
Master Thesis

Ontology-Based Route Queries with
Time Windows

Tobias Faaß

08.06.2015

Albert-Ludwigs-Universität Freiburg im Breisgau
Technische Fakultät

Institut für Informatik

Bearbeitungszeitraum
08. 12. 2014 – 08. 06. 2015

Gutachter/in
Dr. Sabine Storandt
Prof. Dr. Christian Schindelhauer

Betreuer/in
Dr. Sabine Storandt

Erklärung

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine
anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschluss-
arbeit nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt
wurde.
Freiburg, 8. Juni 2015

Contents
Abstract ii

1. Introduction 1
1.1. Problem Definition and Goals . 2
1.2. Related Work . 3

2. Basics 4
2.1. Open Street Map . 4
2.2. Ontology . 5
2.3. Opening Hours . 7
2.4. Previous Work: Ontology-Search . 9

3. Route Planning 10
3.1. Basic Dijkstra . 10
3.2. Sequenced Route Planning . 11
3.3. Dijkstra Enhancement: Bounding Box 12
3.4. Dijkstra Enhancement: Iterative Doubling 13
3.5. Iterative Doubling Enhancement: Nearest Group Member Bounds . . 16

4. Server and Client 18
4.1. Server . 19
4.2. WebView . 20

5. Experiments 23
5.1. Test Cases . 23
5.2. Evaluation . 25

6. Conclusion and Outlook 28

A. Ontology Map 30

Bibliography 31

i

Abstract

Most of the time we use route planning to get from A to B. However, we can also
incorporate stopovers into our route so that we may get things done along the way.
A route from A to B via a gas station, for example, is of no use if the gas station is
closed upon arrival. As a consequence, the opening hours and the duration of stay
become necessary considerations.
In this thesis we define an ontology to be a hierarchical structure of groups to serve us
as stopovers. We fill this ontology with POI extracted from the open source project
OpenStreetMap. Since the extracted POI rarely have attached opening hours, these
opening hours must be calculated based on existing ones or defined by hand. To
calculate the route along which a sequence of POI groups are visited, we implement
known approaches of sequenced route planning and extended them to match the
time window requirements.
Different test queries were executed on the system. Within a test area of about
25 km, query times under a half second were measured. During these tests, it was
discovered that the route starting time influences the running time, which is due to
the fact that during the night most POI are closed.
The implemented system covering all of Germany can be found at
http://panarea.informatik.uni-freiburg.de/osm-search/.

ii

Zusammenfassung

Meistens wird Routenplanung dazu verwendet, um von A nach B zu kommen. Wir
können aber auch Zwischenstopps auf unsere Route mit einbeziehen, um Dinge
auf dem Weg zu erledigen. Eine Route von A nach B über eine Tankstelle hat
keinen Nutzen, wenn die Tankstelle beim Eintreffen geschlossen hat. Dies macht die
Berücksichtigung der Öffnungszeiten und der Aufenthaltsdauer notwendig.
In dieser Thesis definieren wir eine Ontologie, eine hierarchische Struktur von Grup-
pen, die uns als Zwischenstopps dienen. Wir extrahieren aus dem Open Source
Projekt “OpenStreetMap” Orte von Interesse (POI) und fügen diese der Ontologie
bei. Da die extrahierten POI selten beigefügte Öffnungszeiten enthalten, müssen
diese auf Basis von existierenden berechnet oder händisch definiert werden. Um
die Route, welche eine Abfolge von POI Gruppen besucht, zu berechnen, werden
bekannte Methoden der sequenzierten Routenplanung implementiert. Diese werden
so erweitert, dass sie den Voraussetzungen der Zeitfenster entsprechen.
Verschiedene Testanfragen an das System werden ausgewertet, wobei in einem Test-
bereich von ungefähr 25 km Abfragezeiten von unter einer halben Sekunde gemessen
wurden. Während diesen Tests wurde ein Einfluss der Startzeit auf die Laufzeit ent-
deckt, was auf die geringe Anzahl an geöffneten POI in der Nacht zurückzuführen
ist.
Das implementierte System, ganz Deutschland umfassend, ist unter der Adresse
http://panarea.informatik.uni-freiburg.de/osm-search/ zu finden.

iii

1. Introduction
We all have favourite supermarkets we usually go to. We know the paths to them
and back. Perhaps we found a shortcut to them after a couple of trips. But if we
have to handle multiple Points of Interest (POI) or we are in an unknown city, we
can’t just rely on our experience. GPS-navigation systems or web applications like
Falk.de and Google Maps provide us with the information as which path to take to
get to a desired location or allow us to explore a map to find the next restaurant or
supermarket. Sometimes we need to visit different POI on the way to a destination
like in this example: Imagine you are invited to a birthday barbecue party. You
will need to buy some steaks and some flowers as a present and because you are
short on cash you need to get some bills from a bank. However, you can’t just go
to any bank. You will need to go to a bank at which you are an account holder,
for example“Kreissparkasse”. Since you are short on time as well you will need to
visit these places as fast as possible. Even if you would know the best route to the
next bank, butcher and florist, one of them being closed on arrival would make you
rethink your route.

Home Kreissparkasse Butcher Florist Birthday Party

Figure 1.1.: Route example: From the source to a bank of the operator “Kreiss-
parkasse“, followed by a florist and butcher then heading to the target destination.

We see that not only is the geo-data information of POI important, but also their
temporal constraints. Efficient route planning algorithms are available for route
queries via POI (Section 1.2), but none of these consider the POI opening hours.
An important step towards the goal is also a wide and deep ontology providing
interesting and useful groups to route via that consider not just groups like “Super-
market” but also more detailed subgroups like “Discounter” and its biggest operators
like “ALDI” or “LIDL” . This gives the user the possibility of planning a route via
the POI that is most suitable to the user’s needs.
These queries should be answered efficiently on country-sized road networks.

1

1.1 Problem Definition and Goals

To find out if real-time answering is possible we first have to create an ontology and
handle opening hours as described in Chapter 2. This will make sure we will find
our particular bank subgroup (“Kreissparkasse”) as well as a butcher and florist. A
summary of a previous project will provide a first overview of the topic. Chapter 3
will show the beginning of our route planning based on the Dijkstra algorithm and
the enhancements that have been performed on it to solve the whole request. To get
a picture of the whole system Chapter 4 will show the system’s architecture and the
web client’s view. The performance of the system will be then tested in Chapter 5
followed by a glimpse into future improvements and extensions in Chapter 6.

