
Master’s Thesis

Energy Price Forecasting with
Uncertainty Estimation

Sneha Senthil

Examiners: Prof. Dr. Hannah Bast, Prof. Dr. Frank Hutter

Advisers: Matthias Hertel, Oliver Mey

University of Freiburg Fraunhofer IIS/EAS

Faculty of Engineering Fraunhofer Institute for Integrated Circuits

Department of Computer Science Division Engineering of Adaptive Systems

Chair for Algorithms and Data Structures Dresden

September 16th, 2022



Writing Period

04. 04. 2022 – 16. 09. 2022

Examiner

Prof. Dr. Hannah Bast

Second Examiner

Prof. Dr. Frank Hutter

Advisers

Matthias Hertel, Oliver Mey



Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Freiburg, 16/09/2022



Abstract

Forecasting is the task of predicting future values, taking into account historical data.

We forecast energy prices taking into consideration load, generation, historical prices

and weather data. This thesis aims to solve this task using a Transformer model.

While Transformers are typically used for NLP tasks, there have recently been some

successful applications of Transformers for forecasting. In addition to predicting the

prices, we try to estimate the uncertainty of this prediction by probabilistic forecasting.

We experiment with different types of distributions and determine which distribution

would be the best for probabilistic forecasting. We also study how probabilistic

forecasting affects the model’s results compared to deterministic forecasting. We find

that Transformers outperform other deep learning models. Additionally, probabilistic

forecasting helps improve the accuracy in some cases and is helpful in understanding

the uncertainty in the model’s prediction.
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1 Introduction

1.1 Problem Statement

We intend to solve the following electricity price forecasting problem: Given the last

n hours of data (which includes weather data, load, generation and prices), the model

should be able to predict the hourly energy prices of the following day, along with

the probability distribution of these predictions.

1.2 Motivation

There is an increasing share of renewable energies. Weather-dependent fluctuations in

the amount of energy generated arise, which are directly reflected in the traded price

at electricity stock exchanges. Hence, predictions of the energy price in connection

with flexible electricity tariffs can help to shift peak loads to times of high availability

of renewable electric energy and thus reduce carbon dioxide emissions. We attempt

to predict the prices via time series forecasting.

Many models have been developed over time to tackle the challenge of time series

forecasting. Among the deep learning models, RNNs and specifically LSTMs have

shown the best results (Khodabakhsh et al., 2020). However, recently some experi-

ments have been conducted that show Transformers are able to surpass RNNs for

forecasting (Wu et al., 2020 and Zhou et al., 2022). Transformers are the recent
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state-of-the art models for natural language processing tasks, replacing RNNs. These

models can be adapted to time series data as well. In light of these findings, we

hypothesize that Transformers could be useful for our energy data.

Additionally, probabilistic forecasting would help quantify the level of uncertainty

of the predictions. This can help us understand how confident the model is in its

predictions.

1.3 Contributions

In this thesis:

• We develop a time series forecasting model inspired by the Transformer archi-

tecture (Vaswani et al., 2017) to forecast energy prices.

• We compare the results of Transformers with other deep learning models.

• We check if the models benefit from data augmentation.

• We check if the Transformer model benefits from adding additional features:

date, month and year encoding and addition of next day weather forecast as a

feature.

• We convert the deterministic models to probabilistic models and compare how

performance of the model changes.

1.4 Chapter Overview

The next chapter, Chapter 2, gives an overview of the existing research on time series

forecasting using deep learning models, as well research on probabilistic forecasting.

2



In chapter 3, we provide the background information on artificial neural networks,

recurrent neural networks and Transformers, which are all used in our experiments.

Next, in Chapter 4, we detail the datasets used, the data pre-processing steps, the

architecture of the models and describe the training process.

In Chapter 5, we introduce the evaluation metrics for deterministic and probabilistic

models. The chapter then presents the results of our deep learning models and some

prediction graphs to visualize the model predictions.

Finally, Chapter 6 summarizes the findings of the thesis and suggests some possible

future works.
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2 Related Work

The topic of time series forecasting in general is a widely tackled issue. This section

gives an overview of existing works on time series forecasting in general, as well as

those related to energy prices, and the deep learning methods associated with it.

Section 2.1 introduces the statistical methods. Section 2.2 continues with the deep

learning methods which includes artificial neural networks, recurrent neural networks

and convolution neural networks. Finally, Section 2.3 covers the existing works on

transformer models .

2.1 Statistical Methods

A well known statistical method is ARIMA (AutoRegressive Integrated Moving

Average) (G. E. P. Box & G. M. Jenkins, 1968). ARIMA is a linear regression model.

ARIMA performs well over short-term forecasts. However, it has shown to perform

poorly for long term forecasting and requires expert knowledge to manually select

trend and other components. A time series with non-linear dependence would not be

forecasted well by ARIMA.
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2.2 Deep Learning Methods

2.2.1 Artificial Neural Network

Research into neural networks show that Artificial Neural Networks (ANNs) are

capable of pattern classification and pattern recognition. Guoqiang Zhang et al.

(1998) outline the advantage of using ANNs for forecasting. Few assumptions need

to be made about the data at hand. ANNs learn from the data which features are

relevant and use these features for future predictions. Since forecasting is about

predicting future behaviour from historical data, it is an ideal field for neural networks

to be applied. A huge advantage is that ANNs are non-linear.

The first application of ANNs for forecasting was by Hu (1964). He used a Widrow’s

adaptive linear network for weather forecasting. At the time, there was no training

algorithm for multi-layer networks. Hence, the research at that time was limited.

The research into ANNs for forecasting improved with the use of backpropagation.

In 1986, the backpropagation algorithm was invented (Rumelhart et al., 1986).

Wilson and Sharda (1994) used neural networks for bankruptcy prediction. They

compared the performance of ANNs with multivariate discriminant analysis and

found that ANN outperformed it. The authors concluded that ANNs are a robust

and promising approach for classification and encourage further research into this

field.

Pino R et al. (2008) used ANNs to predict the next day price of electricity in the

Spanish energy market. The ANNs performed better than ARIMA models, especially

for weekends and holidays. The paper focuses on univariate forecasting, with historical

prices being the only input features. The data ranged from 1996 to 2004.

Ioannis P.Panapakidis et al. (2016) also used ANNs for short term load and energy

prices forecasting. They highlight that load forecasting reported an error rate of
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below 3%. For the task of prices forecasting, the model reported an error rate close

to 20%. The issue with price forecasting is the highly volatile market prices. Load

mainly depends on weather conditions and seasonal effects. However, prices can be

influenced by many diverse and unpredictable factors and these might not be available

to engineers. They also mention that in order to predict prices accurately, knowledge

of historical prices alone is not enough. The input data should include natural gas

prices, prices of other energy markets and renewable generation capacity.

