
Master’s Thesis

Transformers and Graph Neural
Networks for Spell Checking

Sebastian Walter

Examiner: Prof. Dr. Hannah Bast
Adviser: Matthias Hertel

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair for Algorithms and Data Structures

May 23rd, 2022

Writing Period

22. 11. 2021 – 23. 05. 2022

Examiner

Prof. Dr. Hannah Bast

Second Examiner

Prof. Dr. Frank Hutter

Adviser

Matthias Hertel

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I also hereby declare that my thesis has not been prepared for another examination

or assignment, either in its entirety or excerpts thereof.

Place, date Signature

I

Dietrichsweiler, 23.05.2022

Abstract

Spell checking is a general term for methods that detect or correct spelling errors in

natural language text. Such methods can not only help with correcting human written

text, they can also improve the performance and robustness of natural language

processing systems dealing with misspelled text, when applied as a preprocessing or

postprocessing step.

We study the usage of Transformers and graph neural networks for spelling error

detection on sequence and word level, as well as spelling error correction. We show

that open vocabulary sequence-to-sequence Transformers can perform well for spelling

correction. We also experiment with ways to represent text not as sequences of tokens,

but rather as word graphs to be processed with graph neural networks. As a simple

way to boost spelling error detection performance we propose to enrich misspelled

input texts with additional word features.

Our models perform better than most of the strong baselines for both artificially

generated benchmarks and benchmarks built from real data. They achieve word

accuracies of over 98% for word-level spelling error detection and F1 scores of over

80% for spelling error correction, while running fast enough to be used in practice.

II

Contents

List of Figures IV

List of Tables V

List of Abbreviations VIII

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement and task definitions 2