1.1. Problem Definition and Goals

The formal definition of the routing problem considered in this thesis can be phrased
as follows:
Given is a road network G(V,E), where on each Vertex V multiple POI can be
located. Each POI with its opening hours and type. And an ontology containing
POI assigned to hierarchical Groups according to their type. Additionally there
is a query consists of a source and target vertex, the time of departure as well as
optional ontology groups with their corresponding duration. The goal is to find the
fastest path from source to target which visits a POI of each requested group in the
selected order while considering their opening hours and duration of stay, efficiency.
This problem is related to the NP-hard travelling salesman problem (TSPTW) with
time windows. The problem is defined as finding a minimum-cost path visiting a set
of cities exactly once, where each city must be visited within a given time window
[DGLT12].
This goal was achieved by:
• Creating an own ontology that is usable in the routing context (Section 2.2).
• Implementing two known approaches for sequenced route planning: bounding

box (Section 3.3) and iterative doubling (Section 3.4) and extending them
with time window capability.
• Handling the POI which lack attached opening hours by an own approach of

using core hours (Section 2.3).
• Creating an easy to use user-interface (Section 4.2).
• Testing the efficiency of the created system (Chapter 5).

2

1.2 Related Work

1.2. Related Work

In the paper “DO-ROAM: Activity-Oriented Search and Navigation with Open-
StreetMap” [CHK+11] a web based system called DO-ROAM for activity oriented
search was introduced which primarily focused not on locations but rather on ac-
tivities. An Ontology of activities (OSMonto)was created based on the Web Ontol-
ogy Language OWL and implemented the DO-ROAM system in RubyOnRails and
SQL. Additionally, the DO-ROAM system as described in their paper “ Ontology-
based Route Planing for OpenStreetMap” [MCM12] was later enhanced with a route
planner which uses engines available as web services like OSRM and YOURS. The
DO-ROAM system is no longer online.
In another paper “ Sequenced Route Queries: Getting Things Done on the Way Back
Home” [EF12] Jochen Eisner and Stefan Funke improved Dijkstra-based sequenced
route planning with two efficient changes, namely Iterative Doubling, as discussed
in Section 3.4, and Contraction Hierarchies [GSSD08]. They tested their implemen-
tation and showed that sequenced route planing can be done quickly and efficiently
compared to the naive approach by using Iterative Doubling and Contraction Hier-
archies. Instead of an ontology, their tests involved a list of only 17 different POI
types like parking lots, restaurant and supermarkets. They also tested the influence
of the order of POI but were surprised by the fact that the ratio between the slowest
and fastest route type was only about 1.28 [EF12].
Both, the DO-ROAM and the Sequenced Route Queries paper disregard the opening
hours.

3

2. Basics

In this chapter we explain how to retrieve an ontology from Open Street Map data
and describe how to extract and extrapolate opening hours of POI.

2.1. Open Street Map

The data required to create an ontology and fill it with entities can be found in the
OpenStreetMap Projekt. It is an OpenSource Project following the “Wikipedia”-
principle of user-generated and managed content. People can easily adding new data
by either walking around with GPS-tracking devices and add the position afterwards
or simply by editing the data in the project page. This data can be extracted from
the project page or various other websites like geofabrik1 at which the OSM-data of
counties or specific regions can be downloaded.

What does an OSM-file look like?

The original OSM-file is XML-based and consists of three major components:
• Nodes: a certain point
• Ways: a line of points, also used to form areas
• Relations: defined relations between nodes, ways or other relations

These components posses attributes such as the position in the world, represented as
latitude and longitude, the date of creation, the name of the user who most recently
edited the entry, as well as various tags that define what a component should be
seen as. These tags define whether a way should be seen as a street, a river or
a boundary of a building. They are always key-value pairs like key:amenity and
value:restaurant or key:cuisine and value:italian [Ope15b].
To speed up the data access, binary formats like PBF (Protocolbuffer Binary For-
mat) are used. The reference implementation of a reader using the PBF format is
Osmosis, which is also used in this project[Ope15b].

1http://download.geofabrik.de

4

2.2 Ontology

2.2. Ontology

An ontology is a definition of categories which shows the interrelationship between
its entities. OpenStreetMap [Ope15a] tags have been grouped and sorted to create
an ontology which not only covers a wide range of themes, but is also capable of
providing good route points for queries.

Defining an Ontology

The previously mentioned tags belonging to the entities in the OSM-file can be
mapped to groups in a hierarchical representation. To represent this mapping, an
XML-file has been created, which consists of “groups” representing a topological
group and “elements” representing a type of key-value-pair required to be a member
of this group. A group can contain several elements which are interpreted as: “one
of these elements have to be contained in the entity to be assigned to this group”.
Groups may also contain groups themselves, thus creating subgroups.
For example, a major group containing the element “amenity=restaurant” and a sub-
group containing the element “cuisine=italian” would symbolize a group “Restau-
rant” with a subgroup “Italian Restaurants”’. The diagram below shows a navigation
through the ontology from the root to the group “Discounter” which is a subgroup
of “Supermarket” which is itself a subgroup of “shopping”.

Figure 2.1.: Navigating through the Ontology. Shopping -> Supermarket -> Dis-
counter

According to the OSM specifications chains like MCDonal’s should be tagged in the
OSM-file with “operator=MCDonald’s”, but usually they are not. This requires
parsing of the name to sort out the entities as well. To also handle the various
typing errors occurring in most user-provided content regular expressions are used.
These regular expressions are tested during the OSM-file parsing process. Parts of
the elements of the “Döner”-group (Food→FastFood→Döner) look like these:

5

2.2 Ontology

...value=".*(D|d)(Ö|ö|((O|o)(E|e)))(N|n)(E|e)(R|r).*" key="REGEX"...

...value=".*(K|k)(E|e)(B|b)(A|a)(P|p|B|b).*" key="REGEX"...

The code above shows the handling of names containing Döner, doener or DÖNER
as well as Kebabs and Kebaps.
The following snippet of Ontology.xml shows the definition of the restaurant and
Italian restaurant groups. The icon attribute defines the name of the icon used in
the user interface.

