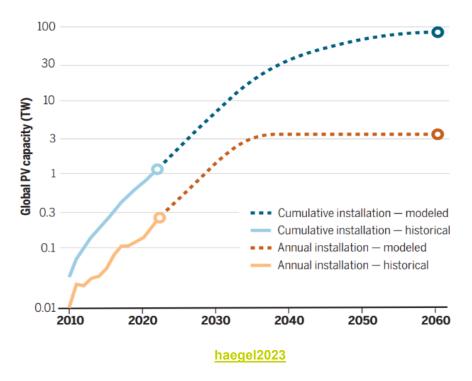
universität freiburg

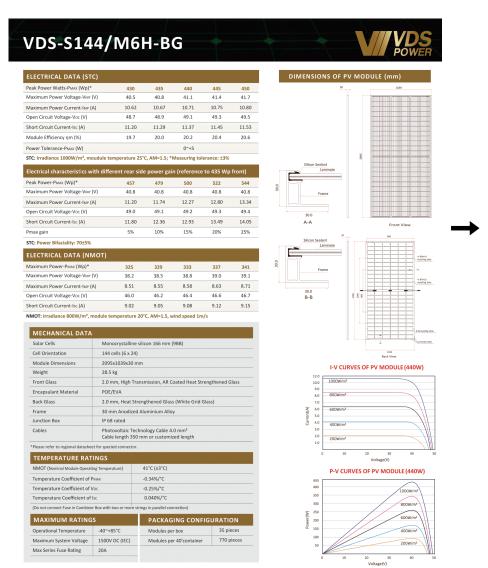
Recognition of Complex Table Structures and Extraction of Tabular data from Photovoltaic module datasheets

Master Thesis Defense

Presented by

Swathi Thiruvengadam, M.Sc. Computer Science (Al Specialisation), Technical Faculty, University of Freiburg, Freiburg im Breisgau, March 2025

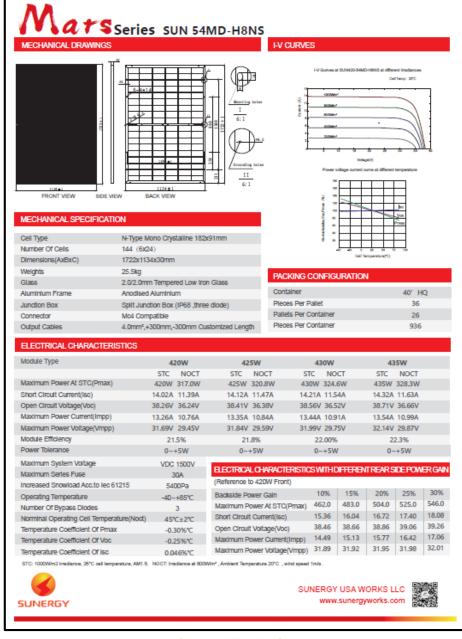



1.1. Motivation

- Rapid expansion of solar energy consumption
- Need accurate, automated data extraction to assist research and PV manufacturing

PV installations and growth toward 75 TW by 2050

Modeled cumulative capacity going forward is based on sustaining 25% production rate growth over the next 7 years and then reducing slowly to steady state. Replacement needs are included by simple subtraction of installations 25 years before the modeled date.

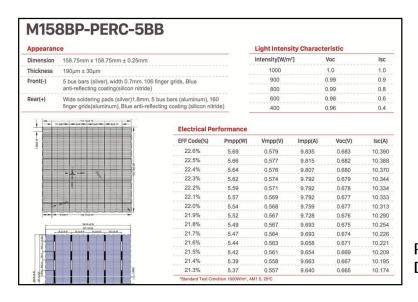

	Α	В	С	D	E	F	G	Н	I	J	K	L
1		name	year	length	width	E/eff	E/pmpp	E/vmpp	E/impp	E/voc	E/isc	EN/pmpp
2	0	5-VDS	2023	2095	1039	19.7	430	40.5	10.62	48.7	11.20	325.0
3	1	5-VDS	2023	2095	1039	20.0	435	40.8	10.67	48.9	11.29	329.0
4	2	5-VDS	2023	2095	1039	20.2	440	41.1	10.71	49.1	11.37	333.0
5	3	5-VDS	2023	2095	1039	20.4	445	41.4	10.75	49.3	11.45	337.0
6	4	5-VDS	2023	2095	1039	20.6	450	41.7	10.80	49.5	11.53	341.0

M	N	0	Р	Q	R	S	T	U
EN/vmpp	EN/impp	EN/voc	EN/isc	T/isc	T/pmpp	T/voc	/pcs_palle	/pallet_con
38.2	8.51	46.0	9.02	0.040	-0.34%/°	-0.25%/°	35	770
38.5	8.55	46.2	9.03	0.040	-0.34%/°	-0.25%/°	35	770
38.8	8.58	46.4	9.08	0.040	-0.34%/°	-0.25%/°	35	770
39.0	8.63	46.6	9.12	0.040	-0.34%/°	-0.25%/°	35	770
39.1	8.71	46.7	9.15	0.040	-0.34%/°	-0.25%/°	35	770

Data extracted from the photovoltaic module datasheet

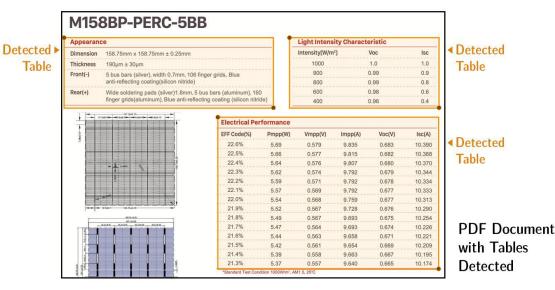
1.2. Problems

- Unstructured, inconsistent table layouts with merged cells and multi-level headers
- Manual extraction time-consuming, prone to errors
- Existing pipeline struggles with complex table structures and image-based PDFs

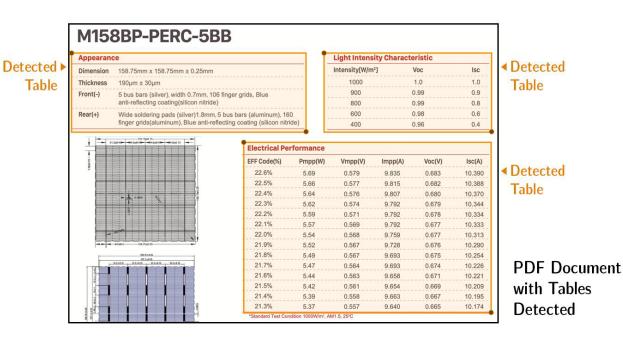


SUN-54MD-H8NS

1.3. Current Approaches of PV data extraction


1.3.1 Lightning-Table approach overview

- DL-based detectors to identify table
- Table extraction using Tabula / Camelot
- Maps extracted data to known categories


PDF Document

Malik2023

- 1.3. Current Approaches of PV data extraction
- 1.3.1 Lightning-Table approach overview
 - DL-based detectors to identify table
 - Table extraction using Tabula / Camelot
 - Maps extracted data to known categories