2 Related Work 7

2.1 Classical methods . 7

2.2 Deep Learning methods . 8

2.2.1 Spelling error correction . 9

2.2.2 Grammatical error correction 12

2.3 Contributions . 13

3 Background 14

3.1 Tokenization . 14

3.2 Transformer . 15

3.3 Graph neural network . 17

3.4 Edit operations and distances . 19

3.5 Beam search . 20

III

4 Approach 22

4.1 Data . 22

4.1.1 Tokenization . 23

4.1.2 Misspellings . 23

4.2 Models . 27

4.2.1 Models for spelling error detection 28

4.2.2 Models for spelling error correction 38

4.3 Training . 42

4.4 Inference . 45

5 Experiments 47

5.1 Benchmarks . 47

5.2 Baselines . 49

5.3 Evaluation metrics . 54

5.4 Results . 57

5.4.1 Benchmarks . 58

5.4.2 Runtimes . 61

6 Conclusion and future work 69

IV

List of Figures

1 Transformer architecture . 16

2 Word graph . 31

3 Word graph neighborhood . 32

4 Token graph . 33

5 Token graph neighborhood . 34

6 Transformer for word-level spelling error detection 35

7 Transformer+ for word-level spelling error detection 36

8 Graph neural networks for word-level spelling error detection 37

9 Tokenization repair plus spelling error detection 38

10 Transformer for spelling error correction 39

11 Word Transformer for spelling error correction 40

12 Tokenization repair plus spelling error detection and correction . . . 41

V

List of Tables

1 Model overview . 42

2 Dataset overview . 43

3 Word-level spelling error detection and spelling error correction bench-

marks . 49

4 Sequence-level spelling error detection benchmarks 49

5 Sequence-level spelling error detection: F1 58

6 Sequence-level spelling error detection: Sequence accuracy 59

7 Sequence-level spelling error detection Neuspell: F1 60

8 Sequence-level spelling error detection Neuspell: Sequence accuracy . 61

9 Word-level spelling error detection: F1 62

10 Word-level spelling error detection: F1 62

11 Word-level spelling error detection Neuspell:F1 63

12 Word-level spelling error detection 63

13 Spelling error correction: Mean normalized edit distance 64

14 Spelling error correction: Correction F1 64

15 Spelling error correction Neuspell: Mean normalized edit distance . . 65

16 Spelling error correction Neuspell: Correction F1 65

17 Spelling error correction Combined: Mean normalized edit distance . 66

18 Spelling error correction Combined: Correction F1 67

19 Spelling error correction Whitespace: Mean normalized edit distance 67

20 Spelling error correction Whitespace: Correction F1 67

VI

21 Runtimes . 68

VII

List of Abbreviations

NLP Natural language processing

OCR Optical character recognition

SEC Spelling error correction

SEDS Sequence-level spelling error detec-

tion

SEDW Word-level spelling error detec-

tion

GEC Grammatical error correction

LSTM Long short-term memory

RNN Recurrent neural network

Seq2Seq Sequence-to-sequence

BPE Byte pair encoding

GNN Graph neural network

MLP Multilayer perceptron

TR Tokenization repair

TR+ Tokenization repair plus spelling

error detection

TR++ Tokenization repair plus spelling

error detection and correction

MNED Mean normalized edit distance

VIII

1 Introduction

The earliest works on computer-based automatic spelling correction date back to

the 1960s. And although the problem of detecting and correcting spelling errors has

received a lot of attention in research ever since, it is still considered to be an ongoing

and challenging problem today. In this work we focus on ways to apply and extend

two recent deep learning architectures, the Transformer and graph neural networks,

to different tasks revolving around detecting and correcting spelling errors in natural

language text. We subsume these tasks under the term spell checking.

1.1 Motivation

The obvious use case for spell checking systems is to correct errors in human written

text of any form, including emails, documents, text messages, and more. While this

alone should be reason enough to get people interested in spell checking methods,

there are more potential applications.

Wherever humans interface with computer systems via natural language, there exists

the possibility of misspelled human input. Misspellings can happen while entering

data into databases, searching for information, communicating with a chat bot, and so

on. In almost all cases they come with detrimental effects on performance of natural

language processing (NLP) systems working in the background. For example, Belinkov

and Bisk (2018) report that noisy input texts can easily break machine translation

systems. J. Gao et al. (2018) find that only small character-level perturbations in text

1

can lead to large perfomance drops for modern text classfication, sentiment analysis,

and spam detection models. And Google reports that about 10% of the search queries

they receive are misspelled (Pandu Nayak, 2021). If Google did not make an effort to

be to able to deal with misspelled queries, one out of ten users might not find what

they are looking for. For all these problems two possible solutions come to mind:

Firstly, designing NLP systems in such a way that they are inherently robust against

corrupted input. And secondly, fixing the corrupted input before putting it into the

system. Spell checking is particularly useful to support the latter approach.

Sometimes we also have to deal with misspellings in text that was not put into, but

generated by a computer system. The most prominent examples are optical character

recognition (OCR) and PDF text extraction systems. These systems are known to

be prone to confusing similar looking characters or omitting characters completely

(Hládek, Staš, and Pleva, 2020; Kukich, 1992). Spell checking methods are one way

to reduce such errors afterwards.

Overall, there is great benefit in detecting and correcting spelling errors both as a

preprocessing method to improve performance of subsequent NLP systems and as

a postprocessing method to correct outputs from OCR, text extraction, or other

systems, that produce natural language text.

1.2 Problem statement and task definitions

To formalize the problem of detecting and correcting spelling errors in text we define

three distinct but related tasks which we will look at in this work:

1. Sequence-level spelling error detection (SEDS)

Given a potentially misspelled text S, assign it a label l ∈ {0, 1} where 0 means

that S does not contain a spelling error and 1 means that S does contain a spelling

2

error.

Examples

This tetx has an eror! → 1

This is a text without misspellings. → 0

2. Word-level spelling error detection (SEDW)

Given a potentially misspelled text S, assign it a sequence of labels L = (l1, ..., ln)

with li ∈ {0, 1}. Each label li corresponds to the ith whitespace separated word si

in S. A label li = 0 means that si does not contain a spelling error whereas li = 1

means that si does contain a spelling error.

Examples

This tetx has an eror! → (0, 1, 0, 0, 1)

This is a text without misspellings. → (0, 0, 0, 0, 0, 0)

3. Spelling error correction (SEC)

Given a potentially misspelled text S, predict the corrected text without misspellings

S′.

Examples

This tetx has an eror! → This text has an error!

This is a text without misspellings. → This is a text without misspellings.

The three tasks are ordered in increasing complexity and scope of application. This

is because each task can be used as a subroutine to solve its preceding tasks. In other

words, any spelling error correction algorithm can be used to detect spelling errors on

3

a word or sequence level. Also any algorithm that detects spelling errors on a word

level can be used to detect spelling errors on a sequence level. We show how this can

be done below. However, this does not mean that the SEDS and SEDW tasks are

irrelevant in practice. On the one hand, detecting spelling errors might be enough for

a particular application so there is no need to make the task more complex. On the

other hand, spelling error detection methods can be leveraged to improve spelling

error correction methods both regarding runtime and performance, which we will

demonstrate later in this work.

