Neural Word Embeddings as Matrix Factorization

Master's Thesis Mathematics

Presented by:
Theresa Klumpp

Supervisors:
Prof. P. Pfaffelhuber
Prof. H. Bast

January 15, 2020

Table of Contents

(1) Problem

(2) Solution

(3) Evaluation

Problem

Goal: word vectors that reflect similarities and dissimilarities

Problem

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

Problem

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

- I get to work faster when I take the ${ }^{* * *}$.

Problem

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

- I get to work faster when I take the ***.
- This model has amazing acceleration for a ${ }^{* * *}$ of its size.

Problem

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

- I get to work faster when I take the ***.
- This model has amazing acceleration for a ${ }^{* * *}$ of its size.
- I would never drive my *** into Paris if I could get there by train.

Problem

Goal: word vectors that reflect similarities and dissimilarities

Underlying hypothesis: words in similar contexts have similar meanings

- I get to work faster when I take the ***.
- This model has amazing acceleration for a ${ }^{* * *}$ of its size.
- I would never drive my *** into Paris if I could get there by train.

Demo

Contributions

- Gaining an understanding of the objective functions of skip-gram (with and without negative sampling) and the statistical models behind them.
- Finding a maximum for skip-gram's objective.
- Showing the connection between the neural networks and Singular Value Decomposition (SVD).
- Comparing different metrics on the sphere.
- Finding a formula for the expectation of the distance of the closest vector.
- An implementation of the SGNS neural network and the SVD variant for both skip-gram and SGNS.
- Evaluation of the models on word similarity and analogy tasks.

Contributions

- Gaining an understanding of the objective functions of skip-gram (with and without negative sampling) and the statistical models behind them.
- Finding a maximum for skip-gram's objective.
- Showing the connection between the neural networks and Singular Value Decomposition (SVD).
- Comparing different metrics on the sphere.
- Finding a formula for the expectation of the distance of the closest vector.
- An implementation of the SGNS neural network and the SVD variant for both skip-gram and SGNS.
- Evaluation of the models on word similarity and analogy tasks.

Questions?

Table of Contents

(1) Problem

(2) Solution

(3) Evaluation

Definition: Context

			work	Text faster	when	I take the car.	\Rightarrow	Samples (I, get)
I	get	to						
				faster	when			(I, to)
I	get	to	work			I take the car.	\Rightarrow	(get, I)
								(get, to)
					when	I take the car.	\Rightarrow	(get, work)
I	get	to	work	faster				(to, I)
1								(to, get)
								(to, work)
						I take the car.	\Rightarrow	(to, faster)
	get	to	work	faster	when			(work, get)
								(work, to)
								(work, faster)
								(work, when)

Notation

- $V_{\boldsymbol{w}}$ and $V_{\boldsymbol{C}}$: word and context vocabulary (we have $V_{W}=V_{C}$)
- D: observed word context pairs
- \#($\boldsymbol{w}, \boldsymbol{c})$: number of times the pair (w, c) appears in D
- $\#(\boldsymbol{w})=\sum_{c^{\prime} \in V_{c}} \#\left(w, c^{\prime}\right)$ and $\#(\boldsymbol{c})=\sum_{w^{\prime} \in V_{w}} \#\left(w^{\prime}, c\right)$

Mathematical Goal

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large $\#(w, c)$ and
- small for pairs with low $\#(w, c)$

Mathematical Goal

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large $\#(w, c)$ and
- small for pairs with low $\#(w, c)$

Why does this yield good embeddings?

Mathematical Goal

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large $\#(w, c)$ and
- small for pairs with low $\#(w, c)$

Why does this yield good embeddings?

	$c_{1}=$ drive	$c_{2}=$ road	$c_{3}=$ space	$c_{4}=$ bottle
$w_{1}=$ car	0.9	0.8	0.2	0.1
$w_{2}=$ truck	0.8	0.7	0.2	0.2

Mathematical Goal

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large $\#(w, c)$ and
- small for pairs with low \# (w, c)

$$
W=\left(\begin{array}{c}
\vec{w}_{1} \\
\vdots \\
\vec{w}_{\left|V_{w}\right|}
\end{array}\right) \text { and } C=\left(\begin{array}{c}
\vec{c}_{1} \\
\vdots \\
\vec{c}_{\left|V_{c}\right|}
\end{array}\right)
$$

Mathematical Goal

Find embeddings such that $\vec{w} \cdot \vec{c}$ is

- high for pairs with large $\#(w, c)$ and
- small for pairs with low \# (w, c)

$$
W=\left(\begin{array}{c}
\vec{w}_{1} \\
\vdots \\
\vec{w}_{\left|V_{w}\right|}
\end{array}\right) \text { and } C=\left(\begin{array}{c}
\vec{c}_{1} \\
\vdots \\
\vec{c}_{\left|V_{c}\right|}
\end{array}\right)
$$

\Rightarrow Find a function $\ell(W, C)$ that is maximized when the properties above hold.