	A	В	С	D	E	F
1	EFF Code(%	Pmpp(W)	Vmpp(V)	Impp(A)	Voc(V)	Isc(A)
2	22.6%	5.69	0.579	9.835	0.683	10.390
3	22.5%	5.66	0.577	9.815	0.682	10.388
4	22.4%	5.64	0.576	9.807	0.680	10.370
5	22.3%	5.62	0.574	9.792	0.679	10.344
6	22.2%	5.59	0.571	9.792	0.678	10.334
7	22.1%	5.57	0.569	9.792	0.677	10.333
8	22.0%	5.54	0.568	9.759	0.677	10.313
9	21.9%	5.52	0.567	9.728	0.676	10.290
10	21.8%	5.49	0.567	9.693	0.675	10.254
11	21.7%	5.47	0.564	9.693	0.674	10.226
12	21.6%	5.44	0.563	9.658	0.671	10.221
13	21.5%	5.42	0.561	9.654	0.669	10.209
14	21.4%	5.39	0.558	9.663	0.667	10.195
15	21.3%	5.37	0.557	9.640	0.665	10.174

Raw Values Extracted from Tables

Malik2023

1.3. Current Approaches of PV data extraction

1.3.1 Lightning-Table approach overview

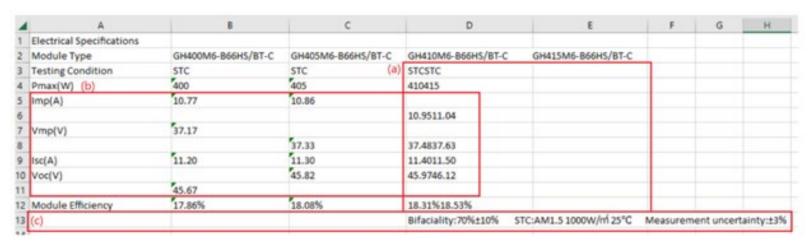
- DL-based detectors to identify table
- Table extraction using Tabula / Camelot
- Maps extracted data to known categories

	А	В	С	D	E	F
1	EFF Code(%	Pmpp(W)	Vmpp(V)	Impp(A)	Voc(V)	Isc(A)
2	22.6%	5.69	0.579	9.835	0.683	10.390
3	22.5%	5.66	0.577	9.815	0.682	10.388
4	22.4%	5.64	0.576	9.807	0.680	10.370
5	22.3%	5.62	0.574	9.792	0.679	10.344
6	22.2%	5.59	0.571	9.792	0.678	10.334
7	22.1%	5.57	0.569	9.792	0.677	10.333
8	22.0%	5.54	0.568	9.759	0.677	10.313
9	21.9%	5.52	0.567	9.728	0.676	10.290
10	21.8%	5.49	0.567	9.693	0.675	10.254
11	21.7%	5.47	0.564	9.693	0.674	10.226
12	21.6%	5.44	0.563	9.658	0.671	10.221
13	21.5%	5.42	0.561	9.654	0.669	10.209
14	21.4%	5.39	0.558	9.663	0.667	10.195
15	21.3%	5.37	0.557	9.640	0.665	10.174

Raw Values Extracted from Tables

Final Step

.

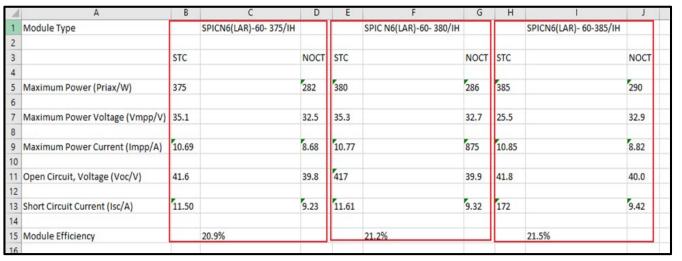

Validated & Structured Values

Malik2023

1.3.2 Lightning-Table Drawbacks

Module Type	GH400M6-B66HS/BT-C	GH405M6-B66HS/BT-C	GH410M6-B66HS/BT-C	GH415M6-B66HS/BT-0
Testing Condition	STC	STC	STC	STC
Pmax(W)	400	405	410	415
Imp(A)	10.77	10.86	10.95	11.04
Vmp(V)	37.17	37.33	37.48	37.63
Isc(A)	11.20	11.30	11.40	11.50
Voc(V)	45.67	45.82	45.97	46.12
Module Efficiency	17.86%	18.08%	18.31%	18.53%

Example of a table


Data extracted using Lightning-Table

1.3.2 Lightning-Table Drawbacks

I Electrical Parameters

Modula Type	SPICN6(LAF	R)-60-375/IH	SPICN6(LA	R)-60-380/IH	SPICN6(LAR)-60-385/IH		
Module Type	STC	NOCT	STC	NOCT	STC	NOCT	
Maximum Power (Pmax/W)	375	282	380	286	385	290	
Maximum Power Voltage (Vmpp/V)	35.1	32.5	35.3	32.7	35.5	32.9	
Maximum Power Current (Impp/A)	10.69	8.68	10.77	8.75	10.85	8.82	
Open Circuit Voltage (Voc/V)	41.6	39.8	41.7	39.9	41.8	40.0	
Short Circuit Current (Isc/A)	11.50	9.23	11.61	9.32	11.72	9.42	
Module Efficiency	20	.9%	21	.2%	21.	.5%	

Example of a table

Data extracted using Lightning-Table

1.4. Thesis Objectives

- 1. Objective 1: Develop an automated DL pipeline for detecting tables, recognizing its structure and extracting complex tabular data from PV module datasheets
- 2. Objective 2: Enhance table recognition performance for various table layouts (horizontal, vertical, dual-axis)
- **3. Objective 3**: Integrate post-processing techniques to validate and structure key data for advanced analysis

Information Extraction

2.0. Thesis overview

Data Preparation

Data
Acquisition

Data
Pre-Processing

Model Development

Table Detection (TD)

Table Structure Recognition (TSR)

Tabular Data
Extraction (TDE)