SEDW using SEC For every whitespace separated word si in the input text

S = (s1, ..., sn), find whether si was changed by the SEC algorithm predicting

S′. Afterwards the corresponding SEDW output L = (l1, ..., l|S|) is obtained by

predicting

li =


1 if si was changed

0 else
.

How exactly one should determine if an input word si was changed can be dependent

on the particular SEC algorithm in use. If e.g. a SEC algorithm guarantees that every

input word si will be corrected to exactly one output word s′i, meaning |S| = |S′|,

the SEDW output L = (l1, ..., l|S|) can be obtained by predicting

li =


1 if si 6= s′i

0 else.

An example of such an algorithm would be to replace every input word by its most

similar word from a dictionary.

We present a way to convert SEC outputs to SEDW independent from the choice of

SEC algorithm in section 5.2 and use it for our SEDW baselines.

SEDS using SEDW Reducing the output L = (l1, ..., ln) of a SEDW algorithm

4

to the corresponding SEDS output can be achieved by predicting

l =


1 if

∑n
1 li > 0

0 else.

This is equivalent to predicting that a text must contain a spelling error if any single

word in the text contains a spelling error.

SEDS using SEC By transitivity every SEC output can also be reduced to a

SEDS output by first reducing it to SEDW and then from SEDW to SEDS. Another

equivalent and more intuitive way is to predict

l =


1 if S 6= S′

0 else,

implying that a text must contain a spelling error if it is changed by a SEC algorithm.

Limitations and boundaries

In this work we focus on spell checking English text only. Following Kukich (1992)

and Hládek, Staš, and Pleva (2020), we define a spelling error to be an error falling

into one of these two categories:

Cognitive errors: Errors created by a person not knowing or having the

ability to determine the correct spelling of a word. These errors are most of the

time orthographically or phonetically similar to the intended word (e.g. whale

→ wale).

Typographic errors: Errors created by a person mistyping on the input

device by accident (e.g. typing → typign). OCR errors are usually also seen as

typographic errors because they often originate from unintentional substitutions,

insertions or deletions of single characters.

5

Note that one can not always make a clear decision about which category a spelling

error belongs to. Both cognitive and typographic errors can be further assigned to

two error types:

Nonword errors: Errors that result in invalid words (e.g. error → erorr).

Real-word errors: Errors that result in orthographically correct words, but

are misspellings within their context (e.g. He is from Germany. → He is form

Germany.).

We attempt to address all of these variants of spelling errors in this work: nonword,

real-word, cognitive, and typographic errors. We think that errors regarding e.g.

word choice, word ordering, inserting missing words, deleting superfluous words, or

punctuation fall into the broader category of grammatical errors and do not consider

them. In general, we think of correcting spelling errors as the minimum amount of

editing we have to apply to obtain a correct English text.

Additionally, we assume that the text to be spell checked has correct whitespacing.

This means that we expect no spelling errors of the following two forms:

• Merged words: He isplaying football.

• Split words: He is playing foot ball.

But since split and merged words occur frequently in practice (Kukich, 1992), e.g.

in OCR systems, we will look at ways to relax this assumption later during this

work.

6

2 Related Work

This chapter presents classical and modern Deep Learning based methods for spell

checking and the related field of grammatical error correction (GEC). We state our

contributions to spell checking at the end.

2.1 Classical methods

We consider all spell checking methods that do not involve a Deep Learning component

as classical methods. Most of the early classical works focus on correcting misspelled

words in isolation. That is, given a single misspelled word, find its correct spelling

without having access to its surrounding context.

The pioneering work from Damerau (1964) identifies that about 80% of all misspellings

are the result of applying one of the following four edit operations to a correct word:

• Deletion of a character,

• insertion of a character,

• replacement of a character,

• or transposition of two adjacent characters.

Based on this findings Damerau (1964) presents a spell checking technique to identify

the correct spelling of words by comparing them with correctly spelled words from a

dictionary and checking whether they either match exactly or they differ by one of the

above mentioned edit operations. His simple technique is able to identify the correct

7

spelling for over 95% of words with single character misspellings. Together with

Levenshtein (1966) this work resulted in the Damerau-Levenshtein edit distance metric

for computing distances between text. Today, computing edit distances between

misspelled words and words from a dictionary is still the central working principle of

many modern spell checkers like Aspell (Atkinson, 2009).

