
Master’s Thesis

Two-step OCR Post-correction with
BERT and Neural Machine Translation

models

Tanyu Tanev

Examiner: Prof. Dr. Hannah Bast
Advisers: Matthias Hertel

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair for Algorithms and Data Structures

June 14th, 2022

Writing Period

14. 12. 2021 – 14. 6. 2022

Examiner

Prof. Dr. Hannah Bast

Second Examiner

Prof. Dr. Frank Hutter

Advisers

Matthias Hertel

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

Optical Character Recognition (OCR) is a process, which transforms images (scans)

of PDF documents into actual text. This allows, among other things, for historical

documents to be digitalized, archived, and made available for researchers to use for

further processing. Modern OCR systems, however, produce errors when reading the

texts of historical documents due to a number of reasons — degraded quality of the

document, archaic forms of words, unknown fonts and so on. In order to make up

for this loss of information, Post-OCR correction can be employed to transform the

erroneous text back into its original form.

This paper evaluates the performance of a “two-step” approach on the task of Post-

OCR correction — using BERT for error detection and marking OCR errors —

optionally with context tokens around them — and sequence-to-sequence models

for correcting them. In particular, it researches how viable this approach is when

compared to the tradition “one-step” sequence-to-sequence method, which involves

just running a sequence-to-sequence model on parts of the whole sequence.

Furthermore, the paper also offers in-depth statistics of popular Post-OCR correction

benchmark datasets, alongside introducing some new ones. A procedure is outlined,

which can harness the aforementioned statistics, in order to build an arbitrary amount

of artificial data.

Although the two-step approach massively improves on the baseline method, it

achieves very underwhelming results when compared to the state-of-the-art models

from wide-known competitions. This is due to the error detection part becoming the

ii

bottleneck of the approach, essentially putting a cap on how good this approach can

function based on how many samples the detection model actually marks right. The

paper discusses the shortcomings of this approach and gives ideas on how it can be

improved in the future.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Optical Character Recognition . 2

1.3 Post-OCR correction . 4

2 Related Work 8

2.1 Classical Approaches . 9

2.2 NMT Approaches . 13

2.3 A Note on Comparison Bases . 16

3 Background 19

3.1 Machine Learning . 19

3.2 Deep Learning . 21

3.3 Recurrent Neural Networks . 29

3.3.1 Long Short-Term Memory . 32

4 Neural Machine Translation 36

4.1 Strings in Machine Learning . 37

4.2 Encoder-Decoder Models . 38

4.2.1 Training Encoder-Decoder Models 41

4.2.2 Inference with Encoder-Decoder Models 42

4.2.3 Bidirectional LSTM . 42

4.3 Attention . 43

iv

4.4 Transformers . 46

4.4.1 Positional Encoding . 47

4.4.2 Use of Attention . 50

4.4.3 Residual Connection . 53

4.4.4 Data Flow . 53

4.4.5 Training and Inference . 56

4.5 BERT . 57

4.5.1 Word embeddings . 57

4.5.2 Architecture . 61

4.5.3 Tokenization . 63

4.5.4 Pre-training . 66

5 String Operations 68

5.1 String Distance and Similarity . 68

5.1.1 String Similarity . 72

5.2 Needleman-Wunsch . 72

5.3 String Alignment . 75

6 Baseline algorithm 81

6.1 Q-Grams . 81

6.2 Fuzzy Search . 82

6.3 Q-Gram Index . 86

7 Error Correction Models 89

7.1 Data . 89

7.1.1 Data generation . 91

7.1.2 Filters . 93

7.1.3 Types of mistakes . 102

7.2 Character-level Vocabulary . 104

7.2.1 Correction Sample Encoding 105

7.2.2 Correction Sample Decoding 106

v

7.3 Data Flow . 107

8 Error Detection 108

8.1 Data . 109

8.2 Marking Mode . 111

8.2.1 “Start w/ Cont.” Marking mode 111

8.3 Prediction . 112

8.3.1 Fine-tuning . 115

8.4 Decoding . 116

9 Datasets 118

9.1 Overview . 121

9.1.1 Error Correction Statistics . 121

9.1.2 Error Detection Statistics . 124

9.2 ICDAR2017 Datasets . 126

9.3 ICDAR2019 Dataset . 129

9.4 “ACL Benchmark” Dataset . 130

9.5 “Matthias Benchmark” Dataset . 132

9.6 “Pure OCR errors” Dataset . 134

9.7 Artificial Sample Generation . 136

9.7.1 arXiv Document Dataset . 137

9.7.2 Generation from Error Statistics 141

10 Experiments 147

10.1 Evaluation and Metrics . 147

10.1.1 Error Correction Evaluation 148

10.1.2 Error Detection Evaluation 150

10.1.3 Two-step Approach Evaluation 153

10.2 Baseline Experiments . 154

10.2.1 Q-gram Size . 155

10.2.2 Hyperparameter Combinations 157

vi

10.3 External Baselines . 159

10.4 Error Correction Experiments . 160

10.5 Error Detection Experiments . 166

11 Results 169

11.1 Baseline Experiment Results . 169

11.2 Correction Experiment Results . 171

11.2.1 LSTM Experiment Results 172

11.2.2 Transformer Experiment Results 182

11.2.3 Mixed Dataset Experiment Results 184

11.3 Detection Experiment Results . 186

11.4 Final Results . 186

11.4.1 Artificial Data Statistics . 188

11.4.2 Final Detection Results . 189

11.4.3 Final Correction Results . 197

11.5 Flaws in the Results . 207

12 Conclusion 208

13 Future Work 210

14 Acknowledgments 213

Bibliography 224

vii

1 Introduction

1.1 Motivation

Digitization of historical documents is an important ongoing task worldwide. Accord-

ing to a 2017 survey ([NvdHT17]), which fielded the responses of around 1000 cultural

institutions, 82% of them were in active engagement with digitization. The situation

is similar in the United States, where [MP17] shows that 75% of 769 surveyed libraries

include digitization as a part of their activities. Furthermore, individual papers make

mention of local digitization initiatives: [KD16] works with digitized documents, pro-

duced by “Arabic Press Archive”; [ADT19] introduces a massive dataset of digitized

Swedish newspapers; [TMR09] evaluates the quality of another dataset, made from

digitized 19-th century British newspapers; and [BDD+08] tackles the creation of a

digitized collection of academic papers (i.e., journal and conference). This saturation

of academic works on the topic speaks for its importance. The benefit of digitization

is not only limited to preservation of culture and heritage. Rather, it also allows

for these historical documents to be made available online for further research or

educational usage. Indeed, [MSA+11] showcases how leveraging digitized books can

be used to explore the evolution of the English language.

Despite the acute demand for digitization, the manual process of doing so is expensive.

[NJCD21] points out that the estimated cost of manually typing out the contents of

one page amounts to 1 Euro. Scaling this cost up to the volume of all documents

that need digitization would result in a large financial investment. Because of this,

1

most digitization efforts are done automatically — a process called Optical Character

Recognition.

1.2 Optical Character Recognition

The most commonly-used OCR systems are software-based ([Ass16]). Tesseract

OCR1, for example, is a widespread solution, developed in part by Google2. Figure 1

then showcases how Tesseract and similar systems can be used to digitize documents3.

The user provides an image — usually a scanned version of a document — to the

system (as visualized in figure 1a). The system then “breaks down” the image into

individual characters and tries to recreate the original text. Brought down to its

simplest form, this process starts with the document hierarchically split down into

more basic building blocks, e.g., paragraphs into sentences into words into letters.

Afterwards, each image of a character (also called: glyph) is compared with different

representations of letters, coming from various fonts. The most passing match is

then chosen to represent the glyph in the resulting text. Finally, the letters are

merged back together into words and sentences and returned; the result of this step

is showcased in figure 1b. Modern OCR tools naturally include more sophisticated

techniques ([Ass16]), including:

• Preprocessing the page to fix skew and/or problems with the aspect ratio

• Using computer vision to get a latent representation of the characters when they

are being recognized; this avoids having to compare different letter representation

on a pixel-by-pixel basis, which is heavily influenced by font characteristics

• Using a two-pass approach, where recognized characters with high confidence

are used as context for the prediction of the rest
1https://github.com/tesseract-ocr/tesseract
2https://developers.googleblog.com/2006/08/announcing-tesseract-ocr.html
3Interactive tool is available at: https://tesseract.projectnaptha.com/

2

https://github.com/tesseract-ocr/tesseract
https://developers.googleblog.com/2006/08/announcing-tesseract-ocr.html
https://tesseract.projectnaptha.com/

(a) Excerpt from article with its Abstract section

(b) Boundaries of all detected tokens from Tesseract OCR

ABSTRACT. It is shown that the assumption thrat language is non-finite involves
the use of a constructive logic which leads to some restrictions on language theory
and to the fact that the only rossitle definition of language is that proposec by gen-
erative gramrars. fGenerative grammars can be formulated asn normal /M¥arkov/
algorithms and thus their study can be reduced to the stufy of suck algorithms
of a special +tyre. 4 new tyrpe of rsenerative grammar is defineé, called matrix
grammar. It is shown that 2 languapge generated by a context-restricted grammar
can be also generated by a matrix grammar. Some properties of matrix grammars
are shown to be deecicable. The problem of the explicative power of generative
granrmars is ciscussed.

(c) The resulting text reconstruction; red symbolizes mistakes

Figure 1: Result of applying Tesseract OCR on [Abr65]

3

Despite the continuous development, [SC19] shows that OCR engines still achieve sub-

par results when used on historical documents. Figure 1c highlights all of Tesseract’s

mistakes when used on an excerpt of an article from 1965 ([Abr65]), provided by

the ACL Anthology Reference Corpus ([BDD+08]). As observed, the mistakes are

diverse, including hallucination of non-existing characters (that → thrat), character

substitutions (proposed → proposec) or complete mismatch (possible → rossitle).

There are two reasons, which immediately pop into mind to explain the OCR engines’

worse performance on historical documents. For one, historical documents often

suffer from degraded paper quality. Secondly, older documents may also contain

archaic words, dialect forms of common words no longer in usage, or even words in

a non-recognizable font. In the case of academical works, OCR is made even more

difficult by the inclusion of technical jargon and mathematical symbols in formulas.

All of these factors combined make it, as of current stand, impossible for OCR engines

to perfectly reproduce text. But then how is it possible to keep up with the demand

for digitization? The answer is Post-OCR correction.

1.3 Post-OCR correction

Post-OCR correction is the task of mapping erroneous text, produced by an OCR

system, back to its original, error-free form. For example, if an OCR system produces

the erroneous sequence “I l0ve |)esto!”, Post-OCR correction should map it back to

“I love pesto!”. As discussed in the previous section, these mistakes include mapping

non-letter combinations back to the English alphabet (e.g., |) to p), merging the

blank space between two substrings (e.g., car pet → carpet), restoring hyphens of

compound words (e.g., viceversa → vice-versa) or all together removing imagined

tokens (e.g., M¥arkov → Markov from figure 1c).

Token is an important term in the field of Post-OCR correction. It is used to

represent an arbitrary sequence of characters. This means that a token can

take the form of a single character, a word, multiple words or even a single blank

4

space. I will be using token as a general term in this paper to represent sequences of

characters, which need to be corrected. Any time I need to specify the exact nature

of the token (e.g., word, character, etc.), I will explicitly mention it.

Historically, Post-OCR correction was achieved with the help of rule-based algorithms

([EP14]). These algorithms replaced non-English words with ones that are close to

them, e.g., desto -> pesto. Rule-based algorithms can work well, but they also carry

problems. Indeed, working with a big-enough vocabulary (also called: dictionary)

to cover all words of a language is costly. Additionally, as we will see later in this

paper, rule-based algorithms also struggle with real-word errors. A real-word error

is a correctly-spelled word, which does not fit contextually : e.g., I dove pesto! → I

love pesto!. A naive rule-based algorithm would not correct dove into love, as it is a

correct English word, even though it does not make sense grammatically.

Nowadays, the field of Post-OCR correction has greatly benefited from advancements

in artificial intelligence. Specifically, there is an area called Natural Language

Processing, or NLP. Research in NLP focuses on being able to read, understand

and work with natural, or human, language. One of the main subfields of NLP

is called Neural Machine Translation - or NMT for short. NMT tackles the

problem of translating text from one language to another automatically, like, e.g.,

Google Translate does. What makes NMT more difficult and interesting than just

using a dictionary of words to translate a sentence is text structure. Consider the

German sentence “Heute spielen wir Tennis” and its literal English translation “Today

are playing we tennis”. As we can see, the German sentence can not be translated

word-for-word: different languages have different rules about sentence structure and

how the elements in it should be ordered.

Modern approaches to Post-OCR correction re-frame the problem to an NMT problem

([AC18]). In it, the source “language”, from which the AI models need to translate, is

the language of OCR-ed, erroneous texts, and the target language is proper English.

Pure NMT approaches — meaning approaches that do not use rule-based approaches

5

as pre- or post-processing — do not employ vocabularies with correct English words.

Instead, they rely on the artificial intelligence to learn about the English language

on its own, i.e., to learn what words it makes sense to use in the context of other

ones. This allows NMT models to also start correcting real-word mistakes, as shown

in [AC18].

Neural Machine Translation has been evolving rapidly in the last couple of years

thanks to LSTM models ([HS97]) getting bigger and the invention of attention

([BCB15]). In a nutshell, this mechanism “forces” the AI to focus on its context

before making a prediction, which greatly improves results. Its success was so big

that it spawned an entirely new AI model - Transformers, which use attention

as the corner stone of its operations ([VSP+17]). Transformers have been gaining

traction since their introduction up to this day, where they are the state-of-the-art in

many areas of Natural Language Processing.

Recent research (see [SN20] and [NJN+20]) has also suggested splitting the task of

Post-OCR correction into its two individual parts — i.e., error detection and correction

— and using separate NLP models for them. I will refer to this technique as the

two-step approach. As the name implies, this approach to Post-OCR correction

first applies an additional detection model to mark the boundaries of erroneous tokens,

before passing them on to the correction model. In comparison, traditional usage

of NMT models for Post-OCR correction has employed them doing both tasks at

the same time (as shown in [AC18]). The motivation behind the two-step approach

can be explained easily: having two separate models focus on error detection and

correction should lead to a specialization of each model on the task in hand, thus

leading to better results. The approach is further made desirable by the opportunity

to use a powerful error detection model - BERT.

BERT ([DCLT18]) is a language representation model, built from elements of the

aforementioned Transformer model. It employs attention to compute representations

of words and sentences, which can then be used for further tasks — e.g., OCR error

6

detection. BERT is the current state-of-the-art on many Natural Language Processing

tasks, and is thus a suitable candidate for an error detection model.

This paper examines the performance of the two-step approach with BERT as an

error detection and different NMT models as character-level correction models. In

particular, it studies the influence of the aforementioned attention mechanism and

whether it is applicable on a lower level than words. This is also directly connected

to an evaluation of LSTM and Transformer encoder-decoder (explained in Chapter

3) models. One of the main motivations behind this work was finding out if the

Transformer architecture can be more successful than the LSTM one, as is the case

with many fields of NLP. Additionally, the paper outlines a procedure for generating

artificial Post-OCR correction data, and studies whether it can be used to further

increase the performance on community benchmarks. With that being said, the main

contributions of this paper are:

• Outlining a procedure for creating artificially many erroneous OCR samples,

with the introduced errors mimicking the distribution of the real ones

• Comparing LSTM and Transformer sequence-to-sequence models on character-

level Post-OCR correction

• Formalizing a new way to calculate information retrieval metrics on the task

of character-level error correction by adapting an algorithm from the field of

bioinformatics

• Suggests a new way to evaluate error detection on an entity-level, which gives

more consideration to properly marking word boundary mistakes

7

2 Related Work

The field of OCR post-correction has been a subject of research for decades. Despite

that, there have been, to my knowledge, only two major competitions, which can be

used to survey general approaches and set the state-of-the-art. The two competitions

were also fairly recent — held in 2017 and 2019 at the respective International

Conference on Document Analysis and Recognition (ICDAR). As such, it is easier to

track how the field has evolved in the last couple of years.

As for the long period before 2017, there is no official benchmark I can use to compare

the most common approaches. The papers I will reference use their own custom

benchmarks, specialized in a certain domain. Nonetheless, I will try to present the

evolution of OCR post-correction naturally, with each paper reaching a new milestone

up to the state-of-the-art. As a convention, I will be referring to all rule-based

approaches as classical approaches.

In [NJCD21] from last year, Nguyen et al. provided an in-depth survey of the field of

Post-OCR correction. The scope of their paper is bigger than this chapter on related

work, and I encourage the reader to refer to it for a full picture of the evolution of

the field.

Section 2.1 will introduce classical approaches for Post-OCR correction, which were

wide-spread before the advent of Neural Machine Translation. Section 2.2 will then

go on and look at the NMT approaches, which have reached new milestones and set

the new state-of-the-art. The last section 2.3 goes into detail about which approaches

I will be using as comparison bases for the work in this paper.

8

2.1 Classical Approaches

[EP14] uses a dictionary-based approach to correct OCR-ed texts of Argentinian

army bulletins. For this, they first accumulated a rather big dictionary by mixing

different sources — Wikipedia articles, lists with common people or geographical

location names, the vocabulary of a pre-existing spell checker and words from the

army bulletins themselves. Words from OCR-ed texts are then checked against the

aforementioned dictionary, and those that are not found are considered to be mistakes.

As mentioned by the authors themselves, this approach bars them from handling

real-word mistakes, and they thus focus on only on non-word mistakes.

Correction candidates for the non-word mistakes are then proposed by collecting valid

Spanish words with an edit distance of ≤ 2. The authors additionally employ an

external algorithm to determine equivalence classes of characters. Every character

of an equivalence class is considered to be interchangeable with all other ones. The

combination of the edit distance candidate generation and the equivalence class

candidate generation is then used to get all words from the dictionary, which can be

used as valid corrections. The final correction is the one with the highest frequency -

meaning the one, which was encountered the most times while building the dictionary.

At the end, the authors achieve a 29% error improvement. The authors note that the

biggest improvements were made by the inclusion of the lists of names, as well the

domain-specific words — the ones, extracted from the bulletins themselves. We

will see later on that the two conclusions are common notions in the field Post-OCR

correction. Named Entities like personal or location names cause problem not only

for dictionary-based approaches, but also NMT-based ones. This is due to the very

nature of named entities — they follow different rules than standard words, but

are still correct. The second idea is that Post-OCR correction is heavily influenced

by the domain. While it may seem unnatural at first — many cultures around the

world share alphabets — empirical evidence from this paper and ICDAR2019 later

on suggests it is true.

9

Another classical approach is discussed in [TE96]. In it, the authors combine a

dictionary L = {w1, w2, ..., wm} with statistical machine translation (or: SMT)

for Post-OCR correction. The approach can easily be explained by defining it formally:

let S = s1 . . . sn be an erroneous OCR string and W = w1 . . . wn be a correct word.

Then, the most suitable correction — Ŵ — is:

argmax
Ŵ

P (W |S) = argmax
Ŵ

n∏
i=1

p(wi|wi−1) ∗ p(si|wi) (1)

In equation 1, the left side — p(wi|wi−1) — represents the probability of a correct

word wi appearing after the correct word wi−1. This probability brings context

into the Post-OCR correction by forcing the statistical language model to “look one

to the left”, before making its prediction. In the paper, the authors calculate this

probability by building a probability table from the training data. Equation 2 is used

for calculation, where c(wi−1, wi) stands for the number of times the word sequence

of wi−1, followed by wi, was found in the training data; and c(wi−1) — the number

of times the word wi was found overall.

p(wi|wi−1) =
c(wi−1, wi)

c(wi−1)
(2)

The right side of the equation — p(si|wi) — models the probability of a correct word

wi being recognized by the OCR as the erroneous word si. The process of calculating

this probability is a bit more involved, and I will thus skip explaining it for the sake

of brevity. In short, the authors reduce the problem to independent edit operations

on character level, i.e., characters getting deleted, added or substituted. They then

initialize the system with a uniform probability for every operation and do multiple

passes. For each pass, the Post-OCR correction system corrects the text and then

10

refines its operation probabilities with the equations from 3:

p(y|x) = num(sub(x, y))/num(x)

p(del(x)) = num(del(x))/num(x) (3)

p(ins(y)) = num(ins(y))/num(all letters)

At the end, the authors test out their approach in three different ways: isolated

non-word correction, context non-word correction and context non- and real-word

correction. Non-word correction first checks words in the vocabulary L and does not

correct them, if present. Non- and real-word correction, on the other hand, treats

every word as a mistake. The authors did not specify what the difference between

isolated and context correction is. I assume isolated correction just sets the left part

of equation 1 to a constant 1 — that way, the only probability that matters is the

OCR correction itself.

The authors found context correction to work significantly better than isolated

correction. Additionally, turning on real-word correction also provided a big boost

to the performance of the system. Despite this approach introducing new cases of

overcorrection — where the system “corrects” a correct word to a wrong one — the

fraction of real-word errors that were corrected more than make up for them.

As for limitations, the authors again discuss problems with unrecognizable named

entities. Moreover, as the system uses white space as a delimiter, it is also unable to

handle OCR mistakes related to splitting or merging the characters of the word.

The Post-OCR correction competition at ICDAR2017 gives further insight on classical

approaches. It also introduces NMT models into the scene and showcases how they

compare with the state-of-the-art in 2017. An overview of the competition and the

most significant approaches are described in [CDCM17]. It is worth noting that the

authors themselves confirm that the competition dataset is very dirty, which may

have hindered the performance of many of the proposed solutions.

Six out of the eleven evaluated submissions in [CDCM17] can be considered classical,

11

with one (Char-SMT/NMT) being an ensemble approach, which uses both statistical

and neural machine translation. Five out of the six submissions use an approach,

similar to [TE96], in that they use a vocabulary and statistical machine translation

in their workflow. The two best-performing models on both tasks — error detection

and correction — are based on statistical machine translation, which confirms its

effectiveness. WSFT-PostOCR is the leader in error detection in the competition.

It was created by its authors at the Centro de Estudios de la Real Academia Espanola

and features weighted finite-state transducers, or WFST. What is interesting

about this approach is that WFSTs draw many similarities to character-level NMT

models. Even though the organizers of ICDAR2017 did not include a white paper on

how the model functioned, we can use a similar paper to get an idea — [LNCPCA10].

In the paper, it is shown how multiple WFSTs can be essentially combined to emulate

the task of Post-OCR correction. I find that it is worth mentioning, as the weighted

finite-state transducers can be seen as a bridge between the areas of classical and

NMT approaches, offering both interpretability and comparable performance for error

detection. For the sake of brevity, however, and the relative obscurity of using WFSTs

for Post-OCR correction, I will refrain from further discussion. The creators of the

Char-SMT/NMT — Amrhein and Clematide — published [AC18] one year after

the competition, in which they go into more details about their model. Their paper

features evaluations of different configurations of character-level Statistical Machine

Translation (SMT) and Neural Machine Translation (NMT) models.Among all

experiments, there are a few significant ones I will point out:

The first experiment the authors carry out is comparing the performance of the

models when using multimodal datasets. They achieve this by combining datasets

across different languages (English and French) and publication types — periodical

(i.e., newspapers, magazines) and monographs (i.e., books). The experiment is meant

to evaluate if Post-OCR correction is domain-specific, or whether it gets better with

multimodal data. Against the author’s expectations, their evaluations show that

mixing the different datasets result in a drop in performance. The drop is also shown to

12

“scale” with the degree of “mixing” — meaning that the drop from mixing documents

of different languages is bigger than mixing documents of different publication types.

This is the second piece of empirical evidence, which I talked about in the beginning

of this section, indicating that Post-OCR correction is dependent on its domain.

The authors also test out the performance of the models when using isolated and

context error correction. As seen before, including the surrounding words around the

erroneous tokens improves the performance of both models. The intuitive explanation

behind this, as explained by the authors in the paper as well, is that the context

allows handling real-word errors.

Another significant addition to both models, tested out by the authors, is including

metadata with the predictions. The authors call this Factored Neural Machine

Translation. While this is shown to help in the case of English monograph documents,

this method is not really feasible for usage in this paper, as this information is not

always present.

Overall, the authors of Char-SMT/NMT conclude that NMT models perform better

on error detection, while SMT remains the best choice for error correction.

2.2 NMT Approaches

ICDAR2017 also features a pure-NMT submission — Character-Level Attention

Model, or CLAM. The model does not have a white paper attached, but the

organizers share it is based on an LSTM sequence-to-sequence model with attention.

The noteworthy aspect of the approach is that the authors test out using different

sized context windows. At the end, they found out that using 4 preceding and 1

succeeding tokens works best for 3 of the ICDAR2017 datasets, while the last one

requires 6 preceding and 1 succeeding.

As for how CLAM compares with the leading SMT models, it shows promise. In

particular, it achieves the third best F1 score on error detection on the English

monograph documents, as well as the second best % improvement on error correction.

13

Surprisingly, the performance of the model on the French datasets pales in comparison,

with error correction only improving with 1% and 5% on monographs and periodicals

respectively. Unfortunately, there is no information provided in the competition

report ([CDCM17]) as to why this is. One of the possible explanations may be that

the creators of CLAM trained the model on a mixed dataset, as it was not specified

in the submission description that separate models were used. As seen in the previous

section, Post-OCR Correction has empirical evidence to be domain-specific, which

can hamper the performance of an NMT model.

Another competition on Post-OCR correction was held at ICDAR in 2019. As in the

previous event, the organizers provided a summary of the competition, together with

information about the data, all proposed submissions, and the evaluation results in

[RDCM19]. Compared to the previous iteration, however, ICDAR2019 only features

five unique approaches, with one submission entering two models (RAE1 and RAE2).

Out of the five, two were also submitted to the prior competition in 2017. The team

that created WSFT-PostOCR in 2017 again proposed a solution based on weighted

finite-state transducers — RAE 1 and 2 in the paper. As in the previous iteration

of the competition, their approach leads to competitive performance in the task of

error detection, but they show their best results on error correction. Indeed, RAE1

and 2 achieve the second-best performance on error correction for all datasets they

handled, except for one. CLAM — or Character-Level Attention Model — was

also re-submitted to the competition and achieved the second-best results on error

detection on eight out of the ten datasets. The real stand-out of the competition,

however, is CCC.

CCC is the top-scoring approach on all error detection and 8 out of ten error correction

datasets. From the provided description, CCC seems to be a two-step pipeline. First,

a BERT model is used for error detection by outputting binary predictions — i.e., a

0 or a 1 — for every erroneous or correct token in a sequence. All tokens, which are

determined by BERT to be erroneous, are then passed on to an error correction model

— the second step of the pipeline. The correction model itself is also an NMT model

14

— a character-level sequence-to-sequence model, based on LSTM. The description of

the approach also mentions that “context information” is also passed from BERT to

the error correction model as input, but there is no further elaboration. What is also

worth mentioning is that the BERT model, used for error detection, was a pretrained

multilingual model. This is significant, as it goes against the previously established

empirical evidence of Post-OCR correction being domain-specific.

Since ICDAR2019, more papers have been published with an evaluation of a two-step

approach. In one of them — [SN20] — the authors compare the performance of two

types of NMT-based Post-OCR correction approaches on a dataset of pre-19th century

German texts. The first approach employs a sequence-to-sequence network to directly

detect and correct errors in the OCR texts, similar to how it is shown in [AC18]. The

second approach, however, splits the pipeline into two - error detection, then error

correction. In particular, the error correction model is only ran on tokens, which the

error detection model predicted to be erroneous. The motivation behind this split is

two-fold. First, it should reduce the amount of correct characters that end up getting

wrongfully changed by the error correction model. Second, by design of the pipeline,

the error correction model is exposed to more erroneous tokens than correct ones,

which should positively influence its performance. Indeed, the authors show both

statements to be true — the “two-step” approach achieves a relative improvement

of 18.2%, while the “one-step” approach actually increases the error rate of the

documents. Moreover, the percent of wrongly substituted correct characters is heavily

decreased from6 6 to 0.3%.

The second paper — [NJN+20] — was published by the same author that published

the survey paper from the beginning of this chapter. In it, the authors describe a

two-step approach, akin to CCC from the ICDAR2019 competition, but with minor

improvements for both the detection and correction models. Namely, they propose

a simpler BERT model, which utilizes pretrained word embeddings. With those

adjustments, they reach a better F1 score than all models from ICDAR2019 on its

15

English dataset, as well as on the English periodical publications from ICDAF2017.

The discrepancy in the case of the English monograph dataset is explained by the

authors by the larger percentage of non-word errors than real-word ones. It is argued

that BERT can better detect real-word errors, based on the fact that it heavily relies

on context.

As for the correction part of the pipeline, the authors evaluate three enhancements.

The first one is embedding metadata about the dataset, which a particular data

sample belongs to. The authors noted that this was inspired by the work of Amrhein

et al. in [AC18]. The second suggestion involves creating character-level aligned

embeddings. And the last — using a length filter to remove any correction candidates

with an edit distance lower than 3. The authors claim their last proposal was based

on previous academical work, which suggests that data exploration by the authors,

which suggested that “more than 80% of OCR errors have an edit distance less than

3”. The approach achieved moderate results on the English datasets of ICDAR 2017

and 2019, being beaten out by some SMT models.

2.3 A Note on Comparison Bases

As discussed in the beginning of this section, the field of OCR post-correction is still

fairly unorganized. There is no universally accepted gold standard, which can be

used to measure progress of new approaches, akin to ImageNet in Computer Vision

([DDS+09]). ICDAR2017 and 2019 tried to remedy that by holding their respective

competitions on Post-OCR correction, where they provide novel datasets to be used

for training and evaluation. As admitted by the organizers of the events themselves,

however, the datasets are very dirty, featuring problems with misaligned sequences,

erroneous or entire missing ground truths.

Furthermore, I find another problem in the field of Post-OCR correction is the

difficult-to-reproduce approaches. For example, I could not find the source code of

the two leaders in the ICDAR2017 and 2019 competitions — Char-SMT/NMT and

16

CCC. It is true that the authors of Char-SMT/NMT published a paper about their

approach, but it is also a labor-intensive process to recreate.

Despite the aforementioned problems, I will be using the results from the competitions

at ICDAR2017 and 2019 as baselines for this paper. As I will be working with the

English language exclusively, I will be referring to the evaluation results presented in

[NJN+20]. This also allows me to compare my approaches with the ones proposed in

the aforementioned paper.

The organizers of both ICDAR competitions provide an evaluation script1. I will,

however, not be using it when evaluating the performance of the models in this

paper, as time did not permit me to adapt my own evaluation technique to work

with the provided script. In particular, this was made difficult because of the way

error detection samples are created in this paper — explained later on in subsection

7.1.1 and 8.1 — which involves splitting the ICDAR samples into smaller sentences.

This, in turn, makes reconstructing the starting offsets of the target tokens — the

format which the ICDAR evaluation script expects — difficult to implement. This is

a problem, which some participants also had during the ICDAR2017 competition, as

revealed in [CDCM17]. That being said, I will try to come as close as I can to the

evaluation method, described in both papers, and will thus be skipping any erroneous

tokens with hyphens in them, as well as any tokens with misaligned ground truths,

as per the advice of the authors.

I will also be using two external approaches as additional baselines. The first one is

directly inspired by the master’s thesis of my supervisor — Matthias Hertel — from

his work on using language models and NMT models for spelling correction ([Her19]).

In particular, I will use Google as a Post-OCR correction engine by manually picking

a subset of all test samples, posting them in a Google Docs document, and correcting

them until Google has no more proposals.

The second external approach I will use is taken from [HH19]. It2 uses a character-level

1Available on https://gitlab.univ-lr.fr/crigau02/icdar2019-post-ocr-text-correction-competition
2The code is offered as a Python package under: https://github.com/mikahama/natas

17

https://gitlab.univ-lr.fr/crigau02/icdar2019-post-ocr-text-correction-competition
https://github.com/mikahama/natas

NMT model to propose 10 corrections of erroneous tokens, each one with a specific

probability. The most probable correction that is also a proper English word is then

chosen to be the final one. For error detection, the model uses a dictionary-based

approach.

18

3 Background

This chapter will introduce the technical concepts, which are required to be able to

follow the paper’s approach. Section 3.1 explains the basics of machine learning. I

assume the reader has a basic understanding of machine learning and will therefore

keep the section brief. Section 3.2 will focus on deep learning and delve into the

mechanics of neural networks. Finally, section 3.3 introduces the concept of recurrent

neural networks, as well as Long Short-Term Memory (LSTM) cells.

3.1 Machine Learning

Machine learning is a subfield of artificial intelligence. It focuses on algorithms, which

“learn” to solve problems on their own by building mapping functions from inputs

to expected outputs. Formally, if we let X be a collection of input samples and y

a collection of expected outputs, then a machine learning algorithms learns f , such

that:

y = f(x) (4)

Figure 2: Branches and tasks of machine learning

19

The mapping function f from equation 4 is, in most cases, not analytically computable.

Therefore, the parameters of the algorithm (also called: weights) θ are iteratively

improved. For a more in-depth explanation of how the weights are iteratively made

better — the same process, which is called learning — I refer the reader to [GBC16].

Depending on the format and availability of the data, machine learning can be

split into supervised, unsupervised and reinforcement learning (as shown in fig. 2).

Unsupervised and reinforcement learning are not used in the boundaries of this work,

and will thus not be discussed further.

Supervised learning is observed when the dataset, which is given to a machine learning

algorithm to learn from (also called training dataset), contains the expected output

value for each input sample. A trivial example of this is a dataset, which maps

integers to their successor: (1 → 2), (2 → 3), In practice, supervised datasets

are more complex, e.g., the widely-known “Boston Housing” dataset, first published

in [HR78].

The presence of expected outputs allows the model (another term for machine learning

algorithm) to compare its predictions with the targets and, based on how wrong it

was, update its parameters to do better in the next iteration. Different algorithms

exist to handle data according to its complexity. There exist simple models like linear

regression, which assume that the underlying mapping f is linear. Linear mappings

(or functions) are all mappings, which can be expressed by equation 5. For reference,

the trivial dataset from above with the successive integers is an example of such a

linear function.

y = f(x) = mx+ b (5)

Linear models (meaning models, which assume a linear dependency) can work well for

simple problems, but become unsuitable when it comes to complex, higher-dimensional

data. Non-linear models like support vector machines [Hea98], random forests [Bre01]

or artificial neural networks [MP43] can be applied instead to get better mapping

approximations, albeit at the cost of interpretability. Neural networks have become the

20

most popular approach in the last decade because of their robust nature, empirically

good results and property of being universal function approximators under certain

conditions [Cyb89]. Their study is also known as deep learning and will be reviewed

in the following subsection.

Supervised learning itself can also be classified into further subgroups, depending on

the task. The two most common ones are classification and regression. Regression

tasks are characterized by the prediction of a continuous numerical value. Both

datasets from the previous paragraph — the successive integer example dataset, and

the Boston Housing dataset — can be used for regression tasks. In the case of the

Boston Housing dataset, a machine learning model can learn to predict the price of a

house, based on its features.

Classification, on the other hand, handles prediction of categorical variables. Categor-

ical variables only allow a certain set of values, e.g., Yes/No (binary classification)

or Cat/Lion/Tiger (multi-class classification). Linear regression can be adapted to

handle classification — the algorithm is called logistic regression ([Cox58]). As with

regression, however, complex datasets need non-linear models. More importantly,

multi-class classification can also be used to generate text. This will be shown in the

upcoming chapter 4 on Neural Machine Translation.

3.2 Deep Learning

Deep learning is a subfield of machine learning, which focuses on “deep” neural

networks. Figure 3 shows what a neural network consists of in its simplest form

— layers of neurons, which do non-linear computations to map a set of inputs to

expected outputs. Every layer, except for the input and output layers, is called

hidden, as the user does not have information on what data exactly goes in and out

of them. Deep learning is a loose term and encapsulates every neural network, which

has more than one hidden layer.

21

Figure 3: Feed-forward neural network [Com10]

Formally, the computations within a neural network are described as such:

Let there be K hidden layers in the neural network with M neurons each. Every layer

i is then fully-connected with the previous layer i − 1 by a weight matrix W i−1,

where wi−1
x,y connects the x-th neuron from layer i− 1 to the y-th neuron of layer i:

W i−1 =

wi−1
0,0 . . . wi−1

0,M
...

. . .
...

wi−1
M,0 . . . wi−1

M,M

Additionally, every neuron (except the ones in the input layer) has a bias b. Collec-

tively, all biases in hidden layer i are expressed with the vector bi, and the bias of a

neuron j in layer i is bij . Bold variables are often used in machine learning literature

to indicate vectors.

As a convention, the input to neuron j in layer i (except input layer) is notated with

zij . The output, on the other hand, as aij .

Now, let X = {x1, x2, . . . , xn} be a vector of N input values, and y = {y1, y2, . . . , yn

be a vector of N corresponding expected outputs. The nodes in the input layer of

the neural networks, as shown in Figure 3, are not neurons like the others. They only

hold the input samples {x1, x2, . . . , xn}. Then, the vector of input values zi to all

22

neurons in the i-th hidden layer is:

zi = W i−1 ∗ ai−1 + bi

=

wi−1
0,0 . . . wi−1

0,M
...

. . .
...

wi−1
M,0 . . . wi−1

M,M

 ∗

ai−1
0

ai−1
1

...

ai−1
M

+

bi−1
0

bi−1
1

...

bi−1
M

 (6)

=

wi−1
0,0 ∗ ai−1

0 + · · ·+ wi−1
0,M ∗ ai−1

M

wi−1
1,0 ∗ ai−1

0 + · · ·+ wi−1
1,M ∗ ai−1

M
...

wi−1
M,0 ∗ a

i−1
0 + · · ·+ wi−1

M,M ∗ ai−1
M

+

bi−1
0

bi−1
1

...

bi−1
M

As seen in equation 6, the input to each neuron is nothing more than a weighted

sum of all outputs from the previous layer, plus a bias value. In order to get the

output aij of neuron j in layer i, the input of the neuron is additionally put through

an activation function g, as show in equation 7.

ai = g(zi) (7)

This is repeated for every layer (hidden and output), and in the end the neural

network returns a set of outputs {ŷ1, ŷ2, . . . , ŷn}. This output set is then fed into

a loss function, which calculates the mean loss value of the model’s outputs.

Afterwards, the loss value is propagated through the network in a process called

backpropagation, which determines the influence of every parameter (weights and

biases) on the model output. The parameters of the models are then adjusted, so that

the model can make better predictions in the next iteration (same learning process

as in machine learning). All of these concepts, together with activation functions,

will be discussed in the upcoming subsections.

23

Activation Functions

Activation functions are the source of non-linearity in neural networks. They take

some numerical input x and map it to a new range, which represents its perceived

“importance”. All hidden layers of a neural network use activation functions, as well

as the output layer. The three most commonly used activation functions for hidden

layers are:

Sigmoid: g(x) =
1

1 + e−x
; g′(x) = g(x)(1− g(x)) (8)

Hyperbolic Tangent: g(x) =
ex − e−x

ex + e−x
; g′(x) = 1− g(x)2 (9)

ReLU: g(x) = max(0, x); g′(x) =

1 if x > 0

0 if x < 0

undefined if x == 0

(10)

It is important to the training process of a neural network that the chosen activation

function(s) (in practice: same one is used in every neuron) is differentiable. In

the case of the Sigmoid (eq. (8)) and Hyperbolic Tangent (eq. (9)) functions, the

derivatives are well-defined. ReLU, however, is not defined at x = 0 (eq. (10)). This

limitation is usually circumvented by deep learning libraries by setting it to 0.

The activation function of the output layer is dependent on the machine learning task.

In regression, for example, the activation function can be skipped (more specifically

— set to the identity function g(x) = x), as the expected result is a continuous

numerical value. In the case of classification, sigmoid is used for binary classification,

and softmax - for multiclass. The formula for softmax ([Bri90]) with m different

24

classification classes and an output vector ŷ = {ŷ1, . . . , ŷm} is shown in equation 11.

