
master’s thesis

Simple Question Answering over Wikidata

Thomas Goette

Examiner: Prof. Hannah Bast

Second examiner: Dr. Fang Wei-Kleiner

Adviser: Prof. Hannah Bast

chair of algorithms and data structures
department of computer science

faculty of engineering
university of freiburg

Freiburg, 2021

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no other sources
or learning aids, other than those listed, have been used. Furthermore, I declare that I have
acknowledged the work of others by providing detailed references of said work.
I hereby also declare that my thesis has not been prepared for another examination or as-

signment, either wholly or excerpts thereof.

Freiburg, 14 October 2021
Thomas Goette

iii

Abstract

Question Answering over Knowledge Bases (QAKB) aims to extract the answer to a natural
language question from a Knowledge Base. We approach this task for the Knowledge Base
Wikidata by translating a natural language question into its corresponding SPARQL query
which returns the answer to the question. Our focus is on simple questions which means that
the corresponding SPARQL query contains only one triple. We provide a modular, easy-to-
extend QA pipeline and evaluate it on the SimpleQuestionsWikidata benchmark. With it, we
also provide an evaluation web tool which enables analyzing evaluation results of the pipeline.

v

Contents

1. Introduction 1
1.1. Problem definition . 2
1.2. Contributions . 3

2. Related Work 5

3. Pipeline 7
3.1. Tokenization . 7
3.2. Entity linking . 7

3.2.1. Entity index . 7
3.2.2. Entity linking . 8

3.3. Candidate generation . 9
3.4. Relation matching . 9
3.5. Ranking . 10

3.5.1. Rule-based ranker . 10
3.5.2. Learned ranker . 11

3.6. Preparing the answer . 12

4. Evaluation tool 15

5. Evaluation 17
5.1. Hardware and SPARQL backend . 17
5.2. Dataset . 17
5.3. Evaluation results . 17
5.4. Error analysis . 18

5.4.1. Problems with the pipeline . 19
5.4.2. Problems with the dataset . 20
5.4.3. Problems with Wikidata . 21

6. Future work 23
6.1. More sophisticated matching . 23
6.2. Unanswerable questions . 23
6.3. Additional query patterns and datasets . 23
6.4. Scalability . 27
6.5. Additional evaluation . 28
6.6. Gold answer vs. gold query . 28
6.7. Spelling correction . 28

A. Appendix 29
A.1. Entity index query . 29
A.2. Relation index query . 30

vii

Bibliography 32

viii

1. Introduction

Since the rise of the semantic web there is an abundance of knowledge available on the internet.
Knowledge Bases (sometimes called Knowledge Graphs) like the discontinued Freebase1 or its
successor Wikidata2 contain billions of general facts about the world. They predominantly use
the Resource Description Framework (RDF) to store facts as triples each consisting of a subject,
a relation (sometimes called property) and an object. The fact “The mother of Albert Einstein
is Pauline Koch” could be formalized as a triple with the subject “Albert Einstein”, the relation
“has mother” and the object “Pauline Koch”.
SPARQL (SPARQL Protocol And RDF Query Language) is a standardized query language

for extracting information from Knowledge Bases. Essentially, SPARQL uses the same triples
as RDF but allows us to use variables to specify the intent of returning a result set. The triples
of the query are matched to the triples in the Knowledge Base, resulting in a set of possible
values for the variables. Suppose we wanted to ask the question “Who is the mother of Albert
Einstein?” We could use the following SPARQL query:

SELECT ?target WHERE {
"Albert Einstein" "has mother" ?target .

}

There is one triple in the Knowledge Base with the subject “Albert Einstein” and the relation
“has mother”. Its object is “Pauline Koch” so that is the result of the SPARQL query.
One of the challenges when working with Knowledge Bases is that names like “Albert Ein-

stein” are usually not unique. There might be several people with that name in the world and
there might be a studio album and a painting with that name as well. Wikidata uses unique
identifiers instead of names in order to remove such ambiguity. The famous scientist Albert Ein-
stein is stored as <http://www.wikidata.org/entity/Q937> or wd:Q937 for short. The “has
mother” relation is stored as <http://www.wikidata.org/prop/direct/P25> or wdt:P25 for
short. The real query asking for the mother of Albert Einstein is therefore:3

SELECT ?target WHERE {
wd:Q937 wdt:P25 ?target .

}

This means that we have to know the correct identifiers before being able to formulate a
query. There is another difficulty: Let us assume we want to find all the cities that are part of
Wikidata. Let us further assume we already know of the entity Q515 (city)4 and the relation
P31 (instance of) which gives its subject a class. We might formulate the following query:

1https://developers.google.com/freebase/
2https://www.wikidata.org/
3We omit the definition of the prefixes PREFIX wdt: <http://www.wikidata.org/prop/direct/> and PREFIX

wd: <http://www.wikidata.org/entity/> in all SPARQL queries in this work.
4Outside of SPARQL queries, we omit the prefixes for entities and relations from now on.

1

https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Property:P31
https://developers.google.com/freebase/
https://www.wikidata.org/

SELECT ?city WHERE {
?city wdt:P31 wd:Q515 .

}

At the time of writing, the query yields around 9000 cities. However, the result is incomplete;
it does not contain cities like Q1010506 (Idaho Springs) or Q64 (Berlin). The problem here is
that these cities are not directly an instance of Q515 (city), but only indirectly. They are in fact
instances of Q1093829 (city of the United States) and Q200250 (metropolis). These special kinds
of cities in turn are subclasses (P279) of Q515 (city). As an additional complication, Q1093829
(city of the United States) is a direct subclass of Q515 (city), but Q200250 (metropolis) is only
a subclass of Q1637706 (million city) which is a subclass of Q1549591 (big city) which is finally
a subclass of Q515 (city). The correct query would therefore be:

SELECT DISTINCT ?city WHERE {
?city wdt:P31/wdt:P279* wd:Q515 .

}

It uses / and * to express a variable number of subclass relations and the keyword DISTINCT to
remove duplicates from the result. (It returns more than 32000 cities.)
The above examples illustrate that extracting information from a Knowledge Base via SPARQL

requires expert knowledge of both SPARQL and the internals of the Knowledge Base.
Several approaches have been taken in order to make the information from Knowledge Bases

more accessible to not only experts, but everyone. For example, Bast et al. (2012) reduce
complexity by introducing a graphical user interface (GUI) which aids the user in querying a
Knowledge Base. Bast et al. (2021) suggest using intelligent autocompletion to make it easier
to formulate SPARQL queries. However, the process of querying a Knowledge Base is still
cumbersome and involves some knowledge of SPARQL.
A natural next step is to translate a natural language question like “Who is the mother of

Albert Einstein?” or a request like “List all cities!” to the correct SPARQL query automatically.
This is what we try to do in this thesis.
We restrict ourselves to so-called simple questions. Simple questions are questions which

relate to a SPARQL query containing only one triple and one variable. Note though that no
part of our approach is specific to simple questions so it should be easy to extend to more
general questions in future work.

1.1. Problem definition
The task of Question Answering over Wikidata is: Given a natural language question q, find
a SPARQL query c such that the intended answer for question q is the result of executing the
SPARQL query c on Wikidata.
For the task of Simple Question Answering over Wikidata that we consider in this work, the

query c is of the form SELECT ?t WHERE {<body>} where <body> is one triple pattern with the
variable ?t being either in the subject or in the object position.
Consider the question “What is the capital of Bulgaria?” The answer to the question can be

found be executing the following query:

SELECT ?target WHERE {
wd:Q219 wdt:P36 ?target .

}

2

https://www.wikidata.org/wiki/Q1010506
https://www.wikidata.org/wiki/Q64
https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Q1093829
https://www.wikidata.org/wiki/Q200250
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Q1093829
https://www.wikidata.org/wiki/Q1093829
https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Q200250
https://www.wikidata.org/wiki/Q1637706
https://www.wikidata.org/wiki/Q1549591
https://www.wikidata.org/wiki/Q515

(Q219 is “Bulgaria” and P36 is “capital of”.) Following Bast and Haussmann (2015), we call the
pattern of this SPARQL query ERT (Entity - Relation - Target), meaning that the variable is
in the object position of the triple.

Now consider the question “Which books did J. R. R. Tolkien write?” It relates to the
following query:

SELECT ?book WHERE {
?book wdt:P50 wd:Q892 .

}

(Q892 is “Tolkien” and P50 is the “author” relation.) We call the pattern of this SPARQL query
TRE (Target - Relation - Entity), meaning that the variable is in the subject position.
Note that the TRE pattern is not necessary when working with Freebase because all data in

Freebase is duplicated. Freebase stores both the fact that some book was written by a person
and that a person wrote that book. In Wikidata, duplication is usually avoided5 which makes
both patterns necessary.