2.2.2 Recurrent Neural Network and Long Short-Term Memory

Network

RNNs can be used for sequence modeling and has proven to be useful for many

natural language processing tasks.

S. Anbazhagan and N. Kumarappan (2012) proposed an RNN for the day ahead

deregulated electricity market price forecasting using the Elman network. The

prediction of a feature depends on earlier features and the time of occurrence of the

feature. These characteristics can be captured by an RNN. In the Elman network,

the outputs of the hidden layer are allowed to feedback into itself through a buffer

layer. The weights from the hidden layer to the buffer layer are constant. All other

connections are feed-forward. This model was compared with ARIMA, neural network,

and many other models and the RNN model outperformed them. The training time

of the RNN was quite large and does depend on the training data size and number of

parameters. The authors talked about research for a better feature selection algorithm

for different power markets.

David Salina et al. (2020) proposed an auto-regressive RNN model for probabilistic

forecasting called DeepAR. Two distribution choices were considered during the

experiments: Gaussian likelihood for real-valued data and negative binomial likelihood

for positive count data. The authors use five datasets for the experiments. They
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found that forecasting using this approach drastically improved forecast accuracy

compared to other state of the art forecasting methods. The DeepAR model was able

to learn seasonality and uncertainty growth over time from the data. However, this

model is only applicable to medium-sized datasets with only a few hundred rows of

data. It is likely that the model would suffer from exploding or vanishing gradients

with a longer range of time series.

Petneházi and Gábor (2018) compared the performance of Long short-term memory

(LSTM) and Gated Recurrent Unit (GRU) networks. The network has a layer of

LSTM/GRU consisting of 32 units, followed by a single unit dense layer. They found

that the performances of the GRU and LSTM models, in forecasting, were quite

similar. However, the models were efficient for only one-step forecasts. They used an

iterative method for multi-step forecasting, which they admit to not be efficient. The

authors proposed the use of bootstrapping, however this is computationally expensive.

They also recognize that the lack of availability of real world datasets is an issue for

the study of deep learning methods of time series forecasting.

J.F.Torres et al. (2022) used a deep LSTM network for the Spanish electricity con-

sumption forecasting.

2.2.3 Convolution Neural Network

While RNNs and LSTMs are considered to be state of the art for time series forecasting,

some Convolution Neural Network (CNN) models proved to be effective depending

on the problem at hand.

Anastasia Borovykh et al. (2017) used a CNN for financial time series forecasting.

They used multiple layers of diluted convolutions, in which the filter skips certain

elements in the input. This allowed the model to learn the trends and relations

between the data. The advantage of using a CNN is that the training and prediction

7



is more efficient since the number of trainable parameters is small. It is a simple

model that is easy to interpret, however there is still scope for improvement. There

is a trade-off between model complexity and overfitting. A larger number of layers

can result in a larger receptive field and thus an ability to learn more about the

non-linearities, but can cause overfitting.

Khan Z et al. (2020) use a classic CNN for short-term price forecasting. When

compared to a Multi Layer Perceptron (MLP) model, the CNN has better results.

However, it is not clear which data is being used and which features are used for

training. Additionally, there are no evaluation metrics specified for the CNN and

MLP, so it is not clear how well the CNN performs. It is clear by just graphical

figures that CNN was better at forecasting than the utilized MLP.

2.3 Transformers

The recently introduced Transformer architecture proposed by Vaswani et al. (2017)

proved to be very efficient for sequence-to-sequence problems.

Li et al. (2019) pointed out some issues with using transformers for time-series fore-

casting. There is a memory bottleneck and the space complexity grows quadratically

with the sequence length. So this makes it hard to model a long time series. Addi-

tionally, they claim that transformers are insensitive to local context. To solve these

issues, the authors propose a self-attention with convolution to better capture local

context. They proposed a LogSparse Transformer to improve the space complexity

to O(L(logL)2), where L denotes the sequence length.

Zerveas et al. (2020) proposed a transformer encoder model for unsupervised rep-

resentation learning of multivariate time series data. They generalized the use of

transformers such that with minor modifications, it can be used for a variety of tasks.

They were inspired by the good results of unsupervised pre-training of transformer
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models in NLP. The model performed extremely well for regression and classification

and the model did not take too much time to train. The model was evaluated over

several public datasets. It performs well even for datasets that have only a few

hundred training samples.

Zhou et al. (2022) stated that transformers are computationally expensive and cannot

capture an overall trend of time series. They proposed to combine the transformer

with a seasonal-trend decomposition method which captures the global profile of

time series. The Transformer captures more detailed structures. They proposed a

Frequency Enhanced Decomposition Transformer (FEDformer) which exploits the

fact that time series have a sparse representation in well-known basis (for example,

Fourier Transform). The model is more effective than a standard Transformer.

Wu et al. (2020) used a basic transformer encoder-decoder architecture for influenza

like illness forecasting. The model has 4 encoder layers and 4 decoder layers. Positional

encoding with sine and cosine function was used. Compared to other deep learning

methods, this technique could learn complex dependencies in the data since it used

self-attention. As it used a generic transformer architecture, it can be used for other

non-linear systems as well. The authors suggest this model to be used for spatio-

temporal data They show that the attention mechanism is able to learn complex

patterns in the time series data, since the transformer and a Seq2Seq with attention

models outperformed a plain LSTM model.

2.4 Probabilistic Forecasting

Salinas et al. (2020) use a forecasting method based on autoregressive neural networks,

incorporating a negative Binomial likelihood. The authors considered two distributions

for the experiments: Gaussian likelihood for real-valued data and negative-binomial

likelihood for positive count data. The method works well on a variety of datasets with
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little to no hyperparameter tuning and generates calibrated probabilistic forecasts

with high accuracy.

Chen et al. (2020) used a probabilistic forecasting framework based on a CNN.

Zhu et al. (2017) proposed a novel end-to-end Bayesian deep model that provides

time series predictions along with uncertainty estimations. The model uses an LSTM

encoder-decoder followed by a prediction network. The authors check the coverage of

the 95 % predictive interval on the test data to evaluate the probabilistic model. The

proposed uncertainty estimate was used to measure special event uncertainty and

to improve anomaly detection accuracy. The model was compared to some baseline

models and was found to have the best accuracy.

Koochali et al. (2019) introduced ForGAN. It is a one step ahead probabilistic

forecasting model with GANs. The authors found that in the presence of strong

noise, the effectiveness of ForGAN is more prominent. The prediction and ground

truth distributions are plotted against each other to show how effectively the model

has predicted the distribution. KL Divergence is used to report the results of the

uncertainty estimation.