Data Post-processing

Table Classification

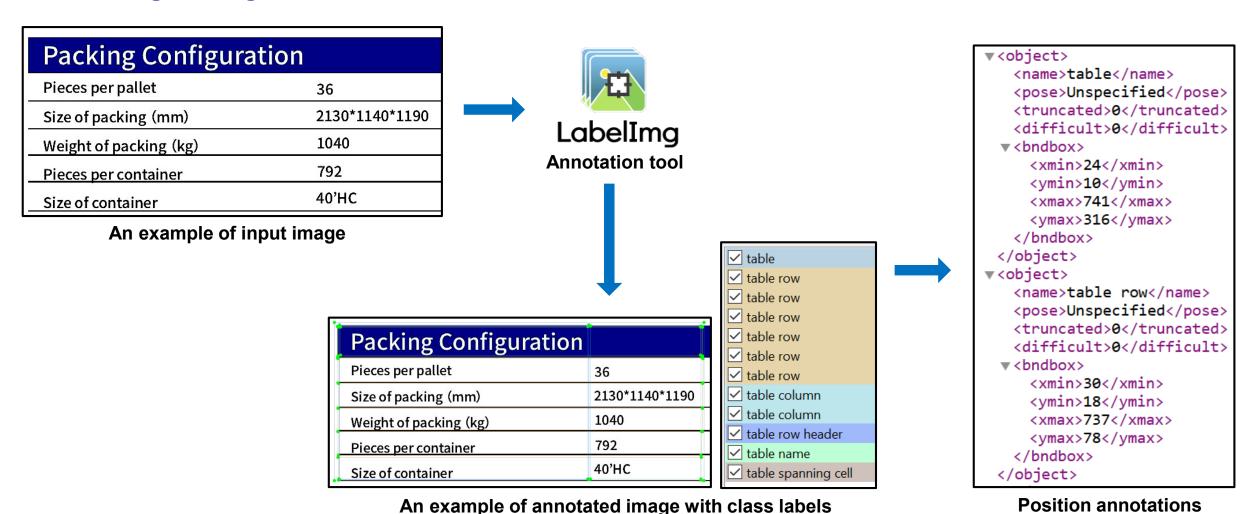
Row/Column Identification

Data Validation and Extraction

Data Preparation

Data Acquisition

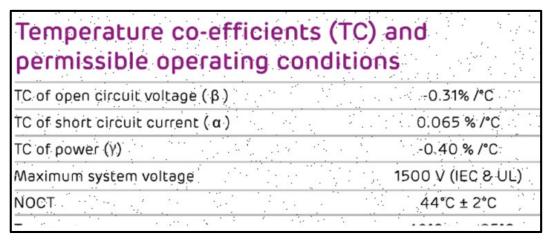
2.1. Data Acquisition

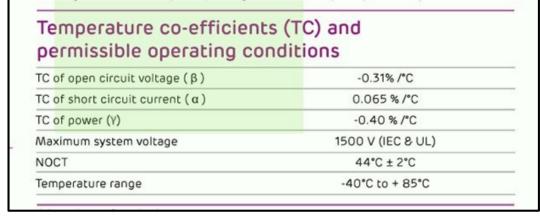

2.1.1. Data gathering and annotation

- Publicly Available PV Datasheets from manufacturers website
- Manual Annotation using Labellmg

2.1.2. Data Augmentation

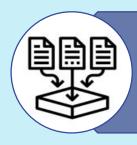
- Increasing Dataset size and variety
- Resolves Class Imbalance


2.1.1. Data gathering and annotation


2.1.2. Data Augmentation

Temperature co-efficient permissible operating cor	
TC of open circuit voltage (β)	-0.31% /°C
TC of short circuit current (α)	0.065 % /°C
TC of power (Y)	-0.40 % /°C
Maximum system voltage	1500 V (IEC & UL)
NOCT	44°C ± 2°C
Temperature range	-40°C to + 85°C

An example of input image



Scaled and cropped image with Gaussian noise

Augmented image with Channel shift and random partial mask

Data Preparation

Data
Acquisition

2.2. Data Pre-processing

2.2.1. Converting PDF documents to images

- Multi-Page rendering to preserve layout and graphics
- Standardized input

2.2.2. Image Pre-processing

Enhancement techniques to improve table lines and clarify text

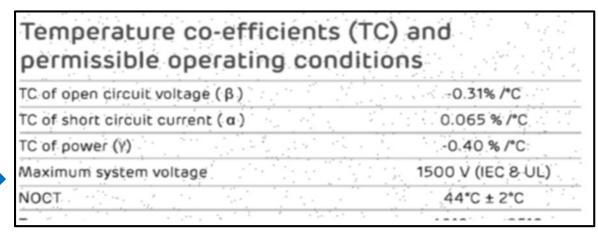
2.2.3. Data extraction using Optical Character Recognition (OCR)

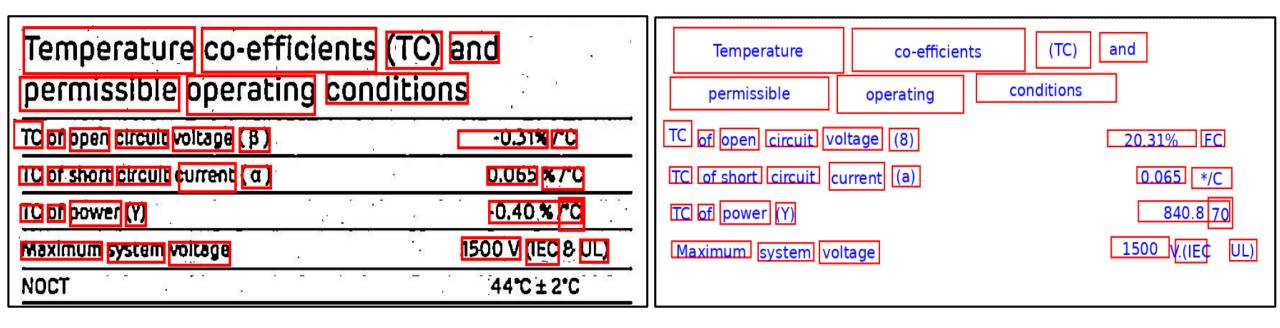
- Extract word tokens and bounding-boxes
- Multi-modal input

2.2.2. Image Pre-processing

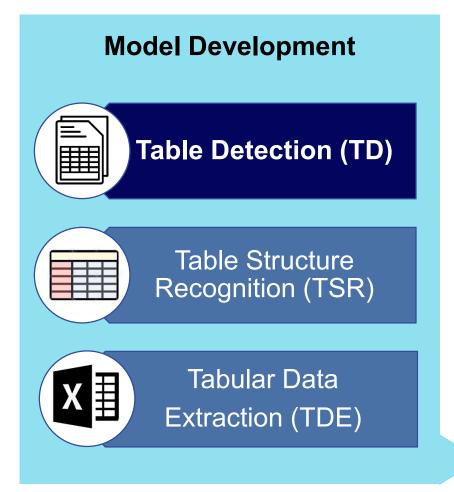
Temperature co-efficients (TC) and permissible operating conditions
C of open circuit voltage (β)
C of short circuit current (a) 0.065 %/°C
C of power (Y) -0.40 % /°C
Maximum system voltage 1500 V (IEC & UL)
10CT 44°C ± 2°C

An example of input image

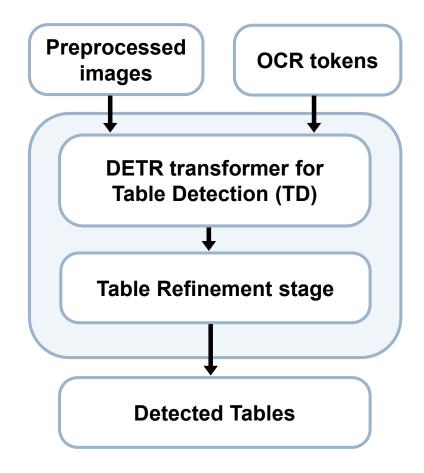



Image after applying grayscale conversion and a bilateral filter

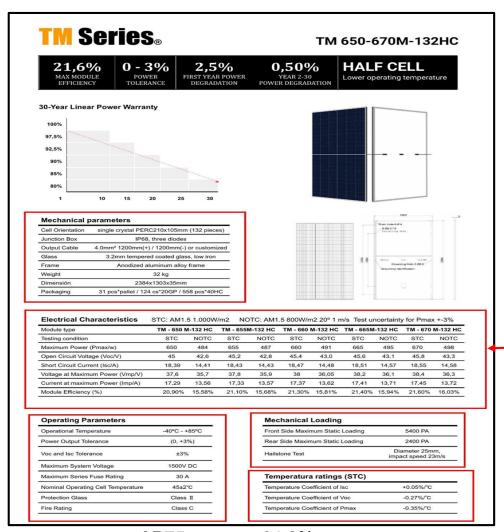
Temperature co-efficients permissible operating cor	
TC of open circuit voltage (β)	-0.31% /*C
TC of short circuit current (a)	0.065 % /°C
TC of power (Y)	-0.40 % /*C
Maximum system voltage	1500 V (IEC 8 UL)
NOCT	44°C±2°C