In general, both the sigmoid and the softmax functions map the output values of the

network to a probability distribution in the range (0, 1).

softmax(ŷ)i =
eŷi∑m
j=1 e

ŷj
(11)

For an example of what softmax does to a network’s output, consider the example

output vector ŷ = {-0.27, 1.54, 0.68}. When through softmax, the values of the three

elements become the following:

softmax(ŷ)1 =
e−0.27

(e−0.27 + e1.54 + e0.68)
≈ 0.763379

7.401847
≈ 0.103133

softmax(ŷ)2 =
e1.54

(e−0.27 + e1.54 + e0.68)
≈ 4.664590

7.401847
≈ 0.630193

softmax(ŷ)3 =
e0.68

(e−0.27 + e1.54 + e0.68)
≈ 1.973878

7.401847
≈ 0.266674

Loss Functions

Loss functions calculate how close a model’s predictions are to the expected targets.

They are heavily-connected to the machine learning task and can heavily influence if

the learning progression of the model. Given a prediction vector ŷ and its correspond-

ing target vector y, n amount of samples and m classification classes, two examples

of loss functions are shown immediately below.

Equation 12 showcases Mean Squared Error (also: MSE) — an error function,

which can be used with regression tasks. It computes the difference between each

pair of outputs and model prediction, and squares them to exaggerate big errors. At

the end, all the differences are summed up, and their mean value is returned.

Mean Squared Error: L(y, ŷ) = 1

n

n∑
i=1

(yi − ŷi)
2 (12)

25

Equation 13 visualizes multiclass Cross-Entropy loss ([Goo52]). Cross-Entropy is

used with categorical variables. It assigns high loss values to wrong predictions with

high probabilities, and vice-versa. This can easily be seen in equation 13 itself:

yij is an indicator variable. It is set to 1 whenever the excepted output class

of training sample i is class j, and 0 in all other cases. The right part of the

equation under the sums - log(ŷij) - assigns high loss values to low probabilities

(e.g., log(0.0001) = −4) and low loss values to high probabilities (e.g., log(0.9999) ≈

−0.00004).

Cross Entropy: L(y, ŷ) = − 1

n

n∑
i=1

m∑
j=1

yijlog(ŷij) (13)

Loss functions, similar to activation functions, have to be differentiable, in order

for neural networks to be able to optimize with them. The derivative of MSE with

respect to the network output ŷ, for example, is shown in equation 14:

∂L
∂ŷ

=
∂

∂ŷ

1

n

n∑
i=1

(yi − ŷi)
2

=
1

n

n∑
i=1

∂

∂ŷi
(yi − ŷi)

2

=
1

n

n∑
i=1

2(yi − ŷi)

=
2

n

n∑
i=1

(yi − ŷi) (14)

More relevant to this paper is the derivation of cross-entropy. In particular, the

derivative of cross-entropy with respect to a softmax output vector ŷ. The operations

for computing that specific derivative is harder due to the nature of the softmax

operation, and thus I refer the reader to a wonderful guide, which covers that in more

depth — [Ben16]. The final derivative is presented in equation 15:

∂L
∂ŷ

= ŷ − y (15)

26

Backpropagation

Backpropagation is an algorithm for training neural networks, first proposed by

Rumelhart et al. in [RHW86]. Intuitively explained, the algorithm calculates how big

of an impact a specific parameter had on the resulting output loss. If, for example,

the output loss is big, and the impact of a weight between two neurons “influenced”

the result, then backpropagation adjusts the weight to do better the next time the

neural network makes a prediction.

Formally, backpropagation works on the basis of the chain rule. I will first show

an example with the chain rule to further build intuition and then continue with

formally defining it. Let y and z be two example functions, as shown in equation

16:

y = 6x+ 9 (16)

z = 2y

Then, the derivative of z with respect to x can be calculated as follows:

∂z

∂x
=

∂z

∂y
∗ ∂y

∂x

= (ln(2) ∗ 2y) ∗ 6

= 3 ∗ ln(2) ∗ 26x+10

Backpropagation uses the chain rule to compute the derivative of the loss value

with respect to all the neural network’s parameters — weights and biases. Formally,

the chain rule “reduces” the computation of the derivatives of different elements

of the neural network to equations 17 through 20. The extended computations of

the derivatives are skipped for the sake of brevity and can be seen in Chapter 6 of

27

[GBC16].

∂L
∂zi

=
∂L
∂ai

∗ ∂g(zi)

∂zi
(17)

∂L
∂ai

=
∂L

∂zi−1
∗W i−1 (18)

∂L
∂W i

= ai−1 ∗ ∂L
∂zi

(19)

∂L
∂bi

=
∂L
∂zi

(20)

Optimizers

Optimizers leverage the calculated gradients (synonym for derivatives), calculated

in the last subsection, to adjust the parameters of the neural network. Due to the

nature of derivations, the calculated gradients are guaranteed to be pointing in the

direction of minimal loss (also discussed in [GBC16]). Optimizers use this fact and

employ different strategies, in order to adjust the network’s parameters.

The simplest optimizer is called Gradient descent ([Rud16]), and it optimizes a

given weight wi
k,l by using a user-defined (also called: hyperparameter) learning

rate η, as shown in equation 21:

wi
k,l = wi

k,l − η ∗ ∂L
∂wi

k,l

(21)

Gradient descent has weaknesses, which are discussed in-depth in [Rud16]. In

particular, the success of the optimization is very dependent on the learning rate η

— too low and the process might never converge to a minimum, too high and the

process might diverge. [Rud16] also lists improved optimizers, which try to solve

the aforementioned problem automatically. In particular, the improved algorithms

try to keep track of the gradient values from previous iterations and integrate them

as momentum.

One of the most widely-used optimizers is Adam, first published in [KB15]. It is an

adaptive learning rate method, which uses a running estimate for a gradient’s first

28

and second derivatives to adjust the learning rate. Formally, if we set the estimate of

the first derivative to be m and the estimate of the second derivative to be v, then

Adam uses equation 22 to update a network’s parameters:

wi
k,l = wi

k,l − η ∗ m√
v + ϵ

, with ϵ = 10−8 (22)

Schedulers

In addition to adaptive learning rate methods, one can also control the training

process by using learning-rate schedulers. A learning-rate scheduler adjusts the

learning rate η during the training process according to a pre-established formula. As

a convention, learning-rate schedulers which reduce the learning rate are also called

decays. For example, a really common scheduler is the so-called linear decay, shown

in equation 23. Linear decay takes two parameters: ηinit, which is the initial learning

rate value, and a decay value γ. Like linear decay, other learning-rate schedulers

commonly add additional hyperparameters for optimization.

ηt = ηinit − (t ∗ γ) (23)

3.3 Recurrent Neural Networks

Recurrent neural networks (or RNN) are special types of neural networks, specialized

in working with sequence data. [She20] provides a very thorough look into the

computations that go on in recurrent neural networks, in addition to one of its most

widely-spread varieties — Long Short-Term Memory (or LSTM) networks. In this

subsection, I will also provide a brief overview of the base RNN and LSTM, as well

as go over how those networks train with Backpropagation Through Time.

29

Figure 4: Architecture of a Recurrent Neural Network [Com17]

Figure 4 visualizes the architecture of a base RNN. X represents the input sequence,

which can be segmented into individual time steps {x1, . . . xt . . . xn}. Time step is

an umbrella term when working with sequence data, and just represent the value of a

certain element in the sequence. If we use text as sequence data, for example, time

step i would be the same thing as character #i in the text. Similarly to X, o also

represent a vector, made up from the model predictions for the individual time steps

{o1, . . . ot . . . on}.

The main difference between recurrent and feed-forward neural networks is that

recurrence provides a better way to include context in a model’s predictions. To

explain this with an example, consider the task of completing the token carpe. By

using information about all processed characters until the last time step, it becomes

much easier to predict the letter t, as this completes the word carpet.

The blue box, marked with h on the left side of figure 4 is called a recurrent, or a

hidden cell. The blue boxes on the right, marked with ht−1, ht and ht+1, represent

the cell being used for the different time steps (but in all time steps it is the same

recurrent cell). In reality, the hidden cell is an abstraction for a set of linear algebra

operations, as was the case with neurons in feed-forward neural networks. Figure

5 inspects what is “inside” a regular RNN cell. Two inputs go in — the input at

time step t xt, and the hidden state from the previous time step ht−1. xt is then

multiplied with the weight matrix U , and ht−1 - with the weight matrix V , as shown

30

Figure 5: Visualization of vanilla RNN cell; design taken from [Ola15]

in figure 4. The result zt is put through an activation function (in the case of figure 5

- hyperbolic tangent). The result of the activation function is then returned twice -

once as ot to be multiplied by the weight matrix W (see figure 4) and produce the

prediction for time step t, and once as ht to be used in the next time step.

Formally, recurrent neural networks use equation 24 to pass information through. I

use a similar notation as with neural networks: X is the input vector, z is the vector

of input values to the hidden cells h, g is the activation function for producing the

output of the hidden cells, and o is the vector of output values from the hidden cells,

which also double-up as the final model predictions. The hidden state h0 is usually

initialized randomly or set to contain all zeros.

ot = W ∗ g(Uxt + V ht−1) (24)

Backpropagation Through Time

Backpropagation Through Time (or BPTT), explained in [Wer90], is an adapted

version of the backpropagation algorithm for use with recurrent neural networks.

BPTT is harder to write out analytically, but shares the same intuition as normal

31

backpropagation. Namely, the gradient calculations follow the same rules as regular

backpropagation (shown in rules 17 through 20), but they are averaged over all T

time steps. As an example, differentiating the loss with respect to the output at time

step t of the recurrent neural network is shown in equation 25:

∂L
∂ot

=
1

t
∗ ∂L
∂ot

(25)

The only “new” weights, which the recurrent neural network introduces are V for

the hidden states h between time steps. The unfolded version of their gradient

computation is introduced in equation 26. Readers can refer to [Wer90] for the full

explanation of the gradient equations.

∂L
∂V

=
1

T
∗

T∑
t=1

∂L
∂at

∗ ∂at
∂zt

∗ ∂zt
∂V

(26)

Executing BPTT can be a very expensive process with higher values of T, which

makes it hard to use. In practice, a modified version of BPTT is used, aptly called

Truncated Backpropagation Through Time. This algorithm was first proposed in

[WP98] and modifies BPTT to only us τ time steps, before averaging the gradients

and optimizing them. Truncated BPTT works well in practice, but it comes with the

caveat that the RNN puts more focus on short-term dependencies.

3.3.1 Long Short-Term Memory

Hochreiter et al. show in [HBFS01] that base recurrent neural networks do not work

well in practice. They explain that the learning algorithms (including BPTT) result

in unstable gradients. The process of multiplying gradients over T time steps can

lead to both extremes of their values getting either too big — so-called exploding

gradients, or too small — so-called exploding gradients. Hochreiter argues that a

novel proposal, called Long Short-Term Memory (or LSTM), achieves better

empirical results and solves the problem of vanishing gradients.

32

Figure 6: Visualization of LSTM cell; design taken from [Ola15]
red circles indicate point-wise operations

yellow blocks indicate layers

It is important to understand that the LSTM “only” changes the architecture of the

blue cells from figure 4. In order to keep up with the notation, I will henceforth be

referring to hidden cells that use the LSTM design as LSTM cells, and to recurrent

neural networks, which use LSTM cells in them, as LSTM networks.

Figure 6 visualizes the architecture of an LSTM cell. Unlike a vanilla RNN cell, the

LSTM cell accepts three inputs: the input at time step t xt, the hidden state from

last time step t− 1 ht−1, and the cell state from last time step t− 1 ct−1. Similar

to the RNN cell, the output at time step t ot is a copy of the hidden state ht. In

addition to the two regular outputs, the LSTM cells also outputs ct, which is the new

cell state of the recurrent network.

[Ola15] provides a wonderful intuitive explanation of the mechanics of an LSTM cell.

Essentially, LSTM cells are capable of remembering more long-term dependencies

because of the cell state. The cell state, in comparison to the hidden state, is only

modified by linear, point-wise operations — marked by the red circles in figure 6. A

big part of the rest of the LSTM structure is dedicated layers, which influence the

modification of the cell state. In the literature, they are referred to as the forget gate

33

(marked with ft on figure 6), the input gate (marked with it), and the candidate

gate (marked with c̃t).

The function for calculating the value of the forget gate is shown in equation 27.

The [xt, ht−1] operator in the function signalizes concatenation of the two vectors.

It is called the “forget gate”, because it inspects the input at time step t and decides

what part of the context is no longer needed. As an example, if we are using LSTM

cells to copy sentences character by character, a white space might be a good indicator

that a new word is about to begin, and the last one should be partially ignored.

Formally, this is done by outputting a normalized probability in the range of (0, 1)

for every element of the cell state. This way, the influence of elements, which encode

“old” information, can be mildened.

The input and candidate gates are combined to update the cell state. For this, the

“input gate” first determines the positions of the elements in the cell state, which have

to be updated (equation 28). The “candidate gate”, on the other hand, calculates

new values for the elements in the hidden state (equation 29). The elements of the

two outputs — it and c̃t respectively — are multiplied point-wise to create the final

update vector ut (equation 30).

Finally, the cell state vector ct is calculated with equation 31. The old cell state ct−1

is first multiplied point-wise with the output of the forget gate ft to erase unneeded

context information. Then its elements are added point-wise with the update vector

ut to carry in the new, relevant context information.

ft = σ(Wf ∗ [xt, ht−1]) (27)

it = σ(Wi ∗ [xt, ht−1]) (28)

c̃t = tanh(Wc̃ ∗ [xt, ht−1]) (29)

ut = it ⊙ c̃t (30)

ct = (ct−1 ⊙ ft) + ut (31)

34

The output of the LSTM cell at time step t ot (which is a copy of the new hidden

state ht) is described in [Ola15] as a “filtered version of the cell state”. The filtering

process is done by the output gate, which uses the same mechanism as the forget

gate. The “output gate” inspects the concatenated version of the input and previous

hidden state and decides what part of the new cell state to return (marked as õt on

figure 6). Formally, the output gate does this by computing (equation 32):

õt = σ(Wõ ∗ [xt, ht−1]) (32)

The “filter” õt is then point-wise multiplied with the new cell state ct, normalized in

the range of (-1; 1) by the hyperbolic tangent function (equation 33). This is then

used as an output of the cell, as well as the hidden state for the next time step.

ot = ht = õt ⊙ tanh(ct) (33)

Exploding Gradients

At the start of this subsection, I mentioned that gradients can also suffer from massive

values - exploding gradients. While this is still the case even with LSTM cells, there

is a simple and wide-spread solution - gradient clipping ([PMB12]). With gradient

clipping, one sets a maximum threshold on a gradient’s norm. The threshold is also

sometimes called a clip value.

For example, setting the clip value to 1 and the gradient norm to 2 will force all n

points of gradient g to be scaled down to satisfy equation 34:

∥g∥ = 1 (34)√
g21 + g22 + · · ·+ g2n = 1

35

4 Neural Machine Translation

Natural Language Processing is a field of research, connected to understanding, being

able to work with and generating “natural”, human language on computers. The first

work in the field was done in the middle of the 20th century and featured translating

60 Russian sentences to English ([NOMC11]). Nowadays, NLP has rapidly evolved

and is almost always connected with deep learning. This is due to the great success

neural networks have had when applied to problems in the field, particularly recurrent

ones (see section 3.3).

Neural machine translation is a task in the field of NLP, whose focus lies on using

recurrent neural networks to translate sequences from one language, to another. This

section will first cover how neural networks can be made to work with strings, by

introducing the concepts of a dictionary, along with integer and one-hot encodings

(section 4.1). Next, section 4.2 will introduce the family of sequence-to-sequence,

or encoder-decoder models, which leverage recurrent neural networks to carry

out NMT. Section 4.3 will focus on attention - a mechanism, which marked a new

milestone in the performance of encoder-decoder networks. Further, section 4.4 will

cover Transformers — a new type of feed-forward models that use attention to

process sequence data. Finally, section 4.5 will introduce BERT - a state-of-the-art

language representation model, built on the base of the Transformer model.

36

4.1 Strings in Machine Learning

Machine learning algorithms (this includes all deep learning models as well) require

numerical inputs. This means that native text, in the form of strings and individual

characters, is not directly supported. To remedy that, there exist two ways, with which

to cast tokens (be it character, words, or sequences larger than that) to numerical

representations - integer and one-hot encodings.

Both encodings require building a vocabulary. A vocabulary is nothing else than a

hash map (also referred to as a dictionary), which maps tokens into integers. In

fact, that is all there is to integer encoding tokens — one just needs to build a big

dictionary and assign unique IDs to each one of them.

There is one problem with using integer encodings - namely, ordinality. Assume, for

example, that we have the following dictionary:

{"cat": 1, "dog": 2, "sloth": 3}

The integer encodings of the strings suggest an order between them, when there is

not any. There is no objective basis, on which to compare cats with dogs and dogs

with sloths, and assign them an order. A machine learning algorithm, however, does

not know that — it only sees that some input neurons have bigger numerical values.

The bigger numerical values can also influence the performance of the model in a

bad way. Consider the simple feed-forward neural network from figure 3. Having a

disproportionately high numerical value in one input neuron will blur out the effects

of all other ones, except if the weights that are connected to it are miniscule.

One-hot encodings, or embeddings, fix the problem with ordinality by building

flat vector representations for each token. As an example, if we take the animal

vocabulary from above again, the one-hot embeddings of the three strings are shown

in equation 35. One-hot embeddings have dimensionality N , equivalent to the number

37

of tokens in the dictionary. Additionally, the sum of the integers in every one-hot

embedding is always 1, and all positions, except one, contain a 0.

"cat": [1, 0, 0]

"dog": [0, 1, 0] (35)

"sloth": [0, 0, 1]

4.2 Encoder-Decoder Models

Encoder-Decoder models (also called: sequence-to-sequence) are a specific family

of deep learning approaches, which can be used to map variable-length sequence

inputs to variable-length sequence outputs. They were first introduced in [SVL14],

published in late 2014. Encoder-decoder models feature two “sub-modules” in their

architecture: an encoder and a decoder. Figure 7 visualizes this concept, showing

an LSTM encoder-decoder network in training mode.

As seen in the figure, the encoder reads input sequences one time step (i.e., token) at

a time and accumulates context information in the hidden and cell states, passed

between time steps. Before being passed to the LSTM cells, every input is also

one-hot encoded in the Embedding layer. The Embedding layer is essentially a

densely-connected feed-forward linear layer. It accepts a vector X = {x1 . . . xn},

with length n, consisting of integer encodings, as discussed in section 4.1. The

Embedding layer then gradually creates and optimizes (via backpropagation while

training) latent representations for every word from the vocabulary. At the end,

each word from the vocabulary has a fixed integer encoding and a learned latent

representation. The reasoning for doing this is to force the neural network to create

enhanced one-hot embeddings for every word, which contains more information than

just the order in the vocabulary. Rather, these learned embeddings are expected to

38

Figure 7: Training an LSTM encoder-decoder network with teacher forcing;
the green block is the encoder and the purple block is the decoder

solid arrows between LSTMs represent hidden and dotted - cell state

map words, which are often used in the same context (e.g., king and queen), close to

one another.

The outputs of the encoder are generally discarded in sequence-to-sequence models

and are therefore not visualized in the figure. At the end, the last states cT+1 and

hT+1, which are returned by the LSTM cell that processes the meta <END> token,

are passed to the LSTM cell in the decoder block. As a convention, the hidden state

passed from the encoder to the decoder is also called the context vector c. Formally,

the equation of how the context vector is computed is shown in equation 36.

c = hT+1 = LSMTT (<END>, hT , cT) (36)

The intuition behind the process of the encoder is to generate context for the transla-

tion step in the decoder. The <END> token is a so called meta token, which is

added extra to the vocabulary and is used to mark the end of a sequence. Usage of

the <END> token allows variable-length input to the encoder-decoder network,

even though there is a maximum sequence length (in figure 7, it is T+1). Indeed,

39

by introducing another meta token - <PAD>, one can also input sequences with

length < T , by placing <END> at the end of the sequence and then filling the rest

of the sequence with <PAD> meta tokens.

The decoder module of the encoder-decoder model is the one carrying out the

translation itself. As shown in 7, the decoder model also accepts inputs one time

step at a time and can produce variable-length output sequences (same mechanism as

with encoder inputs). Additionally, the decoder also has an embedding layer, which

maps inputs to one-hot encodings. What is immediately noticeable, however, is that

the input for the decoder itself is shifted one time step to the right. This is because

the decoder module is autoregressive. Autoregressive is a broad term outside the

scope of deep learning and means a process, which uses information from past time

steps to decide the output of the current time step. In order for this to hold true for

the first character of the model prediction, a helper meta token <START> is used.

Formally. the training prediction ŷt of the encoder decoder model at time step t is

calculated as shown in equation 37:

ŷt = Linear(LSTMt(emb(yt−1), ht−1, ct−1)) (37)

The linear layer at the top of the decoder module is often notated in the literature as

a classifier layer. Indeed, it is a normal densely-connection feed-forward layer, which

maps the latent output of the LSTM cell to the task vocabulary. As such, its weight

matrix has dimensions dhidden ×N , where dhidden is the size of the hidden state in

the LSTM cell, and N is the size of the task vocabulary. The outputs of the classifier

layer are often additionally put through the softmax activation function, in order to

create a normalized probability distribution in the range (0; 1). Then, if element i has

the highest-assigned probability for time step t, it means that the encoder-decoder

model predicts the token with integer encoding i has to be the output. Coming back

to the example from the previous section 4.1 with the vocabulary of {“cat”, “dog”,

“sloth”}, let the encoder-decoder output for time step t to be [0.2, 0.75, 0.05]. As

40

Figure 8: Inference with LSTM encoder-decoder network;
the green block is the encoder and the purple block is the decoder

solid arrows between LSTMs represent hidden and dotted - cell state

dog is the second token in the vocabulary, and thus has the integer encoding 1, the

output shows that the model predicts dog to be the expected token at time step t.

4.2.1 Training Encoder-Decoder Models

As pointed out in the beginning of the last subsection, figure 7 visualizes the encoder-

decoder model while training. Indeed, the figure shows the inputs of the decoder

model to be a shifter version of the expected output sequence y. This method of

learning is called teacher forcing. Whether it is good to use teacher forcing is still

debated in the literature — see [HZZG19]. On one hand, it is claimed to speed up

weight convergence, meaning it takes less time for the network to be fully trained.

On the other hand, teacher forcing conditions the model on always seeing the perfect

sequence of inputs. This might lead to worse performance when running inference

with the model, as one wrongly predicted character might ruin the whole decoding

process.

The other type of optimization algorithm that may be used to train encoder-decoder

41

networks is “non-teacher forcing”. The process is the same as running inference with

the network and is visualized in 8. With non-teacher forcing, the output of the

previous time step is used as input for the current prediction. This ensures that

the network learns from its mistakes, which is supposed to make it generalize better.

In the same time, however, non-teacher forcing has a slower and more unstable

convergence.

In practice, teacher-forcing and non-teacher forcing are mixed during training. This

is done by assigning a probability for executing teacher forcing (usually: 0.5) and

executing non-teacher forcing if the randomly generated number is higher. This mix

of optimization algorithms combines the faster convergence of teacher forcing with

the better generalization ability of non-teacher forcing. I refer the reader to [BVJS15]

for more information.

4.2.2 Inference with Encoder-Decoder Models

Figure 8 showcases how inference is done with an encoder-decoder model. As

mentioned in the beginning of this section, the decoder is an autoregressive model.

It takes the output from the last time step ŷt−1 and uses it to calculate the current

prediction ŷt. Formally, this is expressed in equation 38:

ŷt = LSTMt(emb(ŷt−1), ht−1, ct−1) (38)

4.2.3 Bidirectional LSTM

Bidirectional LSTM networks feature an additional layer — i.e., an additional LSTM

cell on top — which processes the input sequence in reverse. Figure 9 visualizes

this concept with an encoder module, which uses a bidirectional LSTM network. The

rationale behind bidirectional LSTM networks is that knowing what is coming in the

42

Figure 9: Encoder module with bidirectional LSTM network;
arrows between LSTMs represent both hidden and cell state

sequence might provide additional context for the sequence at time step t. If we take

text generation as an example, the word cat would be harder to predict in “There’s

a _” than in “There’s a _ stuck in the tree”. Formally, this means that the hidden

state ht (also applies to the cell state ct), generated at time step t, can be calculated

by using equation 39

ht = concat(LSTMft(xt, h
f
t−1, c

f
t−1), LSTMbt(xt, h

b
T−t, c

b
T−t)) (39)

It is worth mentioning that different implementations of bidirectional LSTM networks

use different strategies for combining the states from both directions. Figure 9 shows

the option to concatenate both states, but it is also possible to sum them up, or

average them.

4.3 Attention

It was first proposed in [BCB15] to include an additional attention layer to encoder-

decoder models, which consists of two additional densely-connected feed-forward

43

Figure 10: Visualization of attention in an encoder-decoder network; ht is the
output (hidden state) of decoder RNN cell at time step t; h̄s is a vector
with encoder outputs; at represents a vector of alignment weights; ct

is the resulting context vector; taken from [LPM15]

layers. Intuitively explained, the attention layer calculates which words from the

input sequence have the biggest importance with the network prediction at time

step t. In order to build more intuition behind this, consider the German sentence

“Das ist eine schwarze Katze” and its English translation “That is a black cat”. When

making a prediction for the last time step (the ‘t‘ character in ‘cat‘), it is natural

to give the most attention to its German equivalent Katze. One may also wish

to put schwarz under attention, as it might further describe the word that needs

prediction.

The concept of attention in encoder-decoder models was refined by Luong et al. in

[LPM15]. In particular, they showed that the attention layer can be simplified down

to a dot product, and still provide good results, if not better for certain tasks.

Figure 10 visualizes the attention mechanism, as proposed by Luong et al.

The attention layer, as shown in the figure, takes in two inputs — the output ht of

44

the decoder RNN cell at time step t, and a vector of vectors (also called: a tensor)

h̄s, which contains the outputs of the encoder RNN cells at every time step. It is

important to keep in mind that what I mean by outputs in the previous sentence are

just the hidden states, which are returned by the RNN cells (refer to section 3.3).

The first step in calculating the attention is determining the alignment weights

(also called: attention weights). Intuitively, the alignment weights determine for

every encoder output {h̄1, . . . , h̄T } how important its information is for the current

prediction. If we return to the previous example of predicting the last word cat in

the sentence pair “Das ist eine schwarze Katze” and “That is a black cat”, one might

expect a high attention weight for the encoder output of last time step — Katze.

These alignment weights are usually put through the softmax activation function,

in order to transform them into a probability distribution in the range (0; 1). The

equation for computing the alignment weights with a dot product scoring function

is shown in equation 40.

at = softmax(ht · h̄⊤
s) (40)

The calculated attention weights at at decoder time step t are then used to determine

the context vector ct. The context vector is nothing more than a further dot product

between the vector of attention weights at and the matrix of encoder outputs h̄s. By

doing the operation, encoder outputs with a low attention weight get blended out,

while the ones with a high attention weight stand out. Formally, the computation

of the attention scores is shown in equation 41. In order to avoid confusion with

the other notation for context vector, which is the final hidden state of the encoded

that is passed to the decoder, I will be referring to ct from the attention layer as

attention vector.

ct = at · h̄s (41)

45

Additive vs. Multiplicative Attention

Except the complexity of the scoring function — dot product versus two densely-

connected feed-forward layers — there is one more difference between the attention

mechanisms between [BCB15] and [LPM15]. Namely, they propose different points,

at which to calculate the attention vector.

In [LPM15], Luong et al. suggest using the decoder RNN cell output ht at time step

t and then concatenating the attention vector with the output, before passing the

result further down (usually — to a densely-connected linear output layer). This

type of attention is called multiplicative attention in the literature.

On the other hand, Bahdanau et al. propose in their original paper [BCB15] to use

the hidden state ht−1 from the last time step t− 1 to calculate the attention vector.

For time step t = 1, the context vector from the encoder is considered. Moreover,

the alignment vector is the concatenated with the same hidden state ht−1, and it is

passed to the RNN Cell at time step t to produce ht. This type of attention is called

additive attention.

[VSP+17] provide a brief comparison of the two types of attention. They determine

multiplicative attention to be faster and more space-efficient. However, the authors

report that additive attention performs better than multiplicative attention when the

hidden state size is set to large values.

4.4 Transformers

The attention mechanism from last section 4.3 lead to big improvements in the

performance of sequence-to-sequence models in Neural Machine Translation (see

[BCB15] and [LPM15]). Three years later, a team of Google engineers proposed an

entirely new model, which processes sequence data entirely by using attention. The

model was first introduced in [VSP+17] and it is called the Transformer. Figure

11 shows the architecture of the Transformer model. Transformers also use the

46

encoder-decoder design, but do not use any recurrent networks in their modules.

The rest of this subsection will explain the elements of the transformer in more depth

— namely, Positional Encoding (subsection 4.4.1), use of attention (subsection

4.4.2 and residual connections 4.4.3. Subsection 4.4.4 summarizes and lists out

the flow of data through the model, while clearing up any leftover points. Finally,

4.4.5 briefly delves into how the Transformer model is trained, as well as showing how

inference can be done with it.

4.4.1 Positional Encoding

As mentioned in the beginning of this section, the Transformer model does not use

recurrent networks in its design. Therefore, input sequences are passed in their

entirety — not on a time step basis, as shown with recurrent encoder-networks in

section 4.2. Position information in sequences is, however, important metadata that

can influence how a sequence is processed. For example, consider the sentence “It’s

okay not to eat” versus the sentence “It’s not okay to eat”. The first one expresses

that it is acceptable for someone not to eat (e.g., in the presence of others), while

the latter one could act as a warning against, e.g., poisonous mushrooms.

In order to keep position information intact for the Transformer model, the authors

of [VSP+17] suggest adding positional encodings to the embedded representations

of the input. The formulas for generating positional encodings are show in equations

42 and 43. They encode every latent element in an embedded input representation

with dimension dmodel. They do this by using alternating sine and cosine waves

with decreasingly lower frequencies.

PE(pos,2i) = sin(
pos

10, 0002i/dmodel
) (42)

PE(pos,2i+1) = cos(
pos

10, 0002i/dmodel
) (43)

47

Figure 11: Architecture of the Transformer model; image taken from [VSP+17]

48

Figure 12: Distance (dot product) of positional embeddings with seq. length 50

The authors of the paper do not delve into details why using alternating sine and

cosine waves creates a good positional encoding. They argue that by using these

fixed encodings, instead of learned ones (i.e., learned by the Transformer during

training), they expect the model to be able to extrapolate longer sequences during

inference. Moreover, they hypothesize that these encodings would help the model

attend elements of the sequence by relative position — e.g., character #i should put

attention on character #i− 5. This is due to the linear nature of the function, where

for a fixed offset k and position pos, PEpos+k can be found by a linear transformation

of PEpos. The exact transformation is derived and can be inspected in the excellent

article [Den19].

On further inspection, one may find additional desirable attributes in the sine and

cosine positional encoding. Indeed, the encoding is flexible — encoding values for

longer sequences can always be generated by substituting the waves from equations 43

and 42 with an even bigger frequency, and it does not lead to exploding gradients by

virtue of its outputs being in the range [-1; 1] (compare the latter with using integer

49

values to indicate order to grasp the problem). Finally, if one calculates the distance

between the positional encodings at different positions, the result is a symmetrical

matrix with a smooth and gradually-decreasing gradient, as shown in figure 12. This

attribute makes sense intuitively - the distance between directly neighboring time

steps should be the most pronounced, as most attention should be paid there. For

distant steps, the distance can also be shorter, as less attention is paid and the time

steps can essentially be merged.

4.4.2 Use of Attention

The core elements of the Transformer model are the two Multi-Head Attention

modules in the encoder and decoder modules, as well as the Masked Multi-Head

Attention module in the decoder. Two of these modules carry out so-called self-

attention — the two “at the bottom” of the network in figure 11 — while the third

one performs cross-attention. Cross-attention is essentially the same mechanism as

the attention mechanism in recurrent encoder-decoder networks (refer to section 4.3),

except the authors use Scaled-Dot Product Attention.

In the upcoming subsections, I will explain what Scaled Dot-Product Attention is, as

well as how it ties together into the Multi-Head Attention module. At the end, I will

explain self-attention and go into why the self-attention module in the decoder has

to be masked.

Scaled Dot-Product Attention

The Transformer model uses multiplicative attention with a dot product, as shown

in section 4.3. However, the authors of the Transformer added a scaling factor of
1√
dk

, where dk stands for the hidden state size of the model (same as the character

embedding dimension). They motivate the need for scaling by arguing that for large

values of dk, the softmax operation causes gradients to become minuscule and thus

50

Figure 13: Multi-Head Attention module, as visualized in [VSP+17]

hinder training. The result is called Scaled Dot Product Attention and is shown in

equation 44:

Attention(Q,K, V) = softmax(
QK⊤
√
dk

)V (44)

The keen reader will notice that the notation, which the authors use, is different from

the one used in the previous section 4.3. This is due to the fact that the authors

re-framed attention as an information retrieval task, with Q being a query, K being

keys, and V being values. The result of attention is then the sum of weighted

values, where the weight of every value determines how good the query “passes” to a

certain key.

If one removes the scaling factor 1√
dk

, equivalence with the previous version of

attention in recurrent encoder-decoder networks can be shown by setting Q = ht and

K = V = h̄⊤
s .

Multi-Head Attention

The Multi-Head Attention module consists of multiple stacks (also called: attention

heads) of Scaled Dot-Product Attention. The authors of the paper explain this

51

decision by claiming that different heads will extract different attention information,

which can finally be concatenated to give a better understanding of the dependencies

in the sequence. Formally, the output of the Multi-Head Attention module, with

input vectors Q, K, and V, as well as h attention heads is shown in formula 45.

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O (45)

with headi = Attention(QWQ
i ,KWK

i , V W V
i)

Self-Attention

Intuitively explained, self-attention runs the attention mechanism on a single

sequence itself. The reasoning behind doing this is that the result of the operation

transforms the representation of the sequence from its original dimension to a latent

one, where the inner-time step dependencies are accentuated. Indeed, the authors

in [VSP+17] compare self-attention with other methods of extracting dependency

information, namely by using recurrent or convolutional layers. They claim that

self-attention is able to learn long-term dependencies best, with the addition of

them being parallelizable.

Self-attention is inherently bidirectional. For a sequence with length n, it creates a

symmetrical n× n matrix M , with mij being the attention value of time step i with

respect to time step j. This is desirable with the Multi-Head Attention module in the

encoder, as well as the cross-attention Multi-Head Attention module in the decoder,

as time step i benefits from context in both directions. For the self-attention module

in the decoder, however, this becomes an issue. Indeed, if allowed to attend “in the

future” during training, the transformer model might grow dependent on upcoming

time steps. This can, in turn, lead to drastic performance drops during inference, as

the autoregressive nature of the Transformer will prevent the model from attending

future time steps.

The fix to this problem is applying a mask, which nullifies the attention weights of

52

subsequent time steps. This is visualized on the left part of figure 13, with the pink

Mask square representing the step, where the mask sets the attention weights to be

0.

4.4.3 Residual Connection

A residual connection (also called: skip connection) in a neural network is a link

between the start and the end of some neural network module. In the case of the

Transformer, there are residual connections around every Multi-Head Attention and

Feed Forward module, as shown in figure 11.

The first wide-spread successful usage of residual connections was in the field of

computer vision, in the paper [HZRS15]. There is still an ongoing debate in the

literature about the effect of residual connections, but they have shown promising

empirical results, as shown in the aforementioned paper. It is likely because of

this that the authors of the Transformer models also decided to include residual

connections into their model.

4.4.4 Data Flow

The encoder module of the Transformer model accepts an input sequence X in its

entirety. As shown in figure11, the input sequence first passes through an Input

Embedding layer, which maps the input to a latent representation. The Input

Embedding layer generates learned embeddings for each token in the vocabulary, as

explained in the beginning of section 4.2. The authors also add that they multiply

each element of latent embedding with
√
dmodel. A likely explanation (none given

by the authors) is that the multiplication is done to exaggerate the values of the

input embeddings, so that their meaning is not lost when added with the positional

embeddings. Next, positional information is included by point-wise adding positional

53

embeddings, which results in the final version of the input embeddings Xemb (as

shown in equation 46).

Xemb = PE(Emb(X) ∗
√

dmodel) (46)

Afterwards, Xemb is copied into three tensors and passed to the first Multi-Head

Attention module, in order to compute self-attention. The result from the module is

added to Xemb via a residual connection and is normalized with layer normalization

(refer to [BKH16]). Formally, the passing of the first “sub-module stack” transforms

Xemb into Xsa (sa stands for self-attention) as shown in equation 47:

Xsa = LayerNorm(Xemb +MultiHead(Xemb, Xemb, Xemb)) (47)

Afterwards, Xsa is put through another “sub-module stack”, consisting of a feed-

forward network, residual connection and layer normalization. The resulting transfor-

mation, which outputs Xenc, is shown in 48:

Xenc = LayerNorm(Xsa + FFN(Xsa)) (48)

with FFN(x) = max(0, xW1 + b1)W2 + b2

The result of the encoder module — Xenc — is then passed to the decoder module to

be used for cross-attention, akin to how a context vector is passed from the encoder

to the decoder in a recurrent sequence-to-sequence network.

Similarly to the encoder module, the decoder module puts the whole output sequence

through an embedding and positional encoding layer first, as shown in equation 49:

yemb = PE(Emb(y) ∗
√

dmodel) (49)

An important detail is that the output sequence has to be shifted to the right. This

is done, in order to preserve the autoregressive quality of an encoder-decoder network.

54

Formally, this transforms the output sequence y = y1y2 . . . ym, with sequence length

m, to the sequence yshift =< START > y1 . . . ym−1. This shift forces the transformer

model to predict the successive token for each time step, i.e., <START> → y1, y1 →

y2, all the way up to ym−1 → ym. <START> is the same meta token, which was used

with recurrent encoder-decoder networks from section 4.2. Likewise, <END> and

<PAD> tokens can be used to enable the Transformer to work with variable-length

inputs and outputs.

The operations in the decoder module then continue with yemb passing through the

masked self-attention module, before being added to itself via a residual connection,

and normalized. The resulting vector ysa is shown in equation 50:

ysa = LayerNorm(yemb +MultiHead(yemb, yemb, yemb)) (50)

The output of self-attention is then given to the final Multi-Head Attention module,

which computes the cross-attention values between ysa and Xenc. This is the

module, which connects the inputs and outputs of the network, relying on the

attention mechanism to highlight the dependencies between them. The resulting

vector yca (ca stands for cross-attention) is computed with equation 51:

yca = LayerNorm(ysa +MultiHead(Xenc, Xenc, ysa)) (51)

The final part of the decoder module is another stack, consisting of a feed-forward

network, finished with a residual connection and layer normalization. The result ydec

can be determined by following equation 52:

ydec = LayerNorm(yca + FFN(yca)) (52)

with FFN(x) = max(0, xW1 + b1)W2 + b2

The output of the decoder module ydec is then passed through an additional classifier

layer, as shown in section 4.2. The layer has dimensions dmodel×N , with N being the

55

number of tokens in the task vocabulary. Optionally, as shown in figure 11, softmax

can also be applied to the classifier layer to normalize the predictions to a probability

distribution in the range (0; 1).

4.4.5 Training and Inference

The last subsection 4.4.4 made it clear that the Transformer takes output sequences

in their entirety and “simulates” autoregression by shifting them one time step to the

right. This attribute of the model makes training faster than compared with recurrent

encoder-decoder networks, as the decoder module needs to do only one pass with

the output data. Indeed, let yi =< START > yi1y
i
2 . . . y

i
m−1y

i
m < END > be the

expected output sequence of a data sample from an arbitrary dataset with sequence

length m. Then, the Transformer needs the following two versions of this sequence

for training: yiinp =< START > yi1 . . . y
i
m−1y

i
m and yitarget = yi1y

i
2 . . . y

i
m < END >.

yiinp is passed as the “input” to the decoder layer, while yitarget is used as the expected

target. This essentially means teacher forcing is always used with the Transformer

model, as yiinp — the sequence that is passed to the decoder module — is a shifted

version of the expected output itself.

As far as inference is concerned, the decoder module again needs a sequence in its

entirety. However, this is not possible with inference, as there is no expected output

— the model itself needs to generate it. To circumvent this, the model starts by using

an output sequence y with sequence length m, fully comprised out of < START >

tokens, as shown in box 53:

y = < START >< START > · · · < START︸ ︷︷ ︸
m times

(53)

After passing the “dummy” start sequence through the decoder, the < START >

token at time step 2 is replaced by the model’s prediction for time step 1 ŷ1. After-

wards, the modified sequence, shown in box 54, is fed through the Transformer to

56

generate the prediction for time step 2.

y =< START > ŷ1 · · · < START︸ ︷︷ ︸
m-2 times

(54)

This process essentially emulates autoregression, as it was shown in figure 8 for

the recurrent encoder-decoder network. It builds up the prediction sequence ŷ =

ŷ1ŷ2 . . . ŷm < END > time step by time step and returns it at the end.