Koochali et al. (2020) presented ProbCast. It is a novel probabilistic model that

employs a conditional GAN framework and the model is trained with adversial

training. The authors’ main motivation is to transform an existing point forecast

model to a probabilistic model. It is reported that converting a deterministic model

into a probabilistic model actually increases the model’s prediction accuracy. The

performance of ProbCast is measured using the Continuous Ranked Probability Score

(CRPS) as the metric. The results showed a great potential in probability forecasting

using GANs.

10



3 Background

This chapter introduces relevant background information, notation, and definitions

for the reader to understand the following chapters.

3.1 Artificial Neural Networks

Artificial neural networks are a type of machine learning model that is inspired by

biological neural networks in the human brain. The network contains multiple nodes

connected to each other. Each node performs some type of computation and passes

on information to the next node. Depending on the architecture and the type of

node used, there can be different types of neural networks such as feedforward neural

networks, recurrent neural networks or transformers.

A feedforward neural network is the simplest architecture of a neural network. The

input data is transformed by a series of computations performed at each node to

generate an output. Information flows in a single direction. The most basic form of a

feedforward neural network is the perceptron as seen in Figure 1.

For an input vector x1, x2, ....xn, it undergoes the following transformation at a

node:

z = Σxiwi + b

11



Figure 1: Perceptron Retrieved from https://sites.cc.gatech.edu/ san37/post/dlhc-
fnn/

where, wi is the weight matrix of each data point and b is the bias of the node.

This can be simplified as:

z = W Tx+ b

where W represents the weight matrix and x is the input vector. This is then followed

by an activation function f(z) to produce the output. The activation function can be

a linear function, a ReLU function, etc.

This would be the computation at a single layer of the neural network. If there are

multiple layers, then the output on for a layer n would be calculated as:

on = fn(hn−1W
T
n + bn)

where hn−1 is the output of the previous layer.

The weights and the biases are the trainable parameters in the neural network. So

these are the values that will be learned during the training of the neural network.

Hyperparameters are the parameters that can be decided by the user and control the

training process. In this case, the hyperparameters would be the number of layers

and the number of nodes in each layer.

A multilayer perceptron (MLP) as suggested by the name has perceptrons arranged

in multiple layers as seen in Figure 2. It has multiple nodes in a single layer and

multiple layers, where each node in a layer is connected to every single node in the

layer ahead of it. It consists of at least 3 layers: input layer, hidden layer and output

12



Figure 2: Multilayer Perceptron Retrieved from
https://sites.cc.gatech.edu/ san37/post/dlhc-fnn/

layer. An MLP can solve non-linear and complex problems.

3.1.1 Training a Neural Network

The data used for training will have features and ground truth labels. Labels are

what we want the neural network to be able to predict. When the neural network has

access to the labels in the input data during training, it is referred to as supervised

learning. During training, the neural network tries to learn the best weights and

biases that can accurately predict the ground truth labels.

During the first step of learning, the weights and biases are initialized. There are

different ways to do this, the most common being a random initialization. Only the

features of the data and not the ground truth labels are passed through the neural

network. The model calculates an output ŷ using the initial values of weights and

biases and the input feature values. This ŷ is compared to the ground truth label y

and the error is calculated using a loss function.

The loss function is then used to give the model feedback on the error in its

predictions. Depending on the task at hand, there are different loss functions. For

13



a regression task, a common loss function is the mean squared error (MSE) loss

function.

L(y, ŷ) =
1

N
Σi(y − ŷi)2

Backpropagation: Now that there is an understanding of the error made by the

model, the model needs to update its weights and biases. This is done by backpropa-

gation. The weights and biases are updated by adding the negative gradient of the

loss function with respect to the weights and biases to them, respectively.

w = w − α∂L(y, ŷ)

∂w

α is the learning rate. It controls how much the model parameters are updated with

respect to the loss function gradient.

The model then predicts a new ŷ based on the updated model parameters. A new

loss function is calculated and the loss gradient is propagated through the network to

update the model parameters. This process continues until the error is as minimum

as possible.

Adam (Kingma and Ba, 2014) is an optimization method to dynamically change

the learning rate during the training. Adam optimizer accumulates an exponentially

decreasing average of the squared gradient of each parameter. The learning rate is

multiplied with this squared gradient. So, each parameter would have an individual

learning rate. This helps the model learn faster for parameters that need large value

changes and slower for parameters that require small value changes.
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Figure 3: Recurrent Neural Network: Here the RNN architecture can be seen
along with its time-unfolded structure to understand how the model
processes the input sequential data. The computational graph gives an
idea on how to calculate the output and training loss. The input sequence
x is mapped to the output o. The loss L is calculated based on the
difference between o and the true target value y. U is the weight matrix
for the connections between the input and the hidden states. The hidden
state to hidden state connections are weighted by W. The connections
between the hidden state and output are parametrized by V. ( Image
retrieved from https://www.deeplearningbook.org/contents/rnn.html)

3.2 Recurrent Neural Networks

Recurrent neural networks are a type of artificial neural networks that is adapted to

work well with sequential data, i.e. data of the form x = (x1, x2, ....xt). Ordinary feed

forward neural networks are only meant for data points, which are independent of

each other. However, if we have data in a sequence such that one data point depends

upon the previous data point, we need to modify the neural network to incorporate

the dependencies between these data points. RNNs have the concept of ‘memory’

that helps them store the states or information of previous inputs to generate the

next output of the sequence. Figure 3 shows the architecture of the RNN.

As observed, past features are maintained in h(t) which is known as cell state. At

each step, the computation is done considering the input at the time step x(t) and

15



the previous cell state h(t−1). The cell state is updated at each time step. Data is

processed sequentially through the time steps.

Forward Pass: Assuming a discrete output, a hyperbolic tangent activation

function and output softmax activation function, the forward pass would be as

follows.

a(t) = b + Wh(t−1) + Ux

h(t) = tanh(a(t))

o(t) = c + Vh(t)

ŷ(t) = softmax(o(t))

where c and b are bias terms.

Backward Pass: The back-propagation algorithm used here is known as back-

propagation through time (BPTT). Once the loss function is calculated, the weights

U, V, W and bias b, c are updated using the learning rate and the respective gradient.

The gradient at each output depends on the calculations of the current time steps

and the previous time steps.

3.3 LSTM

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network

capable of learning order dependence in sequence prediction problems. A typical RNN

suffers from the problem of vanishing and exploding gradients. Vanishing gradients

occur when during backpropagation, the gradients tend to zero and the model loses

information about earlier data. Exploding gradients is when the gradients tend to

infinity. LSTM cells avoid these problems by having ‘gates’ that can choose which

information it wants to forget and which information it wants to retain by allowing
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gradients to flow unchanged.