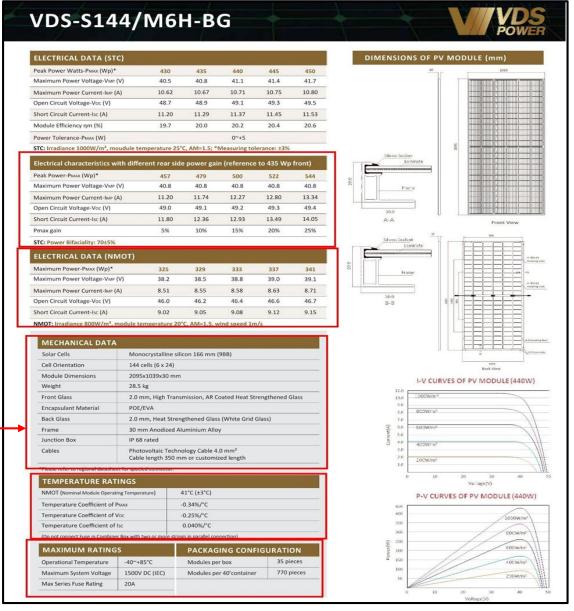

Image after thresholding, morphological opening and sharpening

2.2.3. Data extraction using OCR

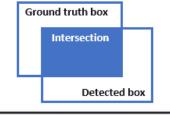


Original image with detected bounding boxes.


Extracted text tokens represented spatially.


2.3. Table detection (TD)

2.3. Table detection (TD)

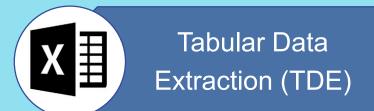


Red Bounding boxes indicate the tables detected by the TD model.

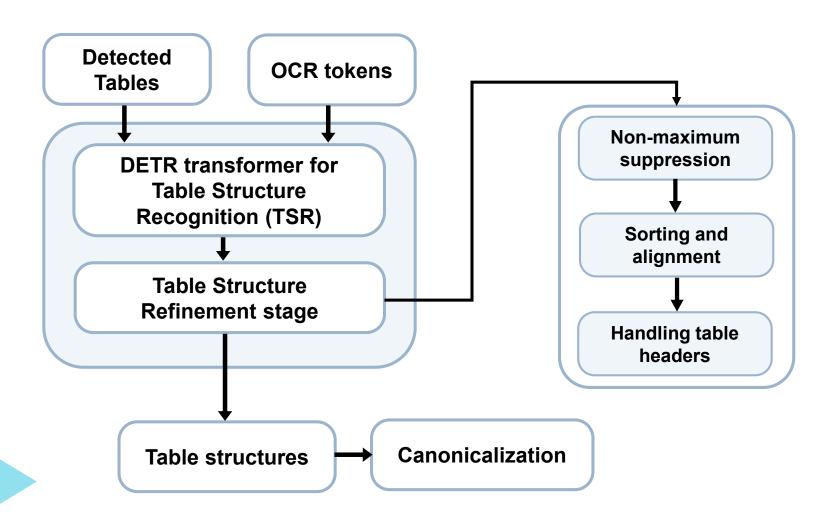
AP75 score – 38.3%

AP75 score - 64.2%

2.3. Table Detection (TD)


- PubTables-1M dataset 460,589 annotated document pages
- PV module training dataset 169 images Test dataset 15 images

	AP50	AP75	AP	AR
Trained on PubTables-1M dataset	50.7%	14.1%	24.9%	36.8%
Fine-tuned on PV module training dataset	87.8%	80.5%	66.5%	75.4%
Fine-tuned on PV module training dataset including OCR tokens	87.1%	81.8%	67.3%	74.3%
Fine-tuned on modified PV module training dataset with negative samples	88.7%	81.1%	66.0%	72.6%
Performing Hyperparameter optimization	89.5%	80.9%	68.6%	77.5%


Model Development


2.4. Table Structure Recognition (TSR)

2.4. Table Structure Recognition (TSR)

Backside Power Gain	5%	10 %	5%	10 %	5%	10%	5%	10%	5%	10 %	5%	10 %
Total Equivalent power -PMAX (Wp)	446	468	452	473	457	479	462	484	467	490	473	495
Maximum Power Voltage-VMPP (V)	42.9	42.9	43.2	43.2	43.6	43.6	44.0	44.0	44.3	44.3	44.6	44.6
Maximum Power Current-IMPP (A)	10.42	10.91	10.46	10.96	10.49	10.99	10.51	11.01	10.55	11.06	10.59	11.10
Open Circuit Voltage-Voc (V)	50.9	50.9	51.4	51.4	51.8	51.8	52.2	52.2	52.6	52.6	52.9	52.9
Short Circuit Current-Isc (A)	11.09	11.62	11.12	11.65	11.17	11.70	11.20	11.74	11.25	11.78	11.28	11.81
ower Bifaciality; 80 ±5 %.	7777	7111	7777	7777			7777		7777	71111		
Data cell	B	1111	Column I	neader	cell			lable n	ame ce	ell		
Row header cel	II B	7////	Projected	d row h	eader	cell		roject	ed colu	ımn he	ader c	ell

AP75 score – 47.1%

AP75 score - 71.0%

2.4. Table Structure Recognition (TSR)

- PubTables-1M dataset 947,642 fully annotated tables

	AP50	AP75	AP	AR
Trained on PubTables-1M dataset	10.4%	6.8%	6.2%	6.7%
Fine-tuned on PV module training dataset	9.1%	8.4%	6.9%	7.5%
Fine-tuned on PV module training dataset with enhances canonicalization algorithm	61.8%	50.3%	43.1%	56.9%
Performing Hyperparameter optimization	71.3%	57.3%	49.0%	58.3%

2.4. Evaluation Metric - Grid Table Similarity (GriTS)

- Assess model's accuracy in capturing table layout, content location, and cell relationships
- Variants Topological GriTS, Content GriTS & Location GriTS

	Table Type	Acc_con	GriTS_Top	GriTS_Con	GriTS_Loc
Fine-tuned model with	Simple tables	83.21%	89.18%	83.21%	77.13%
Hyperparameter Optimizaion	Complex tables	95.03%	94.93%	95.03%	92.18%
Оршпігаюн	All tables	91.89%	93.40%	91.89%	88.18%

Model Development

Table Detection (TD)

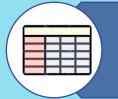


Table Structure Recognition (TSR)

Tabular Data Extraction (TDE)

2.5. Tabular Data Extraction (TDE)

- Simplify table structures assuming row/column alignment and logically consistent tables
- Duplicate cell content across the corresponding rows/columns that a merged cell spans
- Extract and export data to CSV/Excel files for further analysis