<group name="Food" icon="restaurant">
<group name="Restaurant" icon="restaurant" corehours="Mo-Fr 11:00-14:00, ...

<element value="restaurant" key="amenity" ></element>
<element value="restaurant_und_hotel" key="tourism"></element>
<group name="Italian Restaurant" icon="restaurant_italian">

<element value="italian" key="cuisine"></element>
<element value="pizza" key="cuisine"></element>

After parsing, these nodes will be saved in a node list while the assigned node-IDs
are stored in group objects.

Sizes and Frequencies

The OSM-Files of Germany and Baden Württemberg, which are used for experi-
ments in this thesis, have the following sizes:

Germany Baden Württemberg

Nodes

Ways

Relations
Extracted POIs

28.338.966

181.578.930

416.666

549.429

4.263.924

26.495.775

62.575

80.458

Figure 2.2.: OSM-file size and usage

Most of the ways, nodes and relations saved in an OSM-file are vertices of the
road network or polygons of a building or an area. Only a few of these contain
informations useful for the ontology. The following figure shows the frequencies of
some groups extracted from the Germany OSM-file.

6

2.3 Opening Hours

Gas Station
17.680

Supermarket
42.445

Bakery
28.251

Bank
24.309

Butcher
8.859

Clothes etc.
24.574

Food
102.561

Figure 2.3.: Frequencies of different groups

2.3. Opening Hours

The optional opening_hours tag in most of the parsed POI is used to route via
places which are open on arrival as well as during the given duration of stay. Valid
opening_hours tags look like:
• opening_hours=24/7
• opening_hours=Mo-Sa 10:00-20:00; Tu 10:00-14:00
• opening_hours=Mo-Su 08:00-18:00; Apr 10-15 off; Jun 08:00-14:00; Aug off;

Dec 25 off
The OpeningHoursParser of the OsmAnd-project2 interprets the opening hours and
creates an OpeningHours Object which can be used to get the opening status the
POI within a specific time window.

Core hours

The following figure shows the percentage of parse-able opening hours attached to
the POI of the main groups using the Baden-Württemberg data set.

Drinking
13,6%

Shopping
17,82%

Food
14,32%

Bank
8,65%

Health
13,55%

Entertainment
1,74%

Hotels etc.
2,6%

Figure 2.4.: percentage of parse-able opening hours per group

2http://osmand.net

7

2.3 Opening Hours

Since only 28% of the “Supermarket” nodes and 11% of the “Butcher” nodes have
valid opening hours attached (according to the used Baden-Württemberg data set)
most of the nodes would be ignored upon the routing calculation. A calculation in
which only one fourth of the group’s POI are included does not provide a satisfactory
routing result. We introduce the concept of core hours to increase the coverage of
valid opening hours.
Core hours of a group, which represent the time period in which all POI of a group
should be open, increase the coverage and improve the results. These core hours
can either be initialised with a parameter in the ontology like “Mo-Fr 8:00-18:00” or
calculated on server start from the other POI in the used group. The calculated core
hours are simple opening hours without special rules like “week 2-52/2” or “Dec 25
off”.

Calculating the core hours

To calculate these core hours a 7x24 boolean array, symbolizing the 24 hours of each
day of a week, is initialized with true. Now each POI of the group with valid opening
hours is tested for each hour “Monday 0:00, Monday 1:00,...”. As soon as it becomes
closed during this time window, the boolean variable is set to false. After testing
each POI, the parts of the array which are still true symbolize the core hours. A
String will be generated for the opening hours of each day (“Mo 08:00-18:00, Tu
08:00-18:00,...”. If consecutive days like “Mo 08:00-18:00” and “Tu 08:00-18:00” have
the same opening hours, they will be summed up to “Mo-Tu 08:00-18:00”. This
won’t result in accurate core hours because they don’t consider public holidays or
rules like “Dec 25 off”. The calculated core hours are just useful at different shops
of an operator or POI which have similar opening hours. One bad example is the
restaurant group in which each restaurant has its own days off rule. This will result
in just 2 open days which therefore is useless. Having a look at the calculated core
hours of a group and adjusting them is still required.
Groups like Banks, Theatres and Hospitals were initialized with core hours of 24/7
because their ATMs are usually accessible even if the bank is closed or in case of
the Theatre group the opening hours depend on the currently available plays (core
hours of 24/7 will make the Theatre group at least usable in the routing context).
A pop-up information about calculated opening hours is shown to the user if core
hours were used to solve the current request.
In the snippet of the Ontology.xml mentioned in the previous section, the attribute
core hours defines the core hours that should be used if none are attached to the
entity. If the attribute is true, then core hours will be calculated for this group
according to its members.

8

2.4 Previous Work: Ontology-Search

2.4. Previous Work: Ontology-Search

During a university project a simple version of the ontology and the ontology map
has been implemented. This version was used as a basis for the thesis and has been
improved during the development as well.

Figure 2.5.: Map overview

Ontology-Search offers browsing through the ontology (see Section 2.2) and visu-
alizes the results in an intuitive and easy way. The results are shown as coloured
and themed markers on the map enable the user to distinguish between each group
easily. Based on the current zoom level, markers close to one another are clustered
together to ensure a clear view. Popups on mouse overs will show the name of the
POI or the cluster size and by selecting the marker, detailed information will be
shown in a specific window on the left side. A list on the right side will show all hits
sorted by name giving also feedback if the POI is currently open or closed.
On the server side, each group of the ontology contains a number of quadtrees in
which recalculated clusters are stored according to the zoom level. To reduce the
size of the response message and therefore reduce the network transfer time, only
required information like the cluster- or POI-ID and names are returned to the client.
Detailed POI or cluster information will be handled in a own request if required.
Ontology-Search also uses the previously mentioned opening and core hours to show
only currently opened places or on a time-picker selected date opened places on the
map and in the hit list.

9

3. Route Planning

In this chapter, we first describe how to use Dijkstra to compute routes over POIs
with time windows. Subsequently, we introduce more involved techniques to solve
our problem which have the potential to be much faster in practice.