Figure 4: LSTM Cell: A single LSTM with the flow of information through the
cell. xt is the input data at time step t. ht−1 is the hidden state from the
LSTM cell at the previous time step. Ct−1 is the previous cell state. Ct

is the current cell state and ht is the new hidden state. (Image retrieved
from https://www.pluralsight.com/guides/introduction-to-lstm-units-in-rnn)

Each LSTM unit has the following gates:

• Forget Gate: The forget gate decides which information needs attention and

which can be ignored.

• Input Gate: The input gate performs operations on the input data before it

used to update cell status.

• Output Gate: The output gate determines the value of the next hidden state.

This state contains information on previous inputs.

• Cell State: This operation updates the current cell state based on the forget

gate. The previous cell state is either dropped or retained depending on the

forget gate and then this is added to the input.
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Each LSTM cell is connected and information passes through the LSTM cells. Infor-

mation can flow in one-direction or in both directions.

Forward Pass: Information flows in one direction as shown below.

• Forget Gate:

ft = σ(Wf .[ht−1,xt] + bf )

where Wf is the weight matrix between the forget gate and the input gate and

bf is the connection bias at the forget gate.

• Input Gate:

it = σ(Wi.[ht,xt] + bi)

C̃t = tanh(WC .[ht−1,xt] + bC

where Wi is the weight matrix between the input gate and the output gate,

WC is the weight matrix of the tanh operator between the cell state information

and output, bi is the bias vector at t with respect to Wi and bC is the bias

vector at t with respect to WC .

• Cell State:

Ct = ft ∗Ct−1 + it ∗ C̃t

• Output Gate:

ot = σ(Wo[ht−1,xt] + bo

ht = ot ∗ tanh(Ct)

where Wo is the weight matrix of output gate and bo is the bias vector
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(a) Transformer Model (b) Attention Mechanism

Figure 5: Attention Mechanism: (Image retrieved from Vaswani et.al (2017))

3.4 Transformers

Like RNNs, Transformers are a machine learning model designed to deal with se-

quential data. It uses a mechanism of self-attention to determine the importance of

each part of the input data. Unlike RNNs, Transformers process the entire input

sequence at once. Transformer was first introduced by Vaswani et al. (2017). Figure

5(a) shows the transformer architecture introduced by Vaswani et al. (2017)

• Attention: The attention mechanism, as seen in Figure 5(b) focuses on the most

important parts of the input sequence by assigning them higher weights/attention

scores.

Every input vector into the attention block is used in three different ways in

the attention mechanism: the Query, the Key and the Value tensors, denoted
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as Q, K and V respectively in the diagram above.

Scaled Dot-Product Attention: This can be seen in Figure 5(b). The query

and key are dot-producted and scaled. This value is then softmaxed to give

attention probabilities. The value tensors are interpolated by these attention

probabilities to give the output.

attention(Q,K, V ) = softmax(
QKT

√
dk

V )

Multi-Head Attention: As seen in the figure, there a multiple attention

heads in the Transformer architecture. This mechanism projects the Query, Key

and Value h number of times, each time using a different learned projection.

Each attention head runs in parallel to produce an output and the outputs

are concatenated and projected again to create a final result. The multi-head

attention is as follows:

multihead(Q,K, V ) = concat(head1, head2, ..., headh)W 0

Each head implements its own attention mechanism as follows:

headi = attention(QWQ
i ,KW

K
i , V W

V
i )

where h is the number of attention heads and WO, WK
i , WK

i , W V
i are weight

matrices.

The concatenated output is multiplied with the weight matrix WO to output

the final result of the multi-head attention block.

Self Attention: When these Query, Key, Value tensors come from the same

input sequence, then it is known as self-attention. Essentially the input sequence

pays attention to itself. There is a self-attention mechanism in each the encoder
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and decoder. This mechanism relates every data point in the input sequence to

every other data point. In the decoder self-attention a look-ahead mask is used

to prevent the model from looking ahead in the target sequence when it needs

to make a prediction.

Cross Attention: The Query, Key and Value Tensors are all not derived

from the same input sequence. This attention mechanism is seen between the

encoder and decoder, where the Query is the decoder input and the Value and

Key tensors are the encoder output. The target sequence (decoder input) pays

attention to the input sequence (encoder output).

• Encoder-Decoder Architecture: The encoder maps an input sequence of symbol

representation (x1, ..., xn) to a sequence of continuous representations z =

(z1, ..., zn). The decoder then generates the output sequence y1, ..., ym one at a

time, from z and the output of the self-attention in the decoder.

3.5 Probability Distributions

A probability distribution is the function that expresses all the possible values and

likelihoods that a random variable can take between a certain range. Two things that

can be learnt from a probability distribution are the expected value and the variance.

For a continuous random variable, the probability distribution can be used to find

the probability of a value in a particular specified interval.

Probability Distribution Function: Probability of a value for a continuous random

variable.

Cumulative Distribution Function: Probability that a variable takes a value less than

or equal to a value x.
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Some of the probability distributions of a continuous random variable are described

below.

3.5.1 Normal or Gaussian Distribution

Figure 6: Normal Distribution

This is the most common distribution. The distribution curve is bell-shaped and

symmetrical along the line at mean. Figure 6 shows a normal distribution. The

probability distribution function is given by

f(x;µ, σ) =
1

σ
√

2π
exp(−(x− µ)2

2σ2
)

where µ and σ represent the mean (center of the distribution) and the standard

deviation of the population, respectively.

3.5.2 Log-Normal Distribution

It is a continuous probability distribution of a random variable in which the logarithm

is normally distributed. The distribution curve is not necessarily symmetric and can

be right-skewed as well. The probability distribution function is

f(x) =
1

xσ
√

2π
e−

1
2
(
ln(x)−µ

σ
)
2
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where µ is the location parameter and σ is the standard deviation of the distribution.

Figure 7 shows the log normal distribution.

Properties of log-normal distribution:

• The log-normal is a right-skewed distribution.

• The PDF starts from 0, so its values are always greater than 0.

• As observed in figure 7, for a given µ the degree of skewness increases as σ

increases.

Figure 7: Log Normal Distribution The figure shows how the log normal
distribution changes with respect to the µ and σ parameters.
Image retrieved from https://www.sciencedirect.com/topics/engineering/lognormal-
distribution.

3.5.3 Gamma Distribution

It is a continuous probability distribution which is used to model continuous variables

that are always positive and have a skewed distribution. This distribution has been

frequently used to model the time between events. The parameters of the distribution

are:
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• Threshold parameter: It defines the smallest value in the distribution. All

values in the distribution must be grater than this parameter. It is usually set

to 0, therefore making it possible to only have positive values.

• Shape parameter (k): Specifies the number of events being modeled.

• Scale parameter (θ): It represents the mean time between events. It determines

how much the distribution graph is spread.