Table structure recognized by the TSR model

Madula Tina	SPICN6(LAF	R)-60-375/IH	SPICN6(LAR	R)-60-380/IH	SPICN6(LAR)-60-385/IH		
Module Type	STC	NOCT	STC	NOCT	STC	NOCT	
Maximum Power (Pmax/W)	375	282	380	286	385	290	
Maximum Power Voltage (Vmpp/V)	35.1	32.5	35.3	32.7	35.5	32.9	
Maximum Power Current (Impp/A)	10.69	8.68	10.77	8.75	10.85	8.82	
Open Circuit Voltage (Voc/V)	41.6	39.8	41.7	39.9	41.8	40.0	
Short Circuit Current (Isc/A)	11.50	9.23	11.61	9.32	11.72	9.42	
Module Efficiency	20.9%		21.2%		21.5%		

Extracted data and exported to Excel

	A B		С	D	E	F	G	
		SPICN6(LAR)}-60-	SPICN6(LAR)}-60-	SPICN6(LAR)-60-	SPICN6(LAR)-60-	SPICN6(LAR)-60-	SPICN6(LAR)-60-	
1	Module Type 20.0kg	375/IH SIE	375/IH NOCT	380/IH STC	380/IH NOCT	385/IH STC	385/IH NOCT	
2								
3	Maximum Power (Pmax/W)	375	282	380	286	385	290	
4								
5	Maximum Power Voltage (Vmpp/V)	35.1	32.5	35.3	32.7	35.5	32.9	
6								
7	Maximum Power Current (Impp/A)	10.69	8.68	10.77	8.75	10.85	8.82	
8								
9	Open Circuit Voltage (Voc/V)	41.6	39.8	41.7	39.9	41.8	40	
10								
11	Short Circuit Current (Isc/A)	11.5	9.23	11.61	9.32	11.72	9.42	
12								
13	Module Efficiency	20.90%	20.90%	21.20%	21.20%	21.50%	21.50%	

Data Post-processing

Table Classification

Row identification

Data Validation and Extraction

2.6. Table classification

Multinomial Naïve Bayes classifier with a TF-IDF word vectorizer.

2.7. Row / Column identification

- Regular Expression Pattern Matching
- Large Language Models

2.7. Data Validation and Extraction

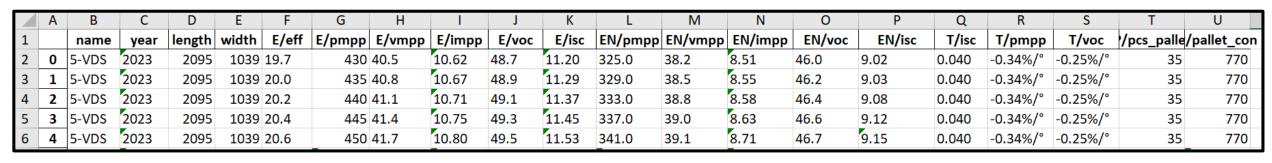
- Regular expressions to validate and extract relevant data
- Output saved in Excel format

2.6. Table classification

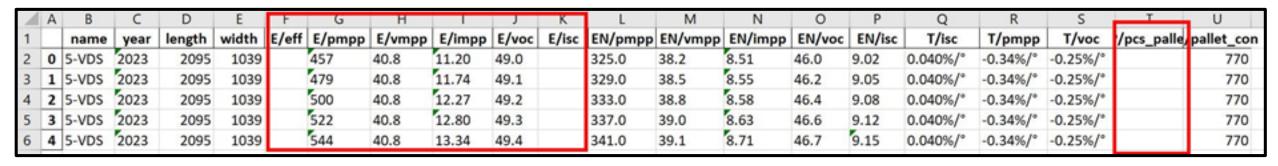
- Overall Accuracy 87%
- Strong performance distinguishing "Thermal,"
 "Mechanical," and "Packaging" tables
- Poor classification performance on Electrical characteristics table at "STC" vs. "NMOT" conditions due to nearly identical keywords

Class	Precision	Recall	F1-Score
Electrical Characteristics at Standard Testing	0.75	0.60	0.67
Conditions (STC)			
Electrical Characteristics at Nominal Module Op-	0.33	0.67	0.44
erating Temperature (NMOT)			
Thermal Characteristics	1.00	0.88	0.93
Mechanical Characteristics	1.00	1.00	1.00
Packaging	0.80	1.00	0.89
Others	1.00	0.94	0.97

2.7. Row / Column identification

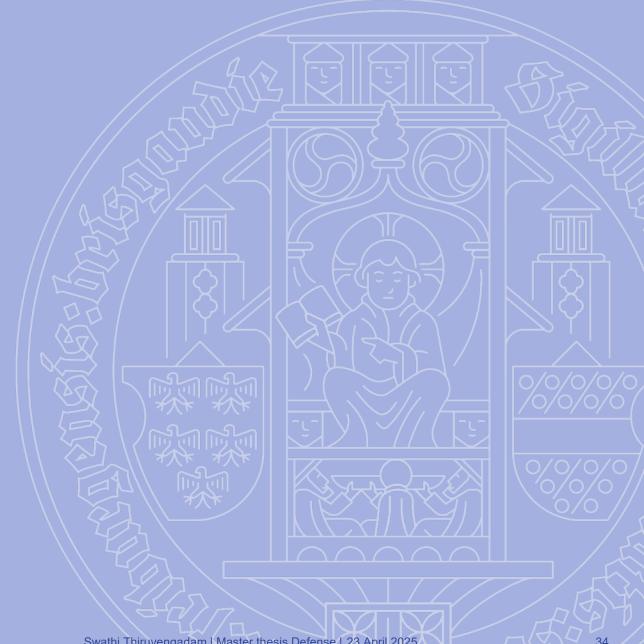

Electrical Characteristics STC: AM1.5 1.000W/m2 NOTC: AM1.5 800W/m2 20° 1 m/s Test uncertainty for Pmax +-3%										
Module type	TM - 650 M-132 HC		TM - 655M-132 HC		TM - 660 M-132 HC		TM - 665M-132 HC		TM - 670 M-132 H	
Testing condition	STC	NOTC	STC	NOTC	STC	NOTC	STC	NOTC	STC	NOTC
Maximum Power (Pmax/w)	650	484	655	487	660	491	665	495	670	498
Open Circuit Voltage (Voc/V)	45	42,6	45,2	42,8	45,4	43,0	45,6	43,1	45,8	43,3
Short Circuit Current (Isc/A)	18,39	14,41	18,43	14,43	18,47	14,48	18,51	14,57	18,55	14,58
Voltage at Maximum Power (Vmp/V)	37,6	35,7	37,8	35,9	38	36,05	38,2	36,1	38,4	36,3
Current at maximum Power (Imp/A)	17,29	13,56	17,33	13,57	17,37	13,62	17,41	13,71	17,45	13,72
Module Efficiency (%)	20,90%	15,58%	21,10%	15,68%	21,30%	15,81%	21,40%	15,94%	21,60%	16,03%

Regular expression – 'eff((?!code).)*\$|ncell|model\(%\)' **Efficiency data extracted using Regular expression –** ["20.90%", "15.58%", "21.10%", "15.68%", "21.30%", "15.81%", "21.40%", "15.94%", "21.60%", "16.03%"]


Natural Language Prompt – 'From the electrical characteristics table, extract the module efficiency data (in percentage) for Standard Testing Conditions (STC) only. Round the value to two decimal places.' **Efficiency extracting using LLM –** ["20.90%", "21.10%", "21.30%", "21.40%", "21.60%"]