By definition, correcting misspellings in isolation can only detect nonword errors.

Real-word errors, which make up between 25% and 40% of all spelling errors (Kukich,

1992), need context information to be detected and corrected. Therefore, later works

increasingly focused on context-dependent spelling correction. For example, Mays,

Damerau, and Mercer (1991) use trigram word probabilities extracted from a large

text corpus as a language model to score the well-formedness of sequences of words.

Golding and Roth (1998) learn an ensemble of linear classifiers for every word in a

vocabulary to predict whether a word belongs into the sentence it appeared in. The

input to these classifiers are over 10,000 different features that are extracted from

the word context in the sentence. During inference, the learned ensemble for every

word in a confusion set produces an output activation given by a weighted majority

mechanism among all classifiers. The highest output activation then determines the

word from the confusion set that will be selected as the correct word belonging into

the sentence.

2.2 Deep Learning methods

In contrast to classical methods, methods relying on Deep Learning are exclusively

context-dependent. In fact, the ability to learn how to incorporate large contexts into

their predictions from data is one of the main reasons for their success. Improvements

in neural language models, the availability of large-scale datasets from the web, and

advancements in machine learning accelerators such as GPUs and TPUs add to

that.

8

2.2.1 Spelling error correction

We divide the research on spelling error correction into three groups based on the type

of model each work uses: a unidirectional language model, a bidirectional encoder

model, or an encoder-decoder model.

Unidirectional language model

Hertel (2019) proposes NLMSpell, a spelling corrector based on an unidirectional long

short-term memory (LSTM) language model with attention. The language model is

used to score candidate corrections from a candidate set for each word in an input

sequence. When combined with beam search decoding this approach achieves high

F1 scores of over 91% and 88% for artifical and realistic misspellings respectively.

However, the approach is slow because of the large amount of candidates it has to

score and limited to correct misspellings consisting of up to two edit, merge or split

operations with a fixed ouptut vocabulary of 100,000 words.

Recent large-scale unidirectional Transformer (Vaswani et al., 2017) language models

like GPT-3 (Brown et al., 2020) or PaLM (Chowdhery et al., 2022) show remarkable

task-agnostic zero-shot and few-shot performance. They are able to perform well on

tasks they were not explicitly trained for simply due to their size (GPT-3 has 175B

parameters, PaLM has 540B parameters) and the amount of data they are trained on.

We are interested how they generalize to spell checking and use GPT-3 as a baseline

for our spelling correction benchmarks later in this work. We especially expect it to

excel at resolving ambiguous or context-dependent spelling errors because of its high

language modeling capabilities.

9

Bidirectional encoder

Neuspell (Jayanthi, Pruthi, and Neubig, 2020) is a neural spelling error correction

toolkit. It treats spelling error correction as a word-level classification task with

a fixed output vocabulary. All available models in Neuspell compute character or

subword-level representations using bidirectional neural models and then aggregate

them to the word level before classification. Their best model is a finetuned version

of BERT (Devlin et al., 2019). Neuspell also provides three training datasets that

are all artificially corrupted versions of the One Billion Word Benchmark (Chelba

et al., 2014) using different noising strategies, as well as four spelling error correction

benchmarks created by extracting real-world spelling errors from the GEC datasets

of the BEA-2019 GEC task (Bryant et al., 2019) and JFLEG (Napoles, Sakaguchi,

and Tetreault, 2017).

Li et al. (2018) and Tran et al. (2021) propose similar two-stage approaches to spelling

error correction that utilize both character and word information.

Li et al. (2018) first process the characters of each input word individually with a

character recurrent neural network (RNN) for orthographic information and afterwards

incorporate context across words with a second bidirectional RNN. A classifier then

predicts a correction for each word. They outperform two other RNN based models

and an open source spell checker on the JFLEG dataset.

Tran et al. (2021) predict for each word in the input sequence whether it is misspelled

and, if so, predict a correction from a fixed output vocabulary. For encoding they use

two standard Transformer encoders, one on character and one on word level, that are

applied after each other. The authors achieve state-of-the-art results, but only train

and evaluate their approach on Vietnamese data.

HCTagger (M. Gao, Xu, and Shi, 2021) builds upon the work by Awasthi et al. (2019)

on local sequence transduction. It uses a pretrained bidirectional character-level

language model and a bidirectional LSTM on top of that to encode misspelled text.