3.1. Basic Dijkstra

All shortest path calculations in this thesis are based on the Dijkstra algorithm.
During a Dikstra run, the following information are stored: the distance from each
vertex, of the graph to the source, the predecessor of each vertex and a min priority
queue sorted by the distance. During the initialization, the distance of the source
has to be set to zero while all other distances are set to infinity and their predecessors
are undefined. The source is added to the queue. In the main loop, each time a
vertex with the minimum distance is extracted from the queue, the distance to its
neighbours will be calculated and updated if a shortcut was found. If the queue
is emptied, the distance to each vertex in the graph connected to the source is
calculated. The path can be extracted by following the predecessors up to the
source.
Since the opening hours are important for the calculations later on, the travel time
was used as metric determining the optimal path. This makes it possible to simply
add the duration of stay or the waiting time before a node opens to the current
costs. It also simplifies the open state testing of a node, since the current costs to a
node also include the time to the previous nodes and the time the user would stay
there.
The Dijkstra is a simple approach to calculate the shortest path from a source to
all vertexes in a graph. To solve the problem of sequenced route planning, a naive
approach will require multiple Dijkstra calculations. On a query, from source to
target via a bakery and a butcher, a first Dijkstra is needed from the source to
all bakeries. Then a Dijkstra from each bakery to all butchers and so on. This
result in 1 + m + n Dijkstra runs where m being the number of bakeries in the
graph and n the number of butchers. On the OSM-file of Germany, this would be
1 + 28.251 + 8.859 = 37.111 Dijkstra calls. Two variations are required to avoid
these multiple Dijkstra calculations.

10

3.2 Sequenced Route Planning

Multi Target Dijkstra:
If a particular target is needed, the calculation can be aborted as soon as the tar-
get has been extracted from the priority queue. Handling multiple targets can be
archived by adding them to a list and deleting a target as soon as it has been ex-
tracted. As soon as the list of targets is empty, all targets have been reached and
the calculation can be aborted.
Multi Source Dijkstra:
To handle multiple sources, all start distances of the sources must be initialized
with zero. The graph will then be explored from all sources at once and after the
calculation the shortest path from one of the sources is revealed.

3.2. Sequenced Route Planning

The Multi Target/Source Dijkstra shown in the last section are key to calculating a
route with different stopovers. This is done in different steps/layers. In the following,
we will see these calculation on the basis of a request from source to target with a
stopover at a bakery and a butcher. How a list of bakeries and butchers is extracted
can be seen in the ensuing sections. Figure 5.5 illustrates this request in a layer
view.

1:m m:n n:1
Targetlayer

Start Bakery Butcher Target

Figure 3.1.: layer view:

• The first layer is a 1:m Dijkstra where m is the number of bakeries within a
specific radius around the start. Dijkstra will compute the distances to all
bakeries within the radius. If a route with specific time parameters is desired,
only nodes opened on the time of arrival and during the duration of stay will
be handed over to the next layer. Alternatively, the time until the node is
opened can be added to the distance.
• The second layer will be a m:n Dijkstra where n is the number of butchers

within a specific radius around each of the previous calculated bakeries. The

11

3.3 Dijkstra Enhancement: Bounding Box

Dijkstra will be initialised with the calculated bakeries from the first layer and
their corresponding distances to the start and calculated from there on.
• The last layer uses a n:1 Dijkstra calculation from all previous calculated

butchers to the destination. The calculation reuses the calculated butchers
and their distances again. The shortest path is now observable.

To reduce memory consumption, only one Dijkstra-object is used. After every cal-
culation the used variables will be set to their initial values.
The variables m and n used in Figure 5.5 are already a heuristic improvement since
the naive version uses all bakeries and butchers in the graph. To reduce the amount
of POI used for the calculations, two approaches have been tested. The Bounding
Box and the Iterative Doubling approach which will be described in the following
sections.

3.3. Dijkstra Enhancement: Bounding Box

The bounding box approach was used as a first approach to calculate a route with
stopovers. The approach uses the structure of the quad tree in each group and ex-
tracts the desired nodes within a bounding box. This bounding box was constructed
around the source and target and extended about 20% of its size. The extracted
POIs were used by a multiple target Dijkstra from the source to get the distance
from source to each of the POIs. To get the distance from each POI to the target a
multiple source Dijkstra from these extracted POI to the original target was calcu-
lated in an inverted graph. The smallest combination of the distance from source to
a node (green lines in Figure 3.2a) and target to a node (red lines in Figure 3.2a)
will be the calculated result. This approach also offers alternative routes if the sec-
ond or third best combination is considered. But compared to the approach in the
next chapter, the bounding box approach is a heuristic approach that does not have
to result in the exact route.
If more than one stopover is desired or no alternative routes are required, the second
layer can be initialized as mentioned before in Section 3.2 by the distance calculated
to the nodes in the layer before. If no route has been found via the stopovers, the
bounding box will be doubled and the calculation will be repeated. This behaviour
is similar to the iterative doubling approach described in the following section.
Because of the extraction of POI with a bounding box, this heuristic approach could
ignore the optimal path which may including a POI outside the bounding box.

12

3.4 Dijkstra Enhancement: Iterative Doubling

Bounding Box

Source

Target

Extracted Node

(a) Figure showing the principle of the
bounding box approach (b) Screenshot of multiple route results

Figure 3.2.: Two figures of the Bounding Box Approach

3.4. Dijkstra Enhancement: Iterative Doubling

This section will introduce the used graph and the improvements that have been
performed to optimize the extraction of nodes within the graph used in the Iterative
Doubling.

Graph and NodeLinks

Vertex
The information stored about a vertex are its latitude and longitude position and
optional NodeLinks (link to POI which have their entrance on the vertex). To easily
calculate the nearest vertex of a point given its latitude and longitude, vertices are
saved in a quad tree as well. On each query an entry point into the graph from the
given position of source and target is extracted from the quad tree.
Edge
Each edge includes its distance in meter and the travel time and is saved in an offset
array.
NodeLinks To prevent an extraction of the POIs within a bounding box each vertex
could own one or several NodeLinks. These NodeLinks have two attributes:
• The OSM-ID of the POI we link to. The vertex which owns this NodeLink

serves as an entry point into the graph for the POI.
• And a GroupCode to efficiently distinguish between a bakery and a butcher

OSM-node. Each group of the ontology got a GroupCode assigned.
We can now check during the exploration each discovered vertex for linked OSM-
nodes which are member of the requested group.

