Neural Word Embeddings as Matrix Factorization

Master's Thesis Mathematics

Presented by: Theresa Klumpp Supervisors: Prof. P. Pfaffelhuber Prof. H. Bast

January 15, 2020

A 3 b

31= 990

Table of Contents

Solution

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

Goal: word vectors that reflect similarities and dissimilarities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

< □ ▶ < 一 ▶

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

• I get to work faster when I take the ***.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

- I get to work faster when I take the ***.
- This model has amazing acceleration for a *** of its size.

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

- I get to work faster when I take the ***.
- This model has amazing acceleration for a *** of its size.
- I would never drive my *** into Paris if I could get there by train.

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

- I get to work faster when I take the ***.
- This model has amazing acceleration for a *** of its size.
- I would never drive my *** into Paris if I could get there by train.

Demo

Contributions

- Gaining an understanding of the objective functions of skip-gram (with and without negative sampling) and the statistical models behind them.
- Finding a maximum for skip-gram's objective.
- Showing the connection between the neural networks and Singular Value Decomposition (SVD).
- Comparing different metrics on the sphere.
- Finding a formula for the expectation of the distance of the closest vector.
- An implementation of the SGNS neural network and the SVD variant for both skip-gram and SGNS.
- Evaluation of the models on word similarity and analogy tasks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Contributions

- Gaining an understanding of the objective functions of skip-gram (with and without negative sampling) and the statistical models behind them.
- Finding a maximum for skip-gram's objective.
- Showing the connection between the neural networks and Singular Value Decomposition (SVD).
- Comparing different metrics on the sphere.
- Finding a formula for the expectation of the distance of the closest vector.
- An implementation of the SGNS neural network and the SVD variant for both skip-gram and SGNS.
- Evaluation of the models on word similarity and analogy tasks.

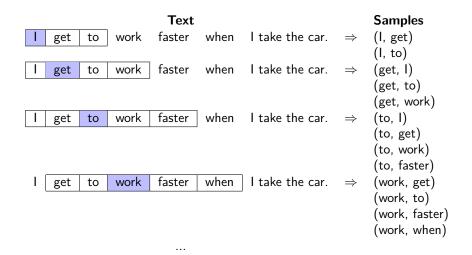
◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Questions?

Table of Contents

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

Definition: Context



э.

ELE SQC

Notation

- V_W and V_C : word and context vocabulary (we have $V_W = V_C$)
- **D**: observed word context pairs
- #(w, c): number of times the pair (w, c) appears in D
- $\#(w) = \sum_{c' \in V_C} \#(w, c')$ and $\#(c) = \sum_{w' \in V_W} \#(w', c)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

< 1 ▶

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

Why does this yield good embeddings?

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

Why does this yield good embeddings?

	$c_1 = drive$	$c_2 = road$	$c_3 = space$	$c_4 = bottle$
$w_1 = car$	0.9	0.8	0.2	0.1
$w_2 = truck$	0.8	0.7	0.2	0.2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

• high for pairs with large #(w, c) and

• small for pairs with low #(w,c)

$$W = \begin{pmatrix} \vec{w}_1 \\ \vdots \\ \vec{w}_{|V_W|} \end{pmatrix} \text{ and } C = \begin{pmatrix} \vec{c}_1 \\ \vdots \\ \vec{c}_{|V_C|} \end{pmatrix}$$

-

3 1 1 N Q Q

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

$$W = \begin{pmatrix} \vec{w}_1 \\ \vdots \\ \vec{w}_{|V_W|} \end{pmatrix} \text{ and } C = \begin{pmatrix} \vec{c}_1 \\ \vdots \\ \vec{c}_{|V_C|} \end{pmatrix}$$

 \Rightarrow Find a function $\ell(W, C)$ that is maximized when the properties above hold.