Skip-Gram: Objective functions

$$
\ell_{S G}(W, C)=\sum_{(w, c) \in D}\left(\vec{w} \cdot \vec{c}-\log \left(\sum_{c^{\prime} \in V_{c}} \exp \left(\vec{w} \cdot \overrightarrow{c^{\prime}}\right)\right)\right)
$$

Skip-Gram: Objective functions

$$
\begin{aligned}
& \ell_{S G}(W, C)=\sum_{(w, c) \in D}\left(\vec{w} \cdot \vec{c}-\log \left(\sum_{c^{\prime} \in V_{c}} \exp \left(\vec{w} \cdot \overrightarrow{c^{\prime}}\right)\right)\right) \\
& \ell_{S G N S}(W, C)=\sum_{(w, c) \in D}\left(\log \sigma(\vec{w} \cdot \vec{c})+\sum_{j=1}^{k} \log \sigma\left(-\vec{w} \cdot \vec{c}_{j}\right)\right)
\end{aligned}
$$

Optimal value for the dot products

- $\ell_{\text {SGNS }}(W, C)$ is maximized for

$$
(\vec{w} \cdot \vec{c})^{\mathrm{OPT}}=\log \left(\frac{\#(w, c) \cdot|D|}{\#(w) \cdot \#(c)}\right)-\log k
$$

Optimal value for the dot products

- $\ell_{\text {SGNS }}(W, C)$ is maximized for

$$
(\vec{w} \cdot \vec{c})^{\mathrm{OPT}}=\log \left(\frac{\#(w, c) \cdot|D|}{\#(w) \cdot \#(c)}\right)-\log k
$$

- Note that

$$
\left(W \cdot C^{T}\right)_{i j}=\vec{w}_{i} \cdot \vec{c}_{j}
$$

Optimal value for the dot products

- $\ell_{\text {SGNS }}(W, C)$ is maximized for

$$
(\vec{w} \cdot \vec{c})^{\mathrm{OPT}}=\log \left(\frac{\#(w, c) \cdot|D|}{\#(w) \cdot \#(c)}\right)-\log k
$$

- Note that

$$
\left(W \cdot C^{T}\right)_{i j}=\vec{w}_{i} \cdot \vec{c}_{j}
$$

- Let M^{OPT} be the matrix containing the optimal dot products, that is

$$
M_{i j}^{\mathrm{OPT}}=\left(\vec{w}_{i} \cdot \vec{c}_{j}\right)^{\mathrm{OPT}}
$$

Singular Value Decomposition (SVD)

- $\left(W \cdot C^{T}\right)_{i j}=\vec{w}_{i} \cdot \vec{c}_{j} \quad$ and $\quad M_{i j}^{\mathrm{OPT}}=\left(\vec{w}_{i} \cdot \vec{c}_{j}\right)^{\mathrm{OPT}}$

Singular Value Decomposition (SVD)

- $\left(W \cdot C^{T}\right)_{i j}=\vec{w}_{i} \cdot \vec{c}_{j} \quad$ and $\quad M_{i j}^{\mathrm{OPT}}=\left(\vec{w}_{i} \cdot \vec{c}_{j}\right)^{\mathrm{OPT}}$
- Skip-gram with negative sampling is trying to find W and C such that

$$
W \cdot C^{T}=M^{\mathrm{OPT}}
$$

Singular Value Decomposition (SVD)