13

3.4 Dijkstra Enhancement: Iterative Doubling

List of Nodes

.

.

.
Edge

Vertex

Node-IDGroup
ID

NodeLinks:
ID
ID
ID

Figure 3.3.: NodeLinks

GroupCode
The GroupCode was implemented as a Char array. During the extraction of the
Ontology, each group got a GroupCode assigned beginning with the root. This
GroupCode enhanced each time it is handed down to its subgroups, which adds
another char at the end. With this method, subgroups or parent/grandparents can
be easily detected. This is required because all “Food”- nodes (GroupCode: [A])
include all ”Italian Restaurants”-nodes (GroupCode: [A,A,C]).
Using the NodeLinks with Dijkstra
The previously declared NodeLinks and GroupCodes are now used during the Dijk-
stra calculation. After the extraction of a vertex, the nodes linked with the vertex
are checked if they are either members of the group or members of a subgroup
currently searched for. This is done by checking its GroupCode. If the node is ap-
plicable, the current saved distance (in seconds/10) is used to check via the stored
opening hours if the node is open upon arrival. Now the node is of the data opened
or closed.
If the node is open, the duration of stay is added to its distance and tested if it’s
also open during departure. The node is then saved as an ExploredNode containing
the distance in seconds/10, the vertex at which the node is located and the source
used to find the node.
If the node is closed, the remaining time until the shop opens will be added as wait-
ing time. An ExploredNode will be created as mentioned before now containing an
additional waiting time as well as the distance constructed by the distance to the
node, the time until the node opens and the duration of stay. The ExploredNodes
are used in the next layer as sources.

14

3.4 Dijkstra Enhancement: Iterative Doubling

Iterative Doubling

The Iterative Doubling was introduced in the paper “Sequenced Route Queries”
from Jochen Eisner and Stefan Funke [EF12]. They expect realistic sequenced route
queries to be mostly local. Searching for facilities above 60 to 90 minutes distance
to the source is rather inefficient. Their basic idea is to try to calculate a result
within a smaller time frame and repeat it on failure within a greater radius. This
will calculate optimal results in contrast to the bounding box approach.

Start

Bakery

Butcher

Target

Figure 3.4.: layer view:

Figure 3.4 shows one run of a sequenced route planning. The route between the
green start point and the brown target via a bakery (red dots) and a butcher (blue
dots) should be found. In the first layer, the green circle around the start point
indicates the used search space. The Dijkstra will be explored until the defined
maximum distance is reached. After the first layer calculation, the found bakeries
(red dots) will be used as start points for the second layer. The red circles around
the bakeries indicate the used search space during this calculation. The radius of
each red circle will vary since each start point will be initialized with the distance to
the green start point. The radius of a bakery is the used maximum distance minus
the distance from the green start point to the bakery. From these found butchers
the rest of the maximum distance will be explored until the target is found or the
radius is reached. If the radius is reached, the whole calculation is repeated with
the doubled radius and so on.
Compared to the original Iterative Doubling, the implemented one using time win-
dows will add the duration of stay of previous stopovers to the maximum distance
of the current layer. The first layer would have the usual maximum distance, the
second one would have the usual one plus the duration of stay of the first stopover.
Given a usual maximum distance of 30 minutes and a duration of stay at the bakery
of 10 minutes, the maximum distance of the first layer would be 30 minutes and 40
minutes for the second layer. However, since the duration of stay has been added to

15

3.5 Iterative Doubling Enhancement: Nearest Group Member Bounds

the costs of all reached bakeries as well, the sources in the second will be initialized
with a distance greater then the 10 minutes of the bakeries duration of stay and
therefore is the search space of the second layer is still 30 minutes.
Iterative Doubling is optimal because it is based on the same principle as the original
Dijkstra. After each new processed vertex, the distance to this vertex is guaranteed
to be the shortest one. Iterative Doubling attempts to avoid unnecessary calculations
after finding an optimal solution.

3.5. Iterative Doubling Enhancement: Nearest Group
Member Bounds

In this section a dynamic initial radius for the iterative doubling will be introduced.

Next Bakery

ID: ... Distance:...

Next Butcher
ID: ... Distance:...

Figure 3.5.: layer view:

Queries in which a stopover is a very sparsely represented facility, such as a specific
electronic consumer market or a special clothes company, will cause the iterative
doubling to recalculate a couple of times to get a useful result because the used
first maximum distance was too small. Imagine the start point to be in the middle
of the Black Forest. The “MediaMarkt” nodes are located around the black forest
which will result in more than an hour of driving to reach the next one. The initial
maximum distance of say 30 minutes won’t result in a successful calculation twice
(the initial one to 30 minutes and the one to one hour) . This means the radius of
30 minutes around the source was calculated at least three times and the radius of
one hour was calculated twice to reach the “MediaMarkt”. Lets assume we would
know the next “MediaMarkt”’ of the source point and it’s distance. We could then
initialize the starting maximum distance of the Iterative Doubling with at least this
distance and save the unneeded recalculations.

16

3.5 Iterative Doubling Enhancement: Nearest Group Member Bounds

To do so, we pre calculate for each vertex the next member of each group and its
distance. This can be done efficiently by using a reversed graph and adding the
members of the group to be calculated to the source list. We have now attached a
signpost for each group to the vertex showing the distance and the vertex-ID of the
nearest member of that group as illustrated in Figure 3.5.
On query time, the maximum distance for the first Iterative Doubling Dijkstra will
be calculated by using the saved distance to the “MediaMarkt” and a Dijkstra calcu-
lation from this “MediaMarkt” to the target. If multiple stopovers are acquired (for
example “MediaMarkt” and afterwards “Orsay”) the next pre calculated “Orsay”
from the used “MediaMarkt” vertex can be used to extend this bound.
A result is already found even by just using the preprocessed nearest group member,
even if it isn’t the best one. Executing the Iterative Doubling with these upper
bounds will return at least this result or even better without multiple Iterative
Doubling recalculations. In the case of using the time window, this enhancement
depends largely on the open state of the stopovers.