4.5 BERT

Bidirectional Encoder Representations from Transformers, or BERT, is a language

representation model. BERT was first published in [DCLT18] by a team of Google

engineers, just like the Transformer model. That is no coincidence, as BERT uses the

Encoder module from the Transformer as the basis in its architecture, as explained

in subsection 4.5.2 further in this section.

Before introducing BERT, this chapter will briefly cover the foundations that it lies

on. In particular, subsection 4.5.1 will go over the concept of word embeddings.

Afterwards, subsection 4.5.2 will present the architecture of the BERT model and

formalize the flow of data through the model. Next, subsection 4.5.3 will explain the

BERT tokenization process, i.e., how text sequences are turned into smaller tokens,

before being fed to the model. The subsection 4.5.4 closes out the section with an

explanation of how the BERT model was pre-trained.

4.5.1 Word embeddings

As indicated in section 4.1, deep learning models can not work with the raw string

representations of text — they need numerical representations. The concept of

word embeddings builds on this notion — rather than just creating flat one-hot

57

encoded vector representations without any context, word embeddings maps words

with similar meanings close to one another.

A trivial example of this is to think of a dummy dataset, consisting of all the letters

of the English alphabet, all digits from 0 to 9, and a small set of random punctuation

marks (’.’, ’?’, ’ !’, ’*’, ’+’). Then, a well-made set of word embeddings would be

expected to map all letters to vectors with similar values, and also do the same for

the digits and punctuation.

There is a choice to make with word embeddings — namely how big the size of the

latent space should be. The size of the latent space is a hyperparameter, akin to

determining the number of neurons in a hidden layer in a feed-forward neural network.

A smaller latent size indicates that the word embeddings have less capacity — i.e.,

there is less “space”, in which to project all the words. This might be desirable if

working with a smaller collection of words, but not with a bigger word list. On the

other hand, a bigger latent size offers more capacity to fit all word embeddings, but

it also brings a higher memory cost. In practice, it is often the case that different

word embeddings with varying latent size are generated. It is then left up to the

down-stream user to evaluate the performance of the different latent sizes and match

them with their memory requirements.

Word2Vec

A team of Google employees proposed the first widely-spread approaches for gener-

ating word embeddings in [MCCD13]. The models of the approach, as well as the

resulting set of word embeddings, are ubiquitously knows as word2vec, named after

the repository, under which the code is shared1. The two approaches from the paper

are called “Continuous Bag of Words” and “Skip-grams”. I will briefly explain

how the “Continuous Bag of Words” approach works, which is visualized in figure

1https://code.google.com/archive/p/word2vec/

58

https://code.google.com/archive/p/word2vec/

(a) CBOW training process (b) Skip-gram training process

Figure 14: The two approaches of generating Word2Vec embeddings;
taken from [MLS13]

14a. The “Skip-gram” approach, which is shown in figure 14b, is omitted for the

sake of brevity — I refer the reader to the original paper [MCCD13].

The continuous bag of words (CBOW) model uses a simple two-layer feed-forward

network (referred in the original paper as Neural Net Language Model). The

input layer has V neurons, with V also being the number of different words in the

vocabulary. The single hidden layer then has N neurons, and the output layer again

has V nodes. The hidden layer does not have an activation function, while the output

layer uses softmax to normalize the output distribution over all vocabulary words.

Formally, the weight matrix between the input and hidden layer is W1 ∈ RV×N and

the one between the hidden and output layer - W2 ∈ RN×V . W1 is nothing more

than an embedding layer, which we saw used in encoder networks in sections 4.2

and 4.4. Indeed, the resulting set of word embeddings after training the model is the

result of multiplying the one-hot encoding of each word in the vocabulary with W1.

The multiplication produces a vector of N values, which is the latent representation

59

— i.e., word embedding — of the arbitrary word.

Next, a sliding window approach is used to create training samples for the CBOW

model. The sliding window approach involves determining some window size c, and

then using c words to the left and right of some word to predict it. Explained in an

example, let c = 3 and some document dataset contain the sentence “You dropped

your crown, my queen”. Box 4.1 then shows how the sliding windows approach is

used to create training samples. It is important to notice how each input sample has

a symmetrical number of words — exactly ⌊ c2⌋ from the left and the right. Indeed,

the word Continuous from “Continuous Bag of Words” comes from the fact, that

the input samples contain words from both directions of the target one.

You dropped your crown, my queen → ((“you”, “your”), “dropped”)

You dropped your crown, my queen → ((“dropped”, “crown”), “your”)

You dropped your crown, my queen → ((“your”, “my”), “crown”)

You dropped your crown, my queen → ((“crown”, “queen”), “my”)

Box 4.1: Creation of a CBOW training sample; red represents the context
words (input); green represents the target word (output)

After generating training samples, the CBOW model can be trained by using cross-

entropy. Formally, the forward pass through the model is shown in equation 55,

while the computation of the loss value is shown in equation 56. In the two equations,

ŷw is used to represent the prediction for the target word in the middle of the

sequence, while xci is used to represent the i-th context word. The sum operation

in the forward pass sums up the latent embeddings of all context words point-wise,

as shown in figure 14a. The loss function is a simplified version of the multi-class

cross-entropy function, first introduced in 13.

ŷw = softmax(W2 ∗
c−1∑
i=0

(W1 ∗ xci + b1) + b2) (55)

L(ŷw, yw) = log(ŷw) (56)

60

4.5.2 Architecture

Figure 15 shows the design of the BERT model, as originally proposed in [DCLT18].

It features three encoding layers. Two of these — Input and Positional encoding —

are also used for the regular Transformer model, as explained in section 4.4. The new

Segment encoding layer is related to the format of the input sequence. Indeed, figure

15 shows the input to BERT consisting of two different sequences — X = x1 . . . xT

and y = y1 . . . yT ‘. This format allows BERT to be used in a wider range of down-

stream tasks, e.g., question answering. The distinction between the two sequences

is first made by the meta [SEP] token, and second by the newly-introduced “Segment

encoding” layer. The new layer produces learned embeddings (same as the input

embeddings), which indicate whether a subword is a part of the first or second

sequence.

The presented input format is not enforced. Indeed, for token classification tasks

(e.g., OCR error detection), the input to the BERT model gets rid of the second

sequence y and ends with a [SEP] token. As the input size is fixed, the rest of the

input sequence is filled with meta [PAD] padding tokens.

The base BERT model itself, without the encoding layers before it, consists of 12

Transformer encoder modules stacked on top of each other. The authors also propose

a large BERT, which has 24 stacks.

Each “Transformer encoder block” contains the two submodules, which are visualized

in the figure 11. Namely, it contains a self-attention module, with a residual connection

and layer normalization, as well as a feed-forward module, again followed by a residual

connection and layer normalization. Compared to the original Transformer model,

however — where the vector of encoder hidden states henc was passed to the decoder

for cross-attention — henc is passed to a further copy of an encoder module as input.

Formally, if we let Xemb be the final version of the input sequence after the three

encoding layers, the resulting output vector of BERT hBERT is calculated by (see

equation 57). For a more detailed description of TransEnci, refer to the beginning

61

Figure 15: Bidirectional Encoder Representations from Transformers
(BERT) model architecture

62

of subsection 4.4.4.

hBERT = TransEnc11(TransEnc10(. . . (TransEnc0(Xemb) . . .) (57)

Comparison vs. previous embeddings

BERT improved the state-of-the-art results on 11 NLP tasks, as discussed in [DCLT18].

The first reason for this success is that the subword embeddings from BERT are

context-dependent. To better understand what this means, consider the earliest

generation of word embeddings — i.e., word2vec and GloVe from subsection 4.5.1.

There, the word embeddings are context-independent. Regardless of whether the

word cell appears in the sentence “You used to call me on my cell phone”, or “The

prisoner went back to his cell.”, the word embedding will be the same.

The second reason for the good performance of BERT is its bidirectionality. Indeed,

the authors point out in their paper that another Transformer-based language repre-

sentation model — OpenAI GPT (proposed in [RN18]) — achieves worse results

than BERT due to it processing sequences from left to right.

The third and final reason for BERT’s success is its usage of the Transformer en-

coder block. In this regard, a comparison can be made with ELMo (first published

in [PNI+18]) — another type of context-dependent bidirectional word embeddings.

ELMo embeddings were generated by using bidirectional LSTM networks, which

do not capitalize on attention the way a Transformer encoder block does. In fact,

the evaluations of the 11 NLP tasks in [DCLT18] show that even OpenAI GPT — a

unidirectional Transformer-based language model — outperforms ELMo.

4.5.3 Tokenization

In order for BERT to be a good language representation model, it needs to support

a large collection of words. Until now, we have only seen how to store whole

63

words in a vocabulary (refer to section 4.1). If those tokens are chosen to be words,

however, (compared to, e.g., characters) it becomes unfeasible memory-wise to build

a dictionary so huge, so that the model supports as many words as possible. In order

to alleviate this problem, a subword tokenization approach can be used.

A subword is an arbitrary token — it could be a whole word, just a character, or

a frequent sequence like “ing” (from, e.g., playing or singing). Being able to break

down words into subwords provides a more flexible dictionary, as compound forms of

words become trivially representable (e.g., playing → “play + ing”, plays → “play +

s”).

There are different techniques of creating subword dictionaries. Two of the commonly

used ones are called Byte Pair Encoding, or BPE, and WordPiece. WordPiece was

first proposed by a team of Google engineers in [SN12], while BPE was presented by a

team from the University of Edinburgh in [SHB15]. WordPiece is the approach, which

BERT uses. The two techniques are, however, very similar — only differentiating in

one step. For this reason, I will first introduce how Byte Pair Encoding works, as I

find it is easier to understand 2. At the end of the explanation, I will also show in

which step WordPiece differs. For every other step of BPE, WordPiece functions the

same way.

BPE takes the size of the vocabulary as a hyperparameter. It then goes through

the characters of all text sequences of the provided collection of documents and

appends them to the first version of the vocabulary. For example, assume that all

words from the collection of documents are counted and grouped into:

(′hug′, 10), (′pug′, 5), (′pun′, 12), (′bun′, 4), (′hugs′, 5)

Then, the initial version of the vocabulary contains all characters from the five

2The example for BPE was taken from https://stackoverflow.com/a/70172964/18210589

64

https://stackoverflow.com/a/70172964/18210589

words3:
′h′,′ u′,′ g′,′ p′,′ n′,′ b′,′ s′

Next, BPE starts merging characters into subwords, based on their frequency.

This effectively means that the BPE algorithm considers the pair combinations of all

tokens in the vocabulary and keeps track of their count. Applied to the example data

collection from above, the count tallies up to:

(′hu′, 15), (′ug′, 20), (′pu′, 17), (′un′, 16), (′bu′, 4), (′gs′, 5)

As the most frequently encountered character pair, ’ug’ is appended to the vocabulary

to get the second version:

′h′,′ u′,′ g′,′ p′,′ n′,′ b′,′ s′,′ ug′

’u’ and ’g’ are also merged in all words in the collections that contain them:

(′h′′ug′, 10), (′p′′ug′, 5), (′pun′, 12), (′bun′, 4), (′h′′ug′′s′, 5)

The count of all combinations of tokens is once again calculated, and the top-

scoring pair is appended to the vocabulary. This process is repeated until either

the vocabulary size is hit, or there are no more words left to merge (usually — the

former).

WordPiece shares the entire procedure as BPE, except for the merging step. Indeed,

WordPiece also keeps track of the counts of subword pairs, but does not use the

frequency as a decision criterion, but highest likelihood. The highest likelihood

method merges token pairs, which have a bigger probability of being found together,

than apart. Sadly, the original implementation of WordPiece has not been shared

with the public, so we have no way of knowing how the merge step is implemented

for certain.

3In practice, the initial vocabulary is bigger and contains ASCII and UTF characters.

65

The keen reader will have already noticed that the hyperparameter of vocabulary

size is critical to a good subword dictionary. Too big and the vocabulary append

every character and subword from every word in the collection, which imposes a

memory problem. Too small and the vocabulary is nothing more than a character-level

vocabulary. In the case of BERT, the vocabulary of the uncased version (i.e., input

samples are always cast to lowercase before fed to the model) contains 30,522 subwords,

wile the cased version (i.e., case-sensitive) contains 28,996 subwords. Additionally, the

BERT authors chose to use “##” as a prefix to all subwords that are a continuation

of a previous subword. For example, passing Plovdiv through the BERT tokenizer

gives back [’P’, ’##lov’, ’##di’, ’##v’].

4.5.4 Pre-training

Pre-training a model means nothing more than training a model on an additional

task, before moving on to training on the desired task. In the case of the BERT model,

the authors decided to pre-train on two tasks - Masked-Language Modelling

and Next Sentence Prediction. The resulting model from training on the two

tasks is then provided to end users, who can use its language representation abilities

to accomplish a further task (e.g., OCR error detection).

The authors explain in [DCLT18] that the reason for adding the task of Next Sentence

Prediction is to boost the performance of BERT on down-stream “multi-input” (i.e., the

input contains two sequences x and y) tasks, like for example question answering.

As this is not relevant for this paper, I will instead focus on Masked-Language

Modelling, which provides BERT its word representations. In fact, later variations

of BERT completely omit the task of Next Sentence Prediction in their pre-training

(e.g., RoBERTa in [LOG+19]), opting instead for large batches.

Masked-Language Modelling is, in essence, the same task that the Continuous Bag

of Words model tried to solve in the original word2vec approach (see subsubsection

4.5.1. Indeed, it consists of predicting masked words in arbitrary text sequences —

66

e.g., “I [MASK] Plovdiv” → “I love Plovdiv”). The usage of a mask is necessary, as the

self-attention module in the encoder block is bidirectional, which means that target

words can “see themselves”.

Two huge datasets were chosen for pre-training on both tasks — BooksCorpus

(published, with 800 million words, and English Wikipedia, with 2,500 million words.

In order to create the training samples for the Masked LM task itself, the authors

chose to artificially “modify” 15% of all tokens in each sequence. Additionally, in

order to avoid overdependence on the [MASK] meta token, it is only used in 80% of

the cases. The leftover 20% is split evenly by two events — changing the token to a

random one, and leaving the token unchanged.

67

5 String Operations

This chapter will cove several concepts, related to working with strings, or text

sequences. In particular, section 5.1 will cover the concept of string distance and

similarity. Afterwards, section 5.2 delves into Needleman-Wunsch — a global

sequence alignment algorithm from the sequence of bioinformatics. Finally, section

5.3 will cover how one can use Needleman-Wunsch to align a pair and a triple of

strings, so that the maximum number of characters match.

5.1 String Distance and Similarity

Finding the distance between two strings s and t (short for source and target string)

involves determining the minimal set of edit operations to transform the one

string into the other. An “edit operation” is a term for a single operation, which

edits, or changes a symbol in a string. In 1966, Levenshtein offered a simple set of

edit operations in [Lev66]. The set remains ubiquitous to this day and consists of

insertions (e.g., “Plovdiv ” → “Plovediv ”), deletions (e.g., “Plovdiv ” → “Plodiv ”)

and substitutions (e.g., “Plovdiv ” → “Plofdiv ”). By using this set of operations, one

can determine the edit distance between two strings.

It is worth noting that there also exist different sets of edit operations. Damerau

also included character transposition in his work [Dam64] in 1964, which features

swapping the places of two characters (e.g., “Plovdiv ” -> “Plodviv ”). I will, however,

68

be restricting myself to the base case of Levenshtein operations. For convention, I

also note that the edit distance is sometimes called Levenshtein distance.

The process of transforming some string s into another string t involves changing

characters from s with edit operations, until one gets t. This is also the reason the

starting string s is called the source string, while the resulting string t is called

the target string. Box 58 shows three different sequences (also called: chains) of

edit operations, which transform the source string Plovdiv to the target string loved.

It is obvious from the example that there can be multiple different optimal edit

combinations. The edit distance then is the number of operations, which it takes to

complete the string transformation in any one of the optimal edit combinations.

Plovdiv → lovdiv → lovdi → lovd → loved

Plovdiv → lovdiv → lovdi → lovei → loved (58)

Plovdiv → Plovediv → Plovedi → Ploved → loved

. . .

In practice, the distance between two strings is found by using dynamic programming.

Dynamic programming is a paradigm in computer science for solving problems that

can be broken down into smaller “sub-problems” and recursively tackled. In the case

of calculating the Levenshtein distance, this means recursively finding the distance

between incrementally bigger substrings until reaching the end result. [Dam64] is the

first known publication to provide a description of such an algorithm, while [Nav01]

offers a more thorough dive into the topic, with more rigorous proofs.

A key observation, which makes this process make sense, is equation 59. In it, ED()

is the function for calculating the edit distance, and ED(xn, ym) indicates calculating

the edit distance between the substrings x1x2 . . . xn and y1y2 . . . ym.

ED(si, tj) ≤ ED(si−1, tj−1) + 1 (59)

69

Proving 59 is simple. Assume we already know ED(si−1, tj−1) = x. Then, there are

four scenarios for ED(si, tj):

1. Source string s is longer than target string t =⇒ ED(si, tj) = x+ 1, because

of deletion of last symbol

2. Source string s is shorter than target string t =⇒ ED(si, tj) = x+1, because

of addition of last symbol

3. Strings have the same length, but different last symbols =⇒ ED(si, tj) = x+1,

because of substitution of last symbol

4. Strings have the same length, and same last symbols =⇒ ED(si, tj) = x,

because nothing has changed

Dynamic programming algorithms use rule 59 to progressively determine the edit

distance between s and t. Indeed, the algorithms work “bottom-to-top”, by first

calculating ED(s0, t1), . . . , ED(s0, tm) and ED(s1, t0) . . . , ED(sn, t0), where |s| = n,

|t| = m, and x0 represents the empty string. For these calculations, the trivial rule

60 is used.

ED(x, y0) = ED(y0, x) = |x| (60)

After determining the base cases, the dynamic programming algorithms continue

calculating the edit distance values of bigger substrings from both strings, using the

formula from 61:

ED(si, tj) = min

ED(si−1, tj) + 1 (delete a character from s)

ED(si, tj−1) + 1 (insert a character from t)

ED(si−1, tj−1) + 1 (substitute a character in s from t)

ED(si−1, tj−1) (nothing has changed)

(61)

70

ϵ l o v e d
ϵ 0 1 2 3 4 5
P 1 1 2 3 4 5
l 2 1 2 3 4 5
o 3 2 1 2 3 4
v 4 3 2 1 2 3
d 5 4 3 2 2 2
i 6 5 4 3 3 3
v 7 6 5 4 4 4

Table 1: Result table from running a dynamic programming algorithm for finding
the edit distance between “Plovdiv ” and “ loved ”; ϵ represents blank

string; yellow path is an optimal chain of edit operations

Table 1 shows the table of edit distances, which dynamic programming algorithms

build to find the edit distance between s = Plovdiv and t = loved. In it, a cell with

coordinates (i, j) represents ED(si, tj). As such, the bottom-right corner of the table

is the same as ED(Plovdiv, loved), which is indeed 4.

The yellow path, which is marked in the table, is one of the optimal chain of edit

sequences, which can be used to transform “Plovdiv ” into “ loved ”. The transformation

can be carried out by following these rules:

1. If moving diagonally from (i, j) to (i+1, j+1), substitute character #i in the

source string with character #j from the target string (or do nothing if the

characters are identical)

2. If moving to the right from (i, j) to (i, j+1), insert character #j into the

source string

3. If moving downwards from (i, j) to (i+1, j), delete character #i from the

source

71

In the case of the path in table 1, the transformation process is shown in box 62:

Plovdiv → -lovdiv → -lovdiv → -lovdiv → -lovdiv → -lov-iv → -lov-ev → -lov-ed

(0, 0) → (1, 0) → (2, 1) → (3, 2) → (4, 3) → (5, 3) → (6, 4) → (7, 5)

(62)

5.1.1 String Similarity

The edit distance can theoretically also be used to measure similarity between strings.

If 2 strings have a distance of 0, then they are identical. If they have an edit distance

greater than 0, then they have different symbols between them. The higher the

distance, the more different two string are.

Using the raw edit distance, however, does not give a concrete idea of what fraction

of the symbols in a string are the same. To remedy this, [MV93] proposes using the

normalized edit distance, which is also knows as the Levenshtein ratio. The

Levenshtein ratio can be calculated with equation 63 and returns a value in the range

[0; 1]:

ratio(s, t) = ED(s, t)/max(|s|, |t|) (63)

5.2 Needleman-Wunsch

Needleman-Wunsch is a global alignment algorithm from the field of bioinformatics,

first published in [NW70] in the year 1970. It was originally created to solve the

problem of sequence alignment — the task of aligning the nucleotide bases of two

proteins, so that their similarities can be inspected for genetic similarity.

The Needleman-Wunsch algorithm is a dynamic programming algorithm, and it is

pseudocode is shown in listing 5.1. At its core, the algorithm tries to maximize the

alignment score between the two strings.

The algorithm accepts 4 parameters: the two sequences that need to be aligned (str1

72

Listing 5.1: Pseudocode of the Needleman-Wunsch algorithm
1 needleman_wunsch (st r1 , s t r2 , sub_matrix , gap_penalty) :
2 n , m = len (s t r 1) , len (s t r 2)
3
4 # +1 to l e a v e space f o r the empty s t r i n g .
5 matrix = [[0 for _ in range (n+1)] for _ in range (m+1)]
6 o r i g i n s = [[None for _ in range (n+1)] for _ in range (m+1)]
7
8 # I n i t i a l i z e f i r s t row and column by accumulat ing gap pen .
9 for i in range (1 , n) :

10 matrix [i] [0] = i ∗ gap_penalty
11 o r i g i n s [i] [0] = (i −1, 0)
12 for j in range (1 , m) :
13 matrix [0] [j] = j ∗ gap_penalty
14 o r i g i n s [0] [j] = (0 , j −1)
15
16 # Populate matrix .
17 for i in range (1 , n) :
18 for j in range (1 , m) :
19 matrix [i] [j] = max(
20 # Add gap in second s t r i n g .
21 matrix [i −1] [j] + gap_penalty ,
22 # Add gap in f i r s t s t r i n g .
23 matrix [i] [j −1] + gap_penalty ,
24 # Concatenate nu c l e o t i d e s from both sequences .
25 matrix [i −1] [j −1] + sub_matrix [s t r 1 [i]] [s t r 2 [j]]
26)
27 o r i g i n s [i] [j] = coo rd ina t e s o f bes t s c o r e
28
29 return traceback_alignment (o r i g i n s , s t r1 , s t r 2)

73

and str2), a substitution matrix, and a gap penalty. The substitution matrix and the

gap penalty are the two parameters that influence how the alignment is going to be

done. The gap penalty is a numeric value — usually, a negative number. Every time

a “gap” is inserted into the alignment, the gap penalty is subtracted from the overall

alignment score (see lines 10, 13, 20, and 21 in listing). The substitution matrix is

motivated by the field of bioinformatics and contains values for the substitutions of

different nucleotide bases. As an example, if a nucleotide base is not changed (A in

sequence 1 stays A in sequence 2), then the assigned value may be 1. On the other

hand, if the base is changed (A in sequence 1 becomes G in sequence 2), the assigned

value might be -1. By providing a way for the alignment to be directly influenced

by the substitution matrix (see line 22 in the listing), researchers can assign weights

that have biological justification.

The algorithm follows the basic formula of a dynamic programming algorithm.

It first creates an (n+1)×(m+1) matrix, in which the alignment scores of different

substrings of the sequences will be saved (lines 5–14). Next, it goes through the cells

of the matrix and populates their values based on the recursive formula, shown in

lines 19-26. The origin — meaning the coordinates of the cell, from whose score the

current one was calculated — of each cell is also saved. After filling in all the entries

in the matrix, the origin matrix is passed to a helper function “traceback_sequence”,

which builds the two aligned sequences.

The code for “traceback_sequence” is shown in listing 5.2. The algorithm starts

in the bottom-right corner of the supplied origin matrix, which was built from the

Needleman-Wunsch algorithm (see previous paragraph), as shown in lines 2 and 3.

Afterwards, the algorithm follows the origin coordinates of each cell. If the origin

of a cell sits on the diagonal, then the bases of both sequences are appended (lines

5-7). If it lies on the left of the current cell, then the base of the second sequence is

appended, but a gap in the first (lines 11-13). And, if it lies above the current cell,

the base of the first sequence is appended, while a gap is appended to the second

(lines 8-10). At the end of the algorithm, the aligned sequences are reversed, as the

74

Listing 5.2: Helper function pseudocode for creating alignments
from a Needleman-Wunsch matrix

1 traceback_alignment (o r i g i n s , s t r1 , s t r 2) :
2 a l igned_str1 , a l i gned_str2 = ’ ’
3 i , j = len (s t r 1) , len (s t r 2)
4 while (i >0 or j >0):
5 i f (i > 0 and j > 0) and o r i g i n s [i] [j] == (i −1, j −1):
6 a l i gned_str1 += s t r 1 [i]
7 a l i gned_str2 += s t r 2 [j]
8 e l i f i > 0 and o r i g i n s [i] [j] == (i −1, j) :
9 a l i gned_str1 += s t r 1 [i]

10 a l i gned_str2 += ’− ’ # Gap in second s t r i n g .
11 e l i f j > 0 o r i g i n s [i] [j] == (i , j −1):
12 a l i gned_str1 += ’− ’ # Gap in f i r s t s t r i n g .
13 a l i gned_st r += s t r 2 [j]
14
15 i , j = o r i g i n s [i] [j]
16
17 return a l i gned_str1 [: : − 1] , a l i gned_str2 [: : − 1]

algorithm essentially worked from the back to the front — and returned.

5.3 String Alignment

String alignment is the problem of arranging strings, such that as many symbols

across the strings match with each other. To illustrate this with an example, consider

the four alignments in box 64 of the string “Plovdiv ” and “ loved ”, with ’-’ being a

placeholder blank character.

Plovdiv Plovdiv Plovdiv Plov-div (64)

loved-- --loved -loved- -loved--

It is easy to visually see in the example that the right-most alignment is the best —

Plov-div and -loved--. The right-most alignment makes it so the two strings have

75

ϵ l o v e d
ϵ 0 0 0 0 0 0
P 0 0 0 0 0 0
l 0 1 1 1 1 1
o 0 1 2 2 2 2
v 0 1 2 3 3 3
d 0 1 2 3 3 4
i 0 1 2 3 3 4
v 0 1 2 3 3 4

Table 2: Result table from applying alignment-specialized Needleman-Wunsch
on “Plovdiv ” and “ loved ”; ϵ represents blank string

yellow path is an optimal chain of operations

4/7 shared characters, while the other three have 0/7, 0/7 and 3/7 respectively. It

is important to notice that aligning strings is not guaranteed to keep the length of

the bigger string. Indeed, the best alignment also inserts a blank ’-’ character in the

middle of the word, in order to maximize the number of shared characters.

The acute reader will already have made the connection of the string alignment

problem with the Needleman-Wunsch algorithm. Indeed, it has been shown that

is possible to set the gap penalty and the substitution matrix of the algorithm, so

that Needleman-Wunsch minimizes the edit distance between two arbitrary strings

(see [Sel74]).

For the purpose of string alignment, however, the main task is different: having

as many symbols as possible between the two strings match. This can be achieved

by setting the gap and mismatch penalties to be 0, and the value for matches to

be 1. This set of values forces the Needleman-Wunsch algorithm to only prioritize

matching characters between two strings, which leads to an optimal pair alignment.

Of course, as with the edit distance algorithm from section 5.1, it is possible to have

more than one optimal alignments to a pair of arbitrary strings. In that case, one

76

can just compute the Levenshtein distance of each alignment and return the one

with the lowest distance.

To verify the example from the beginning of the section (“Plovdiv ” and “ loved ”), table

2 shows the matrix, generated by Needleman-Wunsch that is set to optimize the

number of matched characters. The reader can verify for themselves that applying

the helper trace back algorithm from listing 5.2 results in the optimal alignment

Plov-div and -loved--.

String Triple Alignment

The Needleman-Wunsch algorithm can be extended to handle more than two

sequences. This is going to prove useful down-the-line in the evaluation of error

correction on character-level. The extension of the algorithm leaves the structure of

the code from listings 5.1 and 5.2 the same, but adds more cases1. The additional

cases come from running the algorithm in a hypercube (i.e., in three dimensions),

rather than a 2D matrix. In particular, the 3D extension adds a new dimension, whose

elements I refer to as “ailes”. With the addition of ailes, each cell in the hypercube

has seven possible origin cells:

1. From the diagonal (i, j, k) → (i-1, j-1, k-1)

2. From above (i, j, k) → (i-1, j, k)

3. From the left (i, j, k) → (i, j-1, k)

4. From “backwards” (i, j, k) → (i, j, k-1)

5. From above-left (i, j, k) → (i-1, j-1, k)

1The full code is available to check under src/alignment_utils.py in the provided code.

77

6. From “backwards-above” (i, j, k) → (i-1, j, k-1)

7. From “backwards-left” (i, j, k) → (i, j-1, k-1)

The other major change to the 3D extension of the algorithm concerns the cost

function. The cost function cost(str1i, str2j , str3k) calculates the overall cost of

having three symbols aligned in a particular way. It relies, as in the 2D version, on

a gap penalty and values for mismatches and matches. It then calculates the

sum-of-pairs (motivated from [Edg04]) between all three combinations — i.e., it

determines the cost for each pair of symbols (depending on gap/match/mismatch)

and sums them up. The resulting alignment cost is then used as the score of that

particular symbol alignment (see lines 20-25 in listing 5.1). As an example, assuming

a gap and mismatch cost of 0, and a match value of 1, the character triple of (l, l, l)

would have an alignment score of 3 (1 + 1 + 1), while the character triple of (l, t,

None) (the last is possible if the third string is shorter and the alignment process

already went through it) would have a score of 0 (0 + 0 + 0).

After running the extended Needleman-Wunsch algorithm on a triple of strings,

one might get multiple possible alignments. In that case, the average Levenshtein

distance between the three pairs of aligned strings is computed, and the alignment

with the highest average is returned. The averaging operation is used to discredit

such alignments, where two sequences are much more alike between each other than

they are to the last one.

It is important to note that running the extended Needleman-Wunsch algorithm is

costly. In particular, assuming the longest string of the triple has length n, the 3D

algorithm has a time and space complexity of O(n3). There exist other algorithms

for approximate multiple sequence alignment in bioinformatics, which can carry out

the task faster — refer to [CMC+15] — but they are out of the scope of this paper.

78

“Fast” pair alignment

I mentioned in the previous subsection 5.3 that the extended Needleman-Wunsch

algorithm for three strings is expensive computationally. Indeed, this computational

cost is also present when aligning string pairs with the algorithm, as the time and

space complexity of the algorithm is O(n2). This can become a problem for aligning

large text sequences, like the ones from the datasets from the ICDAR competitions

on Post-OCR correction (refer to chapter 2). The long sequences there make the

data pre-processing scripts (explained later in chapter 7) for the datasets take an

extremely long time, made worse by the Python implementation2.

In order to circumvent this issue, I will use an alternate algorithm to align the text

sequences of the samples in the data preprocessing scripts — an algorithm I will

call “fast” pair alignment. The fast pair alignment capitalizes on a C extension for

Python called Levenshtein-C3. The package is called a “C extension”, as it was

implemented in the C language, but made usable for Python programs as well. Al-

though the package uses the same dynamic programming solution in the background,

the implementation in C makes the execution of the Needleman-Wunsch algorithm

much faster.

The algorithm first determines the minimum set of Levenshtein operations, which are

required to transform one sequence into another. Then, an alignment between the

two sequences can be constructed by going through all delete and insert operations

and doing the following:

In the presence of a delete operation, insert a padding ’-’ symbol at the index of

deletion in the correct string. The intuition behind this is that a deletion operation

signals that the correct sequence is one symbol shorter than the erroneous one, and

as such needs to be padded. In the presence of an insert operation, on the other hand,

2Python is a notoriously slow programming language, due to the same overhead structures, which
make it easy to use. This can be seen in the benchmark vs C on https://benchmarksgame-team.
pages.debian.net/benchmarksgame/fastest/python3-gcc.html

3The homepage of the extension is: https://github.com/ztane/python-Levenshtein

79

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gcc.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gcc.html
https://github.com/ztane/python-Levenshtein

one needs to add a padding ’-’ symbol at the index of insertion in the erroneous

string. The reasoning for this is opposite of deletion — if a character has to be

inserted in the erroneous string, then the correct one is one symbol longer.

The results from the “fast” alignment algorithm are equivalent to running the

Needleman-Wunsch algorithm for the minimization of the edit distance between

two strings. In it, the accompanying gap and mismatch penalties are then set to

be 1, while the score for matches is set to be 0. As such, this alignment algorithm

does not guarantee finding the optimal alignment between two sequences, but its

results are often a good approximate (e.g., the alignment of “Plovdiv” and “loved” is

(“Plovdiv”, “’-lov-ed’”)).

80

6 Baseline algorithm

As previously discussed in chapter 2, a simple approach to Post-OCR correction is

using a dictionary. This involves compiling a huge list of valid words and comparing

each one of them with erroneous tokens to find the most suitable correction candidate.

In practice, iterating through the entries of such a collection every time a token has

to be corrected would render the program unusable because of how slow it is. To

counter-act that, I am going to use a data structure from the field of Information

Retrieval — Q-gram indices.

6.1 Q-Grams

Before moving to Q-gram indices, one first has to know the concept of Q-grams. Let

q ∈ N>0. Then, a Q-gram of length q of a word is just an arbitrary substring with

the specified length. If we consider all Q-grams of length 3 of the word “Plovdiv”, we

would get:

Plovdiv → [Plo, lov, ovd, vdi, div]

An important property is that there are always |x| − q+1 Q-grams of length q for an

arbitrary string x. This comes in handy when Q-grams are inserted into the context

of fuzzy search.

81

6.2 Fuzzy Search

Fuzzy searching is another name for the task of approximate string matching.

A widespread example of fuzzy searching is search engines trying to correct user

queries (usually found after “Did you mean:”). Formally, the task requires finding a

correction of an erroneous query by minimizing the edit distance. This description

should immediately draw parallels to Post-OCR correction, but I will be explaining

the connection in a later section.

Fuzzy search is expensive, given that good results are desired. If we denote the length

of a dictionary with correct words as n and the time to compute the edit distance

between two strings x and y as t(x, y), then the total time T (x) of finding a correction

for an erroneous token x is:

T (x) =
n∑

i=1

t(x, yi) ≤ n ∗ t(x, argmax
y

|y|)

The naive approach from above naturally seems unsatisfying. There should exist only

a given subset of words that has to be considered as potential correction candidates.

Words like cat or car look like valid substitutions for “cad”, while dog or carpet do

not. If there is a way for the latter candidates to be pruned early in the process, the

whole operation will become much faster. This is exactly where Q-grams fit into the

puzzle.

We can use the number of common Q-grams as an auxiliary metric for similarity

between strings. It is intuitive that similar strings with a small edit distance should

have more shared Q-grams. Let us consider an example with an erroneous token

x = botle and two correction candidates: y1 = battle and y2 = cattle, by using

2-grams (Q-grams of length 2):

x = botle → [bo, ot, tl, le]

y1 = battle → [ba, at, tt, tl, le] (2 shared Q-grams)

82

y2 = cattle → [ca, at, tt, tl, le] (2 shared Q-grams)

Looking at the number of shared 2-grams, we can see that both replacements have

two - “tl” and “le”. This, however, seems flawed, as both the input “botle” and the

first candidate “battle” start with the letter b. This was not taken into consideration

in the example above. Upon further inspection, we can see that all letters in all words

appear in exactly 2 q-grams (identical to length q) except the start and end letters.

In order to fix this issue, a padding of length q − 1 is appended to both sides of

the strings. Returning to the example again, it now properly shows y1 as the most

suitable replacement:

x = $botle$ → [b, bo, ot, tl, le, e]

y1 = $battle$ → [b, ba, at, tt, tl, le, e] (4 shared Q-grams)

y2 = $cattle$ → [c, ca, at, tt, tl, le, e] (3 shared Q-grams)

What is left to determine is a reasonable lower threshold of common Q-grams for a

given maximum edit distance δ. For this, consider the padded versions xp and yp

of two arbitrary strings x and y. The padding alters the number of Q-grams from

|x| − q + 1 to |x|+ q − 1, because it adds q − 1 Q-grams to both sides of the string:

|x| − q + 1 + 2 ∗ (q − 1) = |x| − q + 2q − 2 + 1 = |x|+ q − 1

As pointed out in the last paragraph, each character appears exactly q times in all

Q-grams of a word. From this, it follows that at most ≤ δ ∗ q Q-grams must be

affected for a maximum edit distance of δ. To show this, we will use a proof by

induction. Let x be an arbitrary string of length n and the Q-gram size q = 3. The

specified value of q lets the visualization of the proof be easier to understand, but it

holds for any arbitrary value.

Consider the base case of δ = 1 and let the edit operation happen at position t. In

83

the case of an insertion at position t, let x and the modified string x‘ be:

x = x1x2 . . . xt−1xt+1 . . . xn

x‘ = x1x2 . . . xt−1xtxt+1 . . . xn

Then, consider how the Q-grams of both strings would look like, as shown in eq. (65).

It is easy to see that the Q-grams of the two strings can differ by ≤ q (in the case of

the visualization, 3) — and exactly by the Q-grams, which contain the new symbol,

inserted at position t. The ≤ property holds, as successive repeating letters can lower

the difference (e.g., see vs seee).

3-grams of x : {. . .

(xt−3xt−2xt−1),

(xt−2xt−1xt+1),

(xt−1xt+1xt+2),

(xt+1xt+2 . . . xt+q),

. . . }

⇐⇒

3-grams of x‘ : {. . .

(xt−3xt−2xt−1),

(xt−2xt−1xt),

(xt−1xtxt+1),

(xtxt+1xt+2),

(xt+1xt+2 . . . xt+q),

. . . }

(65)

Next, consider the case of deletion at position t. Mirrored from the previous case,

let x and the modified string x‘ be:

x = x1x2 . . . xt−1xtxt+1 . . . xn

x‘ = x1x2 . . . xt−1xt+1 . . . xn

Then, the Q-grams of x and x‘ are, also, the exact opposite of eq. (65). As is the

case there, it follows that both strings can have ≤ q different Q-grams.

For substitution at position t, regard the definitions of x and the modified string

84

x‘:

x = x1x2 . . . xt−1xtxt+1 . . . xn

x‘ = x1x2 . . . xt−1x‘txt+1 . . . xn

Both strings then have the same amount of Q-grams, as visualized in eq. (66). Similar

to the previous two cases, the set of Q-grams is disjoint in the q Q-grams, which

include the replaced symbol at position t. Different from the cases of insertion and

deletion, however, a substituted character guarantees that the three Q-grams, marked

in red in eq. (66), will be different, and thus the < property does not hold.

3-grams of x : {. . .

(xt−3xt−2xt−1),

(xt−2xt−1xt),

(xt−1xtxt+1),

(xtxt+1xt+2),

(xt+1xt+2 . . . xt+q),

. . . }

⇐⇒

3-grams of x‘ : {. . .

(xt−3xt−2xt−1),

(xt−2xt−1x‘t),

(xt−1x‘txt+1),

(x‘txt+1xt+2),

(xt+1xt+2 . . . xt+q),

. . . }

(66)

For the induction step, assume that ≤ δ ∗q Q-grams are affected with an edit distance

δ. A key observation to make is that the worst case can be achieved only if the edit

operations are spread out and occur every q − 1 characters. If two modified symbols

are found in a proximity of q − 1 characters, their affected Q-grams overlap. This is

shown in eq. (67), where the left side visualizes the Q-grams of an arbitrary substring

x1 = xixi+1x‘i+2xi+3xi+4x‘i+5xi+6xi+7 with evenly spread out edit operations and

the right side - x2 = xixi+1x‘i+2xi+3x‘i+4xi+5xi+6xi+7 with overlapping ones. I use

85

x‘ to mark the symbols, introduced by edit operations.