Skip-Gram: Objective functions

$$\ell_{SG}(W,C) = \sum_{(w,c)\in D} \left(\vec{w} \cdot \vec{c} - \log\left(\sum_{c'\in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right) \right)$$

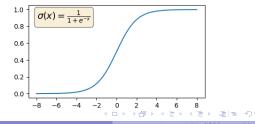
More

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

Skip-Gram: Objective functions

$$\ell_{SG}(W,C) = \sum_{(w,c)\in D} \left(\vec{w} \cdot \vec{c} - \log\left(\sum_{c'\in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right) \right)$$

$$\ell_{SGNS}(W, C) = \sum_{(w,c)\in D} \left(\log \sigma \left(\vec{w} \cdot \vec{c} \right) + \sum_{j=1}^{k} \log \sigma \left(- \vec{w} \cdot \vec{c}_{j} \right) \right)$$



More

Optimal value for the dot products

• $\ell_{SGNS}(W, C)$ is maximized for

$$\left(\vec{w} \cdot \vec{c}\right)^{\mathsf{OPT}} = \log\left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)}\right) - \log k$$

Optimal value for the dot products

• $\ell_{SGNS}(W, C)$ is maximized for

$$\left(\vec{w}\cdot\vec{c}\right)^{\mathsf{OPT}} = \log\left(\frac{\#\left(w,c\right)\cdot|D|}{\#\left(w\right)\cdot\#\left(c\right)}\right) - \log k$$

Note that

$$\left(W\cdot C^{T}\right)_{ij}=\vec{w}_{i}\cdot\vec{c}_{j}$$

< □ > < 同 >

Optimal value for the dot products

• $\ell_{SGNS}(W, C)$ is maximized for

$$\left(\vec{w} \cdot \vec{c}\right)^{\mathsf{OPT}} = \log\left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)}\right) - \log k$$

Note that

$$\left(W\cdot C^{T}\right)_{ij}=\vec{w}_{i}\cdot\vec{c}_{j}$$

• Let M^{OPT} be the matrix containing the optimal dot products, that is

$$M_{ij}^{\mathsf{OPT}} = \left(ec{w}_i \cdot ec{c}_j
ight)^{\mathsf{OPT}}$$

▲ Ξ ► Ξ Ξ = 𝔄 𝔄 𝔄

Singular Value Decomposition (SVD)

•
$$(W \cdot C^T)_{ij} = \vec{w}_i \cdot \vec{c}_j$$
 and $M_{ij}^{OPT} = (\vec{w}_i \cdot \vec{c}_j)^{OPT}$

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Singular Value Decomposition (SVD)

•
$$(W \cdot C^{T})_{ij} = \vec{w}_i \cdot \vec{c}_j$$
 and $M_{ij}^{OPT} = (\vec{w}_i \cdot \vec{c}_j)^{OPT}$

• Skip-gram with negative sampling is trying to find W and C such that

$$W \cdot C^T = M^{\mathsf{OPT}}$$

Singular Value Decomposition (SVD)

•
$$(W \cdot C^T)_{ij} = \vec{w}_i \cdot \vec{c}_j$$
 and $M_{ij}^{OPT} = (\vec{w}_i \cdot \vec{c}_j)^{OPT}$

• Skip-gram with negative sampling is trying to find W and C such that

$$W \cdot C^T = M^{\mathsf{OPT}}$$

• Truncated SVD gives us a factorization of the best rank d approximation of M^{OPT} :

$$W_{\mathsf{SVD}} \cdot C_{\mathsf{SVD}}^{\mathsf{T}} = \operatorname*{arg\,min}_{M|\mathsf{rk}(M)=d} ||M - M^{\mathsf{OPT}}||_{\mathsf{F}}$$

Skip-Gram (without negative sampling)

Recall from previous slide:

$$\ell_{SG}(W,C) = \sum_{(w,c)\in D} \left(\vec{w} \cdot \vec{c} - \log\left(\sum_{c'\in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right) \right)$$

Computations for the skip-gram model (without negative sampling) yield a maximum for

$$\left(\vec{w}\cdot\vec{c}\right)^{\mathsf{OPT}}=\log\#\left(w,c\right)$$

Problems with SVD

$$M_{ij}^{ ext{OPT}} = \log \left(rac{\# \left(w_i, c_j
ight) \cdot |D|}{\# \left(w_i
ight) \cdot \# \left(c_j
ight)}
ight) - \log k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problems with SVD

$$M_{ij}^{\mathsf{OPT}} = \log \left(rac{\#\left(w_{i}, \, c_{j}
ight) \cdot |D|}{\#\left(w_{i}
ight) \cdot \#\left(c_{j}
ight)}
ight) - \log k$$

What about pairs with # (w_i, c_j) = 0? (This is the case for more than 98% of our pairs!)
M^{OPT} is dense.

