definition like Actor(="Amitabh␣Bachchan"@en)
is missing which would restore the context to the article. Besides this, the lacking
support of using synonyms is a problem here for the columns Year (to the property
film.film.release_date_s) and Role (to the property film.performance.character).
Furthermore, columns such as Notes which not directly relate to the table’s content
often cause the query translation to fail.

There are still well-translated queries for both Freebase and Wikidata. For example,
the table definitions District|Population and Country|City (for both), Metro
Area | Population | Area | Country, County | Seat | Area | Population
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and Year | Winner (for Freebase) or Club | City | Sport | League | Venue
(for Wikidata).
The evaluation with Wikipedia tables shows that the created dataset represents a
hard challenge for KBTE. The dataset may have to be further filtered and table
definitions should be manually adapted for each knowledge base separately. In this
way, it could be assured that the intended table content is contained in the knowledge
base.
Table 4.4 and Table 4.5 show the analysis results of the hand-crafted datasets (in
Table 4.1 and Table 4.2). Since these datasets are adapted to the specific content
of each knowledge base, KBTE produces better table matchings compared to the
Wikipedia tables dataset. Comparing by the percentage of correctly matched single
columns, the improved algorithm reaches 83% in Freebase and 90% in Wikidata
(Baseline: 30% and 61%). In the Freebase dataset, the improved algorithm is able
to match all columns correctly for 11 of 15 tables (9 of 15 for Wikidata). The
baseline algorithm is not able to match any table completely correct in Freebase
and only one table in Wikidata. The failing column matchings of the baseline
algorithm confirm the expectations mentioned in subsection 3.4.3. For example,
in the table definition mountain | country | elevation | mountain range the
column elevation is wrongly matched to location.geocode.elevation instead of geog-
raphy.mountain.elevation. In the table definition book | author | publication
date the column publication date is matched to
book.book_edition.publication_date instead of
book.written_work.date_of_first_publication. In a case where a mediator relation
has to be used for a column, both algorithms do not match the intended relation.
For example, the improved algorithm matches the column mass of the 15th table
definition to chemistry.atomic_mass.mass instead of
chemistry.chemical_element.atomic_mass. In this case, both properties should be
working, the first property would match the CMP template, the second would match
the CPM template.
On the dataset for Wikidata, the improved algorithm also performs better than
the baseline algorithm. The baseline algorithm produces similar mistaken column
matches as on Freebase tables. The general problem of the performance on Wikidata
is the missing support for the class hierarchy which influences the calculation of
popularity scores. This leads to the case where a subclass is preferred over its
superclass because of a larger number of direct instances. For example, in the
table definition city | country | population | location the column city is
matched to the subclass Q1093829 (“city of the United States”) of Q515 (“city”).
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Table definition Intended exact table definition
1 person | birth | death |

spouse
people.person | people.person.date_of_birth |

people.deceased_person.date_of_death |
people.person.spouse_s

2 city | country | population |
latitude | longitude

location.citytown | location.country |
location.statistical_region.population |

location.geocode.latitude | location.geocode.longitude
3 city | country | capital location.citytown | location.country |

location.capital_of_administrative_division.capital_of
4 mountain | country |

elevation | mountain range
geography.mountain | location.country |

geography.mountain.elevation |
geography.mountain.mountain_range

5 film | release date | genre |
country | director

film.film | film.film.release_date_s | film.film.genre |
film.film.country | film.director

6 film | date | genre | country
| director

film.film | film.film.release_date_s | film.film.genre |
film.film.country | film.director

7 book | author | publication
date

book.book | book.written_work.author |
book.written_work.date_of_first_publication

8 book | author | date book.book | book.written_work.author |
book.written_work.date_of_first_publication

9 mission | astronaut | start |
end

spaceflight.space_mission |
spaceflight.space_mission.astronauts |

time.event.start_date | time.event.end_date
10 politician | gender |

country | date of birth
government.politician | people.person.gender |

people.person.nationality |
people.person.date_of_birth

11 super bowl | date | location
| champion | runner-up |

result

american_football.super_bowl | time.event.start_date
| location.location |

sports.sports_championship_event.champion |
sports.sports_championship_event.runner_up |

sports.sports_championship_event.result
12 sports teams | location |

sport | league | venue
sports.sports_team | sports.sports_team.location |

sports.sports_team.sport | sports.sports_team.league |
sports.sports_team.venue

13 building | architect |
country | height | floors

architecture.building | architecture.architect |
location.country | architecture.structure.height_meters

| architecture.building.floors
14 airport | city | country |

passengers
aviation.airport | location.citytown | location.country |

aviation.airport.number_of_passengers
15 element | number | symbol

| mass
chemistry.chemical_element |

chemistry.chemical_element.atomic_number |
chemistry.chemical_element.symbol |

chemistry.chemical_element.atomic_mass
Table 4.1: Hand-crafted table definitions for Freebase
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Table definition Intended exact table definition
1 human | birth | death |

spouse
Q5 | P569 | P570 | P26

2 city | country | population |
location

Q515 | P17 | P1082 | P625

3 city | country | capital Q515 | P17 | P1376
4 mountain | country |

elevation | mountain range
Q8502 | P17 | P2044 | P4552

5 film | publication date |
genre | country | director

Q11424 | P577 | P136 | P495 | P57

6 film | date | genre | country
| director

Q11424 | P577 | P136 | P495 | P57

7 book | author | publication
date

Q571 | P50 | P577

8 book | author | date Q571 | P50 | P577
9 mission | human | occupa-

tion(="astronaut"@en)
Q2133344 | Q5 | P106(=”astronaut”@en)