1.2. Contributions
• We provide a modular, easy-to-extend Python program (including a web API) which

translates simple natural language questions into Wikidata SPARQL queries and returns
their results using an external SPARQL backend. See chapter 3.

• We provide a web tool for visualizing and interactively exploring the evaluation results of
said program. See chapter 4.

• We provide an evaluation of our program on the SimpleQuestionsWikidata dataset and
an error analysis for various example questions. See chapter 5.

5There are exceptions. Some examples are P25 (mother)/P40 (child), P36 (capital)/P1376 (capital of) or the
symmetric P26 (spouse) and P3373 (sibling) relations.

3

https://www.wikidata.org/wiki/Q219
https://www.wikidata.org/wiki/Property:P36
https://www.wikidata.org/wiki/Q892
https://www.wikidata.org/wiki/Property:P50
https://www.wikidata.org/wiki/Property:P25
https://www.wikidata.org/wiki/Property:P40
https://www.wikidata.org/wiki/Property:P36
https://www.wikidata.org/wiki/Property:P1376
https://www.wikidata.org/wiki/Property:P26
https://www.wikidata.org/wiki/Property:P3373

2. Related Work

A lot of research has been done on simple Question Answering over the Knowledge Base Freebase.
For the last several years, the community has focused on Question Answering systems that rely
heavily on deep learning.
Bordes et al. (2015) use a Memory Network which includes preprocessing and keeping in

memory the entire Knowledge Base. It involves mapping both all facts from the Knowledge
Base and the input question to an embedding space where a similarity score is computed. In
order to reduce the number of candidates to rank, they perform a preselection with an entity
linking step that is similar to ours. They also perform a transfer learning task by applying a
system trained on Freebase facts to a different Knowledge Base called Reverb.
Dai, Li, and Xu (2016) use deep recurrent neural networks (RNN) and neural embeddings

for a conditional factoid factorization. They first infer the relation that occurs in the question
and determine the most likely entity based on the relation. However, they also limit the search
space first by using an entity linking step similar to ours.
He and Golub (2016) use a character-level encoder-decoder framework with attention to first

encode the question and then decode it to a tuple of form (subject, relation). They also use an
entity linking step similar to ours in order to limit the search space.
Yin et al. (2016) use a different entity linking procedure which includes entities which are

only partially matched in the question. They also combine both a character-level convolutional
neural network (CNN) and a word-level CNN with attentive maxpooling for scoring candidates.
Instead of using a pipeline of specialized components, Lukovnikov et al. (2017) train a neural

network in an end-to-end manner and leave all decisions to the model. They do this in order
to avoid the construction of complex pipelines, in order to avoid error propagation from one
pipeline component to the next and in order to simplify the reuse for a different Knowledge
Base without manual adoption. They use both character- and word-level information in order
to predict both the entity and the relation from the correct query. They employ an entity
matching step similar to ours in order to limit the search space.
Yu et al. (2017) propose a hierarchical residual bidirectional LSTM model which maps both

the question and the possible relations to an embedding which is compared with cosine similarity.
They also use an entity re-ranking step between the first entity linking and the relation matching.
The publication is the only one in this chapter which includes an evaluation on non-simple
questions.
Mohammed, Shi, and Lin (2018) criticize the trend to make models more and more complex in

order to gain only small improvements. They compare a multitude of combinations of different
entity linking and relation prediction components each both using deep learning and not using
deep learning. They report that deep learning has indeed advanced the state of the art but
that strong baselines and less complex models achieve almost comparable results and should be
explored further.
Huang et al. (2019) compute low-dimensional embedding representations for all entities and

and for all relations of the Knowledge Base. After an initial limiting of the search space they
use a bidirectional LSTM based on pre-trained word embeddings for inferring the embedding
for the entity and the embedding for the relation occurring in the question. In a last step

5

they determine the fact in the Knowledge Base embedding space that best matches the entity
embedding and relation embedding.
Wu et al. (2019) note a problem with the dataset used in most previous work. In particular,

99% of the relations in the test set also exist in the training data. Published approaches perform
much worse if the number of unseen relations is larger as is the case for real-world applications
due to the large sizes of Knowledge Bases. They extend the system by Yu et al. (2017) with
an additional pre-trained embedding to solve the problem of unseen relations. They explore a
different train/test split where 50% of the test set’s relations are not part of the training data
to evaluate their approach.
Other than all the mentioned works, Oliya et al. (2021) use Wikidata and evaluate on the

same dataset as us. They use a Knowledge Base representation called sparse-matrix reified KB
first introduced by Cohen et al. (2020).

6

3. Pipeline
The question goes through multiple steps of a pipeline. Our pipeline is based on the pipeline of
Bast and Haussmann (2015). Accordingly, we call our program “Aqqu Wikidata”. We use the
NLP pipeline framework of spaCy by Honnibal et al. (2020) because of its modular nature and
its flexible configuration possibilities.
In the first step, we perform tokenization on the question (section 3.1). In the second step,

we find entities possibly occurring in the question (section 3.2). In the third step, we generate
SPARQL query candidates (section 3.3). In the fourth step, we match the relations from the
candidates to the question (section 3.4). In the fifth step, we rank the candidates by relevance
(section 3.5). In the sixth step, we process the best-ranked candidates in order to present the
answer to the question (section 3.6).

3.1. Tokenization
Tokenization is the process of splitting a given question into its tokens. A token is often the
same as a word but there are exceptions. For example, contractions (like “I’m” for “I am”)
combine two tokens into one word. We use spaCy by Honnibal et al. (2020) for tokenization.

3.2. Entity linking
We try to find Wikidata entities in the question by matching the names of entities to the word
n-grams in the question. We use an entity index for finding the names of entites (section 3.2.1).
We explain the matching algorithm in section 3.2.2.

3.2.1. Entity index
In order to speed up the matching of question words to names of Wikidata entities, we create
an inverted index beforehand. For that, we find all names related to every entity in Wikidata.
In particular, we use the following types of names: the label itself, the alternative labels

(sometimes called aliases), the family name, the short name (e.g. “JFK” for John F. Kennedy),
the name in native language (e.g. “Marshall Mathers” for Eminem), the birth name (e.g.
“Robert Allen Zimmerman” for Bob Dylan), the nickname (e.g. “Barry” for Barack Obama),
the pseudonym (e.g. “El Comandante” for Cristiano Ronaldo), the two- and three-letter ISO
codes for countries (e.g. “DE” and “DEU” for Germany) and the ISO 4 abbreviation (e.g. “Proc.
Natl. Acad. Sci. U.S.A.” for the Proceedings of the National Academy of Sciences of the United
States of America) (for the exact query see appendix A.1).
We first normalize the unicode representation of the names. We do this in order to circumvent

unicode issues which might result in certain words not comparing equal even though they are.1
We then replace non-ascii characters by their closest ascii character. We do this in order to

make it easier to match entities with unusual spellings. For example, the city “Lübeck” could
1For example, “ü” can be produced by “\xc3\xbc” or by “u” followed by “\xcc\x88”. The two versions do not
compare equal.

7

be hard to match for a person using an English keyboard (which does not have a key for the
letter “ü”). Without this step, the entity could only be matched if an alias “Lubeck” existed.
Our solution makes the matching independent of the existing aliases.
Finally, we turn all names to lowercase. We do this because people often ignore capitalization

when typing in search forms.
Using the described process, “Lübeck” will become “lubeck” and “Frières-Faillouël” will be-

come “frieres-faillouel”.
The inverted index maps the processed names to their corresponding entity IDs. You can see

a few samples from the entity index in table 3.1.

Table 3.1.: Samples from the entity index. It maps the processed
names of all entities to its corresponding entity IDs.

Name Entities

g.o.a.t. Q41421a, Q17090583b, Q84357932c, ...
hanseatic city of lubeck Q2843d

his airness Q41421a

lubeck Q2843d , Q55807847e, Q41498755f , ...
michael jordan Q41421a, Q1928047g, ...
a Famous basketball player Michael Jordan
b Galveston Orientation and Amnesia Test
c G.O.A.T. (vocal track by Ndoe)
d Lübeck (city in Germany)
e Lubeck (locality in Australia)
f New Zealand politician Marja Lubeck
g German comics artist Michael Jordan

3.2.2. Entity linking

We go through all word n-grams of any length in the question, prepare them as described in
section 3.2.1 (normalizing, replacing non-ascii characters and turning them to lowercase) and
look them up in the entity index. If we find multiple possible entity matches (which is almost
always the case), we sort them by the number of matched tokens in the question first and by
their scores second. We keep the best Ne ∈ {10, 50, 500} of them and postpone the decision on
what is the best match to the ranking step.
Many QA systems use an externally trained Entity Linker. Compared to Named Entity

Recognition (NER) and classical Entity Linking (EL) systems from NLP, our method has the
advantage of being able to potentially match any entity in the KB without having seen it during
training. We are depending only on the aliases in the Wikidata dataset. If an important alias
is missing, we potentially cannot match the corresponding entity correctly.
The web API allows to skip the entire entity linking step altogether and instead provide the

correct entity IDs together with the question as input. This is especially useful in combination
with a frontend which enables the user to choose entities interactively, for example by using
autocompletion2 or a “Did you mean” functionality as detailed by Diefenbach, Hormozi, et al.
(2017).