< 17 ► <

Problems with SVD

$$M_{ij}^{\mathsf{OPT}} = \log \left(rac{\#\left(w_i, \, c_j
ight) \cdot |D|}{\#\left(w_i
ight) \cdot \#\left(c_j
ight)}
ight) - \log k$$

Solution: Factorize

$$M_{ij}^{+} = \max\left(\log\left(\frac{\#(w_i, c_j) \cdot |D|}{\#(w_i) \cdot \#(c_j)}\right) - \log k, 0\right)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

Questions?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Table of Contents

三日 のへの

물 에 문 문 이

Image: A marked black

Experiment Setup

data: vocabulary size:

window size: word-context samples: embedding dimension: \sim 4.6 million English Wikipedia articles \sim 160,000 (words that appeared at least 300 times) 2 \sim 9.7 billion 200

Table of Contents

Evaluation

• Optimizing the objective

- Word Similarity Tasks
- Analogy Tasks

▲ 🗗 🕨 🔺

Optimizing the Objective

The following table shows the percentage of deviation from the optimal value, that is

$$\frac{\ell-\ell^{\mathsf{OPT}}}{\ell^{\mathsf{OPT}}}$$

k	ℓ^{OPT}	ℓ^+	SVD	NN
0	0%	5.7%	25.1%	-
1	0%	29.3%	38.8%	22.7%
5	0%	120.9%	124.7%	9.5%
15	0%	309.0%	310.4%	8.9%

Table: Percentage of deviation from the optimal objective value.

イロト (母) (ヨト (ヨト) ヨヨ ののの

Table of Contents

Evaluation

• Optimizing the objective

- Word Similarity Tasks
- Analogy Tasks

< 4 → <

Word Similarity Tasks

Models were tested to two datasets:

- WordSim353: 353 word pairs
- MEN: 3000 word pairs

word pairs		human assigned similarity scores		
stock	market	8.08		
physics	chemistry	7.35		
game	round	5.97		
experience	music	3.47		
stock	jaguar	0.92		

Table: Examples from the WordSim353 dataset

Word Similarity Tasks

	WordSim353		ME	ЛEN	
k	NN	SVD	NN	SVD	
0	-	0.601	-	0.655	
1	0.524	0.613	0.588	0.700	
5	0.658	0.536	0.712	0.669	
15	0.644	0.400	0.681	0.606	

Table: Spearman's correlation between dataset similarity scores and similarity scores that different the models returned.

Note: Spearman's correlation $\rho_S \in [-1, 1]$, where negative (positive) numbers indicate negative (positive) correlation and zero indicates no correlation.

More about Spearman's correlation

Table of Contents

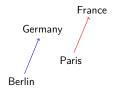
Evaluation

• Optimizing the objective

- Word Similarity Tasks
- Analogy Tasks

Berlin is to Germany as Paris is to France.

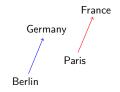
Berlin is to Germany as Paris is to France.



- K I	um	nn

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

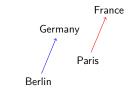
Berlin is to Germany as Paris is to France.



 $\Rightarrow \text{vec}(\text{Germany}) - \text{vec}(\text{Berlin}) = \text{vec}(\text{France}) - \text{vec}(\text{Paris})$

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Berlin is to Germany as Paris is to France.



 $\Rightarrow \text{vec}(\text{Germany}) - \text{vec}(\text{Berlin}) = \text{vec}(\text{France}) - \text{vec}(\text{Paris})$

in other words:

vec(France) = vec(Germany) - vec(Berlin) + vec(Paris)

Mixed dataset 19.500 analogies		Syntactic 8.000 at		
k	NN	SVD	NN	SVD
0	-	26.8%	-	28.7%
1 5 15	27.3% 51.0% 53.2%	30.6% 12.0% 5.9%	32.3% 51.0% 47.9%	19.6% 5.7% 1.4%

Table: Percentage of correct answers on two word analogy datasets.

More examples

Questions?

Expectation of the closest vector

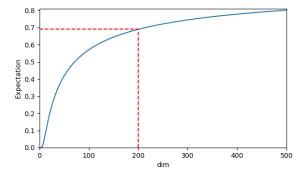


Figure: Expectation of the cosine distance to the nearest vector for 159,862 vectors depending on the embedding dimension.