- $\left(W \cdot C^{T}\right)_{i j}=\vec{w}_{i} \cdot \vec{c}_{j} \quad$ and $\quad M_{i j}^{\mathrm{OPT}}=\left(\vec{w}_{i} \cdot \vec{c}_{j}\right)^{\text {OPT }}$
- Skip-gram with negative sampling is trying to find W and C such that

$$
W \cdot C^{T}=M^{\mathrm{OPT}}
$$

- Truncated SVD gives us a factorization of the best rank d approximation of M^{OPT} :

$$
W_{\mathrm{SVD}} \cdot C_{\mathrm{SVD}}^{T}=\underset{M \mid \operatorname{rk}(M)=d}{\arg \min }\left\|M-M^{\mathrm{OPT}}\right\|_{\mathrm{F}}
$$

Skip-Gram (without negative sampling)

Recall from previous slide:

$$
\ell_{S G}(W, C)=\sum_{(w, c) \in D}\left(\vec{w} \cdot \vec{c}-\log \left(\sum_{c^{\prime} \in V_{C}} \exp \left(\vec{w} \cdot \overrightarrow{c^{\prime}}\right)\right)\right)
$$

Computations for the skip-gram model (without negative sampling) yield a maximum for

$$
(\vec{w} \cdot \vec{c})^{\mathrm{OPT}}=\log \#(w, c)
$$

Problems with SVD

$$
M_{i j}^{\mathrm{OPT}}=\log \left(\frac{\#\left(w_{i}, c_{j}\right) \cdot|D|}{\#\left(w_{i}\right) \cdot \#\left(c_{j}\right)}\right)-\log k
$$

Problems with SVD

$$
M_{i j}^{\mathrm{OPT}}=\log \left(\frac{\#\left(w_{i}, c_{j}\right) \cdot|D|}{\#\left(w_{i}\right) \cdot \#\left(c_{j}\right)}\right)-\log k
$$

(1) What about pairs with $\#\left(w_{i}, c_{j}\right)=0$?
(This is the case for more than 98% of our pairs!)
(2) M^{OPT} is dense.

Problems with SVD

$$
M_{i j}^{\mathrm{OPT}}=\log \left(\frac{\#\left(w_{i}, c_{j}\right) \cdot|D|}{\#\left(w_{i}\right) \cdot \#\left(c_{j}\right)}\right)-\log k
$$

(1) What about pairs with $\#\left(w_{i}, c_{j}\right)=0$?
(This is the case for more than 98% of our pairs!)
(2) M^{OPT} is dense.

Solution: Factorize

$$
M_{i j}^{+}=\max \left(\log \left(\frac{\#\left(w_{i}, c_{j}\right) \cdot|D|}{\#\left(w_{i}\right) \cdot \#\left(c_{j}\right)}\right)-\log k, 0\right)
$$

Questions?

Table of Contents

(1) Problem

(2) Solution

(3) Evaluation

Experiment Setup

data:
vocabulary size:
window size:
word-context samples: ~ 9.7 billion embedding dimension:
$\sim 160,000$ 2

200
~ 4.6 million English Wikipedia articles
(words that appeared at least 300 times)

Table of Contents

(3) Evaluation

- Optimizing the objective
- Word Similarity Tasks
- Analogy Tasks

Optimizing the Objective

The following table shows the percentage of deviation from the optimal value, that is

$$
\frac{\ell-\ell^{\mathrm{OPT}}}{\ell \mathrm{OPT}}
$$

k	$\ell^{\text {OPT }}$	ℓ^{+}	SVD	NN
0	0%	5.7%	25.1%	-
1	0%	29.3%	38.8%	22.7%
5	0%	120.9%	124.7%	9.5%
15	0%	309.0%	310.4%	8.9%

Table: Percentage of deviation from the optimal objective value.

Table of Contents

(3) Evaluation

- Optimizing the objective
- Word Similarity Tasks
- Analogy Tasks

Word Similarity Tasks

Models were tested to two datasets:

- WordSim353: 353 word pairs
- MEN: 3000 word pairs

$$
\begin{array}{ll}
\text { word pairs } & \begin{array}{l}
\text { human assigned } \\
\text { similarity scores }
\end{array}
\end{array}
$$

stock	market	8.08
physics	chemistry	7.35
game	round	5.97
experience	music	3.47
stock	jaguar	0.92

Table: Examples from the WordSim353 dataset

Word Similarity Tasks

	WordSim353			MEN	
k	NN	SVD		NN	SVD
0	-	0.601		-	0.655
1	0.524	0.613		0.588	0.700
5	0.658	0.536		0.712	0.669
15	0.644	0.400		0.681	0.606

Table: Spearman's correlation between dataset similarity scores and similarity scores that different the models returned.

