### Neural Word Embeddings as Matrix Factorization

Master's Thesis Mathematics

Presented by: Theresa Klumpp Supervisors: Prof. P. Pfaffelhuber Prof. H. Bast

January 15, 2020

A 3 b

31= 990

# Table of Contents



### Solution



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

#### Goal: word vectors that reflect similarities and dissimilarities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Goal: word vectors that reflect similarities and dissimilarities

# **Underlying hypothesis:** words in similar contexts have similar meanings

< □ ▶ < 一 ▶

Goal: word vectors that reflect similarities and dissimilarities

**Underlying hypothesis:** words in similar contexts have similar meanings

• I get to work faster when I take the \*\*\*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Goal: word vectors that reflect similarities and dissimilarities

**Underlying hypothesis:** words in similar contexts have similar meanings

- I get to work faster when I take the \*\*\*.
- This model has amazing acceleration for a \*\*\* of its size.

Goal: word vectors that reflect similarities and dissimilarities

**Underlying hypothesis:** words in similar contexts have similar meanings

- I get to work faster when I take the \*\*\*.
- This model has amazing acceleration for a \*\*\* of its size.
- I would never drive my \*\*\* into Paris if I could get there by train.

Goal: word vectors that reflect similarities and dissimilarities

**Underlying hypothesis:** words in similar contexts have similar meanings

- I get to work faster when I take the \*\*\*.
- This model has amazing acceleration for a \*\*\* of its size.
- I would never drive my \*\*\* into Paris if I could get there by train.

#### Demo

## Contributions

- Gaining an understanding of the objective functions of skip-gram (with and without negative sampling) and the statistical models behind them.
- Finding a maximum for skip-gram's objective.
- Showing the connection between the neural networks and Singular Value Decomposition (SVD).
- Comparing different metrics on the sphere.
- Finding a formula for the expectation of the distance of the closest vector.
- An implementation of the SGNS neural network and the SVD variant for both skip-gram and SGNS.
- Evaluation of the models on word similarity and analogy tasks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

### Contributions

- Gaining an understanding of the objective functions of skip-gram (with and without negative sampling) and the statistical models behind them.
- Finding a maximum for skip-gram's objective.
- Showing the connection between the neural networks and Singular Value Decomposition (SVD).
- Comparing different metrics on the sphere.
- Finding a formula for the expectation of the distance of the closest vector.
- An implementation of the SGNS neural network and the SVD variant for both skip-gram and SGNS.
- Evaluation of the models on word similarity and analogy tasks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

# Questions?

# Table of Contents







◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

### Definition: Context



э.

ELE SQC

### Notation

- $V_W$  and  $V_C$ : word and context vocabulary (we have  $V_W = V_C$ )
- **D**: observed word context pairs
- #(w, c): number of times the pair (w, c) appears in D
- $\#(w) = \sum_{c' \in V_C} \#(w, c')$  and  $\#(c) = \sum_{w' \in V_W} \#(w', c)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Find embeddings such that  $\vec{w} \cdot \vec{c}$  is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

< 1 ▶

Find embeddings such that  $\vec{w} \cdot \vec{c}$  is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

#### Why does this yield good embeddings?

Find embeddings such that  $\vec{w} \cdot \vec{c}$  is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

#### Why does this yield good embeddings?

|               | $c_1 = drive$ | $c_2 = road$ | $c_3 = space$ | $c_4 = bottle$ |
|---------------|---------------|--------------|---------------|----------------|
| $w_1 = car$   | 0.9           | 0.8          | 0.2           | 0.1            |
| $w_2 = truck$ | 0.8           | 0.7          | 0.2           | 0.2            |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Find embeddings such that  $\vec{w} \cdot \vec{c}$  is

• high for pairs with large #(w, c) and

• small for pairs with low #(w,c)

$$W = \begin{pmatrix} \vec{w}_1 \\ \vdots \\ \vec{w}_{|V_W|} \end{pmatrix} \text{ and } C = \begin{pmatrix} \vec{c}_1 \\ \vdots \\ \vec{c}_{|V_C|} \end{pmatrix}$$

-

3 1 1 N Q Q

Find embeddings such that  $\vec{w} \cdot \vec{c}$  is

- high for pairs with large #(w, c) and
- small for pairs with low #(w,c)

$$W = \begin{pmatrix} \vec{w}_1 \\ \vdots \\ \vec{w}_{|V_W|} \end{pmatrix} \text{ and } C = \begin{pmatrix} \vec{c}_1 \\ \vdots \\ \vec{c}_{|V_C|} \end{pmatrix}$$

 $\Rightarrow$  Find a function  $\ell(W, C)$  that is maximized when the properties above hold.