1 =

Expectation of the closest vector

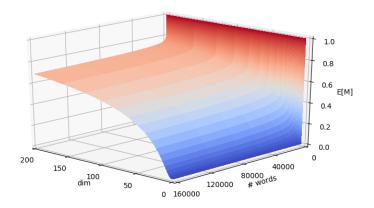
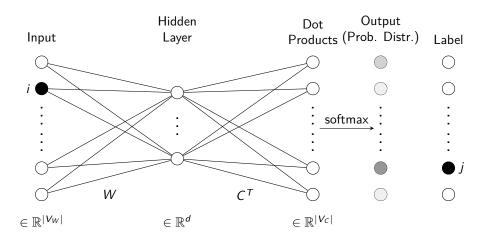


Figure: The expectation of the distance to the closest word depending on the embedding dimension and the number of words.

T. Klumpp	Word Embeddings		Januar	y 15, 20	20	29 / 27
Back	•	₽ ►	(注)	∢ ≣ ∢	-문(H	590

Skip-Gram



January 15, 2020 30 / 27

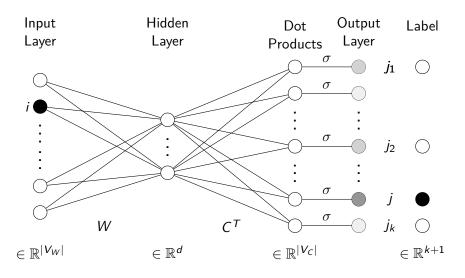
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

Objective function SG

$$\ell_{SG}(W, C) = \sum_{(w,c)\in D} \log \frac{\exp\left(\vec{w} \cdot \vec{c}\right)}{\sum_{c' \in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)}$$
$$= \sum_{(w,c)\in D} \left(\vec{w} \cdot \vec{c} - \log\left(\sum_{c' \in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right)\right)$$

Back

Skip-Gram with negative sampling



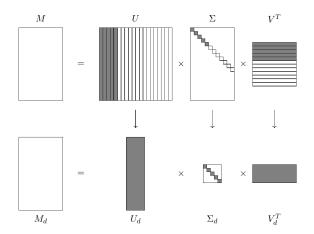
January 15, 2020 32 / 27

Objective function SGNS

$$\ell_{SGNS}(W, C) = \sum_{(w_i, c_j) \in D} \left(\log \sigma \left(\vec{w}_i \cdot \vec{c}_j \right) + \sum_{l=1}^k \log \left(1 - \sigma \left(\vec{w}_i \cdot \vec{c}_{j_l} \right) \right) \right)$$
$$= \sum_{(w_i, c_j) \in D} \left(\log \sigma \left(\vec{w}_i \cdot \vec{c}_j \right) + \sum_{l=1}^k \log \sigma \left(- \vec{w}_i \cdot \vec{c}_{j_l} \right) \right)$$
$$\approx \sum_{(w, c) \in D} \left(\log \sigma \left(\vec{w} \cdot \vec{c} \right) + k \cdot \mathbb{E}_{c_N \sim \mathsf{P}_D} \left[\log \sigma \left(- \vec{w} \cdot \vec{c}_N \right) \right] \right)$$

Back

Truncated SVD



◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Spearman correlation

Let X_i be the human-assigned scores and Y_i be the cosine similarity of the vectors. Then, the Spearman correlation is defined as

$$\rho_{\mathcal{S}} = \frac{\operatorname{cov}\left(\operatorname{rg}\left(X\right), \operatorname{rg}\left(Y\right)\right)}{\sigma\left(\operatorname{rg}\left(X\right)\right)\sigma\left(\operatorname{rg}\left(Y\right)\right)} \in \left[-1, 1\right].$$

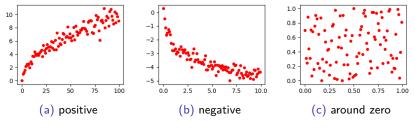


Figure: Datasets with different Spearman correlation

글 날

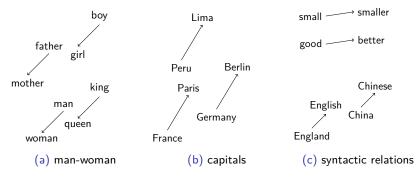
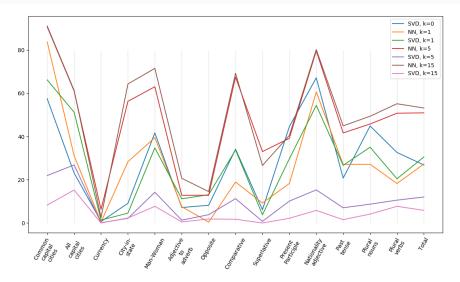


Figure: Examples of various relations between words

Back



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��