2See e.g. https://github.com/ad-freiburg/aqqu-frontend

8

https://github.com/ad-freiburg/aqqu-frontend

3.3. Candidate generation
We generate SPARQL query candidates based on predefined patterns. Because we restrict our
work to simple questions, we use only two patterns of SPARQL queries that both only use one
triple. Even though we only use two simple patterns in this work, our approach is not specific
to these patterns and should also work with more complicated patterns (see section 6.3 for
suggestions).
Let E be the set of linked entities from section 3.2 and let R be the set of all relations that

exist in Wikidata.
We generate ERT candidates like this: For each e ∈ E we find all r ∈ R such that (e, r, o) is

a triple in Wikidata for any object o. We find all r by executing one SPARQL query for each e.
Similarly, we generate TRE candidates like this: For each e ∈ E we find all r̂ ∈ R such that

(s, r̂, e) is a triple in Wikidata for any subject s. We find all r̂ by executing one SPARQL query
for each e.

The union of ERT candidates and TRE candidates forms the set of all query candidates.

3.4. Relation matching
The generated candidates use all kinds of relations that are part of some triple in Wikidata.
They include relations which are not related to the question. We now check whether the relations
from candidates match the input question in some way.
We run an external POS (Part-of-speech) tagger3 on the question. We classify the POS tags4

from table 3.2 as content tags and all others as non-content tags.

Table 3.2.: Content POS tags
Tag Description

CD Cardinal number
JJ Adjective
JJS Adjective, superlative
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
RB Adverb
VB Verb, base form
VBD Verb, past tense
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present

For each candidate, we determine the tokens t1, t2, . . . , tn in the question that

• were not matched to the entity of the candidate during entity linking (see section 3.2),

• are tagged with a content tag and
3We use the POS tagger from spaCy by Honnibal et al. (2020).
4The POS tagger uses the POS tags from the Penn Treebank tagset as listed at https://www.ling.upenn.edu/

courses/Fall_2003/ling001/penn_treebank_pos.html.

9

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

• are not forms of the verbs “be”, “do” or “go”. (These do not contain much meaning.)

If the question is “Who is the mother of Albert Einstein?” and the tokens “Albert” and “Ein-
stein” were matched to the corresponding entity, that would leave the tokens “Who”, “is”, “the”,
“mother” and “of”. Of these, only the POS tags of “is” (VBZ) and “mother” (NN) are content
tags. The token “is” is a form of the verb “be”, so t1 is “mother”.
We determine all aliases a1, a2, . . . , am for the relation of the candidate (see appendix A.2 for

the exact query to determine the aliases). We also consider these aliases with all stopwords5

removed and call them â1, â2, . . . , âm. We use the lemma (canonical form) for the words of
the aliases (e.g. “be” for “were” or “mouse” for “mice”).6 For example, if the alias a1 of the
relation P25 (mother) is “is daughter of”, the lemmatized form l(a1) is “be daughter of”. The
lemmatized alias without stopwords l(â1) is “daughter”.
We compare the lemmatized forms of the tokens t1, t2, . . . , tn with the lemmatized aliases. If

l(ti) = l(aj) for any i and j, we call that an exact alias match. If l(ti) is a substring of l(aj)
for any i and j (like “married” is a substring of “married to”), we call that a contained alias
match. If l(ti) = l(âj) for any i and j, we call that a no-stop match.

3.5. Ranking
The candidates are not ordered in any particular way. We want to determine how likely a
candidate answers the input question and rank the candidates accordingly. The highest ranked
candidate should lead to the correct answer to the question.
Let C be the set of generated candidates (see section 3.3). We project each candidate into

a feature space. For that, we define a function f : C → R10 that maps a candidate c ∈ C to a
vector containing feature values that describe the candidate. The ten elements of the feature
vector are listed in table 3.3.

3.5.1. Rule-based ranker
We assign each candidate a score, to which the various features contribute with different weights.
To make the weights more easily tunable, we first rescale all feature values such that the values

of one feature among all candidates lie between 0 and 1. Formally, let fj(ck) be the jth element
of the feature vector for the kth candidate ck. Let fmax

j := max
k

(fj(ck)) and fmin
j := min

k
(fj(ck)).

The function that maps a candidate to its rescaled feature values f̂ is then defined by:

f̂j(ck) :=
fj(ck)− fmin

j

fmax
j − fmin

j

We use the following formula to calculate a final score s for every candidate ck:

s(ck) := 1000f̂10(ck) + 100
(
f̂5(ck) + f̂6(ck) + f̂7(ck)

)
+ 10f̂2(ck) + f̂1(ck)

Intuitively, the formula expresses that the token coverage is the most important feature,
followed by features related to relation matches, followed by features related to entities.
A high score coincides with high probability to match the users intentions, so we sort the

candidates by their scores in descending order to get the final ranking.
5Stopwords are words that occur very often in a language and that do not contain much meaning. Examples
for English are “and”, “the”, “also” and “by”.

6We use the lemmatizer of spaCy by Honnibal et al. (2020)

10

https://www.wikidata.org/wiki/Property:P25

Table 3.3.: Features for candidate c

Name Description

f1(c) Entity popularity score (number of sitelinks)
f2(c) Entity label matches (number of entities of the candidate that were

matched to words in the question by label (as opposed to by alias))a

f3(c) Number of entity tokens (number of tokens in the question that were
matched to entities)

f4(c) Number of entity tokens (ignoring stopwords)
f5(c) Number of exact relation matchesab

f6(c) Number of contained relation matchesab

f7(c) Number of no-stop relation matchesab

f8(c) Number of relation tokens (total number of tokens of the question that
were matched to a relation in the candidate query; duplicates are only
counted once)

f9(c) Pattern complexity (number of triples in the SPARQL query)c

f10(c) Token coverage (number of tokens of the question which are POS-tagged
with a content tag and which are not some form of the verbs “be”, “do” or
“go”, divided by the sum of feature f4(c) and feature f8(c))

a For simple questions, this is a binary value
b The different kinds of relation matches are explained in section 3.4
c For simple questions, this value is always 1. We include the feature only in preparation for
future extensions with more complicated SPARQL patterns (see section 6.3).

3.5.2. Learned ranker

As an alternative to the rule-based ranker, we also learn a ranking of candidates based on an
annotated dataset without any hard-coded scoring formula. For most ranking problems, there
are usually many results that are relevant to the input query. Our ranking problem is different
because one question is correctly answered by usually only one SPARQL query.
The obvious way to learn a ranking is to learn a score for each candidate and rank by this

score. This approach would compare candidates of different questions. However, certain features
might be good for one question (compared to the other candidates of that question) but bad
when compared to candidates of a different question. To circumvent this problem, we use a
pairwise-ranking approach. We transform the problem into a binary classification task in which
we try to predict for two given candidates which one should be ranked higher.

Training

The training data consists of tuples (q1, g1), (q2, g2), . . . , (qN , gN) each consisting of a question
qi together with the gold SPARQL query gi for extracting the result that answers the question.
We first run the gold queries gi on our SPARQL backend b (see section 5.1) in order to get the
gold results ri := b(gi).7

We disable the ranking step and run all N questions through the remaining pipeline. Let ck,i

7The training data also contains gold results (as opposed to gold queries), but they are often incomplete and
can even be outdated. In particular, the gold result contains exactly one element for every question, even
when the true gold result contains thousands of elements. This is why we ignore the gold results from the
dataset and use the gold queries instead.

11

be the kth candidate that is generated this way for question qi. For every question, we determine
the candidates for which the corresponding SPARQL query yields a result that matches the gold
result for that question, that is we find the ck,i with b(ck,i) = b(gi) (using set equality).