# Skip-Gram: Objective functions

$$\ell_{SG}(W,C) = \sum_{(w,c)\in D} \left( \vec{w} \cdot \vec{c} - \log\left(\sum_{c'\in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right) \right)$$

More

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

# Skip-Gram: Objective functions

$$\ell_{SG}(W,C) = \sum_{(w,c)\in D} \left( \vec{w} \cdot \vec{c} - \log\left(\sum_{c'\in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right) \right)$$

$$\ell_{SGNS}(W, C) = \sum_{(w,c)\in D} \left( \log \sigma \left( \vec{w} \cdot \vec{c} \right) + \sum_{j=1}^{k} \log \sigma \left( - \vec{w} \cdot \vec{c}_{j} \right) \right)$$



More

### Optimal value for the dot products

•  $\ell_{SGNS}(W, C)$  is maximized for

$$\left(\vec{w} \cdot \vec{c}\right)^{\mathsf{OPT}} = \log\left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)}\right) - \log k$$

# Optimal value for the dot products

•  $\ell_{SGNS}(W, C)$  is maximized for

$$\left(\vec{w}\cdot\vec{c}\right)^{\mathsf{OPT}} = \log\left(\frac{\#\left(w,c\right)\cdot|D|}{\#\left(w\right)\cdot\#\left(c\right)}\right) - \log k$$

Note that

$$\left(W\cdot C^{T}\right)_{ij}=\vec{w}_{i}\cdot\vec{c}_{j}$$

< □ > < 同 >

# Optimal value for the dot products

•  $\ell_{SGNS}(W, C)$  is maximized for

$$\left(\vec{w} \cdot \vec{c}\right)^{\mathsf{OPT}} = \log\left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)}\right) - \log k$$

Note that

$$\left(W\cdot C^{T}\right)_{ij}=\vec{w}_{i}\cdot\vec{c}_{j}$$

• Let  $M^{\text{OPT}}$  be the matrix containing the optimal dot products, that is

$$M_{ij}^{\mathsf{OPT}} = \left( ec{w}_i \cdot ec{c}_j 
ight)^{\mathsf{OPT}}$$

▲ Ξ ► Ξ Ξ = 𝔄 𝔄 𝔄

# Singular Value Decomposition (SVD)

• 
$$(W \cdot C^T)_{ij} = \vec{w}_i \cdot \vec{c}_j$$
 and  $M_{ij}^{OPT} = (\vec{w}_i \cdot \vec{c}_j)^{OPT}$ 

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

# Singular Value Decomposition (SVD)

• 
$$(W \cdot C^{T})_{ij} = \vec{w}_i \cdot \vec{c}_j$$
 and  $M_{ij}^{OPT} = (\vec{w}_i \cdot \vec{c}_j)^{OPT}$ 

• Skip-gram with negative sampling is trying to find W and C such that

$$W \cdot C^T = M^{\mathsf{OPT}}$$

# Singular Value Decomposition (SVD)

• 
$$(W \cdot C^T)_{ij} = \vec{w}_i \cdot \vec{c}_j$$
 and  $M_{ij}^{OPT} = (\vec{w}_i \cdot \vec{c}_j)^{OPT}$ 

• Skip-gram with negative sampling is trying to find W and C such that

$$W \cdot C^T = M^{\mathsf{OPT}}$$

• Truncated SVD gives us a factorization of the best rank d approximation of  $M^{\text{OPT}}$ :

$$W_{\mathsf{SVD}} \cdot C_{\mathsf{SVD}}^{\mathsf{T}} = \operatorname*{arg\,min}_{M|\mathsf{rk}(M)=d} ||M - M^{\mathsf{OPT}}||_{\mathsf{F}}$$

# Skip-Gram (without negative sampling)

Recall from previous slide:

$$\ell_{SG}(W,C) = \sum_{(w,c)\in D} \left( \vec{w} \cdot \vec{c} - \log\left(\sum_{c'\in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right) \right)$$