10 human | occupa-
tion(="politician"@en) |
gender | country | date of

birth

Q5 | P106(=”politician”@en) | P21 | P17 | P569

11 super bowl | point in time |
location | winner

Q32096 | P585 | P276 | P1346

12 club | city | sport | league |
venue

Q847017 | Q515 | P641 | P118 | P115

13 building | architect |
country | height | floors

Q41176 | P84 | P17 | P2048 | P1101

14 airport | city | country |
patronage

Q1248784 | Q515 | P17 | P3872

15 element | number | symbol
| mass

Q11344 | P1086 | P246 | P2067

Table 4.2: Hand-crafted table definitions for Wikidata
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4.3 Results and discussion

Knowledge base Freebase Wikidata
Algorithm Baseline KBTE Baseline KBTE

# table definitions 3915
kbte-error 3345 (85.4%) 2938 (75.0%) 3793 (96.9%) 3379 (86.3%)
sparql-error 46 (1.2%) 66 (1.7%) 2 (0.1%) 17 (0.4%)
sparql-empty 210 (5.4%) 436 (11.1%) 26 (0.7%) 247 (6.3%)
sparql-full 314 (8.0%) 475 (12.1%) 94 (2.4%) 272 (6.9%)

Table 4.3: Comparison between baseline and improved algorithm (KBTE) by fre-
quencies of the outcomes (percentages are rounded)

Number of correctly matched columns
Table number Baseline KBTE

1 3/4 (75%) 4/4 (100%)
2 4/5 (80%) 5/5 (100%)
3 2/3 (67%) 3/3 (100%)
4 2/4 (50%) 4/4 (100%)
5 2/5 (40%) 5/5 (100%)
6 2/5 (40%) 5/5 (100%)
7 1/3 (33%) 3/3 (100%)
8 1/3 (33%) 3/3 (100%)
9 kbte-error 4/4 (100%)
10 2/4 (50%) 4/4 (100%)
11 kbte-error 2/6 (33%)
12 kbte-error 1/5 (20%)
13 kbte-error 3/5 (60%)
14 kbte-error 4/4 (100%)
15 kbte-error 3/4 (75%)

overall 19/64 (30%) 53/64 (83%)
Table 4.4: Results for Freebase table definitions comparing baseline and improved
algorithm
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Chapter 4 Evaluation

Number of correctly matched columns
Table number Baseline KBTE

1 4/4 (100%) 4/4 (100%)
2 3/4 (75%) 3/4 (75%)
3 1/3 (33%) 2/3 (67%)
4 2/4 (50%) 4/4 (100%)
5 4/5 (80%) 5/5 (100%)
6 4/5 (80%) 5/5 (100%)
7 2/3 (67%) 3/3 (100%)
8 2/3 (67%) 3/3 (100%)
9 2/3 (67%) 2/3 (67%)
10 3/5 (60%) 5/5 (100%)
11 kbte-error 4/4 (100%)
12 4/5 (80%) 4/5 (80%)
13 3/5 (60%) 4/5 (80%)
14 3/4 (75%) 3/4 (75%)
15 kbte-error 4/4 (100%)

overall 37/61 (61%) 55/61 (90%)
Table 4.5: Results for Wikidata table definitions comparing baseline and improved
algorithm

32



5 Summary and Future Work

This thesis presented an approach of searching for data in tabular form on knowledge
bases and introduced the toolKBTE. It tries to reduce the effort necessary to retrieve
the intended tables by providing a simple tabular description format which is used
for querying. Compared to keyword search and question answering approaches,
tabular information extraction shifts focus from entities to classes and properties of
a knowledge base because table columns have to be matched to them. In addition
to the matching for each column, the columns have to be related to each other.

The evaluation showed that KBTE is able to generate table contents for small sub-
set of Wikipedia tables. Too many tables of the created evaluation dataset are not
suitable as input table definitions for KBTE. In addition, many errors emerge due
to the missing ability of matching columns without lexical relatedness to the label
of the intended class or property. This issue could be solved by adding synonyms
to the search index of KBTE. The alternative labels1 used in Wikidata could be
used for this purpose. For Wikidata, additional improvements are possible be-
cause of the different data model compared to Freebase. This includes profes-
sions of a person which are not separate classes as in Freebase (e.g. film.actor,
film.director, spaceflight.astronaut, book.author) but instances of the Wikidata class
Q28640 (“profession”). The problem could be tackled by adapting the RDF extrac-
tion of subsection 3.3.2. In addition to the property P31 (“instance of”), the prop-
erty P106 (“occupation”) has to be considered. According to triples in the form <
Entity> <http://www.wikidata.org/prop/direct/P106> <Profession> ., the
entity dictionary should be extended. In a similar way, Wikidata subclasses could
be considered as well. At the moment, subclasses are problematic for KBTE be-
cause only direct instances of classes are used as content for a column. For example,
Q515 (“city”) does not include cities of subclasses such as Q1549591 (“big city”)
or Q1093829 (“city of the United States”). This problem could be solved by ex-
tracting the complete class hierarchy of Wikidata first and then additionally adding
all superclasses of a class during creation of the entity dictionary. In this way, the
column graph calculates the right counts for profession classes or superclasses. Ob-
viously, these special class constructs have to be considered afterwards during query
generation from the table matching.

The evaluation results to the hand-crafted datasets confirmed that the improved
algorithm yields more accurate table matchings than the baseline algorithm. Al-

1with the predicate <http://www.w3.org/2004/02/skos/core#"altLabel>
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Chapter 5 Summary and Future Work

though the efficiency of the improved algorithm is worse, it still performs well in
practice.
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