These candidates are considered to be correct. Any candidate for which the corresponding
SPARQL query yields a result different from the gold result is considered to be incorrect. If more
than 40% of the candidates for a question are correct in this sense, that question is ignored in
order to reduce noise. This happens e.g. for questions asking for the sex or gender of a person
because many of the incorrect candidates will return the same sex or gender as the correct
candidate.
For each question qi, we build candidate pairs (ck,i, cm,i) where ck,i is a correct candidate

and cm,i is an incorrect candidate for the same question qi. We do this by randomly sampling
200 candidates for every question (or taking all, if there are less than 200 candidates). Out
of the sampled candidates, we ignore the ones which are correct. We combine every incorrect
candidate cm,i from the sampled candidates with every correct candidate ck,i for question qi to
form a candidate pair (ck,i, cm,i).
We create two training samples from every candidate pair (ck,i, cm,i). The first sample is(

(f(ck,i)−f(cm,i)), f(ck,i), f(cm,i)
)
∈ R30 (using flat vector concatenation). The corresponding

label for the training sample is 1. The second is
(
(f(cm,i) − f(ck,i)), f(cm,i), f(ck,i)

)
∈ R30

with the label 0.
With these training samples we train a random forest (Breiman, 2001) containing 200 random

trees.

Ranking

Let C be the set of generated candidates for the input question after relation matching (sec-
tion 3.4). We create every possible combination of two different candidates (ck, cm) with ck ∈ C,
cm ∈ C and k < m. There are n(n− 1)/2 such combinations.

The features for a combination of candidates (ck, cm) are given by
(
(f(ck)−f(cm)), f(ck), f(cm)

)
∈

R30. We predict labels yk,m ∈ {0, 1} for every such combination of candidates.
For the final ranking decision between ck and cm there are two cases: For k < m, we rank ck

higher than cm if and only if yk,m = 1. Otherwise we rank it lower. Accordingly, for m < k, we
rank ck higher than cm if and only if ym,k = 0. Otherwise we rank it lower.
This gives us the final ranking of the candidates. Note that because of the number of com-

binations of candidates, this step’s running time is quadratic in the number of candidates to
rank. The previous steps of the pipeline must make sure that the number of candidates to be
ranked is low enough or there are efficiency problems.

3.6. Preparing the answer
Once the ranking is done, we throw away all but the best-ranked 200 candidates. We finally
execute a slightly modified version of the SPARQL query for these best candidates on our
SPARQL backend in order to get the answer to the original input question.
We use the OPTIONAL keyword in order to include the English label for the resulting entity

if there is one. We also limit the size of the result set to 300. The true SPARQL queries for
the two examples from section 1.1 look like this (the questions are “What is the capital of
Bulgaria?” and “Which books did J. R. R. Tolkien write?”):

PREFIX wd: <http://www.wikidata.org/entity/>

12

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?result ?resultname WHERE {

wd:Q219 wdt:P36 ?result .
OPTIONAL {

?result rdfs:label ?resultname .
FILTER (lang(?resultname) = "en") .

} .
} LIMIT 300

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?result ?resultname WHERE {

?result wdt:P50 wd:Q892 .
OPTIONAL {

?result rdfs:label ?resultname .
FILTER (lang(?resultname) = "en") .

} .
} LIMIT 300

If the result includes ?resultname, we present that to the user as the answer. If it does not,
we use ?result instead. This is especially relevant for literals like numbers or dates which never
have a label.

13

4. Evaluation tool
We provide a web tool for evaluating and analyzing the pipeline. It is split in two parts. The
API is written in Python1 and returns evaluation results in the json format. The frontend is
written in Vue.js.2 It calls the API in order to get evaluation data and visualizes it.
The web tool’s most remarkable feature is the detailed question view. After choosing one

evaluation run and one question that was evaluated in that run you are presented with the
chosen question at first as can be seen in figure 4.1.

Figure 4.1.: Default view of the question when no candidate is selected

As can be seen in figure 4.2, the view also shows a list of the best-ranked candidates the
pipeline generated. The candidates are selectable.

Figure 4.2.: View of the candidates for
a question. It shows the
total number of generated
candidates, the number of
candidates that survived the
pipeline and the position of
the first correct candidate.
Underneath, there is a list of
the best-ranked candidates.

Figure 4.3.: View of the question when
a candidate is selected. The
matched entity and relation
are highlighted in the ques-
tion text and shown with ad-
ditional information below
the question.

If you select a candidate from the list, the questions view changes to include information
about the entity and relation that were matched for the selected candidate. The updated view
is shown in figure 4.3.

1https://www.python.org/
2https://vuejs.org/

15

https://www.python.org/
https://vuejs.org/

As shown in figure 4.4, the view includes details about the selected candidate, in particular
the candidate features (figure 4.4a), the candidate results (figure 4.4b) and the SPARQL query
of the candidate (figure 4.4c).

(a) Candidate score and features

(b) Candidate results

(c) Candidate SPARQL query

Figure 4.4.: View of the candidate details

Independent of the selected candidate, the view also shows a list of entities that were matched
during entity linking (see section 3.2). This can be seen in figure 4.5.

Figure 4.5.: View of the matched entities. It includes the total number of matched entities
and the number of entities that were used for later steps of the pipeline. Below
it, there is a list of matched entities with additional information for the selected
one.

16

5. Evaluation

5.1. Hardware and SPARQL backend

Our experiments (including the precomputation of the indices) were performed on a PC with
an Intel Xeon E5 v4 (4 cores) and 252 GB RAM. Note that 8 GB RAM are sufficient. The
pipeline (and in particular the precomputation) requires 20 GB of storage space. The entire
precomputation can be done in 2 hours.
We need to execute SPARQL queries in several parts of our pipeline and for the precom-

putation. We use the QLever engine first introduced by Bast and Buchhold (2017)1 as our
SPARQL backend. It supports a subset of the SPARQL 1.1 standard2 and stands out by fast
query response times. The Wikidata dump that QLever uses is from 2021-06-10 and contains
15.2 billion triples.

5.2. Dataset

We use the SimpleQuestionsWikidata dataset by Diefenbach, Tanon, et al. (2017) as a bench-
mark. We restrict ourselves to the subset which they classify as answerable on Wikidata. The
training and test set contain 19481 and 5622 samples respectively. Each sample consists of a
question together with the gold SPARQL query which answers the corresponding question.
The dataset is based on the SimpleQuestions dataset by Bordes et al. (2015). The original

was created by human English-speaking annotators after automatically selecting facts from the
Knowledge Base Freebase.

5.3. Evaluation results

We show a comparison of our results to results in the literature in table 5.1. Note that most
authors evaluate by comparing the generated SPARQL query to the gold query. We instead
compare the result that the generated SPARQL query yields to the result that the gold query
yields. This difference in the evaluation method should be taken into account when comparing
different methods.
Also note that Petrochuk and Zettlemoyer (2018) found the upper bound of the SimpleQues-

tions dataset to be 0.834. We do not know of similar findings about the SimpleQuestionsWiki-
data dataset.

Comparing the state of the art between the two Knowledge Bases, we see a drop of 10.5
percentage points when comparing Wikidata to FB2M and a drop of 6.7 percentage points
when comparing Wikidata to FB5M. Note that Oliya et al. (2021) evaluate their system on
both simple and non-simple questions which might contribute to their result being worse on
only simple questions.

1The current version of the code can be found at https://github.com/ad-freiburg/qlever.
2https://www.w3.org/TR/sparql11-query/

17

https://github.com/ad-freiburg/qlever
https://www.w3.org/TR/sparql11-query/

Table 5.1.: Comparison with other QA systems. FB2M and FB5M are
subsets of Freebase with 2M and 5M facts respectively. Re-
sults for them were evaluated on the original SimpleQues-
tions dataset. The other systems were evaluated on the
newer and smaller SimpleQuestionsWikidata dataset using
Wikidata.
QA system Accuracy Accuracy Accuracy

(FB2Ma) (FB5Mb) (Wikidata)

Bordes et al. (2015) 0.627 0.639 -
Yin et al. (2016) 0.683 0.672 -

Dai, Li, and Xu (2016) - 0.626 -
He and Golub (2016) 0.709 0.703 -

Lukovnikov et al. (2017) 0.712 - -
Yu et al. (2017) 0.787 - -

Mohammed, Shi, and Lin (2018) 0.749 - -
Huang et al. (2019) 0.754 0.749 -
Oliya et al. (2021) - - 0.682

Aqqu Wikidata (rules) - - 0.586
Aqqu Wikidata (learned) - - 0.564

a Subset of Freebase with 2M facts
b Subset of Freebase with 5M facts

We see that our rule-based approach cannot compare to the state of the art but comes
surprisingly (difference of 9.6 percentage points) close considering there is no learning (and in
particular no deep learning) involved.
Our learned ranker performs 2.2 percentage points worse than our rule-based ranker which is

surprising. Unfortunately, we could not find the reason for this. We must assume an issue in
our learning code.
We evaluate the influence of the parameter Ne controlling the number of matched entities

that are used by the pipeline and show the results in table 5.2. We see that the results are
almost identical for Ne = 500 and Ne = 50. The pipeline takes 1.5 seconds less on average for
Ne = 50 but its average duration of 5.52 seconds is not quite usable in an interactive setting.
Using Ne = 10, we see the R@1 value decrease by an absolute 4% (compared to Ne = 50)
or 5% (compared to Ne = 500). However, the average duration per question decreases to an
almost interactive 1.46 seconds. The results suggest that a value between 10 and 50 for Ne is a
good idea, possibly combined with a more sophisticated entity linking component. None of the
mentioned publications include their average query time so we cannot compare.
Note that the number of matched entities ranges from 7 (“who discovered 5551 glikson”) to

well over 40000 (“Which position in football did lee ho-jin play”) which makes Ne an important
parameter to ensure a consistent query duration.