17

4. Server and Client

This chapter introduces the two components of the system, namely, a Java-written
Server providing the necessary information to be shown and an HTML/CSS/JS
based Client able to visualize the requested information.

Server

Webclient

Ontology

XML TXT

Graph

Cities

JSON

OSM -
Search

Basic
Route
Planer

OSM -
File

PBF

OSM -
Parser

Ontology
Route
PlanerHTTP

Server

Web
Interface

Simple
Ontology

JSON

HTTP-Requests
 and
 Responses

Solving
Requests

imported
File

gener-
ated
File

created
File

Figure 4.1.: Overview

Figure 4.1 shows the overview of the system. On server start the OSM-Parser loads
the provided OSM-File and creates a cities.json file containing all bigger cities and
their latitude/longitude position, which is required by the Web Interface to zoom
in to a specific city. The OSM-Parser also parses nodes containing the tags defined
within the ontology file. These nodes are saved in a quad tree data structure and
clustered to offer an OSM-Search. The OSM-Search also generates a simple version
of the Ontology File in JSON format to be loaded by the Web Interface.

18

4.1 Server

A graph will be constructed from the Graph file to build a Basic Route Planer.
The Nodes and their positions stored by the OSM-Search will be combined with the
constructed Basic Route Planer to build an ontology-based Route Planer.
Once all files are loaded and preprocessed, the HTTP Server will start and distribute
the requests to the OSM-Search and Ontology Route Planer.
The Web Interface loads the list of cities to offer a search for cities. It also loads
the Simple Ontology to show the available groups.

4.1. Server

Aside from the data-request used to get all clusters within an area the node-request
used to get detailed information about a node given its node-ID and the statistics-
request, used to get the information displayed on the statistics.html page, the path-
request is the one used to handle the route planning. The HTTP-interface requires
the following parameters:
• the latitude and longitude of the source and target as lat1=[source latitude],

lat2=[target latitude]
• the starttime if used, given in the dd.MM.yyyy hh.mm - format
• the stopovers as via1=[groupname] via1time=[duration in minutes]

After calculating the best route and stopovers, the server will return a response in
JSON providing the required information:
• the request parameters
• the calculated route giving:

– the subpaths (latitude and longitude of each graph-node) and their dis-
tance and travel time

– start time and time of arrival
– detailed information about the stopover nodes including name, website,

phone number, etc.
• occurred errors or warnings

If an error takes place during the calculation, an error message will be added to the
server response and pop up via a snackbar toast within the web client to inform
the user. For example, in case of used core hours to determine the open state on
arrival, the user should be informed that no guarantee can be given on the actual
open state.

19

4.2 WebView

4.2. WebView

After introducing the server side in the last section, this section will handle the used
frameworks on the client side.
The web client builds on the framework Bootstrap introduced by Twitter. Bootstrap
is an HTML, CSS, and JS - framework which provides custom HTML and CSS
components and jQuery plugins like Typeahead1, used for auto-completion search
of cities and ontology-groups, Datetime Picker2, a plugin for picking the start time,
and SnackbarJS, which creates Material Design like snackbars and toast. A material
design theme3 based on the Google Material Design from Google4 was used to boost
the simple look.
The following screenshot shows the main use of the user interface. On the top corner,
a navigation bar can be found giving the possibility of changing between the route
view and the previously mentioned Ontology Search. The typeahead plugin in the
middle of the navigation bar offers an autocomplete search for cities to zoom to. On
the ride side of the navigation bar is the tile selection, offering different map tiles
like the Mapnik or Mapquest tiles.

Figure 4.2.: route overview

1https://github.com/bassjobsen/Bootstrap-3-Typeahead
2http://www.malot.fr/bootstrap-datetimepicker/
3http://fezvrasta.github.io/bootstrap-material-design/
4http://google.com/design/spec/material-design/

20

4.2 WebView

The time parameters and stopovers can be found on the ride side of the overview,
which contains a dropdownbox to give the option of either using the selected time as
start time for the calculation, or ignoring open hours and just calculating the fastest
path. The DateTimePicker plugin offers a nice and intuitive way of selecting the
start time by simply picking the day, the month and hour separately. In the stopover
selection, up to four stopovers can be chosen along with the requested group and
the duration of stay. Each stopover will receive a color which can be found on each
reference of this stopover like the marker on the map and in the route detail view.

Figure 4.3.: left: stop overs, right: route details

The route details view, found on the left side of the overview, presents detailed
information about the calculated route, like the start date and the time of arrival
of the whole trip as well as of each stopover. The distance of the journey and
the distance between each stopover in meters is also shown. Small boxes offer
short information about each approached POI, which can be extended via a toolbox
triggered on mouse over to get the exact opening hours for example.

21

4.2 WebView

Another big component of the webclient is the mapping library Openlayers5, provid-
ing a fast and easy to use interactive map and data visualisation layers. Openlayers
is compatible with many different tile servers like the Google Maps, Yahoo Maps or
Bing Maps tile layers. Other different layers containing the source/target and POI
icons or the route can be visualized as well. Each destination is highlighted with the
coloured marker deposited in the ontology. These markers show an icon that can be
associated with the corresponding group (The bakery icon shows bread,...).
To change the source or target of a route, the start and stop markers can be moved
via drag and drop or just by right clicking somewhere on the map and selecting the
position as start or stop.
To simplify the selection of frequently used start or stop address, the position of the
home and work address can be saved as cookies. From then on, just a right click
and a selection is needed to set the start or stop to the desired position.
The parameter in the url of the page will be synchronised with the performed ac-
tions, which enables easy sharing of calculated routes with others. A url could even
be generated out of another application, including the current position for example.

Figure 4.4.: Route via a “Bakery”, “Butcher”, “FastFood” and “Bank” POI

5http://openlayers.org/

22

5. Experiments

In this chapter experimental tests are described and the results are presented.