2.7. Data Validation and Extraction

Data extraction accuracy of the complete pipeline on test set consisting of 10 PDF files - 52.66% AP



Example of Manually extracted data

Example of data extracted using the pipeline

Chapter 3 Summary & Outlook

Chapter 3 - Summary and Outlook

3.1. Summary

- Integrated DETR with OCR tokens to enable multi-model input for table TD and TSR tasks
- Enhanced canonicalization algorithm for handling horizontal and dual-axis tables
- Robust handling of merged cells, multi-row/multi-column headers, and image-based PDFs
- Streamlined data extraction pipeline and improved its reliability
- Quicker, large-scale analysis of PV module datasheets for improved decision-making
- Demonstrated feasibility and strong potential for broader application in other domains with complex tables

Chapter 3 - Summary and Outlook

3.2. Limitations

- Dependence on OCR extraction quality
- Capturing complex table structures in densely-packed tables
- Misclassifying tables with similar headers or minimal textual cues

3.3. Future work

- Advanced OCR engines or domain-focused fine-tuning OCR
- Advanced models to perform context-aware validation and extraction of data
- Expanding dataset coverage to handle even more diverse table layouts

universität freiburg

Thank you for your attention!

universitätfreiburg

1st Examiner:

Prof. Dr. Hannah Bast University of Freiburg, Freiburg im Breisgau

2nd Examiner:

Prof. Dr. Holger Neuhaus

Advisers:

Dr. Ing. Christian Reichel

Dr. Patrick Brosi University of Freiburg, Freiburg im Breisgau

Questions

Appendix

Chapter 1 - Introduction

1.0. Importance of automated data extraction

- Widespread Industrial Applications Healthcare, legal, Financial sectors
- Scalable, efficient, and saves operational costs
- Enables Informed decisions

Information Extraction

2.1.1. Manual annotation

Operating Temperature(°C)	-40~85
Operating humidity(°C)	5~85
Allowable Hail Load	25mm ice-ball with velocity of 23m/s

An example of a table with structures recognized by the TSR model

-40~85
5~85
25mm ice-ball with velocity of 23m/s

Example of a Manually annotated row

Maximum Ratings	
Operating Temperature(°C)	-40~85
Operating humidity(°C)	5~85
Allowable Hail Load	25mm ice-ball with velocity of 23m/s

Example of a Manually annotated column

Maximum Ratings	
Operating Temperature(°C)	-40~85
Operating humidity(°C)	5~85
Allowable Hail Load	25mm ice-ball with velocity of 23m/s

The corresponding cell derived

2.1.1. Manual annotation

Electrical Properties (NMOT)

Model		LG350N1C-V5
Maximum Power (Pmax)	[W]	261
MPP Voltage (Vmpp)	[V]	33.0
MPP Current (Impp)	[A]	7.91
Open Circuit Voltage (Voc)	[V]	38.80
Short Circuit Current (Isc)	[A]	8.53

Data cell	Column header cell	Table name cell
Row header cell	Projected row header cell	Projected column header cell

Since Predicted bounding box is fully contained in the ground truth, IoU<1

Electrical Properties (NMOT)

Model		LG350N1C-V5	
Maximum Power (Pmax)	[W]	261	
MPP Voltage (Vmpp)	[V]	33.0	
MPP Current (Impp)	[A]	7.91	
Open Circuit Voltage (Voc)	[V]	38.80	
Short Circuit Current (Isc)	[A]	8.53	

Example of a Manually annotated row

Electrical Properties (NMOT)

Model		LG350N1C-V5
Maximum Power (Pmax)	[W]	261
MPP Voltage (Vmpp)	[V]	33.0
MPP Current (Impp)	[A]	7.91
Open Circuit Voltage (Voc)	[V]	38.80
Short Circuit Current (Isc)	[A]	8.53

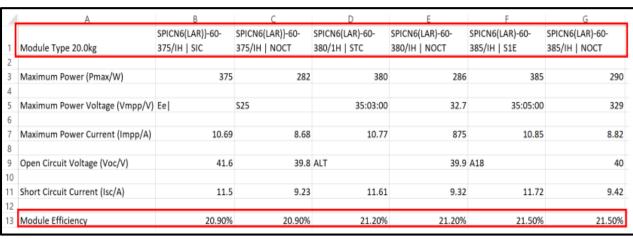
Example of a Manually annotated column

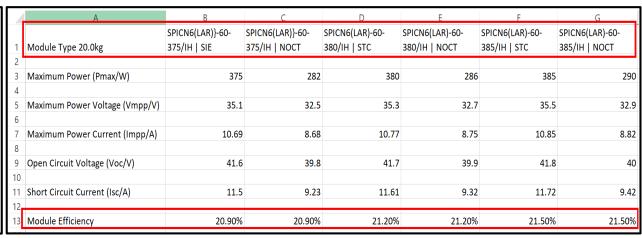
Electrical Properties (NMOT)

Model		LG350N1C-V5	
Maximum Power (Pmax)	[W]	261	
MPP Voltage (Vmpp)	[V]	33.0	
MPP Current (Impp)	[A]	7.91	
Open Circuit Voltage (Voc)	[V]	38.80	
Short Circuit Current (Isc)	[A]	8.53	

The corresponding cell derived

2.1.2. Image augmentation

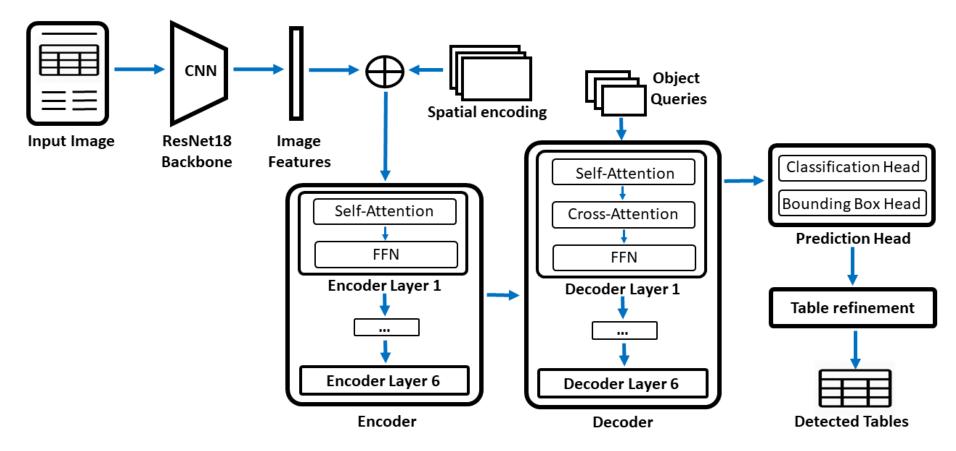

Type	US280M60B	US290M60B	US300M60B
Pmax [W]	280	290	300
Vmpp [V]	32.94	33.32	33.72
Impp [A]	8.50	8.72	8.93
Voc [V]	39.06	39.46	39.87
Isc [A]	9.07	9.18	9.29
Max. System Voltage	1000V DC	1000V DC	1000V DC