10

The encoded character representations are then used to predict edit operations for

each character that specify how to correct the misspelled text. These edit operations

are part of a predetermined fixed set of basic character transformations (e.g. keep a

character, replace a with o, insert e, etc.). The authors achieve comparable results

to a sequence-to-sequence (Seq2Seq) Transformer while being much faster. However,

HCTagger is particulary designed for short text spelling error correction and only

trained and evaluated on Twitter texts and search queries.

Encoder-decoder

Encoder-decoder models are widespread for tackling Seq2Seq problems. Generally,

the encoder generates hidden representations of an input sequence that are then used

by the decoder to autoregressively predict the output sequence.

Both Y. Zhou, Porwal, and Konow (2019) and Ahmadi (2018) treat spelling correction

as a Seq2Seq machine translation problem from misspelled to correct texts.

Y. Zhou, Porwal, and Konow (2019) apply character-level and word-level LSTMs to

e-commerce queries and get better results than prior work that uses statistical machine

translation on the same domain. Ahmadi (2018) applies a character-level LSTM to

Arabic text and compares it to unidirectional and bidirectional sequence-labeling

LSTMs.

Finally, Hertel (2019) also studies the Transformer encoder-decoder model for trans-

lating incorrect to correct sequences, but finds that it performs worse than the

language-model-based spelling corrector NLMSpell mentioned above.

Overall, we consider Jayanthi, Pruthi, and Neubig (2020), Li et al. (2018), and Hertel

(2019) to be the most closely related works to ours because they are the only ones

that focus on general purpose English spelling correction.

11

2.2.2 Grammatical error correction

GEC can be seen as a superset of spelling correction. It includes spelling error

correction as a subproblem, but further cares about issues related to text fluency,

choice of words, punctuation and more.

For example, a spelling corrector might correct the sentence We take an elavator to

reach the top of the high bulding. to We take an elevator to reach the top of the high

building., a GEC method to We take an elevator to the top of the skyscraper..

Most works from the literature model GEC as a Seq2Seq problem, relying on different

Deep Learning architectures like RNNs (Ge, Wei, and M. Zhou, 2018), convolutional

neural networks (Chollampatt and Ng, 2018), Transformers (Junczys-Dowmunt et al.,

2018), or hybrid approaches combining statistical and neural machine translation

(Grundkiewicz and Junczys-Dowmunt, 2018).

Because Seq2Seq models in general require large amounts of data to work well, there

has also been significant effort to improve GEC by synthetically generating datasets

or unsupervised pretraining (Lichtarge et al., 2019; Grundkiewicz, Junczys-Dowmunt,

and Heafield, 2019; Stahlberg and Kumar, 2021; Yasunaga, Leskovec, and Liang,

2021).

Current state of the art for GEC is achieved by GECToR (Omelianchuk et al., 2020).

Similar to HCTagger (M. Gao, Xu, and Shi, 2021) for spelling correction, GECToR is

a local sequence transduction method (Awasthi et al., 2019) that can alter sequences

by predicting edit operations for each input token in parallel. GECToR defines its

edit operations on token level (e.g. capitalize token, append for to token, keep token,

etc.) and uses pretrained bidirectional Transformers like BERT (Devlin et al., 2019)

or XLNet (Z. Yang et al., 2020) for encoding. Because correcting some grammatical

errors might depend on the correction of others, GECToR can be applied for multiple

iterations, such that the output of the previous iteration is the input to the current

one.

12

2.3 Contributions

We contribute the following to the field of spell checking:

• We investigate the usage of Transformer-based model architectures for spelling

error correction in the sequence-to-sequence framework.

• We investigate the usage of Transformer-based model architectures for spelling

error detection in the bidirectional encoder framework.

• We propose a novel model architecture for spelling error detection formulated

as a graph neural network.

• We propose the use of word features to enhance spelling error detection models.

• We study the use of pretrained tokenization repair models as fixed feature

extraction backbones for spelling error detection and correction models.

• We provide an extensive evaluation of our models and various baselines on

benchmarks generated by us and benchmarks from the literature.

• We show that spelling error detection can be used to improve spelling error

correction models in runtime and performance.

• Our models match or exceed the performance of strong baselines on most of

the benchmarks while achieving runtimes fast enough to be used in practice.

• We make all of our models accessible in an easy to use spell checking toolbox.1

1https://bastiscode.github.io/spell_check

13

https://bastiscode.github.io/spell_check

3 Background

This chapter introduces relevant background information, notation, and definitions

for the reader to understand the following chapters.