5.1. Test Cases

To validate the improvements during the development, different test sets have been
created. Two test areas have been used. One is a local test area located in a radius
of 25 km around Stuttgart to test small queries as well as high node density areas
and the other is a bigger test area containing whole Baden Württemberg. Within
these areas, random source and target positions are created for each test execution
during runtime. These source and target positions have no minimum distance to
each other, but rather a maximum distance created by the dataset.
Different test sets with different number of stopovers assure a wide test spectrum.
To test queries with the same source and target, a test called “Sunday morning
bakery” was prepared, which involves just running to the next bakery on Sunday
morning and back. The “Weekly Shopping Tour” got a source=target test as well.
These test sets have been saved in a JSON file containing all required parameters
and results.
The following seven test cases have been created:

• Sunday Morning Bakery: A test queue performed on a Sunday morning
at 9 leading to the next bakery and back to the origin.
• After work gas station: A single stopover queue performed at 6pm as a

local and global route from work back home via a gas station.
• Florist and Hairdresser: A local and global test set featuring two stopovers

with a low density.
• Bakery and Butcher: A local and global test set featuring two stopovers

with a high density.
• Bank, Clothes and Discounter: A local and global test set featuring

three stopovers with a high density.
• ALDI, LIDL and Burger: A local and global test set featuring three

stopovers with a lower density.

23

5.1 Test Cases

• Weekly Shopping Tour: A local and global test set featuring four stopovers
(Bio Market, REWE, DM and Media Markt). Since a weekly shopping tour
would be performed from home, this test set will also be executed with the
same source and target.

The server executes the tests n times and creates a performance.json file containing
the results of each run as well as the average of each test. Included in the results
are:
• the runtime
• the random start and stop and its distance (for reconstruction)
• runtime and number of settled nodes of each layer

performance.html

These performance files can be loaded into an HTML file visualizing the results via
charts provided by the CanvasJS framework 1. The two screenshots below show the
overview chart, which contains the average runtime during the development, and a
detailed view of one test.

Figure 5.1.: performance overview

1http://canvasjs.com

24

5.2 Evaluation

Figure 5.2.: performance details

5.2. Evaluation

The previously declared tests have been executed 100 times. The running times are
the times needed to calculate the required stopovers and the total journey time. To
get the complete path n+1 (while n is the number of stopovers) 1-to-1 Dijkstras need
to be performed. Because of the memory consumption on a desktop pc the tests
have been performed with the Baden Württemberg dataset. This dataset consists
of 2.459.354 vertices, 4.993.582 Edges and 80.458 OSM-Nodes and was executed on
one core of an i7-3630QM CPU.

Graph

Vertices : 2.459.654
Edges: 4.993.582

OSM

Nodes: 80.458

Ontology
Groups: 116

Figure 5.3.: Statistics

25

5.2 Evaluation

The following performance times have been archived:
Local Test - Stuttgart Area
Average straight line distance from source to target: 12 km.

Name Stopovers BoundingBox Iterative Doubling

Sunday Morning Bakery* 1 251 ms 113 ms

After Work Gas Station 1 234 ms 180 ms

Florist and Hairdresser 2 340 ms 217 ms

Bakery and Butcher 2 361 ms 256 ms

Bank, Clothes and Discounter 3 384 ms 279 ms

ALDI, LIDL and Burger 3 393 ms 266 ms

Weekly Shopping Tour 4 458 ms 473 ms

Weekly Shopping Tour * 4 429 ms 482 ms

Figure 5.4.: Statistics

Tests marked with an * have the same source and target.
Baden Württemberg Area
Average straight line distance from source to target: 100 km.

Name Stopovers BoundingBox Iterative Doubling

After Work Gas Station 1 2 s 631 ms 1 s 633 ms

Florist and Hairdresser 2 3 s 615 ms 1 s 462 ms

Bakery and Butcher 2 4 s 64 ms 1 s 441 ms

Bank, Clothes and Discounter 3 4 s 126 ms 1 s 685 ms

ALDI, LIDL and Burger 3 4 s 71 ms 1 s 606 ms

Weekly Shopping Tour 4 4 s 848 ms 2 s 959 ms

Figure 5.5.: Statistics

A difference between the two areas is not just the straight line distance from source
to target, but also the density of available POI. While the area of the local test is
full of possible POI, since it consists of a big city, the bigger test has to either collect
the POI on the way or if source and target are located inside of bigger city areas
the POI in a big city are visited along the way.
The improvement on local queries is enough to ensure interactive route planning.
Iterative Doubling not only improve the performance, but also allows optimal results

26

5.2 Evaluation

compared to the bounding box approach. In the “Weekly Shopping Tour” test case of
the local test, the bounding box approach seems slightly better. The difference is not
really significant, but it could be solved with parameter tweaking. The bounding box
approach uses a dynamic initial radius, whereas the iterative doubling has a static
initial radius (30 minutes). In Section 3.5 a dynamic initial radius for iterative
doubling was introduced.
Influence of the starting time
The used test cases were initialised with more or less optimal starting times on
execution. For example, the “Sunday Morning Bakery”-test was executed with the
starting time of 9 am, whereas the same test executed at 9 pm would result in a
much worse running time because no bakery will be opened after 9 pm on Sunday
in Stuttgart. To show this effect, the “Florist and Hairdresser” test case has been
run within the Stuttgart area for each full hour from midnight to 11 pm to test the
running time changes during a day. The used core hours of the group Hairdresser
are “Mo-Fr 09:00-18:00” whereas for the Florist group they are “Mo-Fr 09:00-12:00,
14:00-18:00”. The line chart Figure 5.6 shows the changes of the running time
depending on the used start time using Iterative Doubling. Between 7 am and 7
pm a quick solution can be found. During the core hours of both groups (“Mo-Fr
09:00-12:00, 14:00-18:00”) every POI of both groups is available, which results in
fast calculable solutions. Between 5 am and 7 am and between 7 pm and 9 pm,
solutions get rare and a lot of driving is necessary which results in a longer run
time. During the night the calculations search the entire graph, which explains the
long running time.

0

5000

10000

15000

20000

25000

30000
runtime in ms

23222120191817161514131211109876543210

Query times during the day “Florist and Hairdresser”

time of day

ru
nt

im
e

in
 m

s

Figure 5.6.: Running time during the day for the “Florist and Hairdresser” query.
The running time between 7 am and 7 pm is at around 250 ms.