3-grams of x1 : {. . .

(xixi+1x‘i+2),

(xi+1x‘i+2xi+3),

(x‘i+2xi+3xi+4),

(xi+3xi+4x‘i+5),

(xi+4x‘i+5xi+6),

(x‘i+5xi+6xi+7)

. . . }

vs.

3-grams of x2 : {. . .

(xixi+1x‘i+2),

(xi+1x‘i+2xi+3),

(x‘i+2xi+3x‘i+4),

(xi+3x‘i+4xi+5),

(x‘i+4xi+5xi+6),

(xi+5xi+6xi+7)

. . . }

(67)

As showcased in eq. (67), having spread out edit operations at every q − 1 characters

is the worst-case scenario. But, as shown already in the induction base case, every

edit operation can affect, by itself, ≤ q Q-grams. This means that in the worst case of

δ spread out edit operation modifications, the maximum amount of Q-grams changed

is ≤ δ ∗ q. □

Now, by using the proof from above, we can calculate the minimum number of

common Q-grams (comm(x, y)) between xp and yp:

comm(xp, yp) ≥ max(|xp|, |yp|) + q − 1− δ ∗ q

≥ max(|xp|, |yp|)− 1 + (1− δ) ∗ q

≥ max(|xp|, |yp|)− 1− (δ − 1) ∗ q

(68)

6.3 Q-Gram Index

Q-indices are data structures, which leverage eq. (68) in order to execute fuzzy

searches in reasonable time. They are built by first determining the Q-gram size q

and then processing a collection of words. Each word is then processed by assigning

86

a numerical ID to it and storing it in a flat list, where the index corresponds to its

ID. Afterwards, all Q-grams of the token are extracted and inserted in a “index” (i.e.

mapping), which maps each Q-gram to a list of integers — the numerical IDs of all

words that contain the given Q-gram. This trade-off of using memory for the expense

of speed during inference is what makes the dictionary approach feasible in practice.

If we are using a 3-index with the word collection of {"plovdiv", "love"}, the status

of the Q-index after inserting the words is shown in Listing 6.1.

Listing 6.1: Status of hypothetical Q-index

1 {

2 "$p": [0],

3 "pl": [0],

4 "lo": [0, 1],

5 ...

6 }

Pseudocode for the correction procedure of erroneous tokens with a certain maximum

edit distance follows immediately below in Listing 6.2. After trimming the candidates

with the auxiliary metric from eq. (68), the correction with the lowest edit distance

and biggest frequency is returned. Frequency denotes the number of times a given

word was inserted into the Q-index, when it was built. The higher the frequency, the

more commonly used the word is.

The helper function merge_entry_lists is described in Listing 6.3. In short, it

aggregates the entry lists of all matched Q-grams and returns the entries (words,

which the Q-index has saved and knows), which have at least one common Q-gram.

87

Listing 6.2: Pseudocode for error correction with a Q-index
c o r r e c t (q_index , q_size , erroneous , max_dist) :

q_grams = get_q_grams (erroneous , q_size)

e n t r y_ l i s t s = []
for q_gram in q_grams :

i f q_gram in q_index :
e n t r y_ l i s t s . append (q_index [q_gram])

cand idate s = merge_entry_l ists (e n t r y_ l i s t s)

for candidate in cand idate s :
n , m = len (e r roneous) , len (candidate . word)
th r e sho ld = max(n , m) − 1 − (max_dist − 1) ∗ q_size
i f candidate . shared_q_grams < thre sho ld :

remove candidate from c on s i d e r a t i on

return candidate w/ lowest ed i t d i s t . and b i gg e s t f r e q .

Listing 6.3: Pseudocode for helper function merge_entry_lists
merge_entry_l ists (e n t r y_ l i s t s) :

f l a t _ l i s t = f l a t t e n (en t r y_ l i s t s)
f l a t _ l i s t . s o r t ()

r e s = [(1 , f l a t _ l i s t [0])]
for entry in f l a t _ l i s t :

i f entry != r e s [− 1] [1] :
r e s . append (1 , entry)
continue

r e s [−1] [0] += 1

return r e s

88

7 Error Correction Models

This chapter will explain the exact mechanics of framing the Post-OCR correction

problem as an NMT one. In particular, section 7.1 covers the format of the data, which

will be fed into the encoder-decoder models, as well how it is generated. Afterwards,

7.2 introduces the character-level vocabulary, which is used to encode and decode

the error correction samples. Finally, 7.3 illustrates how the data flows through the

encoder-decoder networks.

7.1 Data

The data for error correction is split into different groups with respect to the assigned

context size. The context size is a tuple of integers (cp, cs), which controls how

many tokens there are to the left (cp) and right (cs) side of the focus token. There

is always exactly one focus token per error correction sample, and it is encased in

meta <TGT> tokens (meta tokens will be explained more in-depth in the upcoming

section 7.2 on preprocessing).

89

OCR: “and comfort me <TGT>too<TGT> Ihe bright shining”

GT: “and comfort me <TGT>too,<TGT> Ihe bright shining”

OCR:“<TGT>Zn<TGT> this”

GT: “<TGT>In<TGT> this”

OCR: “<TGT>w if e<TGT>”

GT:“<TGT>w@ife,<TGT>”

OCR: “<TGT>andtheir<TGT>”

GT: “<TGT>and their<TGT>”

Box 7.1: Error correction samples with varying context sizes

Box 7.1 offers examples of error correction samples with varying context sizes - (3, 3),

(1, 1), and (0, 0). Context size (0, 0) is a special case, which I will refer to isolated

correction. For a better visualization of the different parts of an error correction

sample, I will use blue to mark the preceding context tokens, purple to mark the

succeeding context tokens, and red to mark the focus token.

As seen by lines 1 and 2 in the box, the sequence “and comfort me too Ihe bright

shining” contains two erroneous tokens. Despite having multiple mistakes, however,

the error correction samples that get created by the sequence always feature exactly

one focus word.

Additionally, the context size is not always strictly obliged to, when there are not

enough tokens. For example, line 3 in box 7.1 was generated with context size

(1, 1), but there were no context tokens available to the left of the focus word

“<TGT>Zn<TGT>”. In cases like that, the error correction sample is still considered

valid — the missing context is just padded to match the sequence length of the rest

of the sample (if used in a batch).

90

7.1.1 Data generation

Aligned OCR: Chortts. - Ri choo ral, on mischief that girl was bent.

Aligned GT: Chor@us.@-@Ri choo ral, on mischief that girl was bent.

Extracted token pairs: [("Chortts. - Ri", Chor@us.@-@Ri)]

Isolted. corr. sample: ("<TGT>Chortts. - Ri<TGT>", <TGT>Chor@us.@-@Ri<TGT>)

Context. corr. sample (1, 1):

("<TGT>Chortts. - Ri<TGT> choo", <TGT>Chor@us.@-@Ri<TGT> choo)

Box 7.2: Creation of error correction samples

Box 7.2 illustrates how error correction samples are generated. In particular, one

first needs to extract all pairs of erroneous tokens, together with their correct

versions, out of an arbitrary sequence. For this, the sequence is stripped down to

its sentences by using the pretrained “en_core_web_sm” model with spaCy1. It is

worth noting that the sentence splitting is not required for the generation of error

correction samples, but makes it easier to generate error detection data down-the-line

(refer to chapter 8).

After splitting the sequence pair into pairs of sentences, the words of each sentence

pair are aligned with each other, with the alignment algorithm shown in 5.3. The

alignment then allows implementing the approach from [AC18], where token pairs

are extracted from the two sentences by splitting on matching whitespace characters.

The split on matching whitespace characters is vital to the correct extraction of

token pairs. It also makes it possible to extract erroneous tokens with indentation

mistakes. Box 7.2 illustrates this with an example. Consider the naive approach of

splitting the erroneous sequence by whitespace characters, and using the indices of

each token to extract the corresponding correct tokens from the erroneous sequence.

Then, instead of having the correct token pair (“<TGT>Chortts. - Ri<TGT>” and

“<TGT>Chor@us.@-@Ri<TGT>”), we would end up with three incorrect pairs —

(“<TGT>Chortts.<TGT>”, “<TGT>Chor@us.”), (“-”, “-”), and (“Ri”, “Ri”). By

1spaCy is an NLP package with pre-trained models: https://spacy.io/

91

https://spacy.io/

splitting only on the matching whitespace character after “Ri”, however, the erroneous

token (with an absent whitespace character) can correctly be extracted.

The next step of generating error correction samples involves filtering the extracted

token pairs. The idea behind the filtering process is to eliminate all token pairs, which

are too “dirty” to be corrected. Such token pairs might include tokens that were

misaligned in their original sequences, erroneous tokens with no respective ground

truth, and others. A more in-depth exploration of all employed tokens is offered in

the following subsection 7.1.2.

All token pairs that survive the filtration process are valid and are turned into error

correction samples. By default, the data preprocessing scripts create one isolated

correction sample from each token pair, as well as one context correction sample

with context size (1, 1) (i.e., one preceding and one succeeding token). The scripts

also support a command-line argument, which can be used to change the context size

to arbitrary integer values ≥ 0.

For the generation of an isolated correction sample, both the erroneous token and the

correct token are encased with <TGT> meta tokens. The encased erroneous token is

then used as an input sample, while the correct token as an output sample. One

might argue the meta tokens are, in this case, superfluous, as the entirety of the

erroneous token (i.e., the input sample) is open for correction. While this is true,

the <TGT> tokens are the link between the error correction models and the error

detection model, which is going to be introduced in the upcoming chapter 8. As such,

the meta tokens are present across all error correction samples, regardless of context

size.

As far context correction samples are concerned, the supplied context size (cp, cs)

determines how many tokens will be appended to the left and right of the target (or,

focus) token. The target token itself is, again, encased in <TGT> meta tokens, in

order to signalize to the model which one of the tokens from the input sample needs

to be corrected. The context tokens are extracted from the erroneous sequence, from

92

which the target token also comes. Although this might lead to the context tokens

themselves having mistakes (see box 7.1), the error correction model only needs to

handle the focus token in the middle.

The reader might question why it is necessary to include the context of a context

correction sample, instead of only predicting the correction of the focus word. This

decision was influenced by Amrhein et al.’s paper [AC18], in which they point out that

“forcing the MT system to produce the context on the target side as well, produced

better results” (section 4.3 in the paper).

7.1.2 Filters

As explored in the previous subsection 7.1.1, extracted token pairs undergo a filtration

process. In this subsection, I will introduce all filters that I use, explain what kind

of dirty token pairs they are supposed to catch, and also give examples of the token

pairs they eliminate in practice.

It is important to note that not all filters are used for every dataset. Indeed, some

datasets are dirtier than others and require the usage of more filters, in order to weed

out the maximum amount of dirty token pairs.

“No mistake” filter

This filter is applied by default to all token pairs, which are extracted from a pair of

sentences (as shown in subsection 7.1.1). The “no mistake” filter removes all token

pairs, in which the erroneous and the correct token are the same.

This filter essentially conditions the error correction model to always expect an input

sample to contain one erroneous token that needs to be fixed. This is important to

keep in mind for the rest of the paper, as it also sets expectations for the performance

of the error detection model. Indeed, always expecting an erroneous token suggests

93

using a detection model with high precision (i.e., the tokens, which the error detection

models predicts to be erroneous are indeed erroneous) would work best.

An alternative approach would be to also train the error correction model on token

pairs without mistakes, and having an error detection model with high recall. The

high recall would mean that the detection model catches a high percentage of the

actual erroneous tokens in a sample (this is the approach, employed in [SN20]). I

will refrain from exploring this alternative approach further in the boundaries of this

paper, and instead focus on testing the limits of a “purely-erroneous” correction

models.

“Unknown GT” filter

The “Unknown GT” filter is specific to the ICDAR2017 dataset (introduced in

chapter 9). Indeed, the authors of the dataset explain in [CDCM17] that some

sequences feature OCR texts, which are miss-aligned with the ground truth. To

indicate this, the authors decided to use the meta token ’#’. The design of the

dataset then leads to many token pairs, where the ground truth (i.e., the expected

output sample) consists entirely out of ’#’ tokens — as shown in box 7.3. These

token pairs are appropriately filtered out, as they do not carry any knowledge for the

error correction model.

OCR: FLASH IS THE mum. wmm My

GT: ########################

OCR: rockery. 30 A LADY’S TOUR IN CORSICA.

GT: #####################################

OCR: !MC z -tomize

GT: ###############

94

Box 7.3: Examples of filtered-out samples with unknown GT

“ICDAR hyphen” filter

Similar to the previous subsection, the “ICDAR hyphen” filter is indeed only

used on the datasets from the ICDAR Post-OCR correction competitions — i.e.,

ICDAR2017 monograph, ICDAR2017 periodical, and ICDAR2019. The filter

was implemented due to a suggestion from the authors in [CDCM17] and [RDCM19]

to ignore tokens with hyphens when evaluating on the test set. It is important

to note, however, that I will still use tokens with hyphens when training the error

correction models, as I find that the expected corrections make sense.

Box 7.4 illustrates some tokens with hyphens, which are from the training sets

of the ICDAR datasets. They are not filtered out by this specific filter and are

considered valid samples for training. As we can see by pair #1 in the box, tokens

with hyphen can have mistakes, which are completely unrelated to “hyphen correction”

— eliminating them from the training dataset would result in a loss of valuable samples.

Pairs #2, #3 and #4 are, on the other hand, classic examples of hyphen correction,

where the hyphen was either wrongly inserted (pairs #2 and #3), or there was a

problem with the surrounding indentation (pair #4).

Box 7.5, on the other hand, visualizes some hyphenated tokens, which are filtered

out from the test sets. Similarly to the training tokens with hyphens from the

previous paragraph, filtering out all tokens with hyphens in them also eliminates

some valid post-correction samples (pair #2). However, the filtered-out samples

also include samples, where the hyphen correction is completely misleading, often

correcting a correct token to an erroneous one (opposite of the task in hand). This

can be seen with pairs #1, #3 and #4 in box 7.5, where the OCR text contains

correct tokens, and the hyphen correction process results in erroneous ground truth

samples.

95

OCR: l-am’dlately

GT: immediately

OCR: and-Moderation,

GT: and Moderation,

OCR: de-scription,

GT: de@scription,

OCR: . - Charles

GT: .@-@Charles

Box 7.4: Examples of training samples with hyphens from the ICDAR datasets

OCR: title page

GT: title-page

OCR: chil-dren.

GT: chil@dren.

OCR: Albemarle street.

GT: Albemarle-street.

OCR: Ludgate-@street,

GT: Ludgate- street,

Box 7.5: Examples of filtered-out test samples with hyphens from the ICDAR
datasets

96

Maximum length filter

The maximum length filter catches out tokens which exceed a custom-defined

threshold. Although varied across the different datasets, this threshold takes default

values of 15 or 20. The length is measured in characters. It does not matter

whether the length of the erroneous or the correct token is taken, as they both have

the same length due to the nature of the token extraction process (refer to the start

of this subsection).

The rationale behind this filter is that most valid English words are relatively short.

Indeed, longer English words are often compound words, which contain a hyphen to

join two individual words (e.g., double-decker). As such, any tokens that exceed the

custom set threshold are considered to feature non-valid English words, and are thus

ignored. This can be confirmed by inspecting box 7.6, which shows examples of the

tokens that this filter eliminated across the different datasets.

One group of eliminated tokens through the maximum length filter are token pairs,

in which big chunks of text have to be deleted, as shown in pairs #1 and #3 in box

7.6. It is important to note that some hyphenated tokens from the ICDAR training

datasets are also caught by the maximum length filter, as shown in pair #2. Pairs #4

and #5 show another big group of eliminated samples by the length filter — URLs

or otherwise non-natural language.

The only long samples that this particular lets through are ones that only have errors,

connected to whitespaces — e.g., “the@question@will” → “the question will”, or “car

pet” → “car@per”.

97

OCR: Overflows f t @ « ’

GT: Over@flows@@@@@@@@!!

OCR: Corsicans. - Valery,

GT: Corsicans.@-@Valery,

OCR: Independentlyo@lthes@orevaits,vouchii,if.’aerge’icallv

GT: Independentlyof these ################################

OCR: DOCTORS(DOCID.NAME.SEX,SPECIALTY)

GT: DOCTORS(DOCID,NAME,SEX,SPECIALTY)

OCR: http://crl.ransu,edu/shiraz

GT: http://crl.@nmsu.edu/shiraz

Box 7.6: Examples of filtered-out long samples

“ASCII-sensitive” filter

The “ASCII sensitive” filter first normalizes the token pair. The normalization

process involves transforming any non-ASCII characters to purely ASCII (e.g.,

German ’ü’ to English ’u’). For this, I use the external library unidecode2.

After normalizing the characters of both tokens in the pair, it is checked whether they

are identical — if they are, then the token pair is considered “ASCII-sensitive” .

ASCII-sensitive token pairs then only feature character substitution(s) with respect

to non-ASCII characters. Such token pairs are filtered out, as the error correction

models are specialized to work with the English language, which does not feature

mistakes of this type. Box 7.7, for example, shows some token pairs, which the filter

caught across the different datasets.

2Homepage of the library is: https://pypi.org/project/Unidecode/

98

https://pypi.org/project/Unidecode/

As expected, this filter captures cases, where valid ASCII English words have to be

“corrected” to some foreign representations of the word (e.g., pairs #1 and #3). As

seen from pair #2, the filter also captures cases where non-ASCII punctuation

marks have to be substituted.

OCR: severes

GT: sévères

OCR: 27’

GT: 27′

OCR: appeared

GT: appêared

Box 7.7: Examples of filtered-out ASCII-sensitive samples

“Meaningless addition/deletion” filter

The “meaningless addition/deletion” filters catch compound tokens, parts of

which have to be entirely deleted, or added. The usage of the filters is more easily

seen in boxes 7.8 and 7.9. As seen there, all the eliminated samples fit one of two

situations:

1. The erroneous token contains multiple words, some of which have to be entirely

deleted

2. The correct token contains multiple words, some of which have to be entirely

added

Token pairs like these are considered too dirty, as their operations are completely

unpredictable. Technically explained, the data preprocessing scripts achieve this

by calculating the fraction of padding symbols in each token. Then, if the fraction

99

exceeds a custom-set threshold (per default: 0.51) in the erroneous token, it is safe

to assume that some word has to be added to the correct version (as shown in box

7.8). Vice-versa, if the fraction exceeds the threshold in the correct token, then some

part of the erroneous token has to be deleted (refer to box 7.9).

OCR: and@@@@@

GT: and when

OCR: fell@@@@@

GT: fell.....

OCR: wit@@h@@@@@@@

GT: Pet Children.

OCR: out@@@@@@

GT: out sail,

OCR: t@@

GT: the

Box 7.8: Examples of filtered-out meaningless addition samples

100

OCR: thus much

GT: @@@@@much

OCR: that opinion

GT: @@at@@@@@@@@

OCR: ourknowfcê*

GT: @@@@@@@@@@@

OCR: and was leaning

GT: @@@@@@@@leaning

OCR: our very

GT: ou@@@@r@

Box 7.9: Examples of filtered-out meaningless deletion samples

Mismatch filter

The last filter is called the mismatch filter. It calculates the Levenshtein similarity

(refer to subsection 5.1.1) between the tokens in each pair and eliminates them if it is

below the user-defined threshold. As with the other filters, the threshold was manually

adapted to each dataset, so that it catches as many dirty samples as possible, without

also eliminating valid token pairs. To this extent, the default “match threshold”

values were set to be either 0.33 or 0.41.

Box 7.10 shows an excerpt of the eliminated token pairs across all datasets. It is

easy to see that this filter catches two main types of “dirty” samples: mismatches

(e.g., pairs #1, #3, and #5) and semantic corrections (e.g., pairs #2 and #4).

The latter type is interesting, as both the erroneous and correct tokens are valid

101

words. Nonetheless, semantic substitutions are unpredictable, the same way addition

or deletion of whole tokens was in subsection 7.1.2.

OCR: ’_\[’ dfle

GT: Table

OCR: obligatory

GT: Begin

OCR: liliTiibcr

GT: number

OCR: purpose

GT: occurrences

OCR: f(mn(l

GT: Found

Box 7.10: Examples of filtered-out mismatch samples

7.1.3 Types of mistakes

In this subsection, I will briefly explain the different types of errors, which are

encountered in Post-OCR correction. I will be using the terminology from Nguyen

et al.’s paper [NJC+19], which offers a more in-depth analysis of the distribution

of OCR errors and how it compares with that of spelling correction. I will be

using the terminology later on in the paper, when I am exploring the results of the

experiments.

The first type of error is called a non-word error. As explained back in chapter

2, a non-word error involves correcting an erroneous word, which is not a valid

102

English word. A trivial example of this is the pair of the erroneous token “car” and

its correction “oar”.

The second error type is the real-word error. Real-word errors describe token pairs,

where both the erroneous and correct tokens are valid English words. However, the

erroneous token does not fit within its surrounding context, and is thus considered

a mistake. For an example of this, consider the two sentences “I am driving my car.”

and “I am driving my far.” Although both “car” and “far” are correct words, the

second sentence does not make any sense semantically.

I discussed in chapter 2 how standard vocabulary-based approaches to Post-OCR

correction struggle with real-word errors. Indeed, using a vocabulary to check for

valid words and only correcting unknown ones makes it practically impossible to

correct real-word errors. Additionally, it would also be hard for a human to correct

a real-word error without any surrounding context. Due to this, I hypothesize that

both the baseline algorithm with Q-gram indices (refer to chapter 6), and sequence-

to-sequence models with isolated correction samples, will struggle with real-word

errors.

The third and fourth types of errors concern erroneous word boundaries. In

particular, there is the incorrect split error, and the run-on error, as notated in

[NJC+19].

The incorrect split error features token pairs, where the erroneous token is a split

version of the correct token. An example of this is the erroneous token “car pet” and

its correct alternative “carpet”. The keen reader might also have observed that an

incorrect split might end up splitting a valid word into two or more valid sub-words,

as in the example above.

The run-on error is the opposite of the incorrect split error. It features pairs of tokens,

where the erroneous token has one or multiple missing whitespace characters when

compared to the correct version. For an example, consider the mirrored version of

the incorrect split example, with the erroneous token “carpet” and its correction “car

pet”.

103

7.2 Character-level Vocabulary

The character-level vocabulary maps characters to unique integer encodings

(as explained in section 4.1 on how to work with strings in machine learning). It

contains different sets of characters, depending on whether the correction process is

chosen to be case-sensitive or not. Indeed, the case-insensitive version contains only

the lowercased characters of the English alphabet, while the case-sensitive version

additionally includes their uppercased variants. Furthermore, the vocabulary also

contains all single-digit numbers from 0 through 9, as well as all ASCII characters,

which are considered punctuation marks3.

Additionally, the vocabulary includes a set of meta tokens — [<PAD>, <START>,

<END>, <UNK>, <TGT>]. The <PAD> meta-token is used to pad input samples

to the maximum sequence length of the error correction models. This is helpful when,

for example, using batches of input samples during training. The different sequences

in the batch are not required to have the same length, which would make it impossible

to cast their encoded representations into a matrix. This is remedied by appending

<PAD> meta tokens after the end of every sequence with length ≤ max_length.

The <START> and <END> tokens are essential to the correction process. As

explained in section 4.2 about encoder-decoder models, the autoregressive nature

of the models requires a <START> token as the first (or zeroth) time step. The

<END> token, on the other hand, allows for variable-length inputs and outputs (for

more information, refer to 4.2).

The <UNK> token is pretty straight-forward. Indeed, it is used as a substitution for

every character, which is not known to the character vocabulary. In theory, this

meta token should be incredibly rare to spot, as the filtration process of the token

pairs (look up subsection 7.1.2) normalizes all input samples to make sure they only

contain ASCII characters. Nonetheless, it is possible for undesirable characters like

the control characters in ASCII4 to slip through from some Post-OCR correction

3All ASCII punctuation marks: !"#$%&’()*+,-./:;<=>?@[]ˆ_‘{|}~
4I refer to the first 32 characters of ASCII as control characters: https://www.asciitable.com/

104

https://www.asciitable.com/

datasets. In those particular cases, the <UNK> token helps to bring all of these

characters under one “term”.

The <TGT> meta token is used in both error correction and detection samples to

mark the target, or focus tokens. In order to get a better intuition about the effect

of the <TGT> token, imagine a context correction sample without one. Indeed, in

such cases, the encoder-decoder network would have to learn to both detect where

the erroneous tokens are, and propose valid corrections for them. Additionally,

if using a sequence-to-sequence model exclusively, it would be infeasible to put

<TGT> meta tokens around the erroneous tokens while training, as the same would

not be possible to do in inference. Indeed, the <TGT> meta tokens are the ones

that accomplish the “link” between the error detection and correction models — the

error detection model first marks the erroneous tokens with <TGT> meta tokens,

and then passes them on with the appropriate context to the correction model for

them to be corrected.

7.2.1 Correction Sample Encoding

The character vocabulary, introduced in the start of this section, is used to encode the

error correction samples, before they are fed to the sequence-to-sequence models. The

process for this is simple: it first starts by splitting the error correction sample into

individual characters. If we consider the erroneous sequence “In <TGT>thee<TGT>

paper”, this first step results in the sequence being split into the list of characters [’I’,

’n’, ’ ’, ’<TGT>’, ’t’, ’h’, ’e’, ’e’, ’<TGT>’. ’ ’, ’p’, ’a’, ’p’, ’e’, ’r’]. Notice that

meta tokens are considered by the character vocabulary to be their own individual

tokens.

Afterwards, each character from the list is encoded with their uniquely assigned

integers from the vocabulary. If we consider a case-sensitive vocabulary, which

includes both upper- and lowercased English letters, the encoded vector of integers

would look like this: [84, 63, 7, 4, 69, 57, 54, 54, 4, 7, 65, 50, 65, 54, 67]. Notice that

105

in this example, the integer encoding 4 represents the meta <TGT> token. The final

steps include adding the encodings for the <START> and <END> tokens to the

front and back of the vector, resulting in [1, 84, 63, 7, 4, 69, 57, 54, 54, 4, 7, 65, 50,

65, 54, 67, 2]. Optionally, the user can also supply a maximum sequence length,

which forces the vector of integers to be padded with the integer encoding of <PAD>

— 0.

It is worth noting that the data preprocessing scripts do not feature a “case-

sensitivity” filter (refer to section 7.1.1). This is done, in order to facilitate both

case-sensitive and case-insensitive error correction models. If a case-insensitive

model is chosen, however, casting a sample pair (input sample — erroneous sequence,

output sample — correct sequence) might fix all mistakes in the input sample. In

order to keep the error correction model purely-erroneous, any sample pairs that

become identical after casting their characters to lowercase, are discarded.

Additionally, it might happen that some sample pairs are longer than the user-supplied

maximum sequence length. Truncating an error correction sample is undesirable,

as it might happen to split a token down in the middle or break up the focus token

in the middle. As such, any “long” samples are also dropped during the encoding

process.

7.2.2 Correction Sample Decoding

The decoding process is the reverse of the encoding process from the previous

subsection 7.2.1. Indeed, the character vocabulary goes through the vector of integers

one by one and uses a reverse-dictionary to look up the corresponding character

for each integer encoding. Integer-by-integer, the resulting string is built-up and

returned at the end.

106

7.3 Data Flow

The flow of the encoded error correction data is essentially identical to the one

explained in section 4.2 about how encoder-decoder networks function. Indeed, the

encoder-decoder model accepts the encoded vector of integers, which was produced

by the character vocabulary in section 7.2. Then, the encoder processes the tokens

(i.e., time steps) one-by-one, in order to create the context vector c. c is then passed

to the LSTM cell in the decoder module, where the output sequence is generated,

again, one step at a time.

As one of the main focus points of this paper is to evaluate the role of attention

on character-level Post-OCR correction, the LSTM encoder-decoder networks also

feature an attention mechanism, as described in section 4.3. The classifier layer,

which is seen on top of figure 8 for inference, and on top of figure 7 for training with

teacher forcing, is combined with softmax to produce a normalized distribution

with a probability for each of the characters from the character vocabulary. The

process is also identical for doing Post-OCR correction with a Transformer model

as well (refer to section 4.4).

107

8 Error Detection

Error detection is often done together in a combined step alongside error correction.

This is a perfectly valid strategy, as the sequence-to-sequence models from last chapter

7 would, in theory, only need to learn to copy over all tokens that are not encased

in meta <TGT> tokens. On the other hand, as chapter 2 alluded to, there is also

promise in regarding error detection as a completely independent step (see [SN20]

and [RDCM19]). This chapter will explain how the error detection task can be done

as a separate step, leveraging the BERT model, explained in section 4.5. The desired

effect of this is then twofold: improving the overall performance on error detection

and also positively influencing error correction by using error detection as a “filter”

to only pass down erroneous samples to error correction models.

The chapter starts off with section 8.1, which explains how data samples are generated

for the error detection task, and visualize what they look like. It also shows how

the error detection samples can be used to create error correction samples, which

accomplishes the link between the two steps. Then, section 8.2 explains how to mark

erroneous target tokens in data samples — and showcases its influence on sample

preprocessing. Furthermore, section 8.3 shows how the BERT model is used to

predict the erroneous tokens in each sample. It also touches on what it means to

fine-tune BERT for the error detection task, and what approaches there exist. Section

8.4 follows this with an elaboration on how the predictions of the BERT model are

decoded.

108

Row, brothers row, the stream runs fast, The rapids are near, and the day-light’s
past.
I <TGT>ihou’d,<TGT> not have spoke in that manner, had I known it was
<TGT>you;<TGT> and I knew you only by report.
The <TGT>seeond<TGT> line in each doublet is a new transition
<TGT>chaaacteristic<TGT> of a QDM.
9 < < 3.
T. vent.
O.
<TGT>Chortts. - Ri<TGT> choo ral, on mischief that girl was bent.

Figure 16: Subset of the error detection data; red marks the target tokens

8.1 Data

An excerpt of the data, which the error detection model uses, is shown in figure

16. As displayed there, the error detection samples consist of correct sentences from

the different datasets, with some of their words replaced by erroneous tokens. The

erroneous tokens are always marked with meta <TGT> tokens. This, however, does

not necessarily mean that the rest of the sentence does not contain any other mistakes

— some datasets also feature erroneous “correct” words. These words are not, however,

regarded by the model as targets.

The creation of the error detection samples is easy and executed in parallel with the

creation of error correction samples. An example of the whole process is visualized in

box 8.1. In particular, a list is kept of all tokens pairs, which were extracted from a

sentence and not filtered (refer to section 7.1.1). This record includes an erroneous

token itself, as well as the beginning and end character indices of its corresponding

token in the erroneous sentence. After all “valid” erroneous tokens of a sentence

are marked, the list is sorted backwards with respect to the ending index of the

marked tokens. Then, the relevant (i.e., unfiltered), erroneous tokens are marked

for detection in the erroneous sentence by encasing them with <TGT> meta tokens.

As seen by some examples in box 8.1, not every error detection sample contains target

erroneous tokens. Additionally, all filtered out tokens are essentially ignored in the

109

error detection sample. Even though they are present in the error detection sample

itself, it is not expected from the model to mark them as erroneous targets, as they

would be hard to predict from even a human.

As a final pre-processing step, it is also important to strip all meta padding symbols

from the error detection sample — the detection sample will not have anything to

align against at inference time.

OCR: Chortts. - Ri choo ral, on mischief that girl was bent.

GT: Chor@us.@-@Ri choo ral, on mischief that girl was bent.

Marked words: [{"start_ind”: 0, “end_ind”: 14, “err_token”: "Chortts. - Ri"}]

Err. det. sample: <TGT>Chortts. - Ri<TGT> choo ral, on mischief that girl was bent.

Box 8.1: Creation of an error detection sample

The <TGT> meta tokens, which are appended to the left and right of every erroneous

token, makes it easy to link the two tasks of error detection and correction together.

Indeed, an error detection sample can be used to make error correction samples with

or without context. If the error correction model is not using context, then the error

detection model can pass on only the tokens, which it predicted to be erroneous. If

we take the example from box 8.1, this means passing <TGT>Chortts. - Ri<TGT>.

If the correction model, on the other hand, uses context of one word to the left and

right, then <TGT>Chortts. - Ri<TGT> choo is passed (the additional context does

not help much in this case).

This process of passing data from the error detection to the correction model is the

essence of the two-step process, as explained in [SN20]. By first determining the

erroneous tokens with a separate model, the error correction model can focus entirely

on correcting the words, encased in <TGT> meta tokens, which has shown to boost

its performance (refer to chapter 2).

110

8.2 Marking Mode

Consider the sentence I love Plovdiv! and its erroneous version, I love Plovediv. As

explained in subsection 4.5.3, the BERT model uses a tokenizer to cast words to a

custom subword level. This means that in this example, I love Plovdiv! becomes [’I’,

’love’, ’P’, ’##lov’, ’##di’, ’##v’, ’ !’], while I love Plovediv. becomes [’I’, ’love’,

’P’, ’##love’, ’##di’, ’##v’, ’.’]. The desired output from the model would then be

I love <TGT>Plovediv.<TGT>, indicating that the tokens (plural, as punctuation

marks are regarded by the BERT tokenizer as independent) between the <TGT>

meta tokens are erroneous.

The previous section 8.1 explained how data samples like I love <TGT>Plovediv.<TGT>

are created. In order for the BERT model to be able to train, however, it also needs

an expected output vector. In the case of error detection, the output vector should

indicate which words (and by extension — its subwords) are erroneous and should

be marked with <TGT> tokens, and which ones are error-free. I will refer to this

technique as the “start w/ cont.” marking mode, and I will dedicate subsection

8.2.1 to explain how it works.

8.2.1 “Start w/ Cont.” Marking mode

The “start w/ cont.” marking mode uses the integer class 1 to mark all correct

subwords, 2 to mark the start of an erroneous token, and 3 to mark any remaining

subwords. Integer class 0 is reserved for all meta tokens, which BERT adds to a

tokenized sequence (i.e., [CLS] and [SEP]), as well as all meta sequence padding

tokens <PAD>.

If we take our previous example of I love <TGT>Plovediv.<TGT> again, the

expected output y is shown in equation 69. The first 2 in the vector stands for the

subword ’P’, while the rest of the subwords are marked with 3s - [’##love’, ’##di’,

111

’##v’, ’.’].

y = [1, 1, 2, 3, 3, 3, 3] (69)

It is important to note that integer classes 2 and 3 are vital to how the expected

output y is processed. Indeed, if we consider the modified vector ȳ in equation 70,

the last class being changed from 3 to 2 translates into the error detection being I

love <TGT>Plovediv<TGT><TGT>.<TGT> This is undesirable in the case of

this paper, as punctuation marks are counted as parts of their corresponding words.

As such, the “closing” <TGT> meta token is expected to be after the full stop.

ŷ = [1, 1, 2, 3, 3, 3, 2] (70)

8.3 Prediction

Figure 17 visualizes how the BERT model can be used for OCR error detection.

Compared to the vanilla version of BERT (see figure 15), this error detection model

has a dropout and linear layer with the softmax activation function on top of it. The

linear layer at the end maps the BERT output hBERT of every token to a normalized

probability for the four integer classes. In the aforementioned figure 17, for example,

the symbolized output vectors predict integer class 0 (misc. tokens) for the [CLS]

and [SEP], 1 (non-erroneous) for x1 (’I’), x2 (’love’), and 2 and 3 for the start and

continuation of the erroneous token at x3 (’P’), x4 (’##love’), x5 (’##di’) and x6

(’##v’).

The workflow of the model is the same for both training and inference. The input

X = [CLS]x1x2 . . . xT [SEP] represents some arbitrary text sequence, which was

already preprocessed by the BERT tokenizer. X is then fed to the BERT model (refer

to 4.5.2 for more details), which returns a vector of latent representations hBERT .

The layers on top of BERT then use hBERT to adapt the model to the process OCR

112

Figure 17: Using BERT for OCR error detection using “start w/ cont.” marking
mode; bold colors in the output vectors represent high probabilities

113

error detection. The prediction vector ŷ, which the error detection model returns,

is ultimately computed by equation 71. In the equation, Wcls and bcls stand for the

parameters of the classifier linear layer on the top of the model.

ŷ = softmax(Wcls(dropout(hBERT)) + bcls) (71)

Figure 17 also showcases how the flow of the data would look like if the erroneous

sequence I love Plovediv is passed to the model. Above each model output ŷ[CLS],

ŷ1 . . . ŷ[SEP], there is a visualization of the desired probabilities, which the error

detection model should ideally predict for each token. Namely, integer class 0 (i.e.,

miscellaneous tokens) is expected for the meta tokens [CLS] and [SEP], alongside

any other ones (e.g., [PAD]). Then, the first two tokens should be assigned a high

probability of being non-erroneous (i.e., integer class 1).

For the subwords of the erroneous word Plovediv, the expectation is that all subwords

will be correctly marked with their expected class. Coming back to the example

in figure 17, we can see that the model correctly predicts that the subword “P”

is the start of an erroneous token, and the rest of the token subwords are all

marked as continuations. If, however, one of the subword tokens was classified

incorrectly, the whole meaning of the prediction would be changed. Consider the

example where the subword ’##di’ was misclassified with integer class 1, and this

leads to ’##v’ being misclassified with 2. Then, the decoding procedure from

the following section 8.4 would end up decoding the model prediction as I love

<TGT>Plove<TGT>di<TGT>v<TGT>, which would cause a lot of issues to the

error correction model to work with.

The classification probabilities can then be plugged into a cross-entropy loss function,

and the resulting loss value can be used to train the model. For inference, the

classification probabilities are passed to another step in the error detection pipeline,

discussed in the upcoming section 8.4.

114

8.3.1 Fine-tuning

As explained in subsection 4.5.4, the original model was pre-trained on Masked-

Language Modelling and Next Sentence Prediction. It is then possible to

extract word embeddings out of BERT — i.e., by averaging the embeddings for all

subwords of a word — and use them in other applications, akin to how the original

word2vec was used. This approach of using knowledge from language representation

models is called feature-based. The other way of capitalizing on a pre-trained

BERT model is called fine-tuning, which is what I will focus on in this subsection.

Fine-tuning a model deals away with having to create task-specific models, and

instead focuses on adjusting the pre-trained parameters of a model to a new task.

This is exactly what is shown for our error detection model in figure 17. Additionally,

further research in [PRS19] has shown that fine-tuning outperforms the feature-based

approach in many NLP tasks, and is never worse in others. In the domain of token

classification — i.e., the task, which OCR error detection falls under — fine-tuning

is shown to perform only very slightly better. However, fine-tuning is the most

widespread approach when it comes to the BERT, and thus I will also be preferring

it.

There is a choice to make with fine-tuning in regard to which module of the BERT

model to freeze during the process. Freezing a module stops gradients being computed

for its layers, effectively disconnecting it from the update step while training. It is

generally accepted (see [SQXH19]) that the “lower” Transformer blocks of a BERT

model contains more general knowledge, which gets more specific further up. It

would therefore be intuitively reasonable to freeze the lower layers of a BERT model

and use the upper ones, combined with the classifier layer, to fine-tune to the task of

OCR error detection. On the other hand, [HR18] shows that fine-tuning an entire

pre-trained model gives best results, when the dataset of the down-stream task is

big enough. I will therefore be exploring this question in the domain of OCR error

detection in the experiments of this paper (refer to 10).

115

8.4 Decoding

As mentioned in the previous section 8.3, the error correction pipeline decodes the

predictions of the fine-tuned BERT model and marks the erroneous tokens by the

predictions for their subwords.

Let the original input sequence be X = “I love Plovediv ” and the prediction of the

error detection model be ŷ = [0 1 1 2 3 3 2 0]. In order to decode the model’s

prediction, the input sequence X is first split into its individual words by whitespace.

Next, each word is put through the BERT tokenizer, in order to get its tokens (i.e.,

subwords). If any of the tokens of the word were predicted to be the start of an

erroneous entity, then a <TGT> meta token is appended to its left side. Afterwards,

the loop keeps going through the subwords of the samples until one of the three

integer classes [0, 1, or 2] is encountered. Each one of those classes mark the end of

an erroneous entity, and start a new one. In order to mark the end of the erroneous

entity, an enclosing <TGT> meta token is inserted to the last token with integer

class 3 (or 2, if it was a single-subword erroneous entity).