Figure 8: Gamma Distribution The effects of the shape and scale parameters on
the distribution.
Image from Ghose, Partha. (2017)

The probability density function is

f(x;α, β) =
xα−1e−βxβα

Γ(α)

for x > 0 and α, β > 0 where, Γ(α) is the gamma function,

α =k and

β = 1
θ
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3.6 Probabilistic Forecasting

When a machine learning model is used to forecast point values, it is deterministic

forecasting. A probabilistic forecast predicts a probabilistic distribution over future

quantities of interest. This is useful in learning the confidence of the model in

predicting future values. The difference can be visualized in Figure 9.

(a) Deterministic Forecasting

(b) Probabilistic Forecasting

Figure 9: Deterministic Forecasting vs Probabilistic Forecasting: Deter-
ministic forecasting predicts future values, whereas probabilistic forecast-
ing predicts future distributions of values from which expected values and
deviations can be derived

3.7 Continuous Ranked Probability Score

The Continuous Ranked Probability Score (CRPS) measures how a proposed distri-

bution approximates the data, without knowledge about the true distributions of the

data. It measures the squared distance between the predicted distribution and the
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Figure 10: CRPS Score Calculation Illustrated The black curve denotes the
CDF of the predicted probability distribution and the red line denotes
the CDF of the true value.
(Image retrieved from https://www.mathworks.com/matlabcentral/fileexchange/47807-
continuous-rank-probability-score)

target. The CRPS score is defined as:

CRPS(P, xa) =

∫ ∞
−∞
||P (x)−H(x− xa)||2dx

where xa is the true value of x

P(x) is the proposed distribution for x

H(x) is the Heaviside step function

H(x) =


1, x = 0

0, x ≤ 0

As observed in Figure 10, the CRPS score is essentially calculated by finding the

difference between the predicted cumulative distribution function (CDF) and the

CDF of the true value. The lower the CRPS score, the better the distribution is at

fitting the data.

26



3.8 Log Likelihood

Log likelihood is the log of the probability density function evaluated at a value. It

can be used to evaluate how well a probability function fits a random variable.

Negative Log Likelihood: The higher the log likelihood value of the observed

data, the better the distribution fits the data. However, while training a machine

learning model, the loss function needs to minimized. So the log likelihood cannot

be used as a loss function, since ideally the log likelihood needs to be maximized.

Hence, the negative log likelihood is used a loss function. Minimizing the negative log

likelihood function naturally maximizes the log likelihood and hence the likelihood of

the observed data.

3.9 Previously Trained Models

In previous experiments that we have done [1], we trained MLPs, Residual MLPs and

LSTMs with the dataset described in Chapter 4. At the time, data was available only

until mid 2021. Residual MLP had the lowest Mean Absolute Error (MAE) of 5.66,

followed by MLP (6.06) and then LSTM (11.33). However, not enough experiments

were conducted with LSTMs to definitely prove that it cannot have a lower MAE

than Residual MLP. It is important to keep in mind that since these experiments

were conducted more data has become available and the dataset is updated until the

end of 2021. These models will be trained with the current data and compared with

the Transformers trained with the same data.
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4 Approach

This chapter describes the approach we followed to tackle the problem of energy

prices forecasting. We explain the datasets used, data-preprocessing, the proposed

models for forecasting and the model training and evaluation.

Figure 11: Workflow

4.1 Data

There are 2 publicly available datasets which contain relevant information. In both

datasets, data is available at an hourly frequency. The data for Spain and Switzerland

is downloaded and preprocessed before being used separately for model training.

Datasets:

1. Copernicus: Copernicus is the European Union’s Earth Observation programme. It

offers information services that draw from satellite observations and in situ data. The

European Commission manages the programme. The information is free and openly

accessible to users. The dataset ‘Climate and energy indicators for Europe from 1979

to present derived from reanalysis’ is used. Data is downloaded at a country level,
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i.e there is a separate column for each country in the EU with the respective values.

The following climate variables are downloaded: wind speed, surface downwelling

shortwave radiation, air temperature and total precipitation. Additionally, solar

photovoltaic power generation and wind power generation are also downloaded. Each

feature is downloaded as a separate .csv file. Data is available beginning from 1979.

2. Entsoe: This is the European Network of Transmission System Operators. Load,

day ahead prices and generation can be directly downloaded for a specific country

using API requests. Power generation values are provided for all sources, however

since we are mainly concerned with solar and wind, we aggregate the remaining values

into a single column as ‘Other energy sources’. Data was available from 2014 to 2021.

The following features are used from Entsoe:

• Load: Data about power consumption in Megawatt (MW).

• Generation: Energy production for solar and wind energy sources. Other energy

sources are aggregated together (MW).

• Prices: For every market time unit the day-ahead prices in each bidding zone

(Euro/MWh).

The deep learning models are trained separately on the Spain and Switzerland datasets

respectively.

4.1.1 Spain Dataset

Figure 12 shows the plots for the electricity prices (in €/MWh) in the Spain dataset.

Since this is the feature to be predicted, it would be interesting to observe how the

prices change over time.

Figure 12(a) shows the prices from 2014 until the end of 2021. There is a sharp

increase in the prices from 2021 onwards. This can be attributed to to the fact that
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(a) Energy Prices in the Spain dataset (b) Energy Prices for January 2021

(c) Daily prices for a week in January 2021

Figure 12: Data Plots of Spain Dataset

in 2020, the demand for electricity, gas and coal had greatly dropped due to the

COVID-19 pandemic. However, in 2021, the global economy recovered and there was

a large increase in fuel and carbon dioxide prices and this resulted in a very sharp

increase of electricity prices in 2021. This is reflected in figure 12(a) with a steep

increase in the prices from mid 2021.

Figure 12(b) shows the daily changes in price over a period of one month. January

2021 was chosen as an example. The prices seem to decrease towards the end of the

month.

Figure 12(c) shows the hourly price change in a day, for a period of one week. The

price is naturally lowest at late night, increasing in the morning and evenings.
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4.2 Data Preprocessing

Data Preprocessing includes cleaning and correcting the data. After downloading the

data, there are 2 datasets, one each from Entsoe and Copernicus.

Firstly, with the Entsoe data, by default, data is downloaded with the datetimes as

an index column. The dates column is shifted from the index to its own column.

This is done as it helps in a later step of combining the data with the Copernicus

data. Additionally, the dates and times in the Entsoe dataset are in the timezone

of Madrid and Zurich respectively. This does not match with the Copernicus data

which is in UTC timezone. This date column is converted to datetime datatype and

converted to UTC timezone to match the Copernicus data.

Next with the Copernicus data: data specifically only for the chosen country is

extracted from each file and combined. Duplicates are dropped. The ‘Date’ column

is converted to datetime datatype. Finally the Entsoe and copernicus datasets are

merged on the ‘Date’ column. Any NaN values in the dataset are identified and

replaced with the value from 24 hours before. The dataset is checked to make sure

there are no missing time steps.