Note: Spearman's correlation $\rho_{S} \in[-1,1]$, where negative (positive) numbers indicate negative (positive) correlation and zero indicates no correlation.

[^0]
Table of Contents

(3) Evaluation

- Optimizing the objective
- Word Similarity Tasks
- Analogy Tasks

Analogy Tasks

Berlin is to Germany as Paris is to France.

Analogy Tasks

Berlin is to Germany as Paris is to France.

Analogy Tasks

Berlin is to Germany as Paris is to France.

France

Berlin
$\Rightarrow \operatorname{vec}($ Germany $)-\operatorname{vec}($ Berlin $)=\operatorname{vec}($ France $)-\mathrm{vec}($ Paris $)$

Analogy Tasks

Berlin is to Germany as Paris is to France.

$$
\begin{aligned}
& \text { Berlin } \\
& \Rightarrow \operatorname{vec}(\text { Germany })-\mathrm{vec}(\text { Berlin })=\mathrm{vec}(\text { France })-\mathrm{vec}(\text { Paris }) \\
& \operatorname{vec}(\text { in other words: } \\
& \text { France })=\operatorname{vec}(\text { Germany })-\mathrm{vec}(\text { Berlin })+\mathrm{vec}(\text { Paris })
\end{aligned}
$$

Analogy Tasks

k	Mixed dataset 19.500 analogies		Syntactic dataset 8.000 analogies	
	NN	SVD	NN	SVD
0	-	26.8\%	-	28.7\%
1	27.3\%	30.6\%	32.3\%	19.6\%
5	51.0\%	12.0\%	51.0\%	5.7\%
15	53.2\%	5.9\%	47.9\%	1.4\%

Table: Percentage of correct answers on two word analogy datasets.

Questions?

Expectation of the closest vector

Figure: Expectation of the cosine distance to the nearest vector for 159, 862 vectors depending on the embedding dimension.

Expectation of the closest vector

Figure: The expectation of the distance to the closest word depending on the embedding dimension and the number of words.

Skip-Gram

Objective function SG

$$
\begin{aligned}
\ell_{S G}(W, C) & =\sum_{(w, c) \in D} \log \frac{\exp (\vec{w} \cdot \vec{c})}{\sum_{c^{\prime} \in V_{C}} \exp \left(\vec{w} \cdot \overrightarrow{c^{\prime}}\right)} \\
& =\sum_{(w, c) \in D}\left(\vec{w} \cdot \vec{c}-\log \left(\sum_{c^{\prime} \in V_{C}} \exp \left(\vec{w} \cdot \overrightarrow{c^{\prime}}\right)\right)\right)
\end{aligned}
$$

Skip-Gram with negative sampling

Objective function SGNS

$$
\begin{aligned}
\ell_{S G N S}(W, C) & =\sum_{\left(w_{i}, c_{j}\right) \in D}\left(\log \sigma\left(\vec{w}_{i} \cdot \vec{c}_{j}\right)+\sum_{l=1}^{k} \log \left(1-\sigma\left(\vec{w}_{i} \cdot \vec{c}_{j_{l}}\right)\right)\right) \\
& =\sum_{\left(w_{i}, c_{j}\right) \in D}\left(\log \sigma\left(\vec{w}_{i} \cdot \vec{c}_{j}\right)+\sum_{l=1}^{k} \log \sigma\left(-\vec{w}_{i} \cdot \vec{c}_{j_{l}}\right)\right) \\
& \approx \sum_{(w, c) \in D}\left(\log \sigma(\vec{w} \cdot \vec{c})+k \cdot \mathbb{E}_{c_{N} \sim \mathrm{P}_{D}}\left[\log \sigma\left(-\vec{w} \cdot \vec{c}_{N}\right)\right]\right)
\end{aligned}
$$

Truncated SVD

Spearman correlation

Let X_{i} be the human-assigned scores and Y_{i} be the cosine similarity of the vectors. Then, the Spearman correlation is defined as

$$
\rho_{S}=\frac{\operatorname{cov}(\operatorname{rg}(X), \operatorname{rg}(Y))}{\sigma(\operatorname{rg}(X)) \sigma(\operatorname{rg}(Y))} \in[-1,1] .
$$

Figure: Datasets with different Spearman correlation

Analogy Tasks

Figure: Examples of various relations between words

Analogy Tasks

[^0]: More about Spearman's correlation