If we come back to our example, let the tokenized version of the input sequence

be Xtokenized = [’[CLS]’, ’I’, ’love’, ’P’, ’##love’, ’##di’, ’##v’, ’[SEP]’]. Com-

paring this to the output vector ŷ, we can see that the single-token words ’I’ and

’love’ have not been predicted to be erroneous by the model. The word ’Plovediv’,

on the other hand, has 3 correctly marked erroneous subwords — namely ’P’,

’##love’, and ’##di’. ’##v’, however, was predicted to be its own single-subword

erroneous entity, which would result in the decoding procedure returning “I love

<TGT>Plovedi<TGT><TGT>v<TGT>”.

Classification threshold

The BERT detection model initially returns numerical values for each class, where a

higher numerical value represents higher confidence that the given class is correct.

116

The naive way to then determine the predicted classes from the model would be to

just take the index of the biggest value. For example, consider the model returned

the following dummy output for a given token in the sequence: [25.2 -2.1 0.1 13.3].

Clearly, the maximum numerical value of this vector is 25.2, so the predicted class

is 0. There is one obvious caveat with this technique — classes with low initial

confidence can end up being the ones predicted because they are bigger than the

values for every other class. This can lead to problems with decoding and evaluation

of the prediction down-the-line, as it might result in given tokens unnecessarily being

marked as erroneous.

An easy way to deal with this problem is using a classification threshold. With

the classification threshold, erroneous classes (i.e., error start and continuation) have

to be predicted with a high enough confidence, in order to be considered as such.

For example, in their paper [SN20], Schaefer and Neudecker describe that “only

character encodings with an error probability of >99% were treated as erroneous”.

The probability itself (i.e., confidence) can be gotten by applying softmax (refer to

3.2) to the predicted class vector. I will also be employing a classification threshold

when working with the BERT detection model myself. Manual tests have revealed

that not using one, and just taking the index of the biggest value, leads to a lot

of superfluous target entities, which brings the overall performance of the model

down.

117

9 Datasets

In this chapter I will introduce all datasets, with which I have worked in the bound-

aries of this paper. To start the chapter off, section 9.1 will present two collection of

statistics, related to the error correction and detection samples from each dataset.

The section acts as an overview, and should give enough information on the data,

which is generated from all datasets.

Afterwards, the five successive sections will cover each one of the datasets in more

details, and explain their format, sources and particularities. In particular, section

9.2 starts with the two datasets from the ICDAR2017 competitions on Post-OCR

correction. Next, section 9.3 does the same for the dataset from the competition’s

re-run in 2019. Then, 9.4 introduces a manually curated dataset, which was created

from the ACL Anthology Reference corpus. Furthermore, 9.5 introduces two spelling

correction datasets. Although not usable in the context of Post-OCR correction

(their underlying distributions are shown in [NJC+19] to be different), it can nonethe-

less be used to explore if both tasks are compatible with each other. Section 9.6

introduces another dataset, consisting purely of OCR errors, again on the basis of

the ACL corpus.

Finally, section 9.7 finishes off the chapter by explaining how the error statistics

from the OCR datasets can be used to generate an arbitrary amount of artificial

error correction and detection data, by using the help of an external dataset of arXiv

documents.

118

Set type # token pairs # OCR/GT chars # edit operations CER

ICDAR2017
monograph

Training 29,044 182,332/178,231
9,524 insertions (5.22%)
13,625 deletions (7.47%)

18,714 substitutions (10.3%)
∼23.49%

Validation 7,968 46,648/48,218
4,440 insertions (9.52%)
2,870 deletions (6.15%)

4,165 substitutions (8.93%)
∼23.8%

Testing 12,285 67,649/68,124
2,422 insertions (3.58%)
1,947 deletions (2.88%)

12,085 substitutions (17.86%)
∼24.15%

ICDAR2017
periodical

Training 27,481 157,210/156,002
7,263 insertions (4.62%)
8,471 deletions (5.4%)

31,537 substitutions (20.1%)
∼30.3%

Validation 2,996 18,472/18,080
696 insertions (3.77%)
1,088 deletions (5.9%)

3,299 substitutions (17.86%)
∼28.1%

Testing 6,936 38,810/38,599
1,587 insertions (4.1%)
1,798 deletions (4.63%)

8,541 substitutions (22%)
∼30.9%

ICDAR2019
Training 3,918 24,965/24,829

1,297 insertions (5.2%)
1,433 deletions (5.74%)

4,698 substitutions (18.82%)
∼29.93%

Validation 1,090 6,576/6,554
355 insertions (5.4%)
377 deletions (5.73%)

1,148 substitutions (17.46%)
∼28.7%

Testing 1,284 8,003/8,014
430 insertions (5.37%)
419 deletions (5.24%)

1,531 substitutions (19.13%)
∼29.67%

"ACL benchmark" Validation 381 2,651/2,597
89 insertions (3.36%)
142 deletions (5.36%)

433 substitutions (16.3%)
∼25.6%

Testing 405 2,741/2,651
61 insertions (2.22%)
151 deletions (5.5%)

459 substitutions (16.75%)
∼25.3%

"Matthias artificial" Validation 8,182 48,646/47,665
2,517 insertions (5.17%)
3,498 deletions (7.19%)

4,992 substitutions (10.26%)
∼23.1%

Testing 7,953 46,716/45,720
2,392 insertions (5.12%)
3,388 deletions (7.25%)

4,896 substitutions (10.48%)
∼23.4%

"Matthias realistic" Validation 3,993 16,297/16,042
972 insertions (5.96%)
1,227 deletions (7.53%)

2,670 substitutions (16.38%)
∼30.4%

Testing 4,003 16,130/15,585
903 insertions (5.6%)

1,448 deletions (8.98%)
2,604 substitutions (16.14%)

∼31.8%

"Pure OCR Errors" Training 68,185 501,926/465,594
7,522 insertions (1.5%)
43,837 deletions (8,73%)

86,497 substitutions (17.23%)
∼29.6%

Validation 17,047 126,309/117,292
1,892 insertions (1.5%)
10,906 deletions (8.63%)

21,852 substitutions (17.3%)
∼29.5%

Overall
Training 128,588 866,424/824,647

25,606 insertions (3.35%)
67,366 deletions (7.72%)

141,446 substitutions (16.33%)
∼28.3%

Validation 41,657 265,599/256,448
10,961 insertions (4.13%)
20,108 deletions (7.57%)

38,559 substitutions (14.52%)
∼27%

Testing 32,866 180,049/178,693
7,795 insertions (4.33%)
9,151 deletions (5.08%)

30,116 substitutions (16.73%)
∼31.6%

Table 3: Collection of error correction statistics for each dataset in the paper

119

Figure 18: Distribution of error types depending on the edit distance; Y-axis
value is % of overall number of token pairs;

blue represents single-mistake errors;
red represents double-mistake errors;

yellow represents triple-mistake errors;
green represents multi-mistake errors

Figure 19: Distribution of word boundary errors; Y-axis value is % of overall
number of token pairs;

blue represents run-on errors; red represents incorrect split errors

120

9.1 Overview

I will be using five different datasets in the boundaries of this thesis, with two of

them containing two separate sub-datasets, which I will be treating as their own.

All-in-all, this amounts to seven sub-datasets in total. Five of the seven sub-datasets

contain data about Post-OCR correction mistakes. They will be used as the core

for training and evaluating the error correction models. Those sub-datasets are (in

no particular order): ICDAR2017 monograph and periodical (two sub-datasets

in the over-arching ICDAR2017 dataset), ICDAR2019, “ACL Benchmark” , and

“Pure OCR errors” . As for the remaining two sub-datasets, they are both contained

in a spelling correction dataset I will refer to as “Matthias Benchmark”. The two

spelling correction datasets will not be used for training the error correction model,

and instead only for evaluation. I decided to add this dataset, in order to further

confirm or deny the conclusion from [NJC+19], which determines that the distribution

of OCR errors is different from the one of spelling correction.

9.1.1 Error Correction Statistics

Table 3 offers character-level statistics for each of the aforementioned datasets. The

information is split into five columns - set type, number of extracted token pairs,

number of characters in all input (i.e., OCR-ed texts) and output sample (i.e., GT

texts), number of edit operations, and finally — Character Error Rate for a

particular set of samples. The second column — “# token pairs” — stands for the

amount of extracted token pairs, which survived the filtration procedure, described in

section 7.1. Inadvertently, this number corresponds with the number of isolated and

context error correction samples that were generated from that particular dataset,

for all datasets except “Pure OCR Errors”. The “Pure OCR Errors” is handled

differently than all other datasets, as it only contains a list of erroneous tokens and

their respective corrections (e.g., “correst)onds” → “corresponds”). As such, there is

121

no free-flowing text, from which to build context correction and error detection

samples. Section 9.7 later in this chapter discusses a technique to circumvent this

issue. For the purposes of this overview, however, it is only important to know that

“# token pairs” applies only to the isolated error correction samples or the “Pure

OCR Errors” dataset.

The third column — “# OCR/GT chars” is self-explanatory. It offers information

about how many characters there are as a whole across all input (i.e., OCR) and

output (i.e, GT) samples of a dataset. This data is connected to the information in

the fourth column — “# edit operations”. Indeed, by looking at the difference between

the number of OCR and GT characters, one can draw conclusions about the types of

errors in a dataset. For example, if we look at the statistics for the ICDAR2017

monograph training set, there are 4,101 more characters in total across the input

samples. This suggests that there would be many deletion operations in the

dataset, in order to transform all OCR into their respective GT samples. This

can be confirmed by looking at the “# edit operations” column, where it says that

7.47% (or, 13,625) of all OCR characters are deleted. The difference between the two

deletion values — 13,625 from the fourth column, and 4,101 from the third — can

be explained by the presence of insertion operations. Indeed, if we subtract the

number of insertion operations from the deletion ones, we arrive at the original value

of 4,101 characters (13, 625− 9, 524 = 3, 770).

The last column in the table stands for the Character Error Rate (or CER) of

the dataset. As explained in section 7.3, this metric provides an idea of how just how

erroneous a given dataset is. Coming back to the example about the ICDAR2017

monograph dataset, the character error rate of approximately 23.49% means that

one out of every four characters is an OCR mistake.

To supplement the general statistics in table 3, I also present the distributions of

different error types in figures 18 and 19. In particular, the former visualizes the

distribution of errors based on their edit distance, while the latter focuses on

visualizing the fraction of word boundary errors (i.e., run-on and incorrect split

122

errors). The values in the graphs are grouped and visualized by the set type, i.e.,

whether the data belongs to one of the training, validation or testing sets.

Figure 18 shows clearly that the majority of errors only have a single mistake

(i.e., the token pair has an edit distance of 1). If the edit distance is increased, the

percentage of overall tokens respectively drops. The green bar, which represents

multi-mistake errors (i.e., more than three), makes up the smallest parts of errors

in each dataset. Note that the fractions of error types sum up to 100% — the overall

number of token pairs for each set type. This observation is also shared in section

4.1 of [NJC+19], in which Nguyen et al. conclude the same relationship. The code

behind the paper is, however, not available, and thus I can not guarantee that both

papers arrived to the exactly same values. Still, the ratios between the different error

types is the same between the two papers, and we can thus safely assume that the

observation holds true.

The first thing that may draw the reader’s attention in figure 19 is the Y-axis values.

Indeed, the percentage of word boundary errors is low throughout all three different

set types, with an overall 8.34% for the training set, 8.26% for the validation set,

and 12.22% for the testing set. Among the types of word boundary errors themselves,

incorrect split mistakes occur slightly more often. The ratios for the different sets

are 3.55% run-on to 4.79% incorrect split error in the training set, 4.06% to 4.2%

in the validation set, and 6.1% to 6.12% in the testing set. Nguyen et al. covers

word boundary errors in section 4.5 o [NJC+19]. As with the error types based

on edit distance, I can not provide a guarantee that the exact values between the

two papers match, due to the lack of published code. However, Nguyen et al. also

observe that incorrect split errors are more often observed across all datasets they

test out. Additionally, they find that the fraction of word boundary errors itself is

low compared to the sizes of the respective datasets — generally laying in the range

of 15%- 22%. The reported values in figure 19 are lower than that, laying in the

range of 8%-13%. This can be, however, explained by the addition of the “Pure

OCR Errors” dataset, as the dataset has a tiny fraction of word boundary errors

123

Set type # samples # overall tokens # focus tokens # focus entities

ICDAR2017
monograph

Training 22,868 806,627 57,785 (7.16%) 29,004
(∼2 tokens per entity)

Validation 4,175 129,048 14,187 (11%) 7,968
(∼1.8 tokens per entity)

Testing 4,243 206,482 17,260 (8.36%) 12,285
(∼1.4 tokens per entity)

ICDAR2017
periodical

Training 10,328 388,974 44,641 (11.48%) 27,481
(∼1.6 tokens per entity)

Validation 1,391 48,035 5,171 (10.77%) 2,996
(∼1.7 tokens per entity)

Testing 3,796 115,495 10,646 (9.2%) 6,936
(∼1.5 tokens per entity)

ICDAR2019
Training 1,506 47,026 6,899 (14.67%) 3,918

(∼1.8 tokens per entity)

Validation 362 12,047 1,809 (15%) 1,090
(∼1.7 tokens per entity)

Testing 648 16,796 2,142 (12.75%) 1,284
(∼1.7 tokens per entity)

"ACL benchmark" Validation 1,100 25,288 882 (3.49%) 381
(∼2.3 tokens per entity)

Testing 952 21,637 1,027 (4.75%) 405
(∼2.5 tokens per entity)

"Matthias artificial" Validation 2,373 73,020 10,744 (14.71%) 8,182
(∼1.3 tokens per entity)

Testing 2,373 70,636 10,367 (14.68%) 7,953
(∼1.3 tokens per entity)

"Matthias realistic" Validation 2,357 64,047 4,289 (6.7%) 3,993
(∼1.1 tokens per entity)

Testing 2,344 61,601 4,296 (7%) 4,003
(∼1.1 tokens per entity)

Overall
Training 34,702 1,242,627 109,325 (9.28%) 60,403

(∼1.8 tokens per entity)

Validation 11,758 351,485 37,082 (10.55%) 24,610
(∼1.5 tokens per entity)

Testing 14,356 492,647 45,738 (9.28%) 32,866
(∼1.4 tokens per entity)

Table 4: Collection of error detection statistics for each dataset in the paper; the
token statistics are made on the basis of the “BERT-Cased” tokenizer

across its training and validation sets (i.e., sub 1%).

9.1.2 Error Detection Statistics

Table 4 provides information about the error detection samples, which were extracted

from six of the seven sub-datasets. As explained in the previous subsection 9.1.1, the

“Pure OCR Errors” dataset does not allow the creation of error detection samples

by itself. Section 9.7 further in the chapter explains how this can be achieved by

124

using a clean external dataset, but the amount of generated context correction and

error detection samples is dynamic and dependent on user-set thresholds.

Table 4 is split into five columns - set type, number of error detection samples,

number of tokens across all samples, number of focus tokens overall, and

finally — number of focus entities. The first column is self-explanatory — it

describes how many error detection samples there are in a particular dataset (the

process of error detection sample generation is described in section 8.1.

The “# overall tokens” column gives information about the number of overall tokens

there are across all error detection samples in a dataset. As described in the caption

of the table, the tokens for the evaluation were generated by a “BERT-Cased”

tokenizer. Although using a “BERT-Uncased” tokenizer changes the marginal

values in the tables, the important percentages (i.e., percent of focus tokens and

entities) stays the same.

The third column — “# focus tokens” — provides data about the percentage of all

target, or focus tokens (i.e, subwords) that have to be caught by the error detection

model. In particular, all tokens of words, which are encased by meta <TGT> tokens

in the error detection sample, are considered to be focus tokens. For example, if we

return to the recurring example in chapter 8 of “I love <TGT>Plovediv.<TGT>”,

the tokens ’I’ and ’love’ are not considered focus tokens, while [’P’, ’##love’, ’##di’,

’##v’] are.

Sticking to the example above, the whole token “<TGT>Plovediv.<TGT>” is con-

sidered to be one token entity. The last column — “# focus entities” — then gives

information about how many such entities there are across all detection samples of a

dataset. This data is interesting, as it can be used as an auxiliary metric about how

dirty the target tokens are. Indeed, if we look at the statistics for the two spelling

correction sub-datasets — “Matthias artificial” and “Matthias realistic” — the token

per entity ratio is low (approximately 1.3 and 1.1 respectively). This means that the

tokens in the focus entities themselves generally consist of a single subword, which

is only the case for short and common English words (e.g., ’eye’, ’might’, ’dye’). In

125

comparison to that, the statistics for the ICDAR2017 monograph dataset say that

one focus entity contains two tokens on average. This indicates that the errors in the

Post-OCR datasets result in more unusual words, which have to be tokenized into

multiple subwords by the “BERT-Cased” tokenizer, in order to be supported.

9.2 ICDAR2017 Datasets

The International Conference on Document Analysis and Recognition (ICDAR) hosted

a competition on Post-OCR correction in 2017 ([CDCM17]). It required submitting

an approach (not necessarily a deep learning model) for detecting and correcting

OCR errors. The organizers provided a dataset of their own, based on OCR-ed texts

from the National Library of France and the British Library and ground truth texts

from multiple sources, including Gutenberg, Wikisource and Europeana Newspapers.

The dataset contains documents in two languages — English and French. For the

purposes of this paper, we will focus entirely on the former.

The English documents are split into two categories: monograph (i.e., books) and

periodical (i.e., newspapers). As seen by the evaluation results in [CDCM17], the

different document types are treated as two separate datasets — an approach that I

will also adopt for this paper. Each document is stored in a text file with three lines:

the first one features the OCR-ed text sequence, the second one contains an aligned

version of it and the third contains an aligned version of the correct, ground truth

sequence. The aligned sequences are the ones that are passed along for preprocessing,

as the extraction of erroneous tokens requires both sequences to be aligned (refer to

section 7.1.1 for more information on how error correction samples are generated).

There are 6 filters applied to the extracted erroneous token pairs from the two

ICDAR2017 datasets (a full overview of all filters is offered in subsection 7.1.2). One

of the filters — the “ICDAR hyphen” filter — was only used with the test datasets

to ignore all hyphenated tokens (as per suggestion of the organizers themselves in

126

[CDCM17]). For the ICDAR2017 monograph dataset, 85% (36,972) of all 43,324

training extracted token pairs, as well as 83% (12,285) of all 14,832 testing ones,

passed the filtration process. The distribution of the filtered-out samples, on the

other hand, looks like this:

• Unknown ground truth filter: 7% (3105) training, 3% (399) testing

• Maximum length threshold of 15 characters: 1% (549) training, 1% (109) testing

• “Unicode-sensitive” filter: 2% (708) training, 0% (8) testing

• “Meaningless” add/del w/ threshold 0.51: 3% (1,089) training, 0% (64) testing

• Similarity threshold of 0.33: 2% (900) training, 1% (99) testing

• Hyphenated token filter: 13% (1859) testing

For the ICDAR2017 periodical dataset, 83% (30,477) of all 36,765 training extracted

token pairs, as well as 72% (6,936) of all 9,575 testing ones, passed the filtration

process. The distribution of the filtered-out samples itself is shown immediately

below:

• Unknown ground truth filter: 11% (3917) training, 11% (1006) testing

• Maximum length threshold of 15 characters: 2% (737) training, 1% (58) testing

• “Unicode-sensitive” filter: 1% (440) training, 0% (8) testing

• “Meaningless” add/del w/ threshold 0.51: 1% (438) training, 1% (146) testing

• Similarity threshold of 0.33: 2% (755) raining, 2% (189) testing

• Hyphenated token filter: 13% (1232) testing

127

The first three rows in tables 3 and 4 offer data about the error correction and detec-

tion samples, generated from the monograph document collection of the ICDAR2017

dataset. As seen by the CER values in the error correction table, the monograph

document collection contains the least dirty OCR samples out of all OCR correction

datasets (the spelling correction datasets do not count). What is more to see is

that the distribution of edit operations differs between the three different sets. In

particular, the percentage of substitution operations in the testing set has increased

by 40%, compared to that in the training set, while the percentages of insertion and

deletion operations have sunk by 24% and 56% respectively.

As far as the error detection data goes, the ICDAR2017 monograph dataset yields

one of the lower ratios of focus to regular tokens. However, it also holds one of

the highest tokens per entity ratio, coming in at almost 2 tokens per focus entity.

These two observations suggest that the monograph dataset does not contain many

mistakes, but the ones it does are difficult to correct.

Rows 3 through 6 of the overview tables 3 and 4 contain information about the

periodical set of documents from the ICDAR2017 dataset. Compared to the

monograph documents, the periodical dataset have a much higher CER value, scoring

30% percent across all three set types. A 30% Character Error Rate means that

roughly every third character from the dataset is erroneous. This corresponds with

the comments from the creators of the dataset in [CDCM17], where they assert that

the OCR error rate is higher for periodical documents than monograph ones. The

authors argue that this stems from the dated origins of the documents in the

dataset. According to [CDCM17], the majority of the OCR-ed documents predate the

19th century. This is a two-fold problem, as on one hand the age of the documents

naturally leads to quality degradation and dirtier OCR results. On the other, [AC18]

shows that the dataset also features correct words in an archaic form of the English

language, e.g., compleated.

The error detection statistics help complete the profile for the ICDAR2017 periodical

dataset. As confirmed by the values in column “# focus tokens”, the periodical dataset

128

has more overall tokens that need to be corrected. Compared to the monograph

collection, however, the ratio of tokens per entity is lower, sitting at around 1.6

tokens per entity. This suggests that the mistakes from the ICDAR2017 periodical

dataset should be easier to correct, although their number is higher.

9.3 ICDAR2019 Dataset

The last time a Post-OCR competition was held on the International Conference on

Document Analysis and Recognition (ICDAR) was in 2019 ([RDCM19]). Similar to

2017 (refer to section 9.2), the objectives were error detection and correction and

a collection of documents was provided for training and evaluation of the proposed

solutions. The dataset features documents across 10 different languages in the same

format of unaligned/aligned OCR-ed text and an aligned gold standard.

Compared to ICDAR2017, the data available for the English language is limited.

On top of that, the OCR quality is even dirtier, as [RDCM19] claims that the error

rate for some historical books hits 50% (once every two characters!). Additionally,

the aligned OCR-ed and ground truth text for some English documents are shuffled

around, and their texts do not overlap. I searched and manually flagged all examples

of this I can find, and will therefore be skipping 14 documents from the training and

10 from the testing collection1.

A subset of the filters from section 9.2 are applied to preprocess the ICDAR2019

extracted token pairs. At the end, 72% (5,008) of all 6,949 extracted training and

70% (1,284) of 1,826 testing token pairs remain usable. The distribution of the filters

is described in the list below:

• Maximum length threshold of 15 characters: 7% (453) training, 3% (60) testing

1In particular, these are documents [3, 5, 16, 23, 27, 29, 63, 64, 85, 88, 119, 125, 127, 145] from the
training English dataset, and [4, 9, 11, 13, 22, 27, 33, 35, 37, 39] from the testing English dataset

129

• “Unicode-sensitive” filter: 2% (150) training, 0% (4) testing

• “Meaningless” add/del w/ threshold 0.51: 5% (399) of training, 6% (106) testing

• Similarity threshold of 0.33: 14% (939) training, 13% (230) testing

• Hyphenated token filter: 8% (142) testing

The correction and detection sample statistics for the ICDAR2019 dataset are

given in rows 7 through 9 in the overview tables (3 and 4). The ICDAR2019 holds

CER values similar to the ICDAR2017 periodical dataset, which hints at it being a

dirty dataset as well. Indeed, a quick manual observation of the dataset revealed that

old versions of words are often found, alongside a high percentage of named entities

(e.g., Pamphilus, Boro., S.E.). Additionally, it seems that in some comes the gold

standard even makes correct words wrong (e.g., occasion → occaffon), which makes

working with this dataset even harder. The detection statistic further consolidates

the bad quality of this dataset, as it contains the highest percentage of focus words

out of all OCR datasets.

The last thing worth mentioning about the ICDAR2019 dataset is its size. In-

deed, compared to the English datasets from ICDAR2017, the one from 2019 is

tiny (3,742 extracted tokens from ICDAR2019 versus 28,055 extracted tokens from

ICDAR2017).

9.4 “ACL Benchmark” Dataset

The dataset was created “in-house” of the Chair of Algorithms and Data Structures

and given to me to use as a starting point for my work. The dataset was manually

created by taking OCR-ed texts from the ACL Anthology Reference Corpus [BDD+08]

and correcting them. Because of the manual labor, it has very little samples in two

sets — one for validation and another one for testing, each with only 500 samples.

130

The data is provided in files with free-flowing text sequences. As the sequences were

manually corrected, which also eliminated any whitespace errors, the erroneous and

correct versions are not aligned. Because of this, the alignment procedure from

subsection 5.3 is used to first align the corresponding pairs of sequences. Then, the

extracted token pairs are put through the filters in the list below. As expected, the

manually-curated nature of the dataset stops the filters from removing many samples.

Nonetheless, some extracted token pairs feature either extremely long sequence with

tiny corrections (e.g., “’John-glves-a(’certaln’)-book-to-everybody’” and “’John-gives-

a(’certain’)-book-to-everybody’”), or samples that are too dirty for even a human to

correct (e.g., “7 n/,” and “Tiˆm,”).

1. Maximum length threshold of 20 characters: 2% (9) validation, 2% (9) testing

2. “Unicode-sensitive” filter: 0% validation, 0% of testing

3. “Meaningless” add/del w/ threshold 0.51: 1% (6) validation, 5% (19) testing

4. Similarity threshold of 0.33: 4% (18) validation, 3% (14) testing

Character-statistics about the leftover 381 (92%) validation and 405 (91%) testing

token pairs are available in rows 10 through 11 in table 3. The dataset may hold

a character error rate on the lower end, but its main complexity comes from the

technical jargon, used in it. A lot of token pairs involve fixing one-symbol characters

in formulas (e.g., “?” to α or “c(t)” to “c(i)”). More than that, the dataset also

contains sequences and words in German, which I intentionally leave in, in order to

check how an English model would deal with them.

This profile of the dataset can also be confirmed by looking at the error detection

statistics in table 4. The percent of focus token is low (due to the manually-curated

nature), but the token per entity ratio is the highest out of all OCR datasets.

One explanation of this fact might be that the BERT tokenizer treats punctuation

131

marks as their own characters, and formulas and technical jargon use many of those

(brackets, equal signs, etc.).

9.5 “Matthias Benchmark” Dataset

The “Matthias Benchmark” datasets were used in the master’s thesis of my supervisor

[Her19], in order to evaluate neural language models on the task of spelling correction.

They contain sequences (can be more than 1 sentence) from Wikipedia documents

in their correct and erroneous versions. The author used the two datasets as a

benchmark and used two different approaches to create them:

• “Artificial” dataset: each word has a 20% chance to be affected by noise. If

chosen, there is a 80% chance of inserting a single error and 20% chance of

inserting two out of the following:

– 80% - random edit operation is chosen uniformly (insert/delete/replace

character or swap two neighboring ones)

– 10% - a whitespace is inserted at a random position

– 10% - the whitespace after the word is removed

• “Realistic” dataset: each word has a 20% chance to be affected by noise. If

chosen, the number of typos is also randomly determined by a custom formula,

which assigns an exponentially smaller probability of having more than 1 error.

A typo collection ([Nor09]) from the Birkbeck spelling error corpus ([Mit80]) is

then used to check for realistic misspellings of the sampled word with the exact

amount of errors. If there is not such a misspelling, then no noise is inserted.

132

In the boundaries of this paper, I treat the two datasets as independent of one another

and exclusively for validation and testing. This is done as an experiment to see if

knowledge between the areas of spelling correction and Post-OCR is transferable. The

“corrupt” and correct pairs of text sequences are aligned, before the affected token

pairs are extracted from them. Following the preprocessing procedure from subsection

7.1.1, the following percent of pairs are filtered out (the first pair of percents represent

the percent of filtered out validation and test samples from the artificial dataset, and

the second —– from the realistic one):

1. Maximum length threshold of 20 characters: 0/0% and 0/0%

2. “Unicode-sensitive” filter: 0/0% and 0/0%

3. Padding fraction threshold of 0.51: 0/0% and 2/1%

4. Similarity threshold of 0.33: 0/0% and 1/1%

Rows 12 through 15 of the overview tables 3 and 4 offer statistics about the cor-

rection and detection sample, produced from the two sub-datasets. All-in-all, the

“artificial” dataset produces 8,221 token pairs for validation and 7,953 for testing

(50/50 split). Similarly, the “realistic” one leaves us with 3,993 pairs for validation

and for testing — 4,003.

There are multiple conclusions that can be drawn from the error correction table. For

one, the artificial dataset has a lower character error rate than the realistic one. This

might come as surprising at first, but can be explained by the fact that the realistic

dataset uses the “Peter Norvig” typo dataset (refer to [Nor09]) for its corruption of

words. The “Peter Norvig” dataset, however, is very dirty, often featuring entirely

wrong misspelling of correct words (e.g., “straight” to “strate”). Second, the distribu-

tion of edit operations seems almost uniform in the case of the artificial dataset, with

a slight edge for deletions. This corresponds well with the method that was used

to generate the dataset, as explained in the beginning of this subsection. The error

133

detection statistics do not offer any further surprising information, but just re-affirms

the two observations from above.

9.6 “Pure OCR errors” Dataset

The “Pure OCR Errors” dataset is a collection of 110,000 pairs of erroneous OCR

tokens and their error-free versions, combined with a weight to indicate how often

that particular OCR-ed token was found:

adwmced → advanced → 4

correst)onds → corresponds → 4

exe(:uLing → executing → 1

Similar to the “ACL benchmark” dataset (refer to section 9.4), this one was created

in-house at the Chair of Algorithms and Data Structures In comparison to the manual

nature of the former, however, the “Pure OCR Errors” dataset was automatically cre-

ated by comparing documents from the ACL Anthology Reference Corpus [BDD+08],

which contain OCR mistakes from scanning, with a cleaned-up version of the same

corpus. The paper for the latter is sadly not available any more under its former

URL 2.

The “Pure OCR Errors” dataset is used exclusively for training and validation. It is

one of the three main sources, which give insight into the distribution of OCR errors,

together with both ICDAR datasets (see section 9.2 and section 9.3).

The OCR-ed tokens of the dataset are very dirty. In order to prepare the best quality

data for the training of the error correction models, the preprocessing procedure

below is executed. As the dataset is different from the free-text datasets from the

previous sections, it uses a somewhat different preprocessing procedure:

2https://web.eecs.umich.edu/~lahiri/acl_arc.html

134

https://web.eecs.umich.edu/~lahiri/acl_arc.html

1. Load the token pair and do the following checks:

a) If the mistake in the input (OCR) pertains to a missing apostrophe (e.g.,

shouldn?t → shouldn’t), fix the correct version to properly reflect the

change (often, the apostrophe is missing); this step fixes the apostrophe of

721 token pairs

b) If mistake is correcting a compound word (e.g., carpet → car pet) it is

often the case that the correct version contains a question mark instead of

whitespace (i.e., car?pet); this step fixes 534 such cases

2. Remove any ASCII control characters from the input token; if it becomes blank,

skip (removes 86 pairs, close to 0.1%)

3. If the token pair has a weight of more than 2, append to result directly; if not,

continue by:

• Checking if the input is longer than one character; as a rule, one-character

inputs do not contain enough context to be able to deduce their correct

version (removes 1603 token pairs, or 1.5%)

– “o” to “n”

– “B” to “fi”

– “ ” to “hy”

• Checking if the correct token is a valid English word with the external

library PyEnchant3; this check is only done for tokens, which start with

a lowercase letter, as ones with an uppercase start are considered to be

named entities (removes 13,215 pairs, or 12.1%)

3Homepage of the library is: https://pyenchant.github.io/pyenchant/

135

https://pyenchant.github.io/pyenchant/

– “mure(Is” to “mands”

– “occu.rren.ee” to “occturence”

– “overdeterminetion” to “overdetermination”

(false positive — unknown to PyEnchant)

• Checking the similarity between both tokens and skipping if it is lower

than the user-defined threshold (per default: 0.5); the similarity is equal

to the Levenshtein distance, divided by the length of the longer string

(removes 9201 pairs, or 8.41%)

– “(:()rims” to “corpus”

– “(:onsulte(1” to “Equivalencies”

– “analysis” to “gemination”

An overview of character-level statistics about the “Pure OCR Errors” dataset is

provided in rows 16 and 17 in the overview table 3. All-in-all, 85,232 (78%) of all

token pairs pass the filtration procedure, out of the original list of 109,337 pairs. The

leftover clean pairs are split into an 80% training and 20% validation sets. Overall,

the dataset has an almost 30% character error rate, which puts it at the same level as

the ICDAR2019 dataset (see section 9.3). Additionally, the high ratio of substitution

and deletion edit operations, compared to insertions, can be explained by the many

double-character substitutions in the dataset (“|)” to “D”, “in” to “m”, etc.).

9.7 Artificial Sample Generation

As hinted at in the overview section 9.1, the “Pure OCR Errors” dataset does not

support the creation of context correction or detection samples, as it is purely a list

136

of erroneous tokens and their corrections. However, the correction overview table 3

shows us that the “Pure OCR Errors” dataset is the biggest dataset by far, yielding

more token pairs than every other OCR dataset combined. It is then essential that

a technique is developed, with which the OCR errors from the dataset can also be

used to generate context correction and detection samples, so that this information is

not lost to the models that train on those types of data.

This section proposes a solution to this problem by using an external document

dataset, made out of arXiv papers, in order to artificially generate context correction

and detection samples. To that extent, subsection 9.7.1 will introduce the arXiv

document collection, and explain the text contents from its papers can be leveraged

for the artificial generation of samples. Then, subsection 9.7.2 goes on to describe a

way to extend this technique, such that an arbitrary amount of new samples can be

generated by using error statistics from other Post-OCR correction datasets (i.e.,

the ICDAR datasets and the “Pure OCR Errors” dataset).

9.7.1 arXiv Document Dataset

The arXiv dataset is a large collection of text files, provided to me for usage by the

Chair of Algorithms and Data Structures. It was originally created in a work by

Bast and Korzen [BK17] to fill in the gap of a benchmark for PDF text extraction.

The tool for creating the dataset was afterwards deployed to produce an even bigger

collection to be used for a sub-task of spelling correction in [BHM20]. The structure

of the dataset is the following: it is split into folders, which group the documents by

year and month of publication. Each file then corresponds to an arXiv paper with

the ID “<yy><mm>.<4-digit identifier>”.

The files themselves contains all free text from the corresponding paper, not including

captions of figures and tables. Formulas are also “redacted”, while citations and

references are encased in square brackets and use the underlying LaTeX IDs. The

start of each new “block”, i.e., chapter, section, paragraph, etc., inserts a new line

137

and the text of the block is all contained in it.

When loading documents from the dataset, I ignore [formula] blocks entirely. Other

LaTeX commands, however, like references ([\ref=. . .]) and citations ([\cite=. . .]),

are often integrated in the text and their removal can disrupt the logical continuation

of the sentence. Because of this, they are generically replaced with the name of

LaTeX command itself (e.g., ([\ref=. . .]) becomes ([ref]). Additionally, I use the

external library unidecode4 to ASCII-normalize each line. I then skip lines with

less than four words, as manual testing has revealed those are usually the names of

the different chapters, sections and so on.

The rest of the file — which is the actual textual content of the paper — is loaded

and split into sentences. The procedure in listing 9.1 shows how they are then used

to produce samples with additional context. The algorithm requires two custom-set

variables δ and t, as shown in line 4. δ is a threshold on how many new context

correction samples have to be created in the “time span” of the last t yielded documents.

This mechanism allows more fine-grained control on how the generation loop on line

10 should be.

The loop itself starts with two checks — one, which determines if there are any

more ground truth tokens left to generate context samples with (line 12) and the

other one being the delta-threshold explained above (lines 14-16). The first condition

exists, because correct tokens and their erroneous versions are deleted every time they

are matched to words from the arXiv documents. This prevents unending looping

through the arXiv documents due to common words being misspelled.

In order to better explain this, consider just having one token pair from, e.g., the

“Pure OCR Errors” dataset — the erroneous token “fihe” and its correction “the”.

Then, the procedure from listing 9.1 would go through all arXiv documents, likely

very often finding the word “the” in its sentence. This would result in having a context

correction dataset, where each sample only features correction of erroneous “fihe”

4available under https://pypi.org/project/Unidecode/

138

https://pypi.org/project/Unidecode/

token. Considering the full “Pure OCR Errors” dataset again, this is undesirable

due to two factors: For one, an unending cycle through the arXiv documents, as it

is unlikely that the technical papers from the dataset would have a corresponding

correct token for every token pair from the “Pure OCR Errors” dataset. Secondly, it

would skew the distribution of errors from the original dataset to heavily favor token

pairs, which have a commonly-used correct token.

Getting back to the procedure in listing 9.1, an inner-loop then goes through the

sentences of every arXiv document and splits them into their individual words (lines

18-19). Afterwards, the program tries to match each word to ground truth tokens

from the “Pure OCR Errors” dataset, as shown in lines 23-24. Every time a word is

matched, a new context error correction sample is built by using the words to the

left and right in the arXiv sentence. This does not exclude cases where the matched

word is the first or last in the sentence and thus misses a part of its context. As

hinted to above, the correct token and its erroneous versions are removed from their

corresponding lists to avoid unending loops (lines 30-31).

If any words from a given sentence were “matched”, an error detection sample is

also generated from it. This is done by substituting the correct tokens with their

erroneous versions and encasing them in <TGT> meta tokens, ensuring consistency

with the samples from all other datasets.

Control over fraction of target entities

There is one downfall with the described procedure, and it relates to error detection

samples. Indeed, marking every matched erroneous word in a sentence and then

turning it into an error detection sample leads to having samples with almost all

erroneous tokens. Indeed, consider working with the collection of common token

pairs [(“fihe” and “the”), (“amd” and “and”), (“ln” and “In”), and (“inorning” and

“morning”)]. Then, consider the example sentence “In the morning and evening I eat

cookies!”. The procedure from above would match the first four words with the whole

139

Listing 9.1: Pseudo-code for generating context samples from arXiv documents
1 Let i so la ted_cor rec t i on_sample s be a l l i s o l a t e d c o r r e c t i o n

samples o f a dependent datase t
2 Let arx iv_generator be a generator , which pre−p ro c e s s e s and

y i e l d s the s en tence s o f arXiv documents
3
4 Let δ be a th r e sho ld f o r new samples , which have had to be

generated from l a s t t documents
5
6 Sp l i t i so la ted_cor rec t i on_sample s i n to ocr_samples and

gt_samples
7
8 delta_num_new_samples = 0
9

10 f o r doc_ind , doc_sentences in enumerate (arx iv_generator) :
11 # Break i f no more GT tokens to generate samples with .
12 i f l en (gt_samples) == 0 : break
13 # Break i f too few context samples generated r e c en t l y .
14 i f doc_ind != 0 and doc_ind % t == 0 :
15 i f delta_num_new_samples < δ : break
16 e l s e : delta_num_new_samples = 0
17
18 f o r sentence in doc_sentences :
19 sentence_words = sentence . s p l i t (’ ’)
20 num_words = len (sentence_words)
21 f o r i in range (num_words) :
22 # Check i f the word from the arXiv document came up as

a ground truth token .
23 word_gt_ind = gt_samples . f i nd (sentence_words [i])
24 i f word_gt_ind i s None : cont inue
25
26 Create new context c o r r e c t i o n sample by us ing sentence

words to l e f t and r i gh t
27 delta_num_new_samples += 1
28
29 # Remove GT token and erroneous ve r s i on from l i s t s .
30 ocr_samples . pop (word_gt_ind)
31 gt_samples . pop (word_gt_ind)
32
33 I f any words from sentence were matched , c r e a t e e r r o r

de t e c t i on sample with t h e i r e r roneous s ub s t i t u t e s

140

collection of token pairs, resulting in the error detection sample “<TGT>ln<TGT>

<TGT>fihe<TGT> <TGT>inorning<TGT> <TGT>amd<TGT> evening I eat

cookies!”. This trivial example is made even worse with the full “Pure OCR Errors”

dataset, and can lead to error detection samples, filled entirely with focus entities.

I propose two ways to deal with this problem: the first is by setting a threshold

on the amount of words from a sentence that can be turned to focus entities. The

second way, which is what I will be using in the boundaries of this paper, is using

information from other error detection datasets — namely, the three ICDAR datasets.