Relevant features are chosen. Wind offshore is not considered in the Spain dataset

since all its values are 0. This is because Spain is yet to establish an offshore wind

industry. Switzerland naturally has no offshore wind industry, since it is not a coastal

country. The power generation variables of Entsoe are used. ‘Other Energy Sources’ is

also discarded as the analysis is more focused on solar and wind power. Additionally

the data is scaled. The whole data is split into three sets: training, validation and

test set. Training set is the first 85% of the whole dataset. The remaining 15% is

divided equally into the validation and test dataset. The training data lies between

20/12/2014 11:00 to 15/11/2020 7:00. The validation data ranges from 16/11/2020

0:00 to 23/05/2021 23:00. The test data is between 25/05/2021 0:00 and 29/11/2021
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23:00. The model was evaluated on the validation set as training occurred. The test

dataset was used for final evaluation after training was complete.

Each of the training, validation and test sets is further split into sets of features and

labels. The features will have ‘n’ number of rows, each row containing electric and

weather data for a certain hour. The number of rows in the features is determined by

the number of hours we go back in the history. These features are used to predict

24 future hourly energy price values, which would be the labels. For example, if we

take a history of 72 hours, each data sample would have 72 rows of features (each

row containing electric and weather data for the hour) corresponding to 24 labels

which are the future price values.

4.3 Models

Models 4.3.1 to 4.3.3 were trained and evaluated during the study project [1].

4.3.1 Linear Model

The model used a single dense layer as the output layer, with number of output

neurons = 24 (number of price values to predict). This is used as a baseline to

compare with the results of more complex models.

4.3.2 Residual MLP

The model can be seen in Figure 13. A custom mean layer is introduced to an MLP

to help make the process of training the model easier. The objective of the mean

layer is that it calculates hourly averages of energy prices from the past data. It

has no trainable parameters. So its output is 24 values, each signifying the mean of
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Figure 13: Residual MLP: A multilayer perceptron with a residual con-
nection

energy prices over the past few days at that specific hour. For example, given the

data of the past 72 hours. This is energy price data over three days. The mean of

the values over each hour is calculated. The final result is 24 values, a mean energy

price value for each hour of the day.

The model is then forced to learn the difference between these past energy prices

and the energy prices 24 hours in the future. The differences predicted are added to

the past hourly averages and this is the final output of the model. The idea is that

training might be easier if the model only has to learn the slight differences between

energy prices, instead of predicting the energy price itself. Input1 is all the features

in the past 72 hours and input2 is the energy prices in the past 72 hours.
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Hyperparameter Value

number of steps in 72

number of steps out 24

Dense1 neurons 256

Dense2 neurons 24

optimizer Adam

learning rate 10−4

loss Mean squared error

epochs 300

Table 1: Residual MLP Hyperparameters

The inputs need to be flattened to a simple vector. The input before flattening would

be of the form (number of samples x number of hours back x number of features).

So for example, if we choose to look back 72 hours in the past for training, the data

would be of the form (72x8) since each row of data has 8 features. This is flattened

to a simple vector with size 576, obtained by multiplying both values. The input

layer would now be receiving the data in the form (number of samples x 576). The

hyperparameters used can be seen in Table 1.

Regularization Methods:

• Early stopping: This is used to avoid overfitting. Training automatically stops

when the validation loss does not show any improvement after 15 epochs. Natu-

rally, early stopping helps in reducing training time if there is no improvement

after a number of epochs.

• Reduce learning rate on plateau: Reduces learning rate when validation loss

has plateaued over 10 epochs. This was particularly useful as it was observed in

earlier experiments while training a model without this method, validation loss

would plateau and not decrease at all. There is an observation of a decrease in

training and validation loss in most cases, when the learning rate is reduced
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during training.

4.3.3 LSTM

The model uses two LSTM layers, followed by a dense layer. It was mentioned previ-

ously that the input to an MLP needs to be flattened to a simple vector. However,

this is not the case with LSTMs. The input can be passed in the form (number of

hours back x number of features). LSTMs can easily process time series data. The

input data would be of the form (number of samples x number of hours back x number

of features). The hyperparameters used can be seen in Table 2. Regularization: Early

Hyperparameter Value

number of steps in 72

number of steps out 24

lstm1 nodes 64

lstm2 nodes 64

dense1 nodes 24

optimizer Adam

learning rate 10−4

loss Mean squared error

batch size 64

epochs 150

Table 2: LSTM Hyperparameters.

Stopping, Reduce learning rate on plateau
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Figure 14: Transformer Architecture

4.3.4 Transformers

The transformer model used in our experiments is an encoder only model. The

architecture is shown in Figure 14. The layers are as follows:

• Input Layer

• Encoder

• Flatten Layer

• Hidden Dense Layers

• Output Layer
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The encoder unit contains:

• Layer Normalization: Normalizes the activations of the previous layer for each

given example in a batch independently,

• Multi Head Attention Layer: This is the multi head attention layer as described

in Vaswani et al. (2017). Since the query, key and values parameters are the

same, it is self-attention.

• Dropout Layer: Randomly nullifies the contribution of some neurons during

training. The other neurons are not affected. This is done to avoid overfitting.

The output of this layer is added to the input of the encoder unit (residual

connection).

• Layer Normalization

• Convolution 1D Layer: Has a convolution kernel that is convolved with the input

over a single spatial dimension. This type of convolution is layer is commonly

used with time series data as it can learn the internal representations is time

series data.

• Dropout Layer

• Convolution 1D Layer: the output from this layer is added to the output from

the first dropout layer via a residual connection.

The hyperparameters used are mentioned in Table 3.

Regularization: Early Stopping, Learning Rate Scheduler with Exponential Decay
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Hyperparameter Value

head size 32

number of heads 4

Conv1D kernel size 1

Number of Conv1D filters 4

number of encoder blocks 4

mlp dropout 0

drop in attention block 0.1

mlp nodes [256]

learning rate 10−4

loss Mean squared error

epochs 200

training batch size 64

testing batch size 16

Table 3: Transformer model Hyperparameters

4.3.5 Probabilistic Models

All the models described until now are deterministic models. Each of these models can

be used for probabilistic forecasting by adding a DistributionLambda layer to the end,

doubling the number of nodes in the final Dense layer and changing the loss function

to negative log likelihood (as explained in Section 3.8). The DistributionLambda

layer is a Keras layer that enables plumbing distributions through a deep learning

model and outputs a distribution. The number of nodes in the final Dense layer are

doubled because half of them would represent mean (or the appropriate parameter

depending on the probability distribution) and the other half represents the variance.