Computations for the skip-gram model (without negative sampling) yield a maximum for

$$\left(\vec{w}\cdot\vec{c}\right)^{\mathsf{OPT}}=\log\#\left(w,c\right)$$

# Problems with SVD

$$M_{ij}^{ ext{OPT}} = \log \left( rac{\# \left( w_i, c_j 
ight) \cdot |D|}{\# \left( w_i 
ight) \cdot \# \left( c_j 
ight)} 
ight) - \log k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Problems with SVD

$$M_{ij}^{\mathsf{OPT}} = \log \left( rac{\#\left(w_{i}, \, c_{j}
ight) \cdot |D|}{\#\left(w_{i}
ight) \cdot \#\left(c_{j}
ight)} 
ight) - \log k$$

What about pairs with # (w<sub>i</sub>, c<sub>j</sub>) = 0? (This is the case for more than 98% of our pairs!)
M<sup>OPT</sup> is dense.

< 17 ► <

# Problems with SVD

$$M_{ij}^{\mathsf{OPT}} = \log \left( rac{\#\left(w_i, \, c_j 
ight) \cdot |D|}{\#\left(w_i 
ight) \cdot \#\left(c_j 
ight)} 
ight) - \log k$$

Solution: Factorize

$$M_{ij}^{+} = \max\left(\log\left(\frac{\#(w_i, c_j) \cdot |D|}{\#(w_i) \cdot \#(c_j)}\right) - \log k, 0\right)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◆○

# Questions?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Table of Contents







三日 のへの

물 에 문 문 이

Image: A marked black

### Experiment Setup

data: vocabulary size:

window size: word-context samples: embedding dimension:  $\sim$  4.6 million English Wikipedia articles  $\sim$  160,000 (words that appeared at least 300 times) 2  $\sim$  9.7 billion 200

# Table of Contents



### Evaluation

• Optimizing the objective

- Word Similarity Tasks
- Analogy Tasks

▲ 🗗 🕨 🔺

# Optimizing the Objective

The following table shows the percentage of deviation from the optimal value, that is

$$\frac{\ell-\ell^{\mathsf{OPT}}}{\ell^{\mathsf{OPT}}}$$

| k  | $\ell^{OPT}$ | $\ell^+$ | SVD    | NN    |
|----|--------------|----------|--------|-------|
| 0  | 0%           | 5.7%     | 25.1%  | -     |
| 1  | 0%           | 29.3%    | 38.8%  | 22.7% |
| 5  | 0%           | 120.9%   | 124.7% | 9.5%  |
| 15 | 0%           | 309.0%   | 310.4% | 8.9%  |

Table: Percentage of deviation from the optimal objective value.

イロト (母) (ヨト (ヨト ) ヨヨ ののの

### Table of Contents



### Evaluation

• Optimizing the objective

- Word Similarity Tasks
- Analogy Tasks

< 4 → <

# Word Similarity Tasks

Models were tested to two datasets:

- WordSim353: 353 word pairs
- MEN: 3000 word pairs

| word pairs |           | human assigned<br>similarity scores |  |  |
|------------|-----------|-------------------------------------|--|--|
| stock      | market    | 8.08                                |  |  |
| physics    | chemistry | 7.35                                |  |  |
| game       | round     | 5.97                                |  |  |
| experience | music     | 3.47                                |  |  |
| stock      | jaguar    | 0.92                                |  |  |

Table: Examples from the WordSim353 dataset

# Word Similarity Tasks

|    | WordSim353 |       | ME    | ЛEN   |  |
|----|------------|-------|-------|-------|--|
| k  | NN         | SVD   | NN    | SVD   |  |
| 0  | -          | 0.601 | -     | 0.655 |  |
| 1  | 0.524      | 0.613 | 0.588 | 0.700 |  |
| 5  | 0.658      | 0.536 | 0.712 | 0.669 |  |
| 15 | 0.644      | 0.400 | 0.681 | 0.606 |  |

Table: Spearman's correlation between dataset similarity scores and similarity scores that different the models returned.

Note: Spearman's correlation  $\rho_S \in [-1, 1]$ , where negative (positive) numbers indicate negative (positive) correlation and zero indicates no correlation.