In particular, pre-calculated statistics about the fraction of focus tokens based on

token length are used. For example, let the average fraction of erroneous tokens in

an ICDAR2017 monograph sample with token length 35 is 0.071). This means that,

in average, 0.071 ∗ 35 = 2.485 tokens are erroneous. Statistics like that can then be

once-again averaged over all OCR datasets, and be used in the generation procedure

to impose boundaries on the number of focus entities per arXiv sentence.

9.7.2 Generation from Error Statistics

The arXiv document dataset can also be used apart from the “Pure OCR Errors”

dataset to generate artificial data. Indeed, one can use statistics about what kind of

errors are most often encountered with words of a certain length and artificially insert

them into correct words. More particularly, four collections of data are required:

single-character substitution statistics, double-character substitution statistics,

edit operation combination statistics on a token-level, and edit operation position

statistics on a character-level. All of these statistics can be extracted from the isolated

correction samples from the ICDAR datasets, plus the “Pure OCR Errors” datasets,

which allows re-using information from the four datasets to create arbitrary many

new samples.

The statistics about edit operation combinations are contained in a dictionary

of dictionaries, which holds the number of times a particular combination of edit

141

operations was encountered for a word with a specific length n. As an example,

consider the word “an” with length 2. Then, some possible combinations of edit

operations (in theory, there are infinitely many), which can artificially transform

the correct token into an erroneous one, are:

1. Single insertion: an → ain

2. Single deletion: an → n

3. Single substitution an → bn

4. Insertion + deletion: an → ain → ai

5. Insertion + substitution: an → ain → abn

6. Deletion + substitution: an → n → b

7. Double insertion: an → ani → anim

8. . . .

The second piece of required information is the edit operation positions on a character-

level. Manual tests during work on this paper revealed that simply choosing random

character positions, at which to carry out edit operations from the combinations above,

lead to very dirty artificial samples that were not representative of the original data.

Moreover, certain combinations of edit operations can be “grouped” to indicate a larger

operation. For example, if we switch the perspective and regard the transformation

of a correct token into an erroneous one, an insertion, followed by a substitution

operation, most often signify a double-character substitution, as in the token pair

“@pet” → “|)et”.

The positions data is once again a dictionary of dictionaries, grouped by sample

length first and by “combination” second. The combinations, in this case, are

142

contained in strings with the form xxxinssubxdel, with ’x ’ characters marking a blank

operation at the respective character position, and ’sub’, ’ins ’, and ’del ’ standing for

the ubiquitous Levenshtein edit operations.

The last two required dictionaries — single-character and double-character

substitution statistics — contain data on how often correct characters are mistakenly

substituted by OCR systems with different letter combinations. An example of a

one-letter substitution, that is a really common mistake with OCR systems (refer to

[NJC+19]), is “c” → “e”. A double-letter substitution, on the other hand, turns two

erroneous letters into one correct one — e.g., “l)” → “p”.

Combining the four dictionaries from above, one can use the following steps, in order

to generate arbitrarily many isolated correction samples:

1. Determine hyperparameter γ, which controls the fraction of words, which

should be artificially corrupted per sentence from the arXiv document

2. Go through the words of a sentence and generate a random number; if the

number is ≤ γ, artificially corrupt the word:

a) First looking up in the dictionary of edit operation combinations; if there

are recorded statistics about words with the matching length, choose one

of the combinations by using their frequency as weights (i.e., if single

substitution was encountered 2 times, while single deletion 1, then there

is a two times bigger probability of choosing single substitution)

• If there are not any combinations for the desired length, just skip the

word

b) Next, take the sampled edit operation combination (e.g., “sub+2del”) and

check the positions’ data dictionary for an appropriate template with

positions for the edit operations

143

• If there are not any appropriate templates, just skip the word

c) Go through the characters of the correct word and:

i. Append it to the artificial result, if not at pre-determined location

ii. If at pre-determined location and an edit deletion has to be executed,

skip the character

iii. If at pre-determined location and an edit insertion has to be executed,

add a random character from the task’s vocabulary (i.e., lower- and

uppercased ASCII letters, digits, punctuation marks (without ’@’, due

to its usage as padding), and whitespace)

• If the insertion is additionally followed by a substitution oper-

ation, insert a double-character substitution instead (e.g., p →

|)); if the dictionary for double-character substitutions does not

contain any candidates for the picked character, then skip

iv. If at pre-determined location and an edit substitution has to be

executed, use the dictionary with substitution statistics to choose a

“logical” replacement for the character; if the dictionary does not

contain any candidates for the picked character, then skip

3. Create an isolated correction sample with the artificial word and its correct

alternative

4. Create a context correction sample by appending the context to the left and

right from the original arXiv sentence

5. After looping through all words, create an error detection sample by substituting

in the artificially corrupted tokens and encasing them in <TGT> meta tokens

144

Of course, the problem from subsection 9.7.1 can also be reproduced in the procedure

above, if γ is set to be too high. It is also possible to use the same statistics, used

in subsection 9.7.1, which record how many focus entities are expected in an error

detection sample, based on its token length. If using the aforementioned statistics, γ

is ignored.

Generation of “word boundary” errors

The procedure for generating data from error statistics from above has short-coming

when it comes to generating word boundary errors — i.e., run-on and incorrect

split mistakes (refer to subsection 7.1.3). Indeed, it is practically impossible in the

case of the former, as run-on mistakes require two words, while the procedure from

above always looks at exactly one. Moreover, the fraction of incorrect split mistakes

is also non-representative, as it can only result from an insertion operation picking

the whitespace character (out of 94 possible character candidates).

In order to remedy this, we can calculate further statistics from the four original

Post-OCR correction datasets (i.e., ICDAR and “Pure OCR Errors” dataset). In

particular, we can keep track of edit operations in token pairs, related to adding or

removing whitespaces, and use them to determine the number of run-on and incorrect

split mistakes for each dataset. Then, we can leverage the average fraction of word

boundary errors to create additional errors of that type in the artificial dataset.

For this, a random number is generated every time some word from an arXiv sentence

is picked to be artificially corrupted. If the number is lower than the fraction of

run-on, then an additional sample is generated with the correct word, this time

containing a run-on mistake. The same is done for incorrect split mistakes as well,

by using an independent random number from the first one.

The generation of an incorrect split sample is trivial — a random character position

is chosen in the word and a whitespace is inserted after it.

The creation of a run-on sample is trickier and needs to respect the sentence length.

145

Indeed, if the chosen word to be corrupted is the last word in the sentence, then

it needs to be joined with the word before it. Similarly, words in the beginning

of a sentence can only be joined with words after. In the leftover case of the word

being in the middle, a coin can be tossed to pick the “merge direction” at random.

The merging is nothing more than creating a single string out of the two words and

deleting the whitespace between them. The resulting run-on error sample can then

be used as the input, while the expected output is the original form of the two

words, with whitespace between them.

146

10 Experiments

In this chapter, I will explain how I am going to be training the different approaches of

this paper on the task of Post-OCR correction. Moreover, I will detail all experiments

I will carry out, in order to evaluate how the models can be best prepared and achieve

the best possible results on the task. In particular, section 10.1 will first explain how

the evaluation process is done for both the error detection and correction tasks. Then.

section 10.2 will cover the experiments I will employ for the baseline algorithm

with Q-gram indices. Afterwards, section 10.3 will explain how the evaluations

for the two external baselines — using Google as a Post-OCR correction engine,

and the external natas library (refer to end of chapter 2). Next, I will list the

experiments for the two sequence-to-sequence error correction models — LSTM

encoder-decoder and Transformer — in section 10.4. Afterwards, section 10.5 will go

into the experiments and hyperparameters of the BERT detection model.

10.1 Evaluation and Metrics

This section will explain the techniques, used to evaluate the different models on error

detection and correction In particular, the first subsection 10.1.1 will explain how

this is done for error correction, while the second one (10.1.2) — for error detection.

The final subsection 10.1.3 will explain how I will evaluate the “pipeline” of an

error detection and correction model — i.e., the two-step approach. The described

evaluation approaches will not only be employed for deep learning models (i.e., BERT

147

and sequence-to-sequence models), but also for the baseline Q-index and the external

natas model.

10.1.1 Error Correction Evaluation

There are two types of metrics that can be used to evaluate error correction mod-

els. The first type of metrics I will call “Levenshtein metrics” , as they involve

calculating the Levenshtein distance and Character Error Rate (or, CER). In

particular, I will be calculating the percent improvement or worsening of both

metrics, when calculated for all pairs of all the original, input tokens, versus the

predicted, output tokens from the models.

In order to explain this point further, consider the following dummy dataset, con-

sisting of the given error correction samples with context size (1, 1): [(“a <TGT>do

rb<TGT> with” versus “a <TGT>wo@rd<TGT> with”) and (“are <TGT>(w0<TGT>

mistakes”) versus “are <TGT>two<TGT> mistakes”]. It is easy to see that the

Levenshtein distance between the focus tokens of the first samples is 3, and 2 for

the second one. Then, the overall sum of Levenshtein distances across all correction

samples in the dataset is 5.

Now let the following two samples be the predicted corrections from the error correc-

tion model: “a <TGT>wo@rb<TGT> with” and “are <TGT>lwo<TGT> mistakes”.

The Levenshtein distances of the predictions with respect to the expected target

tokens are then 1 (“wo@rb” versus “wo@rd”) and 1 (“lwo” versus “two”). Then, the

percent improvement of the sum of Levenshtein distances is ((5−2)/5)∗100 = 60%.

The same process can be repeated for the other Levenshtein metric - Character

Error Rate. Character Error Rate represents the percent of characters that have

to be corrected, in order to transform an erroneous sample into its correct version.

Intuitively, a CER of 10% would mean that there is a mistake every ten characters.

The formal definition for Character Error Rate is given in equation 72. In it, S

represents the number of required substitutions, I — number of required insertions,

148

D — number of required deletions, and C — number of correct characters. Notice,

however, that the numerator of S +D + I is equivalent to finding the Levenshtein

distance between an erroneous and target token. Furthermore, the denominator

S +D +C is equal to the number of characters (i.e., the length) in the target token.

Therefore, an alternative version of the CER formula is offered in equation 73.

CER =
S +D + I

S +D + C
(72)

CER(x, y) =
LevDist(x, y)

|y|
, with |y| being the length of sequence y (73)

[NJCD21] also gives an idea of how to compute information retrieval metrics for

Post-OCR correction. In particular, those three information retrieval metrics are

precision, recall and F1 score. Before diving into how the metrics are computed,

however, one needs to explain the concept of true positive, false positive, false

negative, and true negative predictions. As explained in Nguyen et al.’s survey

paper [NJCD21], the predictions of an error correction model can be classified as

follows:

1. character was wrong, and it was corrected =⇒ true positive (TP)

2. character was not wrong, but it was still changed =⇒ false positive (FP)

3. character was wrong, but was not corrected =⇒ false negative (FN)

4. character was not wrong, and it was not changed =⇒ true negative (TN)

The prediction classifications from above can then be used to predict the aforemen-

tioned information retrieval metrics. The formulas for precision, recall and F1 score

are shown in equations 74, 75 and 76 respectively.

Precision is calculated by dividing the number of “actually” correct changes of the

model by the number of its overall changes. As such, precision can be interpreted to

149

measure how accurate an error prediction model is in its prediction.

Recall, on the other hand, is determined by dividing the number of “actually”

correct changes by the number of all changes — both successfully made, and missed

ones. Intuitively, recall can be used to measure how conservative a model is with its

prediction — i.e., whether it changes a lot of characters to be sure it has the largest

chance of correction everything, or is more calculated in its predictions. F1 score is

the harmonic mean of the recall and precision metrics. It is generally used to gauge

the overall capability and performance of the model — the higher, the better.

Precision =
TP

TP + FP
(74)

Recall =
TP

TP + FN
(75)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(76)

10.1.2 Error Detection Evaluation

I will supply two ways of evaluating the error detection models of this paper. The

first one is the standard token-level evaluation technique, where each class from the

detection prediction is compared to the expected target vector. As I will be using

BERT for error detection, token here stands for the resulting strings from the BERT

tokenizer. The comparison of prediction with target classes allows us to compute true

positive, false positive and false negative predictions, as explained in the previous

subsection 10.1.1. In the case of error detection, the “meaning” of the different kinds

of predictions changes to:

1. token was erroneous, and the model found it =⇒ true positive

2. token was not erroneous, but the model predicted it as such =⇒ false positive

3. token was erroneous, but the model did not find it =⇒ false negative

150

The sample classifications from above can then be used to compute the precision,

recall and f1 score of a model.

The second type of evaluation I will be carrying out is on entity-level. By entity, I

mean every “block” of predictions, which can be combined to build a sequence. To

better understand this, let us use the “start w/ cont.” marking mode (explained in

section 8.2) and look at an example pair of prediction and expected output vectors

— ŷ = [0, 2, 3, 1, 1, 2, 1, 2, 0] and y = [0, 1, 1, 2, 3, 2, 3, 3, 0]. The exact input

sequence is unimportant, as the evaluation process only works on the aforementioned

class vectors.

The entities within the two output vectors are color-coded — each different color

represents a different entity. As such, there are three entities in the prediction vector,

at positions (2-3), 6, and 8 respectively. The corresponding entities in the target

vector are at positions (4-5) and (6-8).

In this dummy example, we can then clearly see that the predicted entity (2-3) is

a false positive — meaning the model predicted an erroneous entity, where there

was not one. Further, the target entity (4-5) is an example of a false negative —

the model did not predict an erroneous entity, where there was in fact one. Lastly,

there are two ways to evaluate the prediction for target entity (6-8). One is what

I will refer to as the strict approach, where the integer classes of the predictions

have to exactly match the expected classes. In particular, this means that (6-8)

would again be classified as a false negative, as the prediction vector predicted two

different entities in that specific span. The other approach is the non-strict one,

where the exact labels of a certain entity do not matter, as long as at least one

matches. If using the latter approach, the two predictions at 6 and 8 would correctly

count as one true positive, as two of the tokens in the target entity were predicted

to be erroneous.

The strict approach bears similarities to the way error detection predictions are

decoded, as shown in section 8.4. In order to remain consistent across decoding and

evaluating, I will thus be focusing on the strict approach when evaluating.

151

I argue that the evaluation on an entity-level is a better indicator of model performance

than on a token-level. Indeed, the presence of word boundary errors in Post-OCR

correction makes it very important for an error detection model to properly mark

where an erroneous entity starts and ends. Examples and defense of this argument

are given in chapter 8, especially in sections 8.2 and 8.4. Let us briefly consider the

cases, where the two evaluation methods might give back different results:

Take the example text sequence “I am had ing a maiestic day,” and its correct

alternative “I am having a majestic day.”. The tokenized version of the input is as

follows: [’I’, ’am’, ’had’, ’ing’, ’a’, ’ma’, ’##iest’, ’##ic’, ’day’, ’,’]. It is easy to

see that the expected target vector y is as shown in equation 77.

y = [1, 1, 2, 3, 1, 2, 3, 3, 2, 3] (77)

Let the model prediction haty be as shown in equation 78:

ŷ = [1, 2, 2, 2, 1, 2, 3, 3, 1, 2] (78)

Using the token-level evaluation method, the result is 4 true positive predictions

(at positions 3, 6, 7, and 8), 1 false positive prediction (at position 2), and 3 false

negative predictions (at positions 4, 9, and 10). This results in a precision value of

80%, a recall value of 57%, and an f1 score of 67%.

Using the entity-level evaluation technique gives back 1 true positive entity prediction

(at positions 6-8), 1 false positive entity prediction (at position 2), and 2 false negative

entity predictions (at positions 3-4 and 9-10 respectively). This results in a precision

value of 50%, a recall value of 33%, and an f1 score of 40%.

As we can see, the two evaluation methods can give back substantially different results.

However, I argue that entity-level evaluation is much more important in the case of

two-step Post-OCR correction. This is due to the very nature of the pipeline, as

marked erroneous entities by the detection model are passed directly to the error

correction model for further processing. Thus, if an entity is not marked properly

152

by its boundaries, the whole pipeline will result in a worse state. Nonetheless, I will

also be providing token-level results for BERT’s performance in the pipeline, in

order to remain consistent with the evaluation metrics of the other models I will be

comparing against.

10.1.3 Two-step Approach Evaluation

In the Post-OCR competitions of the ICDAR events, the evaluation of the error

correction task was done with percent improvement of the sum of Levenshtein

distances. That way, it can easily be seen if the application of an error correction

model ultimately led to an improvement or worsening of the erroneous texts overall.

It is unclear whether this is also applied in [NJN+20], where Nguyen et al. use

a similar two-step approach, consisting of a BERT error detection and an RNN

encoder-decoder network with attention for error correction (it is not specified what

RNN cells are used). In their paper, it is said by the authors that they measure the

percent improvement “based on the difference of the original distance (between GT

and OCRed text) and the corrected distance (between GT and the corrected text)”.

However, it is unclear to me whether “text” refers to the whole text sequences,

or the “correction windows”, which the error detection model builds for the error

correction model to correct.

In order to emulate the metric from the ICDAR competitions as good as I can, I

will be using the following procedure to evaluate the performance of the two-step

approach:

First, I will run the BERT error detection model on the test error detection samples

for each dataset. From the predictions of BERT, I will build error correction samples,

akin to those shown in chapter 7. In order to avoid any confusion around the

terminology, I will be referring to those samples as detection-generated samples.

The detection-generated samples will then be “matched” with the expected correction

samples for each dataset. This results in three distinct groups of correction samples:

153

• Matched correction samples — i.e., the error correction samples that the

detection model properly predicted

• Missed correction samples — i.e., the expected error correction samples that

the detection model missed, or whose boundaries it did not predict properly

• Superfluous correction samples — i.e., all detection-generated error correction

samples, which were not expected

These three groups will then be used to compute the overall percentage improvement

the pipeline model brings to a certain dataset. In particular, I will be using the matched

(erroneous and target tokens) and missed sets of correction samples to compute the

sum of Levenshtein distances of the original pairs of whole text sequences. I argue

that this method properly depicts the sum of Levenshtein distance of all whole

sequences — the sum distances for an arbitrary whole sequence pair comes from

the distances of its erroneous tokens, which have to be corrected.

The sum of distances of the predicted texts will then be computed by using the

sets of matched (predicted and target tokens) and superfluous correction samples.

Additionally, I will be adding the sum of Levenshtein distances from the missed set

of correction samples on top, for any errors that were missed by the detection model

would stay present in the predicted texts as well.

For the sake of completeness, I will be giving information about all three sets of

samples when presenting the results of the two-step approach models.

10.2 Baseline Experiments

In this section, I will explain how I will be using the baseline Q-index models for

OCR error detection and correction. In particular, subsection 10.2.1 will start off by

explaining the Q-gram size I will be employing. Then, subsection 10.2.2 will cover

154

on which datasets I will be building baseline models on, as well as introduce the

hyperparameters I will be testing out.

10.2.1 Q-gram Size

I will be using a Q-gram size of 2 for the baseline models I train. For error detection,

the Q-gram size does not matter, as errors are determined simply by checking the set

of known words of a given Q-gram index. In the case of error correction, preliminary

tests have shown that a size of 2 works best. Indeed, this was tested out by using

a subset of 50,000 sentences from the Europarl corpus ([Koe05]), which contains

transcriptions of European Parliament proceedings. 20% of all words from the

sentences (36,801 words) were then artificially made dirty, following a “lite” version

of the artificial data generation procedure, outlined in subsection 9.7.2. In particular,

it is chosen for each word at random whether to execute 1, 2, or 3 edit operations,

and at which character positions. Then, a random edit operation out of insertion,

deletion and substitution was chosen at each character position with a uniform

probability. If an insertion was chosen, then a random ASCII character was inserted.

Similarly, if a substitution was chosen, the symbol at the given character position was

substituted with a random ASCII character. Finally, if a deletion was chosen, the

symbol at the given character position was skipped.

Afterwards, the list of artificially dirty words was fed to three different Q-gram index

models, with a Q-gram size of 2, 3 and 4 respectively. The maximum distance of

the corrections was set to be three, staying consistent with the artificial dirtying

procedure from above. The corrected predictions of the three models were compared

against the original versions of the dirty words, in order to inspect which model

produced the most right predictions. It was also counted which model was strictly

better than the other two ones — i.e., how many times only one specific model gave

the correct prediction. The resulting counts are as follows, with the overall number

of such cases being 735:

155

1. Q-gram size 2: 229 (31.16%); strictly best in: 151 (19.46%)

2. Q-gram size 3: 148 (20.14%); strictly best in: 14 (1.9%)

3. Q-gram size 4: 86 (11.7%); strictly best in: 38 (5.17%)

Table 5 shows a manually-picked subset of the “clashes”, in which the different models

gave different correction predictions. In particular, having a low Q-gram size lower

the risk of skipping valid correction candidates because of no shared Q-grams. Take,

for example, the first line from the table. There, the clean word have was artificially

dirtied to oav9. The Q-gram index with Q-gram size 2 then successfully managed to

correct the word back to its original representation, while the indices with Q-gram

size 3 and 4 proposed olavi — a name from the Europarl dataset. The key observation

here is that only a Q-gram size of 2 allows the Q-gram index to consider have as a

proper correction candidate. Indeed, the Q-grams of different sizes for oav9 are as

follows:

1. Q-gram size 2: [’$o’, ’oa’, ’av’, ’v9’, ’9$’]

2. Q-gram size 3: [’$$o’, ’$oa’, ’oav’, ’av9’, ’v9$’, ’9$$’]

3. Q-gram size 4: [’$$$o’, ’$$oa’, ’$oav’, ’oav9’, ’av9$’, ’v9$$’, ’9$$$’]

A quick manual inspection of oav9 against have shows that the only shared substring

between the two words is “av”. As seen from above, only using a Q-gram size of 2

allows matching of the substring — which is what leads to only the respective Q-gram

index proposing the valid correction. This concept can also be seen in lines 2, 4 and

5 in table 5.

On the other hand, line 3 from the box also shows a case, where having a low Q-gram

size leads to the wrong prediction. In that case, the deletion of the letter ’b’ from

the word about results in the Q-gram index with size 2 to consider “ou” as one of the

shared Q-grams. This leads to the model proposing you instead of about, as the word

156

Clean Dirty Size 2 Size 3 Size 5
have oav9 have olavi olavi

tobacco Otoacc tobacco tobacco topic
about aouA you about about
also 8als\ also also -

politeness. oliDteness politeness. lateness lateness

Table 5: Examples of cases, in which Q-gram index models with different Q-gram
sizes gave different correction candidates; ’-’ indicates a blank prediction

was more frequently seen by the model. The statistics from chapter 9, however, have

shown that edit deletions are much rarer than substitutions, which minimizes the

chance of the error happening.

It is worth noting that using a Q-gram index with a Q-gram size of 2 is most

computationally expensive. During the aforementioned tests, the model with Q-gram

size 2 took almost 6 minutes to correct all 36,801 artificially dirty words. For

comparison, the other two models took about 3 minutes — two times as fast.

10.2.2 Hyperparameter Combinations

I will “train” the baseline models, which use Q-gram indices, on two different

datasets:

1. The correct tokens from the isolated correction samples from all training

datasets — i.e., ICDAR2017 monograph and periodical, ICDAR2019, and the

“Pure OCR Errors” datasets. This results in 55,764 unique tokens, and 2,047

Q-grams without skipping non-English words, and 28,302 unique tokens and

1,044 Q-grams otherwise.

2. 4000 random documents from the arXiv document collection. This results in

371,383 unique tokens, and 3,787 Q-grams, when not skipping non-English

words, and 76,481 unique tokens and 950 Q-grams otherwise.

157

It is important to note that the correct tokens of the aforementioned datasets are

not always valid corrections. Indeed, the ICDAR datasets often contain multi-word

tokens (e.g., hyphenated tokens like “share,-You’re”, or the correct tokens of run-on

mistakes like “deep now,”), archaic forms of words (e.g., “syres”, instead of “sires”), or

flat-out bad corrections (e.g., “musicke” → “muffcke,”). As explained in subsection

7.1.2 about the filtration process of error correction data, I tried to limit the amount

of such cases to a minimum, while not reducing the complexity of the task,

I will try out the training process by varying the value of one additional hyperpa-

rameter: skipping non-English tokens. It will determine if invalid English tokens

are skipped when building the Q-gram index. The validity will be determined by

using the external library PyEnchant1. With this, I aim to test out if the detection

of erroneous token would get better if only valid English words are included in the

Q-gram index. This hyperparameter, however, would also eliminate many words from

the training datasets on its own, as many of the correct tokens have punctuation marks

at the end of them (e.g., “bower,”). The hyperparameter is also impervious to named

entities, such as names of people or business, as they are not valid English words

themselves. Overall, I hypothesize that this hyperparameter would decrease the

performance on both error correction and detection, chiefly because of the difficulties

that lie in the field of Post-OCR correction when dealing with punctuation and named

entities.

It is also important to notice that I will be evaluating the Q-gram indices on case-

insensitive data only, meaning that all words will be cast to lowercase before being

processed. This eliminates the risk of known words in the vocabulary of the index to

be misclassified based on different casing (e.g., “the” and “The”). Additionally, I will

be setting the max distance to be 3, as the data statistics from chapter 9 have shown

that the majority of mistakes have an edit distance ≤ 3.

1Homepage of the library is: https://pyenchant.github.io/pyenchant/

158

https://pyenchant.github.io/pyenchant/

A note on error detection evaluation

As hinted at above, the baseline Q-gram indices will also be evaluated on error

detection. However, the evaluation procedure for error detection, as described in

subsection 10.1.2, computes the evaluation results on an entity-level. This means

that it is very important whether a multi-token entity is marked as a whole, or in

parts (e.g., “<TGT>c@r p3t<TGT>” and “<TGT>c@r<TGT> <TGTp3t<TGT>”.

This will heavily impact the evaluation results of the baseline algorithm on error

detection, as it is impossible for the model to detect word boundary errors (i.e.,

run-on errors and incorrect split errors, as shown above). This is due to the very

nature of how the baseline algorithm works, in that it first splits text sequences into

its individual tokens, before doing operations on them. This problem with word

boundary errors is known with classical approaches, as is described in chapter 2.

Because of this, I will still be carrying out the evaluation for the sake of completeness.

10.3 External Baselines

As mentioned in chapter 2, I will be using two additional external baselines, with

which to compare the performances of my baseline and deep learning approaches —

the external natas library, and Google. I will not be performing any additional

experiments for the two external baselines, and rather use them out-of-the-box as

they are intended. Additionally, I will not be including the spelling correction test

datasets of “Matthias artificial” and “Matthias realistic”, instead only focusing on the

Post-OCR correction datasets.

For natas, I will be using the isolated error correction samples to test the Post-OCR

correction abilities of the library, due to the library not supporting context correction.

Additionally, I will be only taking the top correction candidate with the highest

confidence (by default, natas returns multiple candidates).

159

For the error detection task, I will be using the same error detection datasets that I

will employ for evaluating the BERT detection model. I, however, expect natas to

have very deteriorated results on error detection, as it suffers from the same problem

as the baseline algorithm, explained in subsection 10.2.2.

In order to evaluate Google as a Post-OCR correction engine, I will take a random

sample of 25 error detection samples from each of the Post-OCR correction datasets

(i.e., ICDAR and “ACL benchmark” datasets) — amounting to 100 error detection

samples overall. I use error detection samples, as they have indications for all

erroneous tokens in an arbitrary sequence, which can then be corrected as many times

as Google can to reach a correction prediction.

10.4 Error Correction Experiments

I will be evaluating two types of encoder-decoder networks for Post-OCR correction —

an LSTM encoder-decoder network and a Transformer model (inherently sequence-

to-sequence). I will first run experiments with different configurations of both models,

in order to determine the best hyperparameters to train them with (e.g., which

attention mechanism works best for LSTM encoder-decoders). These experiments will

be trained on the base OCR correction datasets — all ICDAR and the “Pure OCR

Errors” datasets. They will then be evaluated on their respective validation sets,

together with the validation sets of the ACL and “Matthias benchmark” datasets.

The information will then be used to create a final model that should perform as

good as it can, when it comes to hyperparameter configurations. The final models

will then be evaluated on the test sets, which will supply the final evaluation results.

The final model will also additionally be trained on artificially created data from

200,000 erroneous token pairs. Additional statistics for that dataset are given in

subsection 11.4.1 in the following chapter.

160

The experiments of the error correction models suggest a perfect error detection

model — i.e., the error correction models only see samples, in which the erroneous

token is correctly marked. Because of this, the % improvement rates on some datasets

might very well be higher than reported in the papers, introduced in the “Related

Work” chapter (e.g., ICDAR2019).

After training the final model, I will also combine the best error detection model

with the best LSTM encoder-decoder and the best Transformer correction models

respectively and evaluate their joint ’pipeline’ performance. The results from the

pipeline evaluation would then be directly comparable to the reported metrics from

’Related Work’, as the pipeline would take samples in their entirety, find the errors in

them, and lastly — correct them.

As far as LSTM encoder-decoder models are concerned, I will be carrying out

experiments with hyperparameters in the list immediately below. The model presets

were manually chosen based on observations during work on what performs best.

• Attention type - none, dot, general, and concat (refer to [LPM15])l the

number of epochs each model is trained for 75 epochs)

• Case sensitivity - all lowercased and mixed-case

• Context size of the correction samples

– (1,1) (trained for 50 epochs and maximum sequence length of 64)

– (3,3) (trained for 50 epochs and maximum sequence length of 100)

– (5,5) (trained for 50 epochs and maximum sequence length of 128)

– (5,1) (trained for 50 epochs and maximum sequence length of 100)

• Model presets - base and big

161

– Base:

∗ Character embedding size: 128

∗ Input dropout: 0.1

∗ Hidden state size: 256

∗ Number of LSTM layers in encoder: 2

∗ Number of LSTM layers in decoder: 1

∗ Bidirectional encoder layers: True

∗ Encoder recurrent dropout: 0.2

∗ Decoder recurrent dropout: 0.1

– Big:

∗ Character embedding size: 128

∗ Input dropout: 0.2

∗ Hidden state size: 512

∗ Number of LSTM layers in encoder: 4

∗ Number of LSTM layers in decoder: 2

∗ Bidirectional encoder layers: True

∗ Encoder recurrent dropout: 0.3

162

∗ Decoder recurrent dropout: 0.1

The following hyperparameters values were used as default, when they were not

overwritten by the appropriate hyperparameters in given experiments:

• Context size: (1, 1)

• Case sensitivity: mixed-case

• Maximum sequence length: 64

• Batch size: 256

• Learning rate: 0.0002

• Model preset: base

• Attention type: dot

With the Transformer model, the list of variable hyperparameters can be seen

in the list immediately below. The base model preset was taken from the original

Transformer paper [VSP+17], while the other two are meant to represent gradually

smaller models.

• Case sensitivity - all lowercased and mixed-case

• Context size of the correction samples:

– (1,1) (trained for 50 epochs)

– (3,3) (trained for 50 epochs and maximum sequence length of 100)

– (5,5) (trained for 50 epochs and maximum sequence length of 128)

163

– (5,1) (trained for 50 epochs and maximum sequence length of 100)

• Model presets - base and big

– Small:

∗ Character embedding size: 256

∗ Feed-forward multiplier: 1

∗ Number of attention heads: 8

∗ Input dropout: 0.1

∗ Number of encoder blocks: 2

∗ Number of decoder blocks: 2

∗ Encoder recurrent dropout: 0.1

∗ Decoder recurrent dropout: 0.1

– Medium (trained for 50 epochs):

∗ Character embedding size: 256

∗ Feed-forward multiplier: 4

∗ Number of attention heads: 8

∗ Input dropout: 0.1

∗ Number of encoder blocks: 4

164

∗ Number of decoder blocks: 4

∗ Encoder recurrent dropout: 0.1

∗ Decoder recurrent dropout: 0.1

The following hyperparameters values were used as default, when they were not

overwritten by the appropriate hyperparameters in given experiments:

• Context size: (1, 1)

• Case sensitivity: mixed-case

• Maximum sequence length: 64

• Batch size: 128

• Learning rate: 0.0005

• Epochs: 100

• Number of warm-up steps: 4000

• Model preset: small

Additionally, for both types of error correction models, greedy decoding was used.

This means that at every time step of the prediction, the vocabulary character with

the maximum probability was chosen. For example, if we have a character-level

vocabulary with ’a’: 1, ’b’: 2, ’c’: 3, and a dummy prediction for a certain time step

yt = [0.5, 0.3, 0.2], then the predicted character at time step t is ’a’.

I will also offer the results of another experiment, using a standard Transformer model

with (3, 3) context size. Namely, I will be testing out how the performance of the

165

correction model changes when trained on different “mixes” of datasets. In particular,

this means that the Transformer model will be trained on different combinations of

datasets, starting with only the ICDAR2017 monograph dataset, and going up to

all OCR correction datasets — i.e., all ICDAR and the “Pure OCR Errors” datasets,

together with an artificial dataset with 200,000 erroneous token pairs. The idea

of this experiment will be to evaluate the domain specificity of the Post-OCR

correction task, as multiple papers from the “Related Work” chapter (see 2) have

suggested that using extra datasets does not always lead to better results.

10.5 Error Detection Experiments

The process for evaluating the BERT detection model is the same as the encoder-

decoder correction models from the last section 10.4. In particular, I will first

run several experiments regarding different configurations of the model, in order

to determine what configuration should result in the highest performance. The

experiments will be evaluated on the validation datasets. At the end, a final model

will be trained and evaluated on the test datasets.

The final model will additionally be trained on an artificially generated dataset,

which had a limit of 200,000 token pairs. Additional statistics for that dataset are

given in subsection 11.4.1 in the following chapter.

The experiments for the BERT detection model include the hyperparameters listed

immediately below. The preset experiments only add linear layers on top of the

BERT model and do not change the architecture of BERT in any way. As such, the

architecture of the base BERT model (the one used in this paper) stays the same

stays the same.

• Case sensitivity - all lowercased and mixed-case

• Fine-tuning - different combinations of freezing the layers of the BERT model

166

– Do not freeze neither the embedding layer, nor any BERT layers

– Do not freeze the embedding layer, but freeze first 9 layers of BERT

– Freeze both the embedding layer, and the first 9 layers of BERT

– Do not freeze the embedding layer, but freeze all BERT layer but the last

one

– Freeze both the embedding layer, and all BERT layers but the last one

– Freeze both the embedding layer, and all BERT layers

• Model presets - base and big

– Small:

∗ Dropout on top of BERT: 0.1

∗ Linear layers after dropout: None

– Base:

∗ Dropout on top of BERT: 0.1

∗ Linear layers after dropout: [1024, 512]

– Big:

∗ Dropout on top of BERT: 0.1

∗ Linear layers after dropout: [4096, 2048, 1024, 512]

167

The following hyperparameters values were used as default, when they were not

overwritten by the appropriate hyperparameters in given experiments:

• Case sensitivity: mixed-case

• Model preset: base

• Freeze embeddings: False

• Freeze BERT layers: None

• Batch size: 64

• Maximum sequence length: 128

• Learning rate: 2e-5

• Weight decay: 1e-2

Additionally, I will use a classification threshold of 0.98 (explained in 8.4). The

value was manually determined after carrying out a few evaluation tests on the

validation data with different values from 0.9-0.99. The best-performing classification

threshold, which struck the best balance between precision and recall for most datasets,

was 0.98.

168

11 Results

In this chapter, I will present and discuss the results of the experiments from the

previous chapter 10. In particular, I will start by looking at the results of the

baseline experiments in section 11.1. Then, I will explore the results for the two error

correction models in section 11.2, and the BERT detection model results in section

11.3. The experiments from the first three sections were evaluated on the validation

datasets. The only exception to this are the experiments of the baseline Q-gram

index models, as they were directly evaluated on the test datasets. Moreover, the

results for error correction and detection are provided independent of one another

(i.e., not as a pipeline).

Section 11.4 then shows the result of combining the best-performing error detection

and correction models as a pipeline. They will be evaluated on both tasks, and their

results compared with all baselines and ICDAR competition models. The chapter

finishes off with section 11.5, where I outline the flaws of the final detection and

correction models.

11.1 Baseline Experiment Results

The results from the baseline experiments are supplied in two tables. Table 6 shows

the results for error correction, while table 7 — for error detection.

169

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Matthias

artificial
Matthias
realistic

Training
Q-index

Plain +7.8% +16.33% +1.62% -4.46% +18.45% +22.53%

Skip NE +7.34% +14.42% -1.56% -11.92% +17.62% +22.67%

ArXiv
Q-index

Plain +9.48% +14.26% -1.88% -11.99% +20.11% +15.14%

Skip NE +8.26% +12.75% -4.38% -14.56% +20.43% +23.62%

Table 6: Error correction results for different experiments with baseline Q-index
model, evaluated on the test datasets

the results are given as % improvement (marked with +) or worsening
(marked with -) on the sum of edit distances

olive marks best-performing for dataset ; red marks worst-performing

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Matthias

artificial
Matthias
realistic

Training
Q-index

Plain 28.53%
28.27%

49.2%
48.64%

35.04%
33.55%

44.71%
43%

56.74%
55.45%

29.4%
29.37%

Skip NE 27.93%
27.57%

48.13%
47.52%

35.36%
33.76%

43.26%
41.48%

58.52%
57.14%

33.29%
33.22%

ArXiv
Q-index

Plain 34.49%
34.25%

46.58%
45.93%

32.23%
30.81%

42.14%
40.5%

59.69%
58.65%

29.4%
29.36%

Skip NE 30.17%
29.91%

47.71%
47.1%

35.1%
33.5%

43.45%
41.65%

63.57%
62.32%

38.26%
38.19%

Table 7: Error detection results for different experiments with baseline Q-index
model, evaluated on the test datasets

the results are given with token-level and
entity-level F1 scores in that order

olive marks best-performing for dataset ; red marks worst-performing,
based on entity-level F1 score

170

The experiment results for both tasks show that using a Q-gram index, trained on the

correct tokens of the OCR detection datasets, outperforms the alternative — training

it on words from the clean arXiv document dataset, when it comes to the ICDAR

datasets. On the other hand, the latter technique is better when used on the spelling

correction datasets and the ACL benchmark. This is easily explained — the arXiv

document collection consists of proper English research texts. Moreover, the words

there are modern, which additionally clashes with the archaic words, which are

contained in the ICDAR datasets. As a final remark, the arXiv document collection

also contains a lot of technical jargon, as well as formulas and mathematic symbols,

which are in no way present in the ICDAR datasets. This can be used to explain

why the arXiv Q-index gram performs better on the “ACL Benchmark” dataset — as

mentioned in section 9.4, those are exactly the type of the most common errors in

it.

As hypothesized in section 10.2 from the previous “Experiments” chapter, skipping

non-English words while training the Q-gram index models does not improve their

performance. This can be explained with the fact that the OCR correction datasets

— especially the ICDAR datasets — often include corrections (i.e., target tokens),

which are not valid English words by modern standards (refer to chapter 9). The only

notable exception to this are, again, the spelling correction datasets, where having

only modern English words better fits the expected targets for the task.

11.2 Correction Experiment Results

This section will offer results for the error correction experiments, described in

section 10.4 from the previous “Experiments” chapter. I will split the section into

three: subsection 11.2.1 will discuss the results for the LSTM encoder-decoder model,

subsection 11.2.2 — the results for the Transformer model, and subsection 11.2.3 —

the results from the “mixed dataset” experiment.