So in our case, the output Dense layer of the deterministic models has 24 nodes since

we need to predict 24 future price values. For probabilistic model, the number of

nodes of this final Dense layer becomes 48. This architecture is shown in Figure 15
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Figure 15: Probabilistic Model Architecture

4.4 Training

Before we begin to train the model, the data needs to be further processed. The data

is scaled using a Min-Max Scaler. This scaler transforms the features by scaling each

feature to a given range. The transformation, for data x, is as follows:

Xstd = x−min(x)
max(x)−min(x)

Xscaled = Xstd ∗ (max−min) +min

where max and min are the feature range used. In our case, we use a range of (0,1).

The data for the deterministic Transformer model is scaled using Robust Scaler.

Robust Scaler scales the data between the inter-quantile range. So a data point xi is

transformed as xi−Q1(x)
Q3(x)−Q1(x)

. Robust Scaler was used for this model, since this scalar

is supposed to be robust to outliers and could help with the accuracy.

If there are features with large differences in their values, it will result in different

step sizes for the weights of each feature and will make gradient descent convergence

much harder. Scaling helps avoid this issue.

Furthermore, the data is augmented by multiplying the training data by 3.5. This is
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used as additional training data to the original training dataset. It is observed that

in the recent year, the energy prices have drastically increased to values that do not

exist in the training data at all. In order for the model to be able to make accurate

predictions, we augment the training data to introduce higher price values and add

this to the original training dataset.

Each of the training, validation and test set are then split into inputs and the

corresponding label. Each input is of the shape (number of hours back, number of

features) and the label (which contains only prices) is an array of 24 values. This

corresponds to taking the features of historical data to predict energy prices 24 hours

into the future. This input data will be given to the model and it will learn to predict

the corresponding label.

For the transformer, the information about the day, month and year were encoded

into the training data. This was done to add additional information to the dataset as

these are features that could also affect energy prices. The day and month of each

datapoint are extracted and cyclically encoded. For a day or month x ∈ X, it is

transformed as follows:

x =
2πx

max(X)

The sin and cos of this value are then stored as the day or month information for the

datapoint. This preserves the cyclical nature of days and months. Since year is not

cyclical, it is directly encoded as an integer.

Model Time

Linear 4 minutes and 20 seconds

Residual MLP 27 minutes and 5 seconds

LSTM 150 minutes and 28 seconds

Transformer 12 minutes and 30 seconds

Table 4: Training times of the models
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Training for the LSTM and Transformer models were done using an NVIDIA GeForce

RTX 2080Ti GPU. The training times are mentioned in Table 4.

Model Trainable Parameters

Linear 192

Residual MLP 153,880

LSTM 33,224

Transformer 674,304

Table 5: Trainable parameters of the models

Table 5 shows the number of trainable parameters in the models. LSTM is advanta-

geous in that it has the least number of trainable parameters. Transformer has the

most number of parameters, having the most complexity.
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5 Experiments

5.1 Evaluation Metrics

In order to evaluate the trained models, we need to test the models against the test

dataset and use some metric to determine how good the model is at forecasting.

5.1.1 Deterministic Models

For deterministic forecasting, the following metrics are used:

• Mean Absolute Error (MAE): MAE measures the average magnitude of errors in

the predictions. It is the average of the absolute differences between predictions

and observations (test dataset).

MAE =
1

n
Σn
j=1|yj − ŷj |

where, n is the total number of observations

y is the predicted value and

ŷ is the true value.

• Root Mean Squared Error (RMSE): RMSE is a quadratic scoring method. It is

calculated by the square root of the average of squared differences between the
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predicted value and actual value.

RMSE =

√
1

n
Σn
j=1(yj − ŷj)

2

RMSE penalizes large errors made by the model.

5.1.2 Probabilistic Models

The mean/median of the predicted distribution can be compared against the actual

observations using MAE and RMSE. However, this does not give an indication of

whether the predicted distribution performed well at learning the target distribution.

Different metrics are needed to evaluate probabilistic models.

• Quantile Difference: For a predicted distribution, if we consider 2 quantiles

0 < q1 < q2 < 1, we expect that (100 ∗ (q2− q1))% of observations are covered.

For example, for q1 = 0.25 and q2 = 0.75, we expect that the prediction

distributions cover 50% of the observations. The closer to 50%, the better the

model is.

• Continuous Ranked Probability Score (CRPS): As described in Section 3.7, the

CRPS score measures the squared distance between the predicted distribution

and the target. The model that has the lower CRPS value is the model that has

a better fit of the data. When the CRPS metric is used with a deterministic

forecast, then it is equivalent to calculating the MAE (Koochali et al., 2020) .

Therefore, this metric can be used to directly compare probabilistic models to

deterministic models.

• Log Likelihood: As described in Section 3.8, log likelihood is the logarithm

of the probability density function of the observed data. The higher the log

likelihood value, the better the model is at fitting the data.

43



5.2 Model Results

The accuracy of the different models was measured using the above mentioned metrics.

These values are calculated using the test dataset.

5.2.1 Deterministic Models

Spain Dataset

The results of the baseline linear model are mentioned in Table 6

Model MAE (€/MWh) RMSE (€/MWh)

Linear 47.98 59.63

Table 6: Baseline Model Results

Model MAE (€/MWh) RMSE (€/MWh)

Residual MLP 13.42 19.17

LSTM 13.18 19.22

Transformer 9.75 15.09

Table 7: Deterministic Model Results These are the results of the models
trained on the augmented dataset

Model MAE (€/MWh) RMSE (€/MWh)

Residual MLP 15.13 20.49

LSTM 23.82 32.66

Transformer 10.65 16.56

Table 8: Deterministic Model Results These are the results of the models
trained on the original data without any augmentation
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Upon comparing the results between using augmented (Table 7) and non-augmented

data (Table 8), it is obvious that data augmentation helps a lot. It makes a huge

difference to the predictive capability of the residual MLP and LSTM and a slight

improvement to the Transformer model as well.

There are three types of Transformer models that were trained, based on the input

data:

• The input data contains only the features.

• The input data contains the features and day, month and year encoding.

• The input data contains features, day, month and year encoding and next day

weather forecast. The weather forecast in the input data was obtained by using

the weather features of the next day. Hence, this is a perfect weather forecast,

which we cannot expect in reality.

These models were trained on the augmented dataset. The results can be seen in

Table 9.

Adding the date, month and year details and weather forecast data does not

Data MAE (€/MWh) RMSE (€/MWh)

Features 9.75 15.09

Features+time 11.6 16.75

Features+time+weather forecast 11.64 17.02

Table 9: Transformer Model Results Results of the transformer models trained
on different input data

improve the MAE and RMSE. While it was speculated that these features would

help improve the accuracy, it seems to be that the transformer does not require this

information to make accurate predictions.
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Switzerland Dataset

All the models that were trained on the Spanish dataset were also trained on the

Switzerland dataset separately, using the same hyperparameters.