5.4. Error analysis

We take a closer look at a few example questions that our rule-based pipeline answers incorrectly
and analyze the reason for the incorrect result. We split the reasons into problems with the

18

Table 5.2.: Influence of the number of used entities Ne on
the pipeline with the rule-based ranker. R@k
is recall at kth position, meaning whether the
correct result is part of the k best-ranked can-
didates. R@1 is the same as accuracy. AD is
the average duration the pipeline takes for one
query.

Ne R@1 R@2 R@3 R@5 R@10 R@100 AD

500 0.59 0.67 0.71 0.74 0.77 0.82 7.09
50 0.58 0.67 0.71 0.74 0.77 0.82 5.52
10 0.54 0.66 0.69 0.72 0.75 0.77 1.46

pipeline, problems with the dataset and problems with Wikidata.

5.4.1. Problems with the pipeline

Incorrect entity match

Consider the question “who directed michael jackson: number ones”. We identify the relation
P57 (director) correctly. Both the correct entity Q5920952 (Number Ones) and the incorrect
entity Q2831 (Michael Jackson) lead to an almost identical feature representation. It differs
only in the entity score which is higher for Q2831 (Michael Jackson). In this case, the additional
words “michael jackson” that are not part of the entity label are problematic for us. We rank
the correct candidate as second.
In the question “What type of album is deliverin in?”, the correct entity Q5254062 (Deliverin’)

is not matched because of the missing apostrophe.

Relation not matched

Consider the question “which band made on earth to make the numbers up”. We recognize
Q7090962 (On Earth to Make the Numbers Up) correctly, but do not match the correct rela-
tion P175 (performer). None of its aliases (“artist”, “musician”, “played by”, “portrayed by”,
“recorded by”, “recording by”, “dancer”, “actor”, “musical artist”, “performed by”, “actress”,
“sung by”, “singer”) are similar in text to “which band made”.
The same problem occurs for the question “what killed tom held”. The aliases of P509 (cause

of death) are “method of murder”, “death cause”, “die from”, “murder method”, “die of” and
“died of”, none of which match “what killed”.
Another example is the question “in what category is hms e56 located” with Q3720089 (HMS

E56). The words “in what category is located” should match one of “ship class”, “submarine
class”, “spacecraft class”, “class of vessel” and “ship type”, which are the aliases of P289 (vessel
class), but do not.
This problem is most prominent for demands like “Name a famous film director”. They are

often hard to match to a relation (P106 (occupation) in this case).

19

https://www.wikidata.org/wiki/Property:P57
https://www.wikidata.org/wiki/Q5920952
https://www.wikidata.org/wiki/Q2831
https://www.wikidata.org/wiki/Q2831
https://www.wikidata.org/wiki/Q5254062
https://www.wikidata.org/wiki/Q7090962
https://www.wikidata.org/wiki/Property:P175
https://www.wikidata.org/wiki/Property:P509
https://www.wikidata.org/wiki/Property:P509
https://www.wikidata.org/wiki/Q3720089
https://www.wikidata.org/wiki/Q3720089
https://www.wikidata.org/wiki/Property:P289
https://www.wikidata.org/wiki/Property:P289
https://www.wikidata.org/wiki/Property:P106

Missing answer type differentiation

Consider the question “Where was Angela Merkel born?”3 The word “born” matches P1477
(birth name) via its alias “born as”, P19 (place of birth) via its alias “born at” and P569 (date
of birth) via its alias “born on”. Without knowing the type of the result of a candidate and
matching it to the question word (“where” in this case) there is no way of differentiating between
the corresponding candidates.

Wrong pattern

For the question “What is a city within fort bend county, texas?”, we match both Q26895 (Fort
Bend County) and P131 (located in the administrative territorial entity) correctly. However,
the position of the variable in the query is unclear (pattern ERT or TRE). The feature repre-
sentations for the two corresponding candidates is identical so the order of the two candidates
in the ranking is indeterministic.

Note that using the city constraint would make the decision between patterns easier but it
would also make this a non-simple question (see section 5.4.2), more specifically of type “Single
fact with type” (see section 6.3).

Either/or questions

Questions mentioning two possible answer options are hard because they contain many words
that are not directly related to the entity or relation of the resulting query. This interferes with
the matching process. One example for this problem is the question “is orpheus signed to mgm
records or capital records”. (From a logical standpoint, one could argue that the correct answer
to the question could also be “yes”, but that is besides the point.)

5.4.2. Problems with the dataset

Incorrect gold query

Consider the question “Who is the famous father of jack carter” with the following gold query:

SELECT ?target WHERE {
?target wdt:P40 wd:Q6111597 .

}

The query contains Q611597 (Jack Carter) and P40 (child) and returns both the father and the
mother. The correct query (using P22 (father) and returning only the father) is this:

SELECT ?target WHERE {
wd:Q6111597 wdt:P22 ?target .

}

Non-simple questions

There are some questions in the dataset which are not truly simple questions. One example is
the question “What is the name of a 1952 adventure film?” for which the gold query completely
ignores the year mentioned in the question and returns all adventure films.

3Note that the question is not part of the dataset but there are examples in it with the same problem.

20

https://www.wikidata.org/wiki/Property:P1477
https://www.wikidata.org/wiki/Property:P1477
https://www.wikidata.org/wiki/Property:P19
https://www.wikidata.org/wiki/Property:P569
https://www.wikidata.org/wiki/Property:P569
https://www.wikidata.org/wiki/Q26895
https://www.wikidata.org/wiki/Q26895
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Q611597
https://www.wikidata.org/wiki/Property:P40
https://www.wikidata.org/wiki/Property:P22

The question “what musician was born in garfield” is also not a simple question because
it restricts the result both by place of birth and by occupation. The gold query ignores the
occupation and returns all people born in Garfield.

Spelling mistakes

The dataset contains the question “what european country is fanny straw hair from” referring
to Q3576648 (Fanny Strawhair). There is also the question “what style of music does mariella
farré sign”. The pipeline does not deal with such spelling mistakes in any way.

Unresolvable Ambiguity

There are cases of ambiguity in the dataset that are impossible to resolve.
Consider the question “What position does Carlos Gomez play?” Wikidata currently contains

four people with the name “Carlos Gómez” that each is part of a triple with the relation P413
(position played on team / speciality).4
Another example is the question “what time zone is trenton located in?” There are four

entities in Wikidata which are cities with the name of “Trenton”.5
Without context, it is not possible for an automated system (or a human for that matter) to

know which of the entities the question refers to.

5.4.3. Problems with Wikidata
Some questions reveal problems with the data of Wikidata itself. Missing data will probably be
added at some point but incorrect data will always be a part of such a community project.
For the question “What is the name of a football player that plays as a forward”, Q55281700

(Elisa Gaspari) is incorrectly matched because of its alias “football Player” which should be a
description instead.6
In the question “what language was used for the golden fortress”, “the golden fortress” refers

to the entity Q22260787 (Sonar Kella). However, Wikidata does not contain any mention of
this alternative name.
The question “Which country is the film sjors en sjimmie en de gorilla from” contains

Q2264085 (Sjors en Sjimmie en de Gorilla), but the entity has only a Dutch label and no
English label in Wikidata.
The pipeline has problems with the question “who was the child of nefertari” only because

someone changed the label of Q210535 (Nefertari) to “Nefertarilllala”.

4The four people are Q203210, Q2747238, Q5750557 and Q62592284.
5The four cities are Q25330, Q964707, Q482687 and Q7838537.
6Note that we have corrected the issues in this section in Wikidata so they should not occur if using a current
dump.