171

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Pure OCR

Errors
Matthias
artificial

Matthias
realistic

Case
sensitivity

All lower
(5:39:53)

-8.48%
(2% missed)

+32.59%
(2% missed)

+27.74%
(1% missed)

+15.51%
(2% missed)

+34.63%
(2% missed)

-21.1%
(3% missed)

-17.19%
(3% missed)

Mixed
(5:39:04)

-6.21%
(2% missed)

+33.54%
(2% missed)

+30.59%
(0.7% missed)

+20.22%
(2% missed)

+37.46%
(2% missed)

-19.1%
(2% missed)

-15.7%
(2% missed)

Context
size

1, 1
(4:01:43)

-9.66%
(4% missed)

+37.23%
(3% missed)

+31.65%
(2% missed)

+18%
(2% missed)

+39.47%
(3% missed)

-18.43%
(3% missed)

-16.28%
(4% missed)

3, 3
(5:20:00)

-7.96%
(3% missed)

+32.87%
(4% missed)

+30.84%
(2% missed)

+19.65%
(3% missed)

+36.04%
(5% missed)

-21.28%
(4% missed)

-20.56%
(4% missed)

5, 5
(8:39:29)

-8.52%
(2% missed)

+36.43%
(2% missed)

+29.27%
(1% missed)

+21.62%
(0.9% missed)

+37.66%
(2% missed)

-24.3%
(2% missed)

-16.8%
(3% missed)

5, 1
(5:20:48)

-7.17%
(2% missed)

+35.75%
(3% missed)

+31.48%
(2% missed)

+20.53%
(2% missed)

+40.96%
(2% missed)

-18.6%
(3% missed)

-24.16%
(2% missed)

Presets
Base

(6:01:40)
-8.03%

(2% missed)
+34.85%

(2% missed)
+28.98%

(2% missed)
+19.69%

(2% missed)
+38.7%

(2% missed)
-19%

(3% missed)
-17.78%

(4% missed)

Big
(6:00:18)

-9.17%
(1% missed)

+38%
(2% missed)

+33.5%
(1% missed)

+29.43%
(1% missed)

+49.36%
(2% missed)

-17.72%
(2% missed)

-17.7%
(2% missed)

Attention
Type

None
(5:20:02)

-34.45%
(1% missed)

+14.88%
(2% missed)

+0.63%
(1% missed)

-7.16%
(2% missed)

+24.78%
(2% missed)

-35.09%
(2% missed)

-17.19%
(2% missed)

Dot
(5:42:16)

-6.48%
(2% missed)

+32.53%
(2% missed)

+30.22%
(1% missed)

+20.12%
(2% missed)

+36.82%
(2% missed)

-19,77%
(2% missed)

-14.47%
(1% missed)

General
(5:36:18)

-8.41%
(0.8% missed)

+35.92%
(2% missed)

+31.83%
(0.6% missed)

+17.51%
(1% missed)

+39.27%
(2% missed)

-17.84%
(1% missed)

-13.85%
(1% missed)

Concat
(8:08:41)

-5.14%
(0.3% missed)

+35.64%
(1% missed)

+30.98%
(0,6% missed)

+16.23%
(0.5% missed)

+39%
(0.75% missed)

-17.17%
(1% missed)

-11.84%
(1% missed)

Table 8: Results for different experiments with an LSTM encoder-decoder
correction model, evaluated on the validation datasets;

the results are given as % improvement (marked with +) or worsening
(marked with -) on the sum of edit distances;

“% missed ” indicates what percent of model predictions did not have a
focus token, properly encased in <TGT> meta tokens;

olive marks best-performing in experiment group; red marks
worst-performing (averaged on the five Post-OCR correction datasets);

timestamps below experiment names show training time

11.2.1 LSTM Experiment Results

Table 8 visualizes the results for the LSTM encoder-decoder experiments, based on

percent change of the sum of Levenshtein distance. I will look more closely into the

results of 3 of the 4 experiment groups, namely “case sensitivity”, “context size” and

“attention type”. The result from the preset experiment is straight-forward: a bigger

LSTM encoder-decoder trains better on the task, suggesting that a bigger model

capacity is helpful for Post-OCR correction.

172

Case sensitivity

At first thought, using mixed-case data intuitively looks like a better approach.

Indeed, Post-OCR correction often deals with mistakes that transform letters into

symbol combination, e.g., D to |), or T to l-. However, a sequence-to-sequence model

should theoretically not have a problem with mapping symbol combinations, that are

originally for uppercase letters, to their lowercase representations (e.g., |) should be

mapped directly to d).

Box 11.1 shows a random subset of correction samples, which were corrected properly

only by the cased LSTM model. Looking at sample pairs #1, #3, #4, #7, #8, using

mixed cased does not seem to provide extra information, which would make a cased

model better than an uncased one. Instead, it seems that having mixed cases helps

the model train more easily, which leads to a better performance.

Sample pairs #2, #5, #6, on the other hand, hint that a cased model seems to learn

to work with named entities better (e.g., Roman, Swedish, Americas, etc.). Indeed,

having all data be lowercased removes the telltale sign of named entities — namely,

that they start with uppercase letters. If brought down to all lowercase letters, named

entities “blend in” with the rest of the English words, which might confuse the model

further.

173

Cased: (iii) <TGT>Cpmnunications<TGT> among (iii) → (iii) <TGT>Communications<TGT> among

Uncased: (iii) <TGT>cpmnunications<TGT> among → (iii) <TGT>coomunications<TGT> among

Cased: are <TGT>Americas- North<TGT> America → are <TGT>Americas-@North<TGT> America

Uncased: are <TGT>americas- north<TGT> america are → are <TGT>americaa–north<TGT> america

Cased: <TGT>Never<TGT> mind → <TGT>’Never<TGT> mind

Uncased: <TGT>never<TGT> mind → <TGT>’nevee<TGT> mind

Cased: a <TGT>publSshing<TGT> association → a <TGT>publishing<TGT> association

Uncased: a <TGT>publsshing<TGT> association → a <TGT>publissing<TGT> association

Cased: a <TGT>R oman<TGT> Caholic → a <TGT>R@oman<TGT> Caholic

Uncased: a <TGT>r oman<TGT> caholic → a <TGT>rroman<TGT> caholic

Cased: the <TGT>S wedish<TGT> Police → the <TGT>S@wedish<TGT> Police

Uncased: the <TGT>s wedish<TGT> police → the <TGT>sewedish<TGT> police

Cased: design <TGT>an<TGT> construction, → design <TGT>and<TGT> construction,

Uncased: design <TGT>an<TGT> construction, → design <TGT>an<TGT> construction,

Cased: fat <TGT>gentle-man,<TGT> who → fat <TGT>gentle@man,<TGT> who

Uncased: fat <TGT>gentle-man,<TGT> who → fat <TGT>gentle@mmn,<TGT> who

Box 11.1: Examples of correction samples, which were exclusively corrected from
the cased model; the first line of every pair shows the cased input

erroneous and output target samples; the second line shows the uncased
input erroneous sample and the uncased model prediction

Box 11.2, on the other hand, showcase a random subset of the correction samples,

which are only properly corrected by the uncased model. The sample is smaller,

as the same conclusions can be drawn from these samples, as with the previous one.

Indeed, using mixed-case samples seems to make the correction model better when

dealing with named entities (refer to previous paragraph), but also carries the pitfall

of recognizing false positives. Sample pair #1 from the box can be used to visualize

this concept — the lowercased word nhether is easy to map back to the correct token

whether. At the same time, however, Nhether could have been recognized by the

model as a named entity and thus left uncorrected.

174

Other than sample pair #1, the other examples from the box do not carry any

significant information. It looks like the choice between the two hyperparameters does

not have an objectively right answer. Rather, case sensitivity impacts the learning

process of the models differently, and using mixed-case samples has a slight edge in

that regard.

Uncased: <TGT>nhether<TGT> the → <TGT>whether<TGT> the

Cased: <TGT>Nhether<TGT> the → <TGT>Nhether<TGT> the

Uncased: was <TGT>origi,mlly<TGT> introduced → was <TGT>originally<TGT> intro-

duced

Cased: was <TGT>origi,mlly<TGT> introduced → was <TGT>origiaally<TGT> introduced

Uncased: raiders <TGT>(nxw<TGT> skyhawks) → raiders <TGT>(now<TGT> skyhawks)

Cased: Raiders <TGT>(nXw<TGT> Skyhawks) → Raiders <TGT>(aow<TGT> Skyhawks)

Uncased: this <TGT>repl sentation<TGT> was → this <TGT>representation<TGT> was

Cased: This <TGT>repl sentation<TGT> was → This <TGT>replesentation<TGT> was

Uncased: <TGT>for-give<TGT> me → <TGT>for@give<TGT> me

Cased: <TGT>For-give<TGT> me → <TGT>For-give<TGT> me

Box 11.2: Examples of correction samples, which were exclusively corrected from
the uncased model; the first line of every pair shows the uncased input
erroneous and output target samples; the second line shows the cased

input erroneous sample and the cased model prediction

Context size

The context size experiment shows a preference towards preceding tokens. The

results of the experiments seem consistent with the experiments of the CLAM model

from the ICDAR competitions from 2017 (refer to [CDCM17]) and 2019 (refer to

[RDCM19]). Indeed, the context size of (5, 1) – the best-performing one in the

experiment group — was directly inspired by the description of the CLAM model in

the 2017 iteration. The authors of the model there found that a context size of (4, 1)

or (6, 1) works best. Similarly, the (5, 5) context size works best for the ICDAR2019

175

dataset, again mirroring the results of the CLAM model, where the authors used a

(10, 10) context size.

As far as the other datasets are concerned, the “ACL Benchmark” dataset also

seems to profit from additional context, especially from preceding tokens (compare (5,

1) versus (3, 3)). A similar tendency is also observed with the “Pure OCR Errors”

dataset. There, using context sizes (3, 3) and (5, 5), which feature more succeeding

tokens, actually decreases the performance of the model.

Curiously, the spelling correction datasets show worse results when using more

context. I argue that this lies in the fact that using more context makes the task more

difficult. Indeed, if we consider correction samples with the default (1, 1) context size,

there is a higher probability of a target token being a part of a sample with similar

context. For example, if we consider the most common English word the, there is a

high probability that the surrounding context around the word often has the form “in

<TGT>the<TGT> . . . ”, “of <TGT>the<TGT> . . . ”, “at <TGT>the<TGT> . . . ”

and so on. When the context is increased, the probability of having similar context

drops. Thus, the error correction model will not be as confident with its correction

prediction.

This argument can also be used to explain the bad performances on the OCR

correction dataset as well. Indeed, one could make the argument that the (5, 1)

context size achieves the best results, as the surrounding context keeps the knowledge

of the immediate preceding context, and then uses the extra preceding tokens to

further refine its predictions. Moreover, it does not change the correction samples

when it comes to the immediate succeeding context.

Attention type

The experiment group for the attention type of the LSTM encoder-decoder model

shows the most significant results. Indeed, using even the most basic form of attention

— Luong’s dot attention — boosts the performance on the Post-OCR correction task

176

significantly. Moreover, using a deeper form of attention increases the performance

of LSTM encoder-decoder models further, but with diminishing returns — the concat

attention mechanism is only very slightly better than general on average.

In order to further inspect the discrepancy between not using attention and the

alternative, I offer a random subset of correction samples, which the concat model

properly corrected, when compared to the model without attention. It can be inspected

in box 11.3. Sample pairs #4 through #7 suggest that the “attentionless” LSTM

encoder-decoder model seems to struggle with semantic and punctuation errors.

In particular, the last two sample pairs show how the attentionless model did predict

proper English words as corrections to the erroneous sample — they were, however,

not correct in their surrounding context. The rest of the samples show unspecific

mistakes, likely due to sole exclusion of an attention mechanism.

W/ att.: straightforward <TGT>appfication<TGT> of → straightforward <TGT>application<TGT>

of

W/o att.: straightoorward <TGT>applifation<TGT> of

W/ att.: <TGT>ha !<TGT> → <TGT>ha@!<TGT>

W/o att.: <TGT>ha!!<TGT>

W/ att.: his <TGT>fore-head.<TGT> → his <TGT>fore@head.<TGT>

W/o att.: his <TGT>fore-head.<TGT>

W/ att.: lady <TGT>read,<TGT> which → lady <TGT>read@<TGT> which

W/o att.: lady <TGT>read,<TGT> which

W/ att.: last <TGT>lingerlng,<TGT> tinge → last <TGT>lingering@<TGT> tinge

W/o att.: last <TGT>lingering,<TGT> tinge

W/ att.: after <TGT>com-mitting<TGT> the → after <TGT>com@mitting<TGT> the

W/o att.: after <TGT>com@mutting<TGT> the

W/ att.: freedom <TGT>o f<TGT> speech → freedom <TGT>o@f<TGT> speech

W/o att.: freedom <TGT>off<TGT> speech

177

Box 11.3: Examples of correction samples, which were exclusively corrected from
the concat attention model; the first line of every pair shows the input
erroneous and output target samples; the second line shows the incorrect

predictions, made by the model without attention

“ACL Benchmark” performance

In this subsection, I would like to take a brief look at the results of the experiments

on the “ACL Benchmark” dataset. The keen reader would have immediately

noticed that it is the only OCR detection dataset, which the LSTM encoder-decoder

models do not succeed to improve. To that extent, I manually extracted a subset

of the error correction samples, which could not be improved by the concat LSTM

encoder-decoder model, from the “attention type” experiment. They are listed in box

11.4.

178

of <TGT>GmeptWizatiofls<TGT> Urderlying → of <TGT>Gmeptrization<UNK>s<TGT> Urderlying

→ of <TGT>Conceptualizatio@ns<TGT> Urderlying

be <TGT>awit r _mmchaw<TGT> → be <TGT>awiterohmmchaa.<TGT> → be <TGT>switched

somehow.<TGT>

or <TGT> ixsemglL .<TGT> → or <TGT>AixsemglLs.<TGT> → or <TGT>polysem@ous.<TGT>

of <TGT>’IIYXEght<TGT> and → of <TGT>@@IYXEght<TGT> and → of

<TGT>@@Thought<TGT> and

Francism, <TGT>Qlifomia.<TGT> → Francism, <TGT>Q@i<UNK>omia.<TGT> → Francism,

<TGT>California.<TGT>

J., <TGT>Gutllet,<TGT> A. → J., <TGT>GusLLET,<TGT> A. → J., <TGT>Guillet,<TGT> A.

4-3-11 <TGT>T keda,<TGT> Kofu → 4-3-11 <TGT>Tikeda,<TGT> Kofu → 4-3-11

<TGT>Takeda,<TGT> Kofu

i: <TGT>f (X,y)<TGT> = → i: <TGT>feee, y<TGT> = → i: <TGT>fi(X,Yy)<TGT> =

<TGT>= <TGT> (’–*OR → <TGT>On<TGT> (’–*OR → <TGT>=><TGT> (’–*OR

by: <TGT>(T∼)-1,<TGT> if → by: <TGT>(Til-1,<TGT> if → by: <TGT>(Tiˆm)ˆ-1,<TGT> if

<TGT>P∼idagogischer<TGT> Verlag → <TGT>Panlaaogischer<TGT> Verlag →

<TGT>Päidagogischer<TGT> Verlag

einem <TGT>Gener\]erungssystem<TGT> fHr → einem <TGT>Generakerunnssyystem<TGT> fHr →

einem <TGT>Gener@ierungssystem<TGT> fHr

Box 11.4: Examples of correction samples, which the an LSTM encoder-decoder
with concat attention was not able to correct; each sample triple

contains the input erroneous sample, followed by the model prediction
and ending with the expected target

I have grouped the main types of erroneous predictions on the “ACL Benchmark”

in four. The first main group contains sample pairs #1 through #4. As we can

see, the erroneous tokens in this group are either too dirty when compared to their

respective target tokens (e.g., sample pairs #1 and #4), or are flat-out mismatched

179

(e.g., sample pairs #2 and #3). These sample pairs have an uncharacteristically

large Levenshtein distance, when compared with the error distribution statistics from

subsection 9.1.2. Even if we give the benefit of the doubt to the correction model,

and assume that it has learned to correct errors with a large Levenshtein distance as

well, I would argue that those samples would pose a challenge even for humans to

correct.

The second main group concerns named entities. This group is composed of samples

#5 through #7. In them, the expected target token is a correction of a named entity

(e.g., Gutllet to Guillet), which the correction model would not know how to correct

if it has not seen it often enough. Post-OCR correction has historically had problems

with named entities (refer to chapter 2), given that they are properly-spelled, but

invalid English words. As such, error correction models expectedly often overcorrect

unknown named entities, or try to guess what the correct target might be (as is the

case with samples #5 through #7).

The third big group consists of corrections to mathematical equations or symbols.

Consider sample pairs #8, #9, and #10. This type of incorrect predictions is expected

— the other OCR correction datasets do not feature similar kinds of mistakes, as they

are comprised of scans of literature. The only other source of training data, which

also deals with these kinds of errors, is the artificial datasets, based on the arXiv

document collection. This fact will come back up again in the upcoming subsection

11.2.3, where the addition of the artificial dataset will be further inspected.

The last mistake group comprises the last two samples in box 11.4 — correction of

German words. I intentionally left in the evaluation data, in order to gauge the

performance of the correction models on these types of errors. As expected, however,

training the correction models on purely English datasets renders this task borderline

impossible.

180

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Pure OCR

Errors
Matthias
artificial

Matthias
realistic

Case
sensitivity

All lower
(5:23:20) -13.2% +41.24% +27.76% +12.59% +41.64% -27% -26%

Mixed
(5:27:16) -14.98% +39.29% +27.4% +16.44% +42.86% -26.36% -28.92%

Context
size

1, 1
(5:25:38) -14.98% +39.29% +27.4% +16.44% +41.37% -26.36% -28.92%

3, 3
(8:35:54) -15.19% +39.27% +27.91% +13.46% +39.23% -26.17% -25.95%

5, 5
(13:37:10) -18.33% +37.31% +25.84% +13.68% +34.23% -27.54% -28.83%

5, 1
(8:30:33) -16.35% +37.19% +27.22% +14.18% +38.93% -28.34% -28.33%

Presets
Small

(5:27:40) -14.98% +39.29% +27.4% +16.44% +42.86% -26.36% -28.92%

Medium
(9:22:42) -14.76% +40.49% +29.31% +18.41% +46.25% -25.67% -26.46%

Table 9: Results for different experiments with a Transformer correction model,
evaluated on the validation datasets;

the results are given as % improvement (marked with +) or worsening
(marked with -) on the sum of edit distances;

olive marks best-performing in experiment group; red marks
worst-performing (averaged on the four Post-OCR correction datasets);

timestamps below experiment names show training time

181

11.2.2 Transformer Experiment Results

Table 9 showcases the results for the Transformer experiments, again based on percent

change of the sum of Levenshtein distance. The results of the “presets” and “case

sensitivity” experiment groups are unsurprising. For a deeper introspection of the

two experiment groups, I refer the reader to the previous subsection 11.2.1, where

they were explained in the case of using an LSTM encoder-decoder network.

The most surprising part of the experiments with the Transformer model is the

context size. Looking at table 9, the results for the default (1, 1) context size

trumps every other combination by a significant margin.

I started inspecting this by first looking at the training process of the (1, 1) and

(5, 5) models. I suspected that the maximum sequence length I put was causing too

much of the training data being dropped, leading to worse performance. This was

not the case, as the size of the training set for the (1, 1) model was 82,745, while the

other one was 81,537 — a negligible difference.

Then, I picked out a subset of 10 random samples, which the (1, 1) model got right,

but the (5, 5 did not. A manual inspection did not reveal anything suspicious, as

with the check about the case sensitivity from the previous subsection 11.2.1.

I also hypothesized that the length of the (5, 5) samples might have been messing

with the attention of the model, so I ran the randomly picked 10 samples through

their respective models and plotted the attention scores from the last cross-attention

module. A tiny subset of 3 samples was randomly picked to be visualized in figure

20. As seen in the figure, the differences in attention weights for the focus token

between the two models is also negligible. While it is possible that my random subset

landed on exactly such samples. where both models had similar attention weights, I

find that to be unlikely.

The only other reasonable explanation about the discrepancy between the two models

is overfitting. Indeed, inspecting figure 21 shows that both models overfit to the data

182

Figure 20: Attention visualization for the focus words on 4 randomly-picked
samples from the error correction dataset; the let column shows the

attention of an (1, 1) context size Transformer, while the right one — a
(5, 5)

183

Figure 21: Training and validation loss values throughout the training process of a
(1, 1) (left) and (5, 5) Transformer models

very early into the training process. However, the overfitting was way bigger for the

(5, 5) model. As explained in the previous subsection 11.2.1, increasing the context

size around the target token increases the probability of it being only in extremely

specific cases. Intuitively explained, having less variance in the surrounding context,

due to its length (and the amount of tokens included), could lead to a deep model like

the Transformer to fixate on the target tokens only in exact cases. Inversely, having

a smaller context size increases the probability of a target token being surrounded

by different combinations of surrounding tokens, which would stop the Transformer

from “memorizing” and force it to learn how the target token fits in the language.

11.2.3 Mixed Dataset Experiment Results

Table 10 visualizes the results from the “mixed dataset” experiment. The dataset shows

a common theme — using bigger “mixes” of datasets slightly brings the performance

on the ICDAR datasets down, depending on the dataset, while the opposite is true

for the “ACL Benchmark”, “Pure OCR Errors” and the spelling correction datasets.

These results mirror the empirical results from [AC18]. There, the authors carried

out a similar experiment, where they tried different “levels of mixing”, and found

that each higher level lead to a worse performance. This domain-specificity of

184

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Pure OCR

Errors
Matthias
artificial

Matthias
realistic

Only ICDAR2017
monograph
(4:15:30)

-40.09% +34.21% -34.79% -33.39%

Both ICDAR2017
datasets
(4:29:38)

-32.43% +32.69% +25.46% -28% -31.57%

Both ICDAR2017
+ ICDAR2019

(4:28:50)
-28.76% +33.37% +23.97% +5.09% -27.94% -33.96%

All ICDAR +
Pure OCR Errors

(4:59:52)
-14.64% +33.64% +25.56% +5.64% +32.18% -25.81% -26.46%

All ICDAR +
Pure OCR Errors +

Artificial 200k
(6:09:54)

+3.79% +31.11% +24.02% +4.27% +41.99% -0.62% -12.13%

Table 10: Results for running a (3,3) context Transformer model on different
“mixes” of datasets, evaluated on the validation datasets;

the results are given as % improvement (marked with +) or worsening
(marked with -) on the sum of edit distances;

olive marks best-performing for dataset ; red marks worst-performing;
timestamps below experiment names show training time

the Post-OCR correction task was also discussed in the “Related Work” chapter 2. I

expected this aspect to be less severe when combining English-only datasets, but this

does not seem to be the case.

Surprisingly, adding the “Pure OCR Errors” dataset seems to have a positive influence

to the performance of the ICDAR2017 periodical and the ICDAR2019 datasets. This

suggests that the two datasets contain OCR errors, which are shared with the ones

from the ACL Anthology Corpus, from which the “Pure OCR Errors” stems from.

Inspecting the table reveals that including an artificial dataset slightly brings down

the performance on all ICDAR Post-OCR correction datasets. At the same time,

however, it boosts the performance on the “ACL Benchmark” and “Pure OCR Errors”

datasets significantly. One reasonable explanation I can offer for this discrepancy

is that the artificial generation procedure favored and recreated such errors, which

did not match the distribution of the errors in the ICDAR datasets, but rather the

ones from the ACL Anthology Reference corpus. While this is highly unlikely — a

185

quick glimpse in the table 3 with error correction statistics shows that the sum of all

correction samples from the ICDAR datasets is almost equal with the ones from the

“Pure OCR Errors” dataset — the random nature of the generation procedure does

not eliminate the possibility.

Another explanation would be class imbalance. The 200,000 artificially-generated

erroneous tokens outnumber the number of samples from all other OCR correction

datasets. If a model is left to overfit, it might focus on correcting the artificial tokens,

leading to a worse performance on the other datasets.

11.3 Detection Experiment Results

The results from the experiments with the BERT detection models are offered in

table 11. Unlike the experiments with the error correction models, the results in this

case are not surprising. Similar to the correction models, using detection samples

with mixed-case letters looks to make the training of the model easier, and stacking

more linear layers on top of BERT also leads to a better performance.

The “fine-tuning” experiment also shows definitive results. Indeed, leaving the whole

BERT model unfrozen leads to the best metrics, while freezing the whole of it is

worst. This is expected, as the Post-OCR correction differs from the traditional NLP

tasks, on which BERT is pre-trained.

11.4 Final Results

In this section, I will present the evaluation results of the final versions of my proposed

models. Moreover, the error correction evaluation will be presented as a pipeline, and

not solely on the target correction samples with already marked focus entities. The

results will be compared to the baseline and external benchmarks, as well as a subset

of the models from the ICDAR competitions.

186

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Pure OCR

Errors
Matthias
artificial

Matthias
realistic

Case
sensitivity

All lower
(8:15:52)

43.25%
38.7%

61.7%
53%

52.82%
47.85%

52.16%
45.18%

88%
80.9%

69.11%
64.74%

66.28%
60.56%

Mixed
(9:55:49)

55.68%
46.1%

65.6%
55.88%

59.15%
51.74%

61%
50.87%

89.66%
83.81%

78.68%
73.65%

73.59%
67.69%

Presets

Small
(8:08:14)

55.92%
44.98%

65.98%
57.08%

62%
55%

59.67%
51.1%

90.1%
84.61%

81.24%
77.39%

75.34%
70.34%

Base
(8:14:39)

55.68%
46.1%

65.6%
55.88%

59.15%
51.74%

61%
50.87%

89.66%
83.81%

78.68%
73.65%

73.59%
67.69%

Big
(9:04:27)

57.89%
49.93%

68.41%
59.93%

65.66%
60.14%

64.33%
56.6%

90.36%
85.23%

83.48%
81.24%

78.61%
73.8%

Fine
tuning

Unfr. emb. +
no fr. BERT layers

(8:46:42)

60.87%
50%

68.64%
60.77%

63.51%
58.19%

65.34%
56.43%

88.91%
83.58%

84.53%
81.12%

77.26%
72.71%

Unfr. emb. +
fr. nine layers

(7:16:08)

57.24%
43.7%

67%
54.73%

62.03%
50.61%

60.93%
48.36%

90.17%
83.21%

82.41%
75.33%

78.1%
70%

Unfr. emb. +
fr. eleven layers

(7:00:54)

55.12%
36.67%

64.27%
48.55%

60.58%
46.35%

59,26%
41.52%

88.8%
79.36%

83.16%
74.25%

78.16%
68.28%

Fr. emb. +
fr. nine layers

(5:39:42)

58.25%
41.37%

66.67%
51.84%

62.46%
48.64%

60.54%
45.54%

89.13%
80.89%

82.1%
72.83%

75.1%
66.13%

Fr. emb. +
fr. eleven layers

(5:18:52)

56.24%
34.59%

62.83%
43.1%

59.3%
40.2%

53.92%
32.57%

87.1%
73.84%

80.98%
67.21%

76.81%
63.48%

Fr. emb. +
fr. all layers

(4:44:51)

34.1%
15.86%

42.75%
20.42%

41.14%
21.39%

33.19%
13.36%

58.37%
23.35%

63.5%
42.76%

65.57%
48.16%

Table 11: Results for different experiments with a BERT detection model,
evaluated on the validation datasets with classification threshold 0.98 ;

the results are given with token-level and
entity-level F1 scores in that order

olive marks best-performing for dataset ; red marks worst-performing,
based on entity-level F1 score;

timestamps below experiment names show training time

187

In particular, I will start the section of with subsection 11.4.1, which will briefly go

over the statistics of the artificial dataset, which I also used when training the final

models. Then, subsection 11.4.2 will cover the final error detection results. Finally,

subsection 11.4.3 will look at the final error correction results.

11.4.1 Artificial Data Statistics

For the training of the final sequence-to-sequence correction and BERT detection

models, I used artificially-generated datasets comprised of 200,000 target token

pairs. I also tried using datasets with a limit of 1,000,000 target token pairs, but the

results with the smaller artificial datasets were better. My hypothesis is that having

an artificial dataset with way more artificial samples (compare 1,000,000 and 128,588

overall training samples from OCR correction datasets) caused the model to largely

focus on the information from the former, leading to worse performance.

The datasets were generated according to the procedure, outlined in section 9.7.

Setting the maximum token pair amount to 200,000 resulted in the datasets with the

following sizes:

• an isolated error correction dataset with 200,000 samples

• a context error correction dataset with 200,00 samples

• an error detection dataset with 140,480 samples

I used a fraction of 0.1 to control the number of target entities per error detection

sample, as explained in subsection 9.7.1. At the end, the error detection samples

ended up having 22,653,909 tokens in total, with 1,616,633 of them being erroneous.

This puts the percentage of erroneous tokens at 7.14%, which is close to the training

set average of 8.6% (refer to 9.1.2). Furthermore, there were 999,020 target entities,

which averages out to 1.62% tokens per entity — again close to the training set

average.

188

As far as error correction statistics are concerned, the artificial dataset features

182,483 insertions (3.53%), 362,278 deletions (7%), and 921,238 substitutions (17.82%).

Additionally, the distribution of errors by Levenshtein distance was as follows: 654,366

(65.44%) were single-mistake samples, 264,233 (26.42%) were double-mistake samples,

53,266 (5.33%) were triple-mistake samples, and 28119 (2.81%) — multi-mistakes

samples (i.e., four mistakes or more). As far as word boundary errors were concerned,

the procedure also generated 31,030 (3.1%) run-on and 44,534 (4.45%) incorrect split

errors.

All-in-all, the artificially generated datasets fulfilled all average statistics, presented in

section 9.1. Although the results from the mixed dataset experiment from subsection

11.2.3 did not show a positive correlation between using an artificial dataset and

increase in performance on the OCR correction datasets, I nonetheless decided to

include the artificial datasets when training the final models. My reasoning for this

is that the experiments from the last section showed better results, when larger

models were used (both for error correction and detection). Thus, I hypothesized

that including the artificial datasets would be beneficial for the large models, as they

would have the capacity to learn additional patterns from them.

11.4.2 Final Detection Results

Final model hyperparameters

I used the following hyperparameter configuration to train the final version of the

BERT detection model:

• Model parameters:

– Case sensitivity: mixed (upper- and lowercase)

189

– Fine-tuning: do not freeze neither the embedding layer, nor any BERT

layers

– Linear layers on top of BERT: [4096, 2048, 1024, 512]

– Maximum sequence length: 128

• Training parameters:

– Batch size: 64

– Learning rate: 2e-5

– Weight decay: 1e-2

The model was trained for 30 epochs, clocking up to 21 hours of training time.

Figure 22 shows a collage of different statistics for the training process of the model.

In particular, subfigure 22a shows the training and validation losses of the model.

We can see there that the detection model overfits early – on the second epoch of

training. At the second epoch, the model had an average validation loss over all

OCR correction datasets (i.e., excluding the spelling correction datasets) of 0.157,

while at the end of the training process — 0.408. However, the average information

retrieval statistics of the model were better at the end than after the second epoch.

In particular, the model achieved a precision value of 82%, a recall value of 66%, and

an F1 score of 73.05%. In comparison, the model had a precision value of 80%, a

recall value of 68%, and an F1 score of 73.37% at the end of training. The reason for

this can be seen in subfigure 22b — the F1 scores on the ICDAR datasets continued

getting better beyond the “overfitting threshold”. I decided to use the model at the

end of the training process for that very reason, even though the model was overfit.

Subfigure 22c shows a confusion matrix from the final validation step in the training

process. As we can see from the matrix, the model was able to predict a 100% of the

190

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Matthias

artificial
Matthias
realistic

Plain
Training Q-Index
w/ max. dist. 3

28.53%
28.27%

49.2%
48.63%

35.04%
33.55%

44.71%
43%

56.74%
55.45%

29.39%
29.37%

Char-SMT/NMT x 67%
-

64%
- x x x

WFST-PostOCR x 73%
-

68%
- x x x

CLAM x 67%
- x 45%

- x x

CCC x x x 67%
- x x

Nguyen et al. x 72%
-

74%
-

68%
- x x

Google
Autocorrect

36.93%
39.04% x x

NATAS 10.05%
9.81%

27.53%
26.94%

23.54%
22.1%

28.42%
26.92%

42.04%
40.51%

27.81%
27.77%

Big Unfrozen
BERT

51.61%
46.43%

57.13%
57.87%

52.37%
48.49%

42%
32.2%

81.29%
79.05%

76.54%
74.35%

Table 12: Final results for OCR error detection with classification threshold 0.98
on the testing datasets, given in F1 score;

’x’ indicates that the model was not evaluated on the given dataset when
it was published;

’-’ indicates that the authors only supplied token-level evaluation
olive indicates the best-performing model on a specific dataset, based on

token-level evaluation

miscellaneous tokens (i.e., BERT meta tokens), ∼ 99% of the non-erroneous tokens,

∼ 70% of the “start erroneous” tokens, and ∼ 77% of the erroneous continuation

tokens. The model seems to have properly learned to distinguish between the two

types of erroneous tokens — there is not much overlapping mismatches between the

two.

Comparison table w/ baselines and SOTA

Table 12 offers the evaluation results of the final BERT detection model on all

test datasets. As clearly seen in the table, the model gets better results than the

benchmark models (i.e., Q-gram Index, NATAS and Google on average), but is

underwhelming when it comes to the current state-of-the-art models.

191

(a) Training and validation loss while training the final detection model

(b) F1 score evolution on the validation datasets while training the final detection model
blue stands for “ACL Benchmark”; orange stands for ICDAR2017 monograph; green

stands for ICDAR2017 periodical; red stands for ICDAR2019; purple stands for
“Matthias artificial”; brown stands for “Matthias realistic”; pink stands for “Pure OCR

Errors”; the dotted line stands for the average over all OCR correction datasets

(c) Confusion matrix of the final detection model on the validation datasets

Figure 22: Training statistics for the final BERT detection model

192

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Matthias

artificial
Matthias
realistic

Plain
Training Q-Index
w/ max. dist. 3

Matched 16.45% 31.62% 19.45% 26.34% 36.93% 17.19%

Missed 4.82% 15.86% 25.64% 25.86% 16.04% 16.75%

Superfluous 78.73% 52.52% 55% 47.8% 47% 66.06%

Google
Autocorrect

Matched 22.44% x x

Missed 54.15% x x

Superfluous 23.41% x x

NATAS
Matched 5.2% 15.33% 11.92% 14.91% 4.27% 3.46%

Missed 4.77% 8.92% 12.36% 13.82% 31.4% 19.62%

Superfluous 90% 75.92% 75.72% 71.25% 64.34% 76.92%

BERT + (3,3)
Matched 28.63% 37.8% 30% 17.47% 62.67% 59.64%

Missed 48.66% 42.1% 47.47% 63.53% 30.13% 33.95%

Superfluous 22.71% 20.1% 22.58% 19% 7.2% 6.4%

BERT + Isolated
Matched 29.01% 38.51% 30.42% 18.29% 62.88% 59.38%

Missed 48.66% 42.83% 47.38% 63.42% 30.1% 34.29%

Superfluous 22.33% 18.66% 22.2% 18.29% 7.1% 6.33%

Table 13: Fractions of detection-generated samples across different datasets into
matched (i.e., properly generated), missed (i.e., skipped over), and

superfluous (i.e., improperly generated);
the BERT model combinations use a classification threshold of 0.98

Distribution of predicted samples

The performance of the error detection model is crucial to the overall performance of

the two-step approach. As explained in the paper previously, the two-step approach

hinges on the detection model marking as many truly erroneous tokens as possible,

without also generating excess superfluous samples. To that extent, table 13 showcases

the distribution of detector-generated correction samples, split into the three

distinct groups from subsection 10.1.3. The distribution is also given for the Q-index

and external baselines.

Note that there are different results when running a context correction error versus

an isolated one. This is due to the very nature of the “matching process”, which

joins detector-generated correction samples with expected ones. Indeed, the matching

is done by matching the erroneous, or input parts of the samples, as the detection

model does not have anything other than the erroneous test samples. In the case of

193

isolated error correction, however, the inputs are comprised of a single token, encased

in <TGT> meta tokens. This means that there is a chance of having the same input

sample multiple times, even though the context, from which it was extracted, might

have been different.

The first thing that may stand out in the eyes of the reader is how big the fraction

of superfluous — i.e., a model predicted an erroneous token where there is not

one — samples is with the baseline Q-gram index and NATAS models. The value is

extraordinarily high with the “ACL Benchmark ” dataset, and box 11.5 visualizes why

this is. As explained in section 9.4, the “ACL Benchmark” dataset contains a lot of

invalid English words, like URLs, named entities, technical jargon and mathematical

symbols, German words, meta symbols (e.g., citation symbol) and so much more.

This clashes with the way error detection is implemented with a Q-gram index model,

as erroneous words are just checked against a vocabulary of known words. The high

amount of superfluous samples is then logical — each one of the aforementioned

challenging groups of tokens to work with is caught by the Q-index and loaded up

for correction. What is interesting is that in most cases the Q-gram index does not

end up correcting the token, as it can not find a suitable replacement for it within

the given maximum edit distance of three.

The similar phenomenon is also experienced with the NATAS library, which suggests

that it also uses some kind of dictionary approach to classify error before correcting

them.

“<TGT>http://www.icsi.berkeley.edu/∼framenet<TGT>”, “<TGT>"hat",<TGT>”,

“<TGT>(as<TGT>”, “<TGT>clarity<TGT>”, “<TGT>inflammation<TGT>”,

“<TGT>c(i)<TGT>”, “<TGT>31,777<TGT>”, “<TGT>1986<TGT>, ‘<TGT>georgetown<TGT>’,

‘<TGT>prominenzbasierte<TGT>’, ‘<TGT>prosodieanalyse<TGT>’, ‘<TGT>75%,<TGT>’,

‘<TGT>[4]<TGT>’ ”

Box 11.5: A random subset of superfluous correction samples, generated by the
final Q-gram index from the “ACL Benchmark” dataset; each line

represents one detector-generated correction sample

194

Opposite of the two aforementioned models is the Google Autocorrect engine, as

well as the BERT detection model. Indeed, the Google Autocorrect engine shows

an incline to correct words with a low Levenshtein distance and with mistakes that

would more-so fit spelling correction, rather than Post-OCR correction. For example,

it properly managed to correct “Orimea,” to “Crimea,”, “marvadous” to “marvelous”,

“unthrifti nesse” to “unthriftiness”. However, it also showed a tendency to normalize

historical words, with corrections like “HISTORIE ” to “HISTORY ” and “almightie”

to “almighty”, which were not erroneous in the case of the evaluation. The Google

Autocorrect engine would also try to make larger “corrections” (e.g., “he was sittir

was” to “he was”, as well as punctuation fixes (e.g., “an swered, that” to “answered

that”).

All of these tendencies are reminiscent of, well, an autocorrect engine on a phone,

which helps stop mistakes that humans make while typing (i.e., spelling correction).

As such, the Google Autocorrect engine is not a good Post-OCR correction engine, and

a shoddy OCR detection one. Indeed, it skips almost all cases, where there is a typical

Post-OCR correction mistake, which does not even look that much harder than spelling

correction examples. As an example, the following sentence does not feature a single

correction from the Autocorrect engine, even though more than a couple are needed:

“\<TGT>[n<TGT> some <TGT>(:rises,<TGT> the <TGT>he:gallon<TGT> of

\[A is ingr <TGT>It\]<TGT> suggests the <TGT>ingredi(mcc<TGT> of the object

A to another type <TGT>(J,<TGT> such that there exists a type <TGT>1)<TGT>

which is greater than <TGT>13<TGT> and <TGT>(7<TGT> in the lattice of

types: The spoke wheel is not a part of a <TGT>ear<TGT> (it <TGT>Zs<TGT>

part of a <TGT>bike’).<TGT>”

With the BERT detection model, the distribution of the sample is more or less

expected. Indeed, the idea behind the model (as explained all the way back in

chapter 8) is to only catch and relay samples with a guaranteed error in them, as the

correction models were not trained to handle false positive samples (i.e., a correct

word is incorrectly passed to the correction model). On inspection of the distribution

195

statistics from table 13, one can see how this technique is very flawed, when it

comes to the Post-OCR correction field. Curiously, this strategy seems to work

wonders for spelling correction, as around 60% of the erroneous tokens there are

properly caught, without ever training on a single sample from a spelling correction

dataset. Coming back to Post-OCR correction, however — the design of the two-step

approach, together with the classification threshold of 0.98, lead to a massive amount

of missed erroneous tokens. These missed samples prove detrimental to the overall

performance of the pipeline, due to how the pipeline evaluation process works — the

Levenshtein distance from every missed sample pair is added to the overall sum of

Levenshtein distance of the predicted texts, because the error stays in-tact. The

following subsection on error correction results will delve deeper into how much the

missed samples hurt the end results, but the fractions promise it to be a lot.

I also briefly want to discuss and visualize the different classes of samples, which the

BERT detection model generates. As the result is most striking on the ICDAR2019

dataset, I will be focusing my exploration there — specifically, “BERT + (3, 3)”. For

this, I’m going to do a quick exercise of picking 20 samples from the group of missed

samples. By doing this, I want to find out if it is really the model that is at fault

with how the results turned out, or is the data just too dirty.