The results of the baseline linear model are mentioned in Table 10

Model MAE (€/MWh) RMSE (€/MWh)

Linear 85.9 106.92

Table 10: Baseline Model Results

Model MAE (€/MWh) RMSE (€/MWh)

Residual 22.64 32.18

LSTM 21.71 31.4

Transformer 17.29 26.05

Table 11: Deterministic Model Results These are the results of the models
trained on the augmented dataset

Model MAE (€/MWh) RMSE (€/MWh)

Residual 39.61 51.8

LSTM 1013.18 6131.05

Transformer 22.91 31.75

Table 12: Deterministic Model Results- Switzerland These are the results of
the models trained on the original data without any augmentation

Upon comparing the results between using augmented (Table 11) and non-augmented

data (Table 12), it is seen that in this case, data augmentation also helps. The MAE

of the LSTM model is extremely high without augmentation. The LSTM predicts

extremely high values in the last month of the test dataset, leading to a very high

MAE.

While the results are not as good as for the Spain dataset, it is worth noting

that the model hyperparameters were left unchanged. Experimenting with the
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hyperparameters specifically for the Swiss dataset could help increase accuracy.

Additionally, Switzerland has a lesser percentage of renewable energy usage than

compared to Spain. So it could be harder to forecast prices based on the features

that we have chosen.

But it is observed that Transformer is still the best performing model among the

3 deep learning models. Similar to the Spain dataset, there are three types of

Transformer models used and the results are shown in Table 13.

The observation is still the same that adding the additional features does not

Data MAE (€/MWh) RMSE (€/MWh)

Features 17.29 26.05

Features+time 17.91 27.07

Features+time+weather forecast 19.1 28.45

Table 13: Transformer Model Results Results of the transformer models trained
on different input data

reduce the error.

5.2.2 Probabilistic Models

The initial experiments into probabilistic forecasting were done using only the residual

MLP models on the Spanish dataset. Table 14 shows the results of these probabilistic

models.

Taking into consideration the CRPS values it is interesting to note that the CRPS

values are much lower than the MAE of the deterministic Residual MLP (13.42). This

means that making the model a probabilistic model improves the accuracy. This can

also be corroborated by comparing the MAE values of the distributions. The MAE

is calculated using the mean values of the predicted price distributions against the

true price values. The MAE values are also lesser than the MAE of the deterministic

model.
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Distribution Quantile Difference(80%) CRPS Log Likelihood MAE

Normal 50.49 8.44 0.67 10.85

Log Normal 48.81 10.92 -0.67 12.44

Gamma 63.96 12.46 0.68 12.47

Normal (Transformer model) 48.81 12.39 0.27 15.96

Table 14: Probabilistic Model Results

While the CRPS scores suggest that the normal distribution is the better distribution

to use, the quantile difference values say otherwise. Quantile difference as a metric

is more suitable for methods that estimate prediction intervals directly such as

quantile and conformal regression (Romano et al., 2019). CRPS is applied to compare

algorithms that model conditional distributions (Herbach, 2000). So, it would be

better to take into consideration the CRPS score over the quantile difference. Hence,

the normal distribution would be the best distribution to use to model the predicted

prices. The comparison of the MAE values would also support this conclusion. The

difference in the log likelihood values of the normal and gamma distributions seems

negligible.

The transformer probabilistic model was trained with normal distribution and the

results can also be seen in Table 14.

While the residual MLP probabilistic model decreased the error compared to the

deterministic model, this does not seem to be the case for the Transformer model.

The MAE for the deterministic Transformer is 9.75. In comparison, there is a slight

increase in the error of the probabilistic transformer model.

5.3 Prediction Graphs

Deterministic Models: As seen from the plots in Figure 16, the simple Linear

model is unable to predict the higher prices observed during the more recent months.
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(a) Linear Model (b) Residual MLP

(c) LSTM (d) Transformer Model

Figure 16: Prediction over entire Test Dataset

The Residual MLP, LSTM and Transformer models are more successful in predicting

the prices. The Transformer model not only has a slightly better MAE compared to

LSTM, but the Transformer has a faster training time.

Transformer Deterministic Model: Figure 17 shows some day-ahead predictions

of a single day of the best Transformer model. It is observed that the model is quite

successful in predicting the prices and performs well in predicting how the price

changes over the 24-hour period. While there are some instances where the magnitude

of the predicted price is not the same as the true value, the model is successful in

learning the daily price fluctuation behaviour.

Probabilistic Residual MLP Model: Figure 18 shows the probabilistic predic-
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Figure 17: Transformer Predictions: A closer look at the day-ahead predictions
of the best performing Transformer model showing examples in which
the model performs well and in which the model does not

tions of the best performing Residual MLP model using normal distribution. The

shaded section in the graphs shows the 80% confidence interval of the predicted

distribution. This gives an idea about how confident the model is in its prediction.
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Figure 18: Probabilistic Predictions
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6 Conclusion

6.1 Summary

Based on the experiments carried out and the reported results, we can draw the

following conclusions:

• Transformers are effective in time series forecasting: Transformers

were initially developed for NLP tasks and are state-of-the art. We have shown

that Transformers can also be modified to address time series forecasting tasks.

Among the models we have trained, Transformers had the least MAE. It even

outperformed our LSTM model. This is quite promising since Transformers

can be trained faster. The multi-head attention mechanism performs well in

learning the dependencies in the input data.

• Probabilistic prediction further decreased the error. It is observed that

converting a deterministic model to a probabilistic one, has hugely decreased

the error of the residual MLP model. A comparison of the CRPS and MAE

scores shows the difference. So, a probabilistic model not only helps in reducing

the error but shows how confident the model is in its predictions. While the

error did not decrease for the probabilistic transformer model, it is still useful

to know the uncertainty in the model’s prediction.
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• Energy price prediction is challenging: One thing that we observed is

that energy price prediction poses many challenges. Especially, in recent times it

has been observed that prices have drastically increased. This can be attributed

to the pandemic and the Ukraine war crisis. Such sudden events cannot be

included within the data and it cannot be anticipated as well. It would be

challenging for the model to deal with such events that affect energy prices,

that could occur in the future.

6.2 Future Works

• More experiments on probabilistic models: The probabilistic models

that are used still struggle a bit to fit the data well. This can be observed

by the difference in the expected quantile difference percentage to the actual

percentage. It would be worth looking into other distributions as well.

• Data augmentation techniques: More efficient means of data augmentation

can be used.

• Transformer encoder-decoder architecture: While the transformer en-

coder only model has the best accuracy among our experiments, it could be

worth checking if adding a decoder helps improve the accuracy.

• Testing more hyperparameter settings: It could be worth it to spend

more time testing the hyperparameters of the models and observe how the

accuracy is affected.
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