21

https://www.wikidata.org/wiki/Q3576648
https://www.wikidata.org/wiki/Property:P413
https://www.wikidata.org/wiki/Property:P413
https://www.wikidata.org/wiki/Q55281700
https://www.wikidata.org/wiki/Q55281700
https://www.wikidata.org/wiki/Q22260787
https://www.wikidata.org/wiki/Q2264085
https://www.wikidata.org/wiki/Q210535
https://www.wikidata.org/wiki/Q203210
https://www.wikidata.org/wiki/Q2747238
https://www.wikidata.org/wiki/Q5750557
https://www.wikidata.org/wiki/Q62592284
https://www.wikidata.org/wiki/Q25330
https://www.wikidata.org/wiki/Q964707
https://www.wikidata.org/wiki/Q482687
https://www.wikidata.org/wiki/Q7838537

6. Future work

Our simple approach is already successful on many simple questions. However, there are many
possibilities to extend our approach and make it more useful both for simple and non-simple
questions. In the following sections, we briefly suggest possible extensions. Due to the modular
structure of our pipeline, extensions should be easy to integrate.

6.1. More sophisticated matching
In the previous chapter, we have shown numerous problems with the word-level matching. To
improve, one should include character-level information for a more robust pipeline. Further-
more, one should not restrict oneself to text-based matching but include techniques like word
embeddings for determining semantic similarity. The techniques used in most recent publica-
tions reflect this.

6.2. Unanswerable questions
The current pipeline answers almost every question because the rules for matching entities are
rather lax. A step should be added which prunes candidates that probably do not relate to the
question. This would enable the pipeline to return “NO ANSWER” to questions that cannot
be answered with the data from Wikidata. Diefenbach (2018, section 3.4.4) even computes a
confidence score at the end of his pipeline which, besides being used for pruning, tells the user
a predicted probability of the best-ranked candidate being correct.

6.3. Additional query patterns and datasets
The restriction to simple questions is limiting the usefulness of the program. Some datasets
exist which contain more complicated questions. We look at a few of them here in order to
gather query patterns that should be supported in the future.
The question “Who was born in aguascalientes?” is part of the SimpleQuestionsWikidata

dataset. They classify it as unanswerable on Wikidata because it is not a simple question on
Wikidata. The question is answered by the following query:

SELECT ?target WHERE {
?target wdt:P19/wdt:P131* wd:Q79952 .

}

Besides P19 (place of birth), it makes use of a variable-length relation path containing one or
more P131 (located in the administrative territorial entity) in order to include people who were
born in e.g. Q1150239 (Jesús María) which is a settlement located in Q79952 (Aguascalientes).

We saw something similar in chapter 1 where the type of some cities was a subclass (P279)
of Q515 (city).

23

https://www.wikidata.org/wiki/Property:P19
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Q1150239
https://www.wikidata.org/wiki/Q79952
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Q515

These are examples of transitivity in Wikidata. The concept of transitivity prevents some
data duplication but as we have seen, it can make querying the data more complicated.
The LC-QuAD 2.0 dataset by Dubey et al. (2019) contains 30000 questions, their paraphrases

and their corresponding SPARQL queries. The dataset is based on ten types of questions. We
provide the corresponding SPARQL query for one example question of every type. Note that
some of the types relate to multiple pattern variations depending on the position of the variables
(just as ERT and TRE are variations of the single triple pattern).

1. Single fact
This pattern is the one we cover with our ERT and TRE templates. We have shown
several examples.

2. Single fact with type
Example: “Billie Jean was on the tracklist of which studio album?”

SELECT ?album WHERE {
?album wdt:P658 wd:Q193319 .
?album wdt:P31 wd:Q482994 .

}
The query contains P658 (tracklist), Q193319 (Billie Jean), P31 (instance of) and Q482994
(album). The pattern is similar to the Single fact pattern, but it also restricts the type
of the result. Note that the mentioned transitivity problem occurs with this pattern.

3. Multi-fact
Example: “What is the name of the sister city tied to Kansas City, which is located in
the county of Seville Province?”

SELECT ?city WHERE {
?city wdt:P190 wd:Q41819 .
?city wdt:P131 wd:Q95088 .

}
The query contains P190 (twinned administrative body), Q41819 (Kansas City), P131
(located in the administrative territorial entity) and Q95088 (Seville Province). In this
pattern, the desired result is described by two general triples.

4. Fact with qualifiers
Example: “What is the venue of Barack Obama’s marriage?”

PREFIX pq: <http://www.wikidata.org/prop/qualifier/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?place_of_marriage WHERE {

wd:Q76 p:P26 ?s .
?s pq:P2842 ?place_of_marriage .

}
The query contains Q76 (Barack Obama), P26 (spouse) and P2842 (place of marriage). It
also uses prefixes which we have not mentioned so far, namely the p: and pq: prefixes.
The object of the relation p:P26 is not the spouse of Barack Obama itself, but an abstract
statement node instead. (It takes the place of ?s in this case.) By using the pq: prefix on
the statement node, we can query information related to the spouse object, in this case,
the place where the marriage took place.

24

https://www.wikidata.org/wiki/Property:P658
https://www.wikidata.org/wiki/Q193319
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q482994
https://www.wikidata.org/wiki/Q482994
https://www.wikidata.org/wiki/Property:P190
https://www.wikidata.org/wiki/Q41819
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Q95088
https://www.wikidata.org/wiki/Q76
https://www.wikidata.org/wiki/Property:P26
https://www.wikidata.org/wiki/Property:P2842

5. Two intention
Example: “Who is the wife of Barack Obama and where did he get married?”

PREFIX pq: <http://www.wikidata.org/prop/qualifier/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?spouse ?place_of_marriage WHERE {

wd:Q76 p:P26 ?s .
?s ps:P26 ?spouse .
?s pq:P2842 ?place_of_marriage .

}

The query contains the same entities and relations as the last one. The ps: prefix can
be used to get the object of the statement node which has the same effect as using
the wdt: prefix directly. Also note that the query selects two variables (?spouse and
?place_of_marriage) instead of one which corresponds to the fact that the question
asks for two answers.

6. Boolean
Example: “Did Breaking Bad have 5 seasons?”1

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
ASK WHERE {

wd:Q1079 wdt:P2437 "5.0"^^xsd:decimal .
}

The query contains Q1079 (Breaking Bad) and P2437 (number of seasons) as well as a
literal representing the number 5. Note that the query uses the ASK query form instead
of the SELECT query form. This means that it does not return data from Wikidata, but
instead checks whether the specified triple exists in Wikidata and returns only true or
false. This corresponds to the fact that it is a yes/no question.

7. Count
Example: “What is the number of Siblings of Edward III of England?”

SELECT (COUNT(DISTINCT ?sibling) AS ?count) WHERE {
wd:Q129247 wdt:P3373 ?sibling .

}

The query contains Q129247 (Edward III of England) and P3373 (sibling). It also uses
the COUNT function to count the number of results.

8. Ranking
Example: “what is the binary star which has the highest color index?”

SELECT ?star WHERE {
?star wdt:P31 wd:Q50053 .
?star wdt:P1458 ?color_index .

}

1The ASK query form is currently not supported by QLever.

25

https://www.wikidata.org/wiki/Q1079
https://www.wikidata.org/wiki/Property:P2437
https://www.wikidata.org/wiki/Q129247
https://www.wikidata.org/wiki/Property:P3373

ORDER BY DESC(?color_index)
LIMIT 1

The query contains P31 (instance of), Q50053 (binary star) and P1458 (color index). It
also uses the ORDER BY solution modifier to order the solutions and the LIMIT solution
modifier to only return the first result.

9. String Operation
Example: “Give me all the Rock bands that start with letter R”2

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT DISTINCT ?band ?bandLabel WHERE {

?band wdt:P31 wd:Q5741069 .
?band rdfs:label ?bandLabel .
FILTER(LANG(?bandLabel) = "en")
FILTER(STRSTARTS(?bandLabel, 'R'))

}

The query contains P31 (instance of), Q5741069 (rock band) and the rdfs:label relation
which returns the label for an entity. It also uses the FILTER keyword with the LANG
function to filter only English labels and the FILTER keyword with the STRSTARTS function
to get only bands starting with the letter “R”.

10. Temporal aspect
Example: “With whom did Barack Obama get married in 1992?”3

PREFIX ps: <http://www.wikidata.org/prop/statement/>
PREFIX pq: <http://www.wikidata.org/prop/qualifier/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX wd: <http://www.wikidata.org/entity/>
SELECT ?spouse ?date WHERE {

wd:Q76 p:P26 ?s .
?s pq:P580 ?date .
?s ps:P26 ?spouse .
FILTER(YEAR(?date) = "1992")

}

The query contains Q76 (Barack Obama), P26 (spouse) and P580 (start time). It also uses
the FILTER keyword with the YEAR function to get only results with a start time in the
year 1992.