27

6. Conclusion and Outlook

A route to our birthday barbecue party on time can be found in time. While a naive
approach would take more then 20 seconds [EF12] the Iterative Doubling versions
returns an optimal result within less than half a second for local queries. This
improvement could be increased by using acceleration technique for route planning
as contraction hierarchies. Which should result in a speedup of factor 15 according
to Eisner and Funke [EF12].
The results vary with respect to the starting time because it affects the time windows.
The running time increases on the late evening, night and early morning because
almost every shop is closed. During the core hours the best running time (and
probably shortest route) can be achieved since most shops are opened. This supports
the influence of the opening hours and confirms the importance of the core hours.
But if the used core hours are not precise because the opening hours of the POI
group too much, the whole calculation will be incomplete and no guarantee on the
solution can be given. This is why the client warns the user on routes involving core
hours.
Even if the experiments were executed on the Baden Württemberg data set the
system works with the data set of whole Germany as well. The graph representing
the road network of Germany consists of 21.721.465 vertices and 44.108.723 edges.
The created ontology uses 549.429 POIs extracted from OpenStreetMap which are
sorted into 116 groups.
The following possible implementation extensions that came up during the imple-
mentation:
• Adding public transport routing to search within train and bus connections or

just walking or biking network graphs.
• Using car parks as routing points. They contain all the POI within a walking

distance so going to a bakery and a butcher could be done with a single parking.
Multi criteria search for not only the shortest path but also the one least likely
to encounter trouble searching for parking could be useful. The real-time status
of the car park with the number of unused parking lots could be integrated.
• A mobile web page that offers predefined queries like “get me to the next

open bakery and back” which could easily be build given the current position.
Provided that the home or work address is deposited as a cookie, even queries
like "’get me home from here via a supermarket that will be open on arrival"’
are done with a single click.

28

Conclusion and Outlook

The created ontology already handles over 100 groups, but a lot of different POI
types like tourist attractions are not integrated yet because they are typically not
in these kind of routing queries. The Open Street Map project is evolving and new
POI types will be added and old ones will be updated, in which case the created
ontology could be extended and enhanced.
Because of the lack of opening hours saved in Open Street Map an additional source
of opening hours or an improvement of the OSM-data is needed.

29

A. Ontology Map

Shopping

Sweet Stuff

IcecreamCakes

Confectionary

Consumer
Electronics

Saturn

Media Markt

Expert

Euronics

Supermarket

Clothes etc.

Discounter

REWE, Edeka,...

clothes

Bio
Market

Drug Stores

Real REWE
Edeka

Penny
ALDI LIDL

Norma
Netto

Treff 3000

Sport
and
Outdoor

Shoes Bags

Second
Hand

AWG

Zara

Mango

Peek & Cloppenburg

Desigual
KiK

Takko
NKD

OrsayNew Yorker

Bakery

Butcher

Florist

Bank

Kreissparkasse VR-Bank
Sparda-Bank

Postbank
Commerzbank

Targobank

Deutsche
Bank BW-Bank

Drinking

Coffee and Tea Beergarden

Bar & PubWine Bar

Hotels etc.

Health

PharmacyHospital

Hotel

Hostel Camping

Apartment

Pension, Guesthouse

Miscellaneous

Post Office

Gas Stations

Rest Room

Hermes

Deutsche Post

Post
Esso

Shell

Aral

Hairdresser

Museum

Free Not Free

Handicapped
Accessible

Food

Fast Food

Burgers

MC Donalds

Burger
King

Nordsee

Pizza
Kebap

Chicken

Restaurant

South
American

Mexian
Restaurant

Asian Restaurant

Japanese Restaurant

Indian Restaurant

Thai Restaurant

Regional
Restaurant

Italian
Restaurant

German Restaurant
Greek Restaurant
Middle East Restaurant
African Restaurant

Vegan/Vegetarian RestaurantSpanisch
Restaurant

Entertainment

TheatreCinema

Figure A.1.: Ontology Map

30

Bibliography

[CHK+11] Codescu, Mihai ; Horsinka, Gregor ; Kutz, Oliver ; Mossakowski,
Till ; Rau, Rafaela: DO-ROAM: Activity-Oriented Search and Naviga-
tion with OpenStreetMap. In: GeoSpatial Semantics - 4th International
Conference, GeoS 2011, Brest, France, May 12-13, 2011. Proceedings,
2011, S. 88–107

[DGLT12] Dash, Sanjeeb ; GÃŒnlÃŒk, Oktay ; Lodi, Andrea ; Tramontani,
Andrea: A Time Bucket Formulation for the Traveling Salesman Prob-
lem with Time Windows. In: INFORMS Journal on Computing 24
(2012), Nr. 1, S. 132–147

[EF12] Eisner, Jochen ; Funke, Stefan: Sequenced route queries: getting
things done on the way back home. In: SIGSPATIAL 2012 International
Conference on Advances in Geographic Information Systems (formerly
known as GIS), SIGSPATIAL’12, Redondo Beach, CA, USA, November
7-9, 2012, 2012, S. 502–505

[GSSD08] Geisberger, Robert ; Sanders, Peter ; Schultes, Dominik ;
Delling, Daniel: Contraction Hierarchies: Faster and Simpler Hier-
archical Routing in Road Networks. In: Experimental Algorithms, 7th
International Workshop, WEA 2008, Provincetown, MA, USA, May 30-
June 1, 2008, Proceedings, 2008, S. 319–333

[MCM12] Mihai Codescu, Oliver K. ; Mossakowski, Till: Ontology-based
route planning for OpenStreetMap. 901 (2012), S. 62–73

[Ope15a] OpenStreetMap.org. OpenStreetMap.org. 2015
[Ope15b] OpenStreetMap.org. Wiki.OpenStreetMap.org. 2015

31

	Contents
	Abstract
	1 Introduction
	1.1 Problem Definition and Goals
	1.2 Related Work

	2 Basics
	2.1 Open Street Map
	2.2 Ontology
	2.3 Opening Hours
	2.4 Previous Work: Ontology-Search

	3 Route Planning
	3.1 Basic Dijkstra
	3.2 Sequenced Route Planning
	3.3 Dijkstra Enhancement: Bounding Box
	3.4 Dijkstra Enhancement: Iterative Doubling
	3.5 Iterative Doubling Enhancement: Nearest Group Member Bounds

	4 Server and Client
	4.1 Server
	4.2 WebView

	5 Experiments
	5.1 Test Cases
	5.2 Evaluation

	6 Conclusion and Outlook
	A Ontology Map
	Bibliography