The randomly-picked missed samples are displayed in box 11.6. Some samples suggest

that the test set of the ICDAR2019 dataset is pretty dirty — there is unnecessary

addition in the sample pair “Meet” → “Meet me”, unnecessary deletion in “Pariars. ,

3 ” → “Pariars.”, random correction of punctuation marks (e.g., “jade! ” → “jade ! ”

and “withall,” → “withall ,”), and so on. A telltale sign about how dirty the testing set

actually is just inspecting the start-of-the-art — the current SOTA on the ICDAR2019

dataset is CCC, with a mere 11% Levenshtein distance sum improvement. Moreover,

I mentioned in the “Related Work” chapter that the ICDAR evaluation script was

hard to set up with the two-step approach I’m using, so I’m not sure if the intended

evaluation strips away more or less tokens than I did.

196

“<TGT>foul<TGT>” → “<TGT>soul<TGT>”, “reply3d” → “reply’d”, “y” → “)”, “A H! ” → “AH

! ”, “Meet” → “Meet me”, “jade! ” → “jade ! ”, “os” → “of ”, “withall,” → “withall ,”, “REARING” →

“BEARING”, “LTSTON,” → “LISTON,”, “mofl” → “most”, “Pariars. , 3 ” → “Pariars.”, “8 ” → “B”,

“own” → “ovvn”, “en” → “on”, “xcviii.” → “XCVIII.”, “Shil” → “Shil3 ”, “Scius.” → “Seius”, “Eroxena,”

→ “Eroxena.”, “PALACE 3 ” → “PALACE ”

Box 11.6: A random subset of 20 missed ICDAR2019 samples

11.4.3 Final Correction Results

For this subsection, I will first introduce the tables with the final correction statistics

for the paper. The tables will feature four variations of the two-step approach:

• Two-step approach with BERT and (3, 3) context LSTM encoder-decoder

• Two-step approach with BERT and isolated LSTM encoder-decoder

• Two-step approach with BERT and (3, 3) context Transformer

• Two-step approach with BERT and isolated Transformer

After inspecting the tables, I will go into more details in the best ones, sharing

training statistics and doing error analysis. The keen reader might question why I

am using context size (3, 3), when the experiments from the first section 11.2 showed

that it is not optimal for either of the correction models — I refer the reader to last

section 11.5 for an explanation.

Without further ado, table 14 shows the overall results for Post-OCR correction

by using the aforementioned four two-step approaches. The metrics are given in %

improvement on the sum of Levenshtein distances of all prediction tests, as explained

in subsection 10.1.3 from the previous chapter.

As with error detection, the two-step approaches achieve a large improvement over

the baseline Q-gram index and external baselines, but pales in comparison to the

197

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Matthias

artificial
Matthias
realistic

Plain
Training Q-Index
w/ max. dist. 3

-76.52% -52.1% -52.33% -46.28% -46.72% -68.58%

Char-SMT/NMT x +43% +37% x x x
WFST-PostOCR x +28% x x x x

CLAM x +29% +22% +0.4% x x
CCC x x x +11% x x

Nguyen et al. x +36% +27% +4% x x
Google

Autocorrect -21% x x

NATAS -92.5% -81.84% -81.16% -75% -74% -84.48%
2-step w/

(3,3) LSTM -8.1% +2.38% -7.3% -9.72% +8.36% +8.38%

2-step w/
isolated LSTM -8.45% +1.56% -9.31% -10.61% +3.22% +5.34%

2-step w/
(3,3) Transf. -12.99% -4.3% -11.95% -14.31% +3.43% +2.02%

2-step w/
isolated Transf. -8.2% +2.2% -9.99% -10.67% +2.39% -2.29%

Table 14: Final results for OCR error correction on the testing datasets, given in
% improvement of the sum of Levenshtein distances;

’x’ indicates that the model was not evaluated on the given dataset when
it was published;

olive indicates the best-performing model on a specific dataset

ACL ICDAR2017
monograph

ICDAR2017
periodical ICDAR2019 Matthias

artificial
Matthias
realistic

Plain
Training Q-Index
w/ max. dist. 3

+9.33% +19.78% -1.7% -8.45% +17.38% +41.65%

Google
Autocorrect +23.88% x x

NATAS -46.67% -26.73% -44.76% -43.43% -39.18% -34.36%
(3,3) LSTM +35.57% +52.72% +41.97% +34.17% +22.1% +22.94%

Isolated LSTM +37.65% +49.3% +33.72% +26% +14.86% +18.6%
(3,3) Transf. +31.23% +52.76% +38.54% +26.25% +19.59% +16%

Isolated Transf. +43.92% +53.29% +37.17% +30% +14.99% +7.8%

Table 15: Performance of the different models from the paper exclusively on the
matched group of correction samples (i.e., which the detection model

recognized properly)
olive indicates the best-performing model on a specific dataset

198

results, achieved from the models from the ICDAR competitions. As hinted at in the

previous subsection with the results for error detection, this is mostly due to the large

amount of non-matched samples. Indeed, table 15 shows another perspective of the

final correction results — this time looking at the percent improvement of only the

samples from the matched dataset. As we can see there, the sequence-to-sequence

error correction models actually achieve very nice results when they receive the

proper erroneous tokens from the error detection model. Two of the models stand-out

in particular — the (3,3) LSTM and the isolated Transformer models. The

presence of the latter model is a very interesting result, as it essentially re-affirms the

hypothesis from the Transformer “context size” experiment, where the model with

the least context worked the best. It seems that this also extends to using no context

at all. It is also curious to observe that this does not apply to the spelling correction

datasets, where the opposite is true — the models with context size (3, 3) have a

huge lead over their counterparts.

Coming back to table 14 with the overall % improvement, I wanted to highlight

how big of an influence the error detection model has on the overall performance

of the pipeline. First, we will look at the baseline Q-gram index model, which

achieves a healthy +19.78% increase on the matched samples from the ICDAR2017

monograph dataset. If speaking in the sums of Levenshtein distances themselves, the

baseline model brings the sum down from 11,038 on the original erroneous texts to

8,855 on the predicted texts. However, the leftover subset of missed samples, which

counts up to 4156 samples, adds another 5315 on top of the sum of Levenshtein

distances. These two sums, however, mean absolutely nothing when added to the

sum of Levenshtein distances, which the Q-gram index accumulated “correcting”

the 13,759 superfluous samples — 19,954. Therefore, the sum of the Levenshtein

distances are the original 11, 038 + 5, 315 = 16, 353, while that of the predicted texts

becomes 8, 855 + 5, 315 + 19, 954 = 34, 124, or -52.1% worsening.

The same observation can also be made with the four two-step approaches. If we

once again take the best-performing two-step model on the ICDAR2017 monograph

199

— with the isolated Transformer model — we can see that the correction model

achieves a staggering result of +53.29% on the matched samples (as seen in table

15). Speaking in real numbers, the sum of Levenshtein distances goes from 7,985

on the original texts to 3,730 on the predicted ones. This achievement, however, is

overshadowed by the sheer amount of missed and superfluous samples, which add

another 8,858 and 3,884 to the sum of Levenshtein distances accordingly. Still,

even with the addition of the non-matched samples, the two-step approach with

an isolated transformer still manages to achieve a net +2.2% improvement on the

ICDAR2017 dataset. While that result is dreadful when compared with the ones

from the competitions above, I find it promising that the model achieved a positive

result in the presence of all the negative influence from the non-matched samples.

Final LSTM encoder-decoder model

As determined in the last subsection, the (3,3) context LSTM model performs better

on the Post-OCR correction datasets than the isolated one. This is not a surprise,

as it is echoed by many papers in the “Related Work” chapter 2. What is more

of a surprise is that the context LSTM model is the best-performing model out

of all four final correction models — meaning that it also beat out the isolated

Transformer model by a very slight margin. While this does not yet confirm that

Transformers are better than LSTM encoder-decoder networks (as is the case with

many other NLP tasks) on Post-OCR correction, it shows that Transformer models

can also be employed for the task. This was one of my biggest questions when starting

to work on this project, as even state-of-the-art two-step approaches still stuck to

using LSTM encoder-decoder networks. This paper can be used as a stepping stone

and motivation to explore Transformers for Post-OCR correction further.

Back to the (3, 3) LSTM model, its full list of hyperparameters is as follows:

• Model parameters:

200

– Case sensitivity: mixed (upper- and lowercase)

– Character embedding size: 128

– Input dropout: 0.2

– Hidden state size: 512

– # LSTM layers in encoder: 4

– Bidirectional encoder layers: True

– Encoder dropout: 0.3

– # LSTM layers in decoder: 2

– Decoder dropout: 0.2

– Attention type: dot

– Maximum sequence length: 100

• Training parameters:

– Teacher-forcing probability: 0.5

– Context size: (3, 3)

– Batch size: 64

– Learning rate: 1e-3

201

(a) Training and validation loss while training the final LSTM correction model

(b) F1 score evolution on the validation datasets while training the final LSTM correction
model

blue stands for “ACL Benchmark”; orange stands for ICDAR2017 monograph; green
stands for ICDAR2017 periodical; red stands for ICDAR2019; purple stands for

“Matthias artificial”; brown stands for “Matthias realistic”; pink stands for “Pure OCR
Errors”; the dotted line stands for the average over all OCR correction datasets

Figure 23: Training statistics for the final LSTM encoder-decoder correction model

202

The model trained for 20 epochs, running for 9 hours in total. Figure 23 shows

a collage of training statistic for the model during the training process. Compared

to the BERT detection model, the loss values in subfigure 23a do not indicate

overfitting from the start. However, they visualize a divergence between the training

and validation loss since the very beginning, which can be taken as a hint that the

two types of sets have different distributions. I can sadly give no further ideas for why

this happens, as the dataset overview section 9.1 showed that all correction datasets

follow roughly the same error statistics. Nonetheless, the model trained improved its

validation loss up until the last epoch, reaching the final validation loss of 0.71. The

best average information retrieval metrics were also achieved in the last step (as can

be seen in subfigure 23b), reaching a precision value of 56%, a recall value of 61%,

and an F1 score of 58% over all OCR correction datasets (i.e., excluding the spelling

correction datasets). I purposely trained the model for 20 epochs, as previous tests

showed that it begins to overfit after hitting around 60% average F1 score.

Final Transformer model

As for one of the most surprising results from this paper, the isolated Transformer

model achieved a better overall performance on the test OCR correction datasets

than its context counter-part. Its full list of hyperparameters is offered immediately

below:

• Model parameters:

– Case sensitivity: mixed (upper- and lowercase)

– Character embedding size: 256

– Feed-forward multiplier: 4

– # of attention heads: 8

203

– Input dropout: 0.1

– # of Transformer blocks in encoder: 4

– Encoder dropout: 0.1

– # of Transformer blocks in decoder: 4

– Decoder dropout: 0.1

– Maximum sequence length: 64

• Training parameters:

– Context size: (0, 0) (i.e., isolated correction)

– Batch size: 128

– Learning rate: 5e-4

– Warm-up steps 4000

The model trained for 20 epochs, running for 12 hours in total. Figure 24 shows

a collage of training statistic for the model during the training process. As with

the LSTM encoder-decoder model, the two losses diverge from the get go (refer to

subfigure 24a), but this time quickly overfitting at epoch 5. The validation loss

then goes from 1.46 from epoch 5 to 1.65 at epoch 20. As with the BERT detection

model, however, the F1 scores on the validation sets kept getting bigger even after the

overfitting point. As such, they ended at a precision value of 68%, a recall value

of 71%, and an F1 score of 70% (as seen in subfigure 24b). Because of this, I also

opted to use the version of the model at its final epoch, rather than at epoch 5.

204

(a) Training and validation loss while training the final Transformer correction model

(b) F1 score evolution on the validation datasets while training the final Transformer
correction model

blue stands for “ACL Benchmark”; orange stands for ICDAR2017 monograph; green
stands for ICDAR2017 periodical; red stands for ICDAR2019; purple stands for

“Matthias artificial”; brown stands for “Matthias realistic”; pink stands for “Pure OCR
Errors”; the dotted line stands for the average over all OCR correction datasets

Figure 24: Training statistics for the final Transformer encoder-decoder correction
model

205

For the isolated Transformer model, I also organized a quick exercise to research what

types of errors the model still struggles with. I felt like this would give deeper insight

into how the model works, as well as motivate some future direction, in which the

model should be researched. To that extent, I manually went through the testing

datasets and picked out cases, which seemed interesting, and then grouped them.

The result of the process follows immediately below:

• Non-natural language

– “rdf:nodeID=’A1’>?.” → “Ref@mode@@@@nd@@l.” → “rdf:nodeID=’A1’>....”

– “C)..()99 ” → “C@@@Rogs” → “@0.@@999 ”

– “Pr(pln1)” → “Propl@am” → “Pr(p|n1)”

– “xxxvii.” → “@Exavii-” → “LXXXVII.”

• Context problems

– “It” → “If ” → “it”

– “ee” → “we” → “see”

– “plan∼,” → “plane.” → “plan@,”

• Named entities

– “Callfo n\[a” “Callfo@@mia” → “Californ@ia”

– “Perctvall,” “Percivall,” “PERCIVALL,”

– “Sabah” → “Sabal” → “SARAH ”<TGT>

• Punctuation-related errors

– “infcrcncc)” → “@inferenc@e” → “(inference)”

– “?innate ?language” → “@innate@@language” → “"innate" language”

206

11.5 Flaws in the Results

As visualized in subsections 11.4.2 and 11.4.3, some final models appear to have overfit

very early in the training process. This is most apparent with the Transformer error

correction models, whose validation and training losses are shown to diverge from

the start of the training process. I acknowledge this is as an error in the evaluation

process. The reason for this inconsistency lies in time troubles. I assume that using

non-overfit models would increase the performance of the overall pipeline — however,

I do not expect that boost to make up the difference to the best-performing models

in the final result tables (see 12 and 14).

Additionally, I used (3, 3) context size for both error correction models, even though

it was not optimal for either one of the according to section 11.2. As in the previous

problem, this happened due to time problems and unexpected problems with the

university cluster (downtime), on which I was training my models.

207

12 Conclusion

This paper researched using a two-step approach to do Post-OCR correction, influenced

by papers like [SN20] and [NJN+20]. I employed BERT as the error detection model,

and tried out two different sequence-to-sequence models for the correction sub-task:

LSTMs and Transformers. The two-step approach was meant to function in such a

way, in which the error correction models only trained on erroneous samples, in

order to be able to learn as much as they can from the underlying patterns. In order

to facilitate this working on whole sequences, the BERT error detection model was

used as a “preprocessing step”, whose goal was to find and mark all erroneous tokens

in a text sequence. After marking the target tokens, they were passed along to the

correction model — with. optionally, context tokens appended to the left and right

of the token — to be repaired.

This paper also studied the domain-specificity of the Post-OCR correction task further.

In particular, there was an artificial data generation procedure explained, which was

meant to use error statistics from wide-spread Post-OCR correction datasets to

emulate the errors made in them and be able to generate an arbitrary amount of new

data.

The two-step approach ended up yielding bad overall results when compared with the

state-of-the-art models. The individual correction models initially showed a lot of

promise, achieving a good % improvement on the sum of Levenshtein distances when

ran solely on the error correction samples. Combined with the error detection model,

however, the overall performance of the two-step approach was brought down into

208

the ground. The “Results” chapter explored the reasons for this, determining that the

bottleneck of the approach to be the error detection model. Indeed, the latter model

was too conservative in how it worked and thus missed a lot of erroneous targets in

the test datasets, which ultimately left the error unchanged in the prediction texts,

leading to a much worse performance.

Another observation that can be extracted from the paper is that Post-OCR correction

is indeed domain-specific. Adding the artificial data to the final detection and

correction models might have even brought down the results on the testing datasets.

This proves that a more sophisticated is needed to bring on more data.

Other conclusions from the paper are that case sensitivity generally matters, especially

when it comes to OCR error detection. Indeed, leaving the training data to contain a

mix of lower- and uppercase letters helps the detection model train more easily, likely

due to the fact that Post-OCR correction texts often feature named entities. If all

letters were cast to be lowercased, the primary characteristic of named entities goes

lost — their uppercase letters as a start.

Other than that, context was shown to be beneficial when using LSTM encoder-

decoder networks, with most validation and test datasets showing a preference towards

using more preceding tokens, rather than succeeding. This was, however, not the

case with Transformer models, which were shown to work best in the absence of context

— i.e., in isolated correction. The final isolated Transformer correction model just

narrowly lost when it comes to average performance on the test datasets. Nonetheless,

this shows that further research for Transformers for Post-OCR correction would be

beneficial.

209

13 Future Work

Despite the underwhelming results of the two-step approach models, I believe there is

still merit to them. The theory behind them is sound, even thought the implementation

from this paper did not manage to showcase it well. In the rest of this chapter, I will

suggest future improvement ideas, which I believe would make the two-step approach

work better.

My first observation is about the data. As we first hinted at in chapter 2 about

related work, and then confirmed with the final results in chapter 11, Post-OCR

correction is domain-specific. In this paper, I tried to remedy this by creating artificial

data based on error statistics from the datasets themselves, but ultimately failed

short. Perhaps this technique would be more successful if the error statistics from

the different datasets were not grouped together, but rather left separate. Then, the

error statistics from each individual dataset could be used to create smaller-sized

artificial datasets, which would be specialized in the errors from exactly one source.

Another thing to consider is using additional external datasets, when generating

artificial data. As discussed in the paper before, the “origins” of the different test

datasets in these papers are radically different. Indeed, the “ACL Benchmark” dataset

stems from the ACL Anthology Reference Corpus, which consists of OCR-ed texts

from research papers. Compared to this, the ICDAR datasets feature OCR-ed texts

from literature sources — books, newspapers, magazines, etc. These two groups

of writing — researches and literature — differ when it comes to jargon, usage of

named entities, use of punctuation and many more. Because of this, I think the

210

two-step approach (and all models for Post-OCR correction as a whole) would benefit

if there were appropriate types of clean datasets (e.g., the arXiv document collection),

with which more varied artificial data could be built.

My next suggestion would be to make use of a subword tokenizer for the error

correction models, instead of a character-level vocabulary. This would, on one hand,

make the pipeline process easier, as data used with the error detection model would

be directly applicable to the correction models as well. On the other hand, I expect

subword tokenization to also boost the performance of the overall pipeline — subwords

maintain the flexibility of a character-level vocabulary (i.e., there is no chance of

having an out-of-vocabulary error), while also bringing context (e.g., a correction

model would be much more likely to correct 7hr to the if it was a known, common

word in its vocabulary).

The next idea is more of a guideline, rather than a suggestion. We have seen from the

results chapter (refer to chapter 11) that the sequence-to-sequence correction models

work relatively well when used on erroneous tokens that are actually detected as such

by the detection model (see performance for matched samples in table 14). This

leaves the error detection as the main bottleneck, which dictates whether the whole

pipeline works well or not. Indeed, having a detection model with high precision, but

a low recall value leaves too many erroneous samples in the OCR-ed texts. At the

other end of the spectrum, having a low precision and a high accuracy value makes

the model predict much more of the expected erroneous tokens from an OCR-ed text,

at the cost of accumulating superfluous (i.e., false positive) samples as well. Indeed,

this was the approach that was employed in [SN20], and is the approach which I

would recommend to any future work on this task. Indeed, having the detection

model have a high recall value could be “equalized” by having the error correction

model train not exclusively on erroneous samples, but correct ones as well. Then, any

superfluous predictions from the error detection model would have a lower chance of

being modified by the correction model, which, as it stands, hurts the performance of

211

the two-step approach very much (refer to table 14). This way of work is just safer

than the alternative, as there is no way to influence missed samples with the error

correction model. Obviously, the golden middle of a high precision and recall values

would be most preferred, but recall should be prioritized when a trade-off has to be

made.

Amrhein et al. used an ensemble of correction models for their winning entry to the

ICDAR2017 Post-OCR competition (refer to [AC18]). My penultimate suggestion is

connected to this idea — it sounds very promising to evaluate the performance of an

ensemble model, whose different models are trained on the different types of OCR

mistakes (refer to explanation of those in 7.1.3). This would also help with making the

combination with a high-recall detection model perform well, as one of the models

in the ensemble could be trained to recognize correct, valid English words. Further,

there could be different models in the ensemble based on the Levenshtein distance of

mistakes, and also word boundary errors. The only problem with this suggestion is

having to find enough data to train every model in the ensemble sufficiently well. As

we saw in 9.1.1, this might not be easy to do with, as Post-OCR correction datasets

tend to feature big imbalances between the different mistake types. This makes the

suggestion of refining the artificial generation procedure even more important.

The last suggestion I have is connected to named entities. As discussed in numerous

spots throughout the paper (refer to chapters 2 and 11), Post-OCR correction models

have historically always had problems with named entities in text. At the same time,

it is practically infeasible to use a NER model to detect named entities during the

OCR correction process, as there is a high chance they feature errors, courtesy of the

OCR system. Therefore, I think it would be very interesting to study the distribution

of erroneous named entities in the Post-OCR correction task further. This could offer

more insight into their general form when dealing with Post-OCR correction and

potentially open up the way for a parallel model, which would reduce the amount of

errors when it comes to named entities.

212

14 Acknowledgments

As always, I would like to first and foremost extend my warmest thank you to my

fiancée. You gave me strength to keep going when it mattered, but also comfort and

calmness when I needed to wind down. I truly couldn’t have done this without you.

A very close second to her is my supervisor — Matthias Hertel. It was truly a pleasure

working with you, and your contribution to this work can’t be overstated. It is always

important to have someone to share your ideas with and see if they make sense, and

during our discussion it always felt like we were two co-students who were trying to

figure out a problem. You created an environment, in which I could do my best, and

I am very grateful for that.

Next, I want to thank my parents, who never let me forget that I have to be working

on my master’s degree and acted as a second supervisor, to whom I had to make

weekly reports. The extra motivation and encouraging words came a long way for

me to finish this work. If it weren’t for my dad, the quality and writing time of this

thesis might have been severely impacted on account of me almost short-circuiting

my laptop by spilling milk.

I would also like to thank my work colleagues, who were gracious enough to read

and give me feedback on the early drafts of this write out and also let me do mock

presentations for them. The devil is in the details, and I couldn’t have ironed out the

wrinkles if it wasn’t for them.

Finally, I would like to thank Lin-Manuel Miranda for creating the Alexander Hamilton

musical, which gave me the energy to power through the late nights of writing. As

213

the main character with the same name, I hope I did not throw away my shot.

214

Bibliography

[Abr65] S. Abraham. Some questions of language theory. In COLING 1965,

1965.

[AC18] Chantal Amrhein and Simon Clematide. Supervised ocr error detection

and correction using statistical and neural machine translation meth-

ods. Journal for Language Technology and Computational Linguistics

(JLCL), 33(1):49–76, 2018.

[ADT19] Yvonne Adesam, Dana Dannélls, and Nina Tahmasebi. Exploring

the quality of the digital historical newspaper archive kubhist. In

Costanza Navarretta, Manex Agirrezabal, and Bente Maegaard, editors,

Proceedings of the Digital Humanities in the Nordic Countries 4th

Conference, Copenhagen, Denmark, March 5-8, 2019., volume 2364 of

CEUR Workshop Proceedings, pages 9–17. CEUR-WS.org, 2019.

[Ass16] Mehdi Assefi. Ocr as a service: An experimental evaluation of google

docs ocr, tesseract, abbyy finereader, and transym. ISCV, 12 2016.

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural

machine translation by jointly learning to align and translate. CoRR,

abs/1409.0473, 2015.

[BDD+08] Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson, Mark Joseph,

Min-Yen Kan, Dongwon Lee, Brett Powley, Dragomir Radev, and

215

Yee Fan Tan. The ACL Anthology reference corpus: A reference dataset

for bibliographic research in computational linguistics. In Proceedings

of the Sixth International Conference on Language Resources and

Evaluation (LREC’08), Marrakech, Morocco, May 2008. European

Language Resources Association (ELRA).

[Ben16] Eli Bendersky. The softmax function and its derivative, Oct 2016.

[BHM20] Hannah Bast, Matthias Hertel, and Mostafa M. Mohamed. Tokeniza-

tion repair in the presence of spelling errors. CoRR, abs/2010.07878,

2020.

[BK17] Hannah Bast and Claudius Korzen. A benchmark and evaluation for

text extraction from pdf. In 2017 ACM/IEEE Joint Conference on

Digital Libraries (JCDL), pages 1–10, 2017.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer

normalization, 2016.

[Bre01] Leo Breiman. Machine Learning, 45(1):5–32, 2001.

[Bri90] John S. Bridle. Probabilistic interpretation of feedforward classification

network outputs, with relationships to statistical pattern recognition.

In Françoise Fogelman Soulié and Jeanny Hérault, editors, Neuro-

computing, pages 227–236, Berlin, Heidelberg, 1990. Springer Berlin

Heidelberg.

[BVJS15] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Sched-

uled sampling for sequence prediction with recurrent neural networks.

CoRR, abs/1506.03099, 2015.

[CDCM17] Guillaume Chiron, Antoine Doucet, Mickaël Coustaty, and Jean-

Philippe Moreux. Icdar2017 competition on post-ocr text correction.

216

In 2017 14th IAPR International Conference on Document Analysis

and Recognition (ICDAR), volume 01, pages 1423–1428, 2017.

[CMC+15] Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena,

Giovanni Bussotti, Ionas Erb, and Cedric Notredame. Multiple se-

quence alignment modeling: methods and applications. Briefings in

Bioinformatics, 17(6):1009–1023, 11 2015.

[Com10] Wikimedia Commons. A neural network with two layers., 2010.

[Com17] Wikimedia Commons. Recurrent neural network unfold, 2017.

[Cox58] David R Cox. The regression analysis of binary sequences. Journal of

the Royal Statistical Society: Series B (Methodological), 20(2):215–232,

1958.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems, 2(4):303–314, December

1989.

[Dam64] Fred J. Damerau. A technique for computer detection and correction

of spelling errors. Commun. ACM, 7(3):171–176, mar 1964.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: pre-training of deep bidirectional transformers for language

understanding. CoRR, abs/1810.04805, 2018.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE

conference on computer vision and pattern recognition, pages 248–255.

Ieee, 2009.

[Den19] Timo Denk. Linear relationships in the transformer’s positional encod-

ing, Jan 2019.

217

[Edg04] Robert C Edgar. BMC Bioinformatics, 5(1):113, 2004.

[EP14] Paula Estrella and Pablo Paliza. Ocr correction of documents generated

during argentina’s national reorganization process. In Proceedings of the

First International Conference on Digital Access to Textual Cultural

Heritage, DATeCH ’14, page 119–123, New York, NY, USA, 2014.

Association for Computing Machinery.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep

Learning. MIT Press, Cambridge, MA, USA, 2016. http://www.

deeplearningbook.org.

[Goo52] I. J. Good. Rational decisions. Journal of the Royal Statistical Society.

Series B (Methodological), 14(1):107–114, 1952.

[HBFS01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhu-

ber. Gradient flow in recurrent nets: the difficulty of learning long-term

dependencies, 2001.

[Hea98] Marti A. Hearst. Support vector machines. IEEE Intelligent Systems,

13(4):18–28, July 1998.

[Her19] Matthias Hertel. Neural language models for spelling correction. Mas-

ter’s thesis, University of Freiburg, Germany, 2019.

[HH19] Mika Hämäläinen and Simon Hengchen. From the paft to the fiiture:

a fully automatic NMT and word embeddings method for OCR post-

correction. CoRR, abs/1910.05535, 2019.

[HR78] David Harrison and Daniel L Rubinfeld. Hedonic housing prices and

the demand for clean air. Journal of Environmental Economics and

Management, 5(1):81–102, 1978.

218

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[HR18] Jeremy Howard and Sebastian Ruder. Fine-tuned language models for

text classification. CoRR, abs/1801.06146, 2018.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9:1735–80, 12 1997.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[HZZG19] Tianxing He, Jingzhao Zhang, Zhiming Zhou, and James R. Glass.

Quantifying exposure bias for neural language generation. CoRR,

abs/1905.10617, 2019.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-

tional Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[KD16] Ido Kissos and Nachum Dershowitz. Ocr error correction using char-

acter correction and feature-based word classification. In 2016 12th

IAPR Workshop on Document Analysis Systems (DAS), pages 198–203,

2016.

[Koe05] Philipp Koehn. Europarl: A parallel corpus for statistical machine

translation. In Proceedings of Machine Translation Summit X: Papers,

pages 79–86, Phuket, Thailand, September 13-15 2005.

[Lev66] Vladimir Iosifovich Levenshtein. Binary codes capable of correcting

deletions, insertions and reversals. Soviet Physics Doklady, 10(8):707–

710, feb 1966. Doklady Akademii Nauk SSSR, V163 No4 845-848

1965.

219

[LNCPCA10] Rafael Llobet, José Navarro Cerdán, Juan-Carlos Perez-Cortes, and

Joaquim Arlandis. Ocr post-processing using weighted finite-state

transducers. pages 2021–2024, 08 2010.

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi

Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.

Roberta: A robustly optimized BERT pretraining approach. CoRR,

abs/1907.11692, 2019.

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effec-

tive approaches to attention-based neural machine translation. CoRR,

abs/1508.04025, 2015.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space, 2013.

[Mit80] Roger Mitton. Birkbeck spelling error corpus, 1980. Oxford Text

Archive, http://hdl.handle.net/20.500.12024/0643.

[MLS13] Tomás Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities

among languages for machine translation. CoRR, abs/1309.4168, 2013.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical biophysics,

5(4):115–133, 1943.

[MP17] Kendra Morgan and Merrilee Proffitt. Advancing the national dig-

ital platform: The state of digitization in us public and state

libraries. https://www.oclc.org/research/publications/2017/

oclcresearch-advancing-national-digital-platform.html, Jan-

uary 2017.

220

http://hdl.handle.net/20.500.12024/0643
https://www.oclc.org/research/publications/2017/oclcresearch-advancing-national-digital-platform.html
https://www.oclc.org/research/publications/2017/oclcresearch-advancing-national-digital-platform.html

[MSA+11] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian

Veres, Matthew K. Gray, null null, Joseph P. Pickett, Dale Hoiberg,

Dan Clancy, Peter Norvig, Jon Orwant, Steven Pinker, Martin A.

Nowak, and Erez Lieberman Aiden. Quantitative analysis of culture

using millions of digitized books. Science, 331(6014):176–182, 2011.

[MV93] A. Marzal and E. Vidal. Computation of normalized edit distance and

applications. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(9):926–932, 1993.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM

Comput. Surv., 33(1):31–88, mar 2001.

[NJC+19] Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickael Coustaty, Nhu-Van

Nguyen, and Antoine Doucet. Deep statistical analysis of ocr errors for

effective post-ocr processing. In 2019 ACM/IEEE Joint Conference

on Digital Libraries (JCDL), pages 29–38, 2019.

[NJCD21] Thi Tuyet Hai Nguyen, Adam Jatowt, Mickael Coustaty, and Antoine

Doucet. Survey of post-ocr processing approaches. ACM Comput.

Surv., 54(6), jul 2021.

[NJN+20] Thi Tuyet Hai Nguyen, Adam Jatowt, Nhu-Van Nguyen, Mickael

Coustaty, and Antoine Doucet. Neural Machine Translation with

BERT for Post-OCR Error Detection and Correction, page 333–336.

Association for Computing Machinery, New York, NY, USA, 2020.

[NOMC11] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman.

Natural language processing: an introduction. Journal of the American

Medical Informatics Association, 18(5):544–551, September 2011.

221

[Nor09] Peter Norvig. Natural language corpus data. In T. Segaran and

J. Hammerbacher, editors, Beautiful Data: The Stories Behind Elegant

Data Solutions, Theory in practice. O’Reilly Media, 2009.

[NvdHT17] Gerhard-Jan Nauta, Wietske van den Heuvel, and Stephanie Teunisse.

Europeana dsi 2—access to digital resources of european heritage.

https://pro.europeana.eu/page/enumerate, August 2017.

[NW70] Saul B. Needleman and Christian D. Wunsch. A general method

applicable to the search for similarities in the amino acid sequence of

two proteins. Journal of molecular biology, 48 3:443–53, 1970.

[Ola15] Christopher Olah. Understanding lstm networks, Aug 2015.

[PMB12] Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. Understanding

the exploding gradient problem. CoRR, abs/1211.5063, 2012.

[PNI+18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,

Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextu-

alized word representations. CoRR, abs/1802.05365, 2018.

[PRS19] Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. To tune

or not to tune? adapting pretrained representations to diverse tasks.

CoRR, abs/1903.05987, 2019.

[RDCM19] Christophe Rigaud, Antoine Doucet, Mickaël Coustaty, and Jean-

Philippe Moreux. Icdar 2019 competition on post-ocr text correction. In

2019 International Conference on Document Analysis and Recognition

(ICDAR), pages 1588–1593, 2019.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.

Learning representations by back-propagating errors. Nature,

323(6088):533–536, 1986.

222

https://pro.europeana.eu/page/enumerate

[RN18] Alec Radford and Karthik Narasimhan. Improving language under-

standing by generative pre-training. 2018.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algo-

rithms. arXiv preprint arXiv:1609.04747, 2016.

[SC19] David A. Smith and Ryan Cordell. A research agenda for historical

and multilingual optical character recognition. 2019.

[Sel74] Peter H. Sellers. On the theory and computation of evolutionary

distances. SIAM Journal on Applied Mathematics, 26(4):787–793,

1974.

[SHB15] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine

translation of rare words with subword units. CoRR, abs/1508.07909,

2015.

[She20] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN)

and long short-term memory (LSTM) network. Physica D: Nonlinear

Phenomena, 404:132306, mar 2020.

[SN12] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice

search. In 2012 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 5149–5152, 2012.

[SN20] Robin Schaefer and Clemens Neudecker. A two-step approach for

automatic ocr post-correction. In LATECHCLFL, 2020.

[SQXH19] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune

BERT for text classification? CoRR, abs/1905.05583, 2019.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence

learning with neural networks. CoRR, abs/1409.3215, 2014.

223

[TE96] Xiang Tong and David Andreoff Evans. A statistical approach to

automatic ocr error correction in context. In VLC@COLING, 1996.

[TMR09] Simon Tanner, Trevor Muñoz, and Hemy Ros. Measuring mass text

digitization quality and usefulness: Lessons learned from assessing the

ocr accuracy of the british library’s 19th century online newspaper

archive. D-lib Magazine - DLIB, 15, 07 2009.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. CoRR, abs/1706.03762, 2017.

[Wer90] P.J. Werbos. Backpropagation through time: what it does and how to

do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[WP98] Ronald Williams and Jing Peng. An efficient gradient-based algo-

rithm for on-line training of recurrent network trajectories. Neural

Computation, 2, 09 1998.

224

List of Figures

1 Tesseract OCR results . 3

2 Machine learning branches . 19

3 Feed-forward network diagram . 22

4 RNN network architecture . 30

5 RNN cell architecture . 31

6 LSTM cell architecture . 33

7 Teacher-forcing with an LSTM encoder-decoder network 39

8 Inference with an LSTM encoder-decoder network 41

9 Bidirectional LSTM encoder . 43

10 Attention in encoder-decoder network 44

11 Transformer model architecture . 48

12 Positional encoding distance matrix 49

13 Multi-Head Attention module design 51

14 Word2Vec approaches . 59

15 BERT architecture . 62

16 Error detection data format . 109

17 Error detection data flow . 113

18 Error type distribution based on edit distance 120

19 Distribution of word boundary errors 120

225

20 Transformer context size attention visualizations 183

21 Training and validation loss values throughout the training process of

a (1, 1) (left) and (5, 5) Transformer models 184

22 Training statistics for the final BERT detection model 192

23 Training statistics for the final LSTM encoder-decoder correction model202

24 Training statistics for the final Transformer encoder-decoder correction

model . 205

226

List of Tables

1 Edit distance example result matrix 71

2 Needleman-Wunsch example result matrix 76

3 Error correction token statistics . 119

4 Collection of error detection statistics for each dataset in the paper;

the token statistics are made on the basis of the “BERT-Cased” tokenizer124

5 Examples of cases, in which Q-gram index models with different Q-

gram sizes gave different correction candidates; ’-’ indicates a blank

prediction . 157

6 Q-gram index error correction experiment results 170

7 Q-gram index error detection experiment results 170

8 LSTM error correction experiment results 172

9 Transformer error correction experiment results 181

10 Mixed datasets experiment results 185

11 BERT error detection experiment results 187

12 Final results for OCR error detection 191

13 Distribution of properly and improperly recognized errors by the final

BERT detection model . 193

14 Final results for OCR error correction 198

15 OCR correction performance of final models on properly marked samples198

227

Listings

5.1 Pseudocode of the Needleman-Wunsch algorithm 73

5.2 Helper function pseudocode for creating alignments

from a Needleman-Wunsch matrix 75

6.1 Status of hypothetical Q-index . 87

6.2 Pseudocode for error correction with a Q-index 88

6.3 Pseudocode for helper function merge_entry_lists 88

9.1 Pseudo-code for generating context samples from arXiv documents . 140

228

	1 Introduction
	1.1 Motivation
	1.2 Optical Character Recognition
	1.3 Post-OCR correction

	2 Related Work
	2.1 Classical Approaches
	2.2 NMT Approaches
	2.3 A Note on Comparison Bases

	3 Background
	3.1 Machine Learning
	3.2 Deep Learning
	3.3 Recurrent Neural Networks
	3.3.1 Long Short-Term Memory

	4 Neural Machine Translation
	4.1 Strings in Machine Learning
	4.2 Encoder-Decoder Models
	4.2.1 Training Encoder-Decoder Models
	4.2.2 Inference with Encoder-Decoder Models
	4.2.3 Bidirectional LSTM

	4.3 Attention
	4.4 Transformers
	4.4.1 Positional Encoding
	4.4.2 Use of Attention
	4.4.3 Residual Connection
	4.4.4 Data Flow
	4.4.5 Training and Inference

	4.5 BERT
	4.5.1 Word embeddings
	4.5.2 Architecture
	4.5.3 Tokenization
	4.5.4 Pre-training

	5 String Operations
	5.1 String Distance and Similarity
	5.1.1 String Similarity

	5.2 Needleman-Wunsch
	5.3 String Alignment

	6 Baseline algorithm
	6.1 Q-Grams
	6.2 Fuzzy Search
	6.3 Q-Gram Index

	7 Error Correction Models
	7.1 Data
	7.1.1 Data generation
	7.1.2 Filters
	7.1.3 Types of mistakes

	7.2 Character-level Vocabulary
	7.2.1 Correction Sample Encoding
	7.2.2 Correction Sample Decoding

	7.3 Data Flow

	8 Error Detection
	8.1 Data
	8.2 Marking Mode
	8.2.1 "Start w/ Cont." Marking mode

	8.3 Prediction
	8.3.1 Fine-tuning

	8.4 Decoding

	9 Datasets
	9.1 Overview
	9.1.1 Error Correction Statistics
	9.1.2 Error Detection Statistics

	9.2 ICDAR2017 Datasets
	9.3 ICDAR2019 Dataset
	9.4 "ACL Benchmark" Dataset
	9.5 "Matthias Benchmark" Dataset
	9.6 "Pure OCR errors" Dataset
	9.7 Artificial Sample Generation
	9.7.1 arXiv Document Dataset
	9.7.2 Generation from Error Statistics

	10 Experiments
	10.1 Evaluation and Metrics
	10.1.1 Error Correction Evaluation
	10.1.2 Error Detection Evaluation
	10.1.3 Two-step Approach Evaluation

	10.2 Baseline Experiments
	10.2.1 Q-gram Size
	10.2.2 Hyperparameter Combinations

	10.3 External Baselines
	10.4 Error Correction Experiments
	10.5 Error Detection Experiments

	11 Results
	11.1 Baseline Experiment Results
	11.2 Correction Experiment Results
	11.2.1 LSTM Experiment Results
	11.2.2 Transformer Experiment Results
	11.2.3 Mixed Dataset Experiment Results

	11.3 Detection Experiment Results
	11.4 Final Results
	11.4.1 Artificial Data Statistics
	11.4.2 Final Detection Results
	11.4.3 Final Correction Results

	11.5 Flaws in the Results

	12 Conclusion
	13 Future Work
	14 Acknowledgments
	Bibliography