The dataset was generated partly automatically and partly by the help of non-professionals.
As a result, the quality of the dataset is lower4 than the quality of smaller datasets created
manually by professionals.
Task 4 of the QALD-7 open challenge by Usbeck et al. (2017) is called “Question answer-

ing over Wikidata” and provides a benchmark. It contains 150 questions with its respective
SPARQL queries. The SPARQL queries are of varying complexity. The number of triples ranges

2The STRSTARTS function is currently not supported by QLever.
3The YEAR function is currently not supported by QLever.
4See https://github.com/AskNowQA/LC-QuAD2.0/issues/4 for examples of issues with the dataset.

26

https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q50053
https://www.wikidata.org/wiki/Property:P1458
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q5741069
https://www.wikidata.org/wiki/Q76
https://www.wikidata.org/wiki/Property:P26
https://www.wikidata.org/wiki/Property:P580
https://github.com/AskNowQA/LC-QuAD2.0/issues/4

from one to five. SPARQL keywords that are part of the queries include SELECT, ASK, COUNT,
SUM, FILTER, ORDER BY, GROUP BY and HAVING. Some queries contain a sub-query. Most of the
queries only use direct relations (with the wdt: prefix) but there are some using statement
qualifiers (with the p: prefix).
An example from the dataset is the question “Which mountain is the highest after the An-

napurna?” with the corresponding gold query5:

SELECT DISTINCT ?uri WHERE {
?uri wdt:P31 wd:Q8502 .
?uri wdt:P2044 ?elevation .
wd:Q16466024 wdt:P2044 ?elevation2 .
FILTER (?elevation < ?elevation2) .

}
ORDER BY DESC(?elevation)
LIMIT 1

The query is far more complex than the simple queries we use. It is also fairly obvious that
matching such a query is far more difficult as we cannot rely on only text matching certain
labels.
The dataset is not free of errors. One question is “In which city did John F. Kennedy die?”

They provide the following query as the gold query for the question:

SELECT DISTINCT ?uri WHERE {
wd:Q9696 wdt:P20/wdt:P131 ?uri .
?uri wdt:P31 wd:Q515 .

}

The query uses Q9696 (John F. Kennedy), P20 (place of death), P131 (located in the admin-
istrative territorial entity), P31 (instance of) and Q515 (city). However, the query yields no
result. Yet again, the problem is the transitivity of cities of different sizes and qualities. Q16557
(Dallas), the correct answer to the question, has the types Q1093829 (city of the United States),
Q1549591 (big city) and Q1637706 (million city) and is therefore only indirectly of type city.
Even though not applicable to this specific example, there is another error in the query if it

should also be usable for other people. For Kennedy, P131 works because Wikidata contains
the fact that Kennedy died in a specific hospital which is located in a city. If we tried the same
query for e.g. Q9061 (Karl Marx), there would be no results because Wikidata only knows the
city that Marx died in and the city is not located in another city. The correct query that also
works for other people would therefore be:

SELECT DISTINCT ?uri WHERE {
wd:Q9696 wdt:P20/wdt:P131* ?uri .
?uri wdt:P31/wdt:P279* wd:Q515 .

}

6.4. Scalability
For an interactive Question Answering service, a user expects query answer times of one second
at most. Our system does not achieve such query answer times. Adding more SPARQL patterns
(see section 6.3) will only make this problem worse.

5This query is currently not supported by QLever.

27

https://www.wikidata.org/wiki/Q9696
https://www.wikidata.org/wiki/Property:P20
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Q16557
https://www.wikidata.org/wiki/Q16557
https://www.wikidata.org/wiki/Q1093829
https://www.wikidata.org/wiki/Q1549591
https://www.wikidata.org/wiki/Q1637706
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Q9061

The bottleneck of the pipeline is the candidate generation process which requires live execution
of many SPARQL queries. There might be ways to improve by combining multiple queries into
one, by parallelization or by additional precomputation. For example, we could precompute
both the types (“instance of”) for every entity and the relations that usually exist for an entity
of a given type. With that information, we could infer that e.g. the relation P25 (mother)
probably exists for Q937 (Albert Einstein) because Q937 is an instance of Q5 (human).

6.5. Additional evaluation
The SimpleQuestionsWikidata dataset allows for a more thorough evaluation. In particular,
since the dataset contains the gold query and thus the gold entity and gold relation for every
question, it is possible to evaluate the entity linking step (see section 3.2) and the relation
matching (see section 3.4) step individually. This can lead to a better understanding of what
part of the pipeline should be improved and how. We have done so only for some examples in
section 5.4.1.

6.6. Gold answer vs. gold query
We currently use the gold query from the dataset to determine the actual (and current) gold
answer. We then compare the gold answer to the answer of candidates in order to determine
whether the candidate is correct or not. This can of course be problematic: Let us assume
the gold answer is “Germany”. Many SPARQL queries lead to the answer “Germany” and are
therefore labeled as correct, even though they might represent an entirely different question.
Alternatively, we could compare the gold query directly to the candidate queries. However,

this is also problematic because there are questions which can correctly be represented by more
than one SPARQL query.
An example of this is the question “Who is the child of Adele?” It can be answered by the

query

SELECT ?target WHERE {
wd:Q23215 wdt:P40 ?target .

}

with Q23215 (Adele) and P40 (child) or by the query

SELECT ?target WHERE {
?target wdt:P25 wd:Q23215 .

}

with P25 (mother). It is almost a philosophical question whether the second query should be
considered correct or not.

6.7. Spelling correction
Our pipeline currently cannot deal with spelling errors. For better usability in a real-world
application, some kind of spelling correction or spelling robustness should be added. It should
probably be integrated into the frontend for maximum usability.

28

https://www.wikidata.org/wiki/Property:P25
https://www.wikidata.org/wiki/Q937
https://www.wikidata.org/wiki/Q937
https://www.wikidata.org/wiki/Q5
https://www.wikidata.org/wiki/Q23215
https://www.wikidata.org/wiki/Property:P40
https://www.wikidata.org/wiki/Property:P25

A. Appendix

A.1. Entity index query
We use the following SPARQL query to find all the possible names for all entities.1 We use the
result to compute an inverted index for faster lookups as explained in section 3.2.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
SELECT ?entity ?alias WHERE {

?entity wdt:P734?/(wdt:P297|wdt:P298|wdt:P1160|@en@wdt:P1813| c

@en@wdt:P1559|@en@wdt:P1477|@en@wdt:P1449|@en@wdt:P742| c

@en@skos:altLabel|@en@rdfs:label) ?alias
.

↪→

↪→

↪→

MINUS {
Ignore items internal to wikidata (around 7M)
?entity wdt:P31/wdt:P279* wd:Q17442446 .

}
}
ORDER BY ASC(?entity) ASC(?alias)

You can see the used relations and their respective labels in table A.1.

Table A.1.: Types of names used for the
entity index

Relation ID Relation label

P734 Family name
P297 ISO 3166-1 alpha-2 code
P298 ISO 3166-1 alpha-3 code
P1160 ISO 4 abbreviation
P1813 Short name
P1559 Name in native language
P1477 Birth name
P1449 Nickname
P742 Pseudonym
skos:altLabel Alternative labels
rdfs:label Main label

1The query uses some QLever-specific syntax. The @en@ restricts the results of the corresponding relation to
only those of the English language and thus is a shortcut to a more complicated syntax involving FILTERs.

29

A.2. Relation index query
We use the following SPARQL query to find all the aliases for all relations.12 We use the result
to compute a lookup table for faster relation alias lookups as explained in section 3.4.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX wikibase: <http://wikiba.se/ontology#>
SELECT ?predicate ?alias WHERE {

{
SELECT ?predicate WHERE {

?x ql:has-predicate ?predicate .
}
GROUP BY ?predicate

}
?entity wikibase:claim ?predicate .
OPTIONAL {

?entity @en@rdfs:label|@en@skos:altLabel ?alias .
}

}
ORDER BY ASC(?predicate) ASC(?alias)

2The QLever-specific ql:has-predicate relation lists all relations that exist for a subject.

30

Bibliography

Bast, Hannah and Björn Buchhold (2017). “QLever: A Query Engine for Efficient SPARQL+Text
Search.” In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. CIKM ’17. Singapore, Singapore: Association for Computing Machinery, pp. 647–
656. isbn: 9781450349185. doi: 10.1145/3132847.3132921. url: https://doi.org/10.
1145/3132847.3132921.