More about Spearman's correlation

## Table of Contents



### Evaluation

• Optimizing the objective

- Word Similarity Tasks
- Analogy Tasks

Berlin is to Germany as Paris is to France.

### Berlin is to Germany as Paris is to France.



| - K I | um | nn |
|-------|----|----|
|       |    |    |

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

### Berlin is to Germany as Paris is to France.



 $\Rightarrow \text{vec}(\text{Germany}) - \text{vec}(\text{Berlin}) = \text{vec}(\text{France}) - \text{vec}(\text{Paris})$ 

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

### Berlin is to Germany as Paris is to France.



 $\Rightarrow \text{vec}(\text{Germany}) - \text{vec}(\text{Berlin}) = \text{vec}(\text{France}) - \text{vec}(\text{Paris})$ 

in other words:

vec(France) = vec(Germany) - vec(Berlin) + vec(Paris)

| Mixed dataset<br>19.500 analogies |                         | Syntactic<br>8.000 at  |                         |                       |
|-----------------------------------|-------------------------|------------------------|-------------------------|-----------------------|
| k                                 | NN                      | SVD                    | NN                      | SVD                   |
| 0                                 | -                       | 26.8%                  | -                       | 28.7%                 |
| 1<br>5<br>15                      | 27.3%<br>51.0%<br>53.2% | 30.6%<br>12.0%<br>5.9% | 32.3%<br>51.0%<br>47.9% | 19.6%<br>5.7%<br>1.4% |

Table: Percentage of correct answers on two word analogy datasets.

More examples

# Questions?

### Expectation of the closest vector



Figure: Expectation of the cosine distance to the nearest vector for 159,862 vectors depending on the embedding dimension.

1 =

### Expectation of the closest vector



Figure: The expectation of the distance to the closest word depending on the embedding dimension and the number of words.

| T. Klumpp | Word Embeddings |            | Januar | y 15, 20 | 20   | 29 / 27 |
|-----------|-----------------|------------|--------|----------|------|---------|
| Back      | •               | <b>₽</b> ► | (注)    | ∢ ≣ ∢    | -문(H | 590     |

# Skip-Gram



January 15, 2020 30 / 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

## Objective function SG

$$\ell_{SG}(W, C) = \sum_{(w,c)\in D} \log \frac{\exp\left(\vec{w} \cdot \vec{c}\right)}{\sum_{c' \in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)}$$
$$= \sum_{(w,c)\in D} \left(\vec{w} \cdot \vec{c} - \log\left(\sum_{c' \in V_C} \exp\left(\vec{w} \cdot \vec{c'}\right)\right)\right)$$

Back

# Skip-Gram with negative sampling



January 15, 2020 32 / 27

## Objective function SGNS

$$\ell_{SGNS}(W, C) = \sum_{(w_i, c_j) \in D} \left( \log \sigma \left( \vec{w}_i \cdot \vec{c}_j \right) + \sum_{l=1}^k \log \left( 1 - \sigma \left( \vec{w}_i \cdot \vec{c}_{j_l} \right) \right) \right)$$
$$= \sum_{(w_i, c_j) \in D} \left( \log \sigma \left( \vec{w}_i \cdot \vec{c}_j \right) + \sum_{l=1}^k \log \sigma \left( - \vec{w}_i \cdot \vec{c}_{j_l} \right) \right)$$
$$\approx \sum_{(w, c) \in D} \left( \log \sigma \left( \vec{w} \cdot \vec{c} \right) + k \cdot \mathbb{E}_{c_N \sim \mathsf{P}_D} \left[ \log \sigma \left( - \vec{w} \cdot \vec{c}_N \right) \right] \right)$$

Back

# Truncated SVD



◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

### Spearman correlation

Let  $X_i$  be the human-assigned scores and  $Y_i$  be the cosine similarity of the vectors. Then, the Spearman correlation is defined as

$$\rho_{\mathcal{S}} = \frac{\operatorname{cov}\left(\operatorname{rg}\left(X\right), \operatorname{rg}\left(Y\right)\right)}{\sigma\left(\operatorname{rg}\left(X\right)\right)\sigma\left(\operatorname{rg}\left(Y\right)\right)} \in \left[-1, 1\right].$$



Figure: Datasets with different Spearman correlation



글 날



Figure: Examples of various relations between words

Back



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��