Table structures initially recognized without augmentation

2.2.2 Image Preprocessing and OCR enhancement

Modula Tupa	SPICN6(LAR)-60-375/IH		SPICN6(LAR)-60-380/IH		SPICN6(LAR)-60-385/IH	
Module Type	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax/W)	375	282	380	286	385	290
Maximum Power Voltage (Vmpp/V)	35.1	32.5	35.3	32.7	35.5	32.9
Maximum Power Current (Impp/A)	10.69	8.68	10.77	8.75	10.85	8.82
Open Circuit Voltage (Voc/V)	41.6	39.8	41.7	39.9	41.8	40.0
Short Circuit Current (Isc/A)	11.50	9.23	11.61	9.32	11.72	9.42
Module Efficiency	20	.9%	21.	2%	21.	.5%

Table with its internal structure recognized

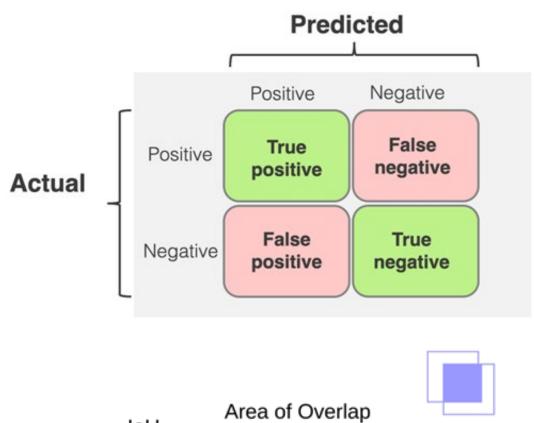


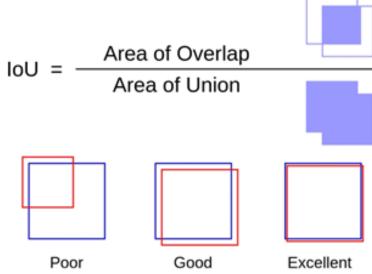
Data extracted before image preprocessing

Data extracted after image preprocessing

2.3. Table detection (TD)

Table Detection architecture diagram

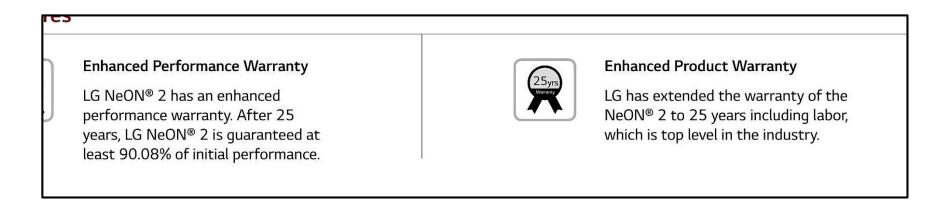

2.3. Table detection (TD) Evaluation Metrics COCO metrics

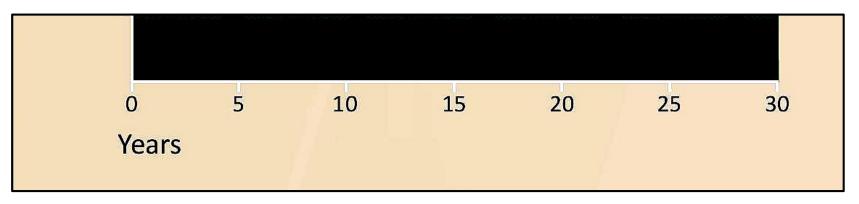

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$


$$F1 \ Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

$$AP = \int_0^1 \operatorname{Precision}(r) \, dr$$




2.3. Table Detection

Poor detection performance on densely-packed datasheet with missing gridlines

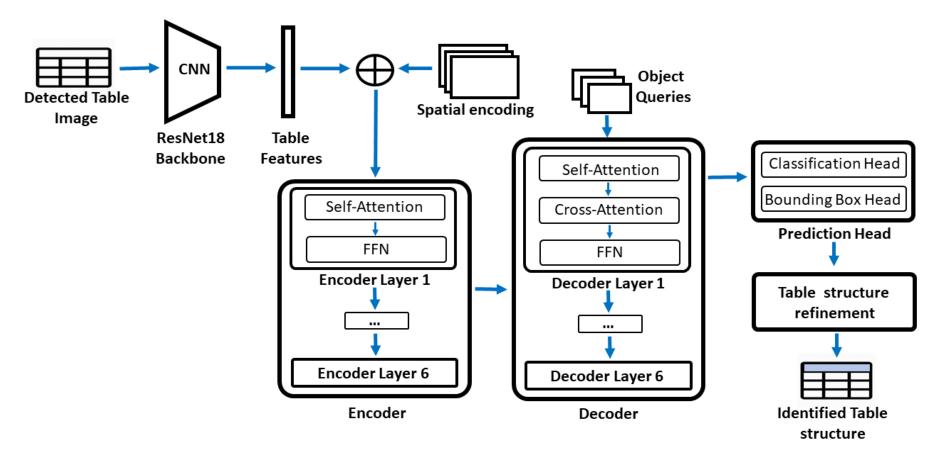
2.3. Table Detection

Well-structured text misidentified as a table

2.4. Table Detection (TD)

Hyperparameter	Value
Learning rate	5×10^{-5}
Batch size	4
Weight decay	1×10^{-4}
LR scheduler	Exponential with $Gamma = 0.9$
LR drop	1

Hyperparameter configuration of the best table detection model.


2.3. Table Detection

- PubTables-1M dataset 460,589 annotated document pages
- PV module training dataset 169 PDF images
- Test dataset 12 PDF files with 15 images

2.4. Table Structure recognition

- PubTables-1M dataset This dataset has 947,642 fully annotated tables
- PV module training dataset 545 table mages
- Test dataset 12 PDF files with 65 table images

2.4. Table Structure Recognition (TSR)

Table Structure Recognition architecture diagram

2.4. Table Structure Recognition (TSR) - Canonicalization Algorithm

	Operation	Purpose
Split blank spanning-cells	Break header-wide blanks into single grid cells.	Prevent giant empty boxes that hide structure
Add missing header rows	If a table row starts with blanks, treat it as an extra column-header row	Capture multi-level column headers.
Expand header rows/cols	Recursively add header rows/cols until every physical column has at least one header cell and vice-versa.	Ensure one-to-one mapping between headers and leaf columns/rows.
Merge identical header spans	Adjacent header cells with the <i>same</i> row/column span are merged.	Remove over-segmentation.
Merge contiguous blank cells	Blank cells touching each other inside a header block are combined.	Keep header trees compact.
Project row headers	In dual-axis or horizontal tables, merge all header cells in the projected-row-header row	Support horizontal and two-axis layouts.
Validation	Check that every grid row/column has equal length; drop tables that violate the matrix property.	Guarantee a well-formed output for TDE.