Bast, Hannah and Elmar Haussmann (2015). “More Accurate Question Answering on Free-
base.” In: Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management. CIKM ’15. Melbourne, Australia: Association for Computing Ma-
chinery, pp. 1431–1440. isbn: 9781450337946. doi: 10.1145/2806416.2806472. url: https:
//doi.org/10.1145/2806416.2806472.

Bast, Hannah et al. (July 2012). “Broccoli: Semantic Full-Text Search at your Fingertips.” In:
Bast, Hannah et al. (2021). Efficient SPARQL Autocompletion via SPARQL. arXiv: 2104.14595

[cs.DB].
Bordes, Antoine et al. (2015). Large-scale Simple Question Answering with Memory Networks.
arXiv: 1506.02075 [cs.LG].

Breiman, L (Oct. 2001). “Random Forests.” In:Machine Learning 45, pp. 5–32. doi: 10.1023/A:
1010950718922.

Cohen, William W. et al. (2020). “Scalable Neural Methods for Reasoning With a Symbolic
Knowledge Base.” In: International Conference on Learning Representations. url: https:
//openreview.net/forum?id=BJlguT4YPr.

Dai, Zihang, Lei Li, and Wei Xu (Aug. 2016). “CFO: Conditional Focused Neural Question
Answering with Large-scale Knowledge Bases.” In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics, pp. 800–810. doi: 10.18653/v1/P16-1076. url:
https://aclanthology.org/P16-1076.

Diefenbach, Dennis (May 2018). “Question answering over Knowledge Bases.” Theses. Université
de Lyon. url: https://tel.archives-ouvertes.fr/tel-02497232.

Diefenbach, Dennis, Niousha Hormozi, et al. (June 2017). “Introducing Feedback in Qanary:
How Users Can Interact with QA Systems.” In: isbn: 978-3-319-70406-7. doi: 10.1007/978-
3-319-70407-4_16.

Diefenbach, Dennis, Thomas Pellissier Tanon, et al. (2017). “Question Answering Benchmarks
for Wikidata.” In: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry
Tracks co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna,
Austria, October 23rd - to - 25th, 2017. url: http://ceur-ws.org/Vol-1963/paper555.
pdf.

Dubey, Mohnish et al. (Oct. 2019). “LC-QuAD 2.0: A Large Dataset for Complex Question
Answering over Wikidata and DBpedia.” In: pp. 69–78. isbn: 978-3-030-30795-0. doi: 10.
1007/978-3-030-30796-7_5.

He, Xiaodong and David Golub (Nov. 2016). “Character-Level Question Answering with At-
tention.” In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language

31

https://doi.org/10.1145/3132847.3132921
https://doi.org/10.1145/3132847.3132921
https://doi.org/10.1145/3132847.3132921
https://doi.org/10.1145/2806416.2806472
https://doi.org/10.1145/2806416.2806472
https://doi.org/10.1145/2806416.2806472
https://arxiv.org/abs/2104.14595
https://arxiv.org/abs/2104.14595
https://arxiv.org/abs/1506.02075
https://doi.org/10.1023/A:1010950718922
https://doi.org/10.1023/A:1010950718922
https://openreview.net/forum?id=BJlguT4YPr
https://openreview.net/forum?id=BJlguT4YPr
https://doi.org/10.18653/v1/P16-1076
https://aclanthology.org/P16-1076
https://tel.archives-ouvertes.fr/tel-02497232
https://doi.org/10.1007/978-3-319-70407-4_16
https://doi.org/10.1007/978-3-319-70407-4_16
http://ceur-ws.org/Vol-1963/paper555.pdf
http://ceur-ws.org/Vol-1963/paper555.pdf
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5

Processing. Austin, Texas: Association for Computational Linguistics, pp. 1598–1607. doi:
10.18653/v1/D16-1166. url: https://aclanthology.org/D16-1166.

Honnibal, Matthew et al. (2020). spaCy: Industrial-strength Natural Language Processing in
Python. doi: 10.5281/zenodo.1212303. url: https://doi.org/10.5281/zenodo.1212303.

Huang, Xiao et al. (2019). “Knowledge Graph Embedding Based Question Answering.” In:
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.
WSDM ’19. Melbourne VIC, Australia: Association for Computing Machinery, pp. 105–113.
isbn: 9781450359405. doi: 10.1145/3289600.3290956. url: https://doi.org/10.1145/
3289600.3290956.

Lukovnikov, Denis et al. (2017). “Neural Network-Based Question Answering over Knowledge
Graphs on Word and Character Level.” In: Proceedings of the 26th International Conference
on World Wide Web. WWW ’17. Perth, Australia: International World Wide Web Conferences
Steering Committee, pp. 1211–1220. isbn: 9781450349130. doi: 10.1145/3038912.3052675.
url: https://doi.org/10.1145/3038912.3052675.

Mohammed, Salman, Peng Shi, and Jimmy Lin (June 2018). “Strong Baselines for Simple Ques-
tion Answering over Knowledge Graphs with and without Neural Networks.” In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans,
Louisiana: Association for Computational Linguistics, pp. 291–296. doi: 10.18653/v1/N18-
2047. url: https://aclanthology.org/N18-2047.

Oliya, Armin et al. (2021). “End-to-End Entity Resolution and Question Answering Using
Differentiable Knowledge Graphs.” In:

Petrochuk, Michael and Luke Zettlemoyer (Oct. 2018). “SimpleQuestions Nearly Solved: A New
Upperbound and Baseline Approach.” In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: Association for Computational
Linguistics, pp. 554–558. doi: 10.18653/v1/D18-1051. url: https://aclanthology.org/
D18-1051.

Usbeck, Ricardo et al. (2017). “7th Open Challenge on Question Answering over Linked Data
(QALD-7).” In: Semantic Web Evaluation Challenge. Springer International Publishing, pp. 59–
69. url: https://svn.aksw.org/papers/2017/ESWC_2017_QALD/public.pdf.

Wu, Peng et al. (July 2019). “Learning Representation Mapping for Relation Detection in
Knowledge Base Question Answering.” In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association for Computational
Linguistics, pp. 6130–6139. doi: 10.18653/v1/P19-1616. url: https://aclanthology.
org/P19-1616.

Yin, Wenpeng et al. (Dec. 2016). “Simple Question Answering by Attentive Convolutional
Neural Network.” In: Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing
Committee, pp. 1746–1756. url: https://aclanthology.org/C16-1164.

Yu, Mo et al. (July 2017). “Improved Neural Relation Detection for Knowledge Base Question
Answering.” In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Computational
Linguistics, pp. 571–581. doi: 10.18653/v1/P17-1053. url: https://aclanthology.org/
P17-1053.

32

https://doi.org/10.18653/v1/D16-1166
https://aclanthology.org/D16-1166
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1145/3289600.3290956
https://doi.org/10.1145/3289600.3290956
https://doi.org/10.1145/3289600.3290956
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.18653/v1/N18-2047
https://doi.org/10.18653/v1/N18-2047
https://aclanthology.org/N18-2047
https://doi.org/10.18653/v1/D18-1051
https://aclanthology.org/D18-1051
https://aclanthology.org/D18-1051
https://svn.aksw.org/papers/2017/ESWC_2017_QALD/public.pdf
https://doi.org/10.18653/v1/P19-1616
https://aclanthology.org/P19-1616
https://aclanthology.org/P19-1616
https://aclanthology.org/C16-1164
https://doi.org/10.18653/v1/P17-1053
https://aclanthology.org/P17-1053
https://aclanthology.org/P17-1053

	1 Introduction
	1.1 Problem definition
	1.2 Contributions

	2 Related Work
	3 Pipeline
	3.1 Tokenization
	3.2 Entity linking
	3.2.1 Entity index
	3.2.2 Entity linking

	3.3 Candidate generation
	3.4 Relation matching
	3.5 Ranking
	3.5.1 Rule-based ranker
	3.5.2 Learned ranker

	3.6 Preparing the answer

	4 Evaluation tool
	5 Evaluation
	5.1 Hardware and SPARQL backend
	5.2 Dataset
	5.3 Evaluation results
	5.4 Error analysis
	5.4.1 Problems with the pipeline
	5.4.2 Problems with the dataset
	5.4.3 Problems with Wikidata

	6 Future work
	6.1 More sophisticated matching
	6.2 Unanswerable questions
	6.3 Additional query patterns and datasets
	6.4 Scalability
	6.5 Additional evaluation
	6.6 Gold answer vs. gold query
	6.7 Spelling correction

	A Appendix
	A.1 Entity index query
	A.2 Relation index query

	Bibliography