2.4. Evaluation Metrics – Grid Table Sinilarity (GriTS)

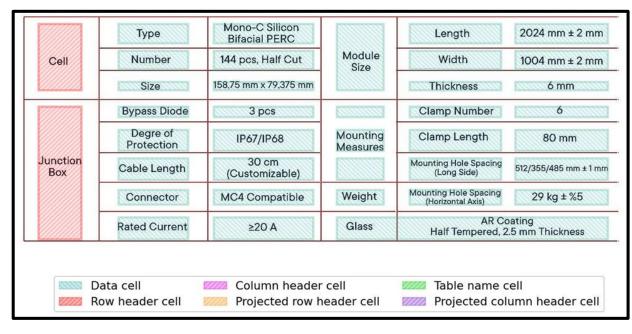
- Topological GriTS Capture cell adjacency and relational structure within a table
- Content GriTS Associating content with the correct cell structure
- Location GriTS Assess the accuracy of cell positioning within the table

$$GriTS_Loc = \frac{Number of Correct Cell Locations}{Total Number of Cells}$$

$$GriTS_Top = \frac{Number of Correct Relationships}{Total Relationships in Ground Truth}$$

$$\label{eq:GriTSCon} \begin{aligned} \text{GriTS_Con} &= \frac{\text{Number of Correctly Matched Content Cells}}{\text{Total Number of Cells in Ground Truth}} \end{aligned}$$

$$GriTS_f(\mathbf{A}, \mathbf{B}) = \frac{2 \cdot \sum_{i,j} f(\tilde{\mathbf{A}}_{i,j}, \tilde{\mathbf{B}}_{i,j})}{|\mathbf{A}| + |\mathbf{B}|}.$$


$$Accuracy_Con = \frac{Number of Correct Cells}{Total Number of Cells}$$

2.4. Table Structure Recognition (TSR)

Hyperparameter	Value
Learning rate	1×10^{-4}
Batch size	8
Weight decay	1×10^{-3}
LR scheduler	Cosine Annealing with $T_{\rm max}=50$
LR drop	15
Encoder and decoder layers	6

Hyperparameter configuration of the best performing structure recognition model.

2.5. Tabular data extraction

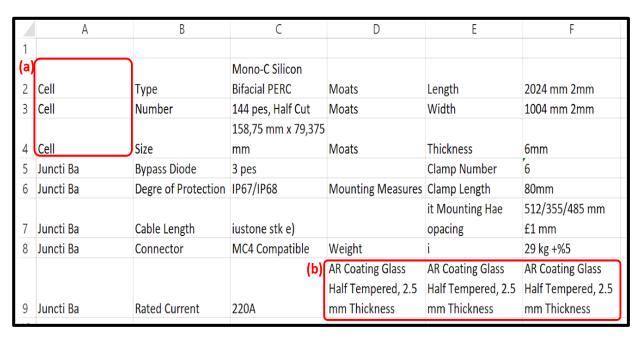
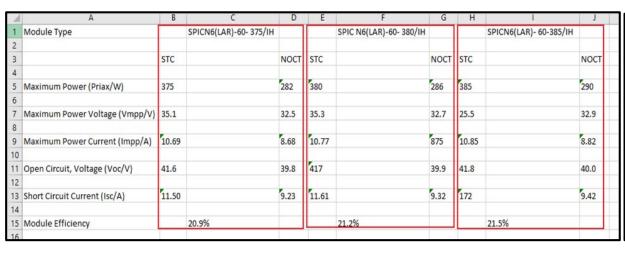
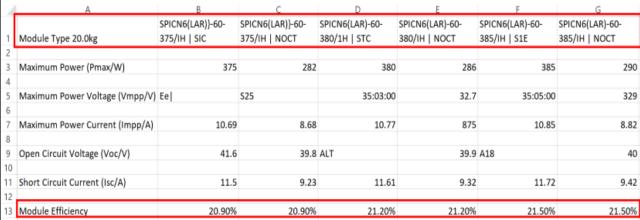


Table structure recognized by the TSR model

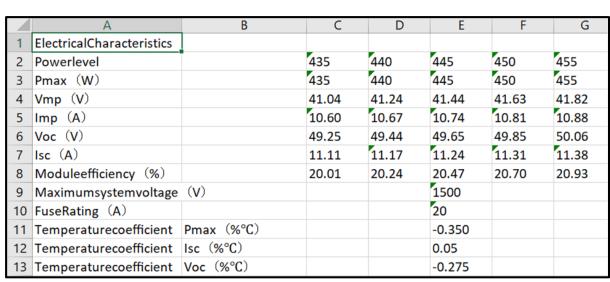

Extracted data and exported to Excel

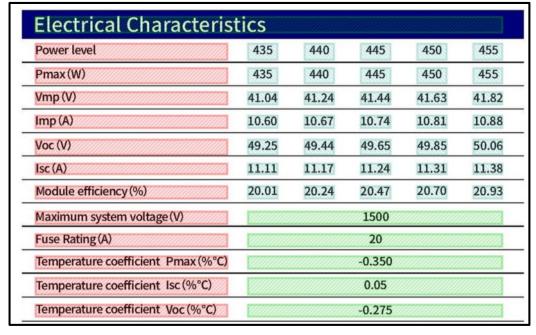

Extraction with significant OCR error and incorrect merged cells captured.

1.3. Lightning-Table vs Table Transformer

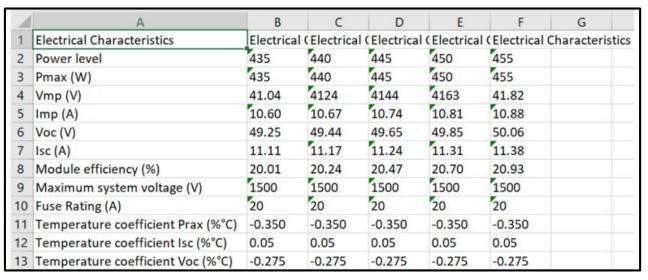
Andrew Tones	SPICN6(LAR)-60-375/IH		SPICN6(LAR)-60-380/IH		SPICN6(LAR)-60-385/IH	
Module Type	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax/W)	375	282	380	286	385	290
Maximum Power Voltage (Vmpp/V)	35.1	32.5	35.3	32.7	35.5	32.9
Maximum Power Current (Impp/A)	10.69	8.68	10.77	8.75	10.85	8.82
Open Circuit Voltage (Voc/V)	41.6	39.8	41.7	39.9	41.8	40.0
Short Circuit Current (Isc/A)	11.50	9.23	11.61	9.32	11.72	9.42
Module Efficiency	20	.9%	21	.2%	21.	5%

Table with its internal structure recognized




Data extracted using Lightning-Table

Data extracted using Table Transformer


1.3. Lightning-Table vs Table Transformer

Data extracted using Lightning-Table

Table with its internal structure recognized

Data extracted using Table Transformer

1.3. Lightning-Table vs Table Transformer

Encapsulant Material	POE/EVA	
Back Glass	2.0 mm, Heat Strengthened Glass (White Grid Glass)	
Frame	30 mm Anodized Aluminium Alloy	
Junction Box	IP 68 rated	
Cables	Photovoltaic Technology Cable 4.0 mm²	
	Cable length 350 mm or customized length	

Data extracted using Lightning-Table

Encapsulant Material	POE/EVA	
Back Glass 2.0 mm, Heat Strengthened Glass (White		
Frame	30 mm Anodized Aluminium Alloy	
Junction Box	IP 68 rated	
Cables	Photovoltaic Technology Cable 4.0 mm ² Cable length 350 mm or customized length	

Table with its internal structure recognized

5 Encapsulant Material	POE/EVA
Back Glass	2.0 mm, Heat Strengthened Glass (White Grid Glass)
Frame	30 mm Anodized Aluminium Alloy
Junction Box	IP 68 rated
Cables	Photovoltaic Technology Cable 4.0 mm? Cable length 350 mm or customized length

Data extracted using Table Transformer