3.1 Tokenization

Tokenization is the process of splitting up text into smaller blocks. These block are

called tokens. The set of all unique tokens a tokenization scheme can produce form

a vocabulary. This vocabulary is typically limited in size to a maximum number

of tokens and extended with special entries for unknown tokens (<unk>), padding

tokens (<pad>), and tokens that mark the beginning (<bos>) or end (<eos>) of

sequences.

The most common ways to tokenize text are:

• Whitespace tokenization: Split text on whitespaces.

Tokenize this sentence! → (Tokenize, this, sentence!)

• Regex tokenization: Split text with a regular expression. This is often used to

separate words from punctuation.

Tokenize this sentence! → (Tokenize, this, sentence, !)

• Subword tokenization: Split text into chunks of one or more characters up to

full words called subwords. Subwords are usually determined by extracting

14

frequency statistics from a training corpus.1

Tokenize this sentence! → (To, ken, ize, #this, #sent, ence, !)

• Character tokenization: Split text into its characters.

Tokenize this sentence! → (T, o, k, e, n, i, z, e, #, t, h, i, s, #, s, e, n, t, e, n,

c, e, !)

In this work all of the above mentioned tokenization schemes come into use. For

subword tokenization in particular we use the byte pair encoding (BPE) algorithm.

Byte pair encoding BPE (Sennrich, Haddow, and Birch, 2016) starts with

an initial vocabulary containing only single characters as tokens. It then extracts

frequency statistics for all consecutive pairs of tokens in the vocabulary from a training

corpus. The token pair with the highest frequency gets merged into a single token,

added to the vocabulary and all of its occurrences in the training corpus are replaced

with the merged token. This process is repeated for a given number of iterations.

Merges across word boundaries are not allowed, which means that the final vocabulary

can never contain tokens longer than a single word.

While the original formulation in Sennrich, Haddow, and Birch (2016) uses characters,

BPE can also be used with all 256 bytes as initial vocabulary. In this case calculating

frequency statistics and merging is done with consecutive pairs of bytes rather than

characters. This approach has the benefit that it can represent all possible texts

without a special <unk> token.

3.2 Transformer

The Transformer is an encoder-decoder model introduced by Vaswani et al. (2017).

Its ability to dynamically exchange information over large contexts and fast parallel

training and inference (in the encoder) has led to it being the backbone of virtually

any state-of-the-start model in the NLP domain today.
1Spaces are shown as #.

15

Figure 1: Transformer architecture (Image from Vaswani et al. (2017))

Figure 1 shows the Transformer model architecture. Its basic building blocks are a

feed forward block2 applied to all input positions separately

ffn(x) = linear(activation(linear(x)))

2Usually the inner linear layer projects to a high number of dimensions and the outer linear layer
projects back to the original number of input dimensions.

16

and a multi-head attention block3

multihead(Q,K, V) = (head1‖ . . . ‖headh)WO

with attention(Q,K, V) = softmax
(
QKT

√
dk

V

)
and headi = attention(QWQ

i ,KW
K
i , V W

V
i)

where h is the number of attention heads, dk is the dimensionality of K, and

WO,WQ
i ,W

K
i ,W

V
i are learnable weight matrices.

The feed forward and multi-head attention blocks then form together with residual

connections and layer normalization (Ba, Kiros, and Hinton, 2016) Transformer

encoder and decoder layers. Encoder layers use a single self-attention4 block for

exchanging information among all inputs. Decoder layers use one masked self-attention

block5 for retrieving previous outputs and one cross-attention6 block for retrieving

encoder outputs.

Because the Transformer processes its inputs in parallel, the attention block is

permutation invariant7, and the feed forward block is permutation equivariant8 there

is no notion of position imposed on the inputs by the architecture itself (as opposed

to e.g. RNNs and CNNs). However, for language tasks the order in which tokens

appear usually contains important information. Vaswani et al. (2017) solve this by

adding learned or fixed positional encodings to the inputs before feeding them into

the Transformer.

3.3 Graph neural network

Graph neural networks (GNNs) are a class of neural models that can process graph-
3‖ denotes concatentation.
4A multi-head attention block with inputs Q = K = V .
5During training the self-attention mechanism at each decoder position is restricted to itself and
previous positions to emulate the conditions during inference.

6A multi-head attention block with inputs Q and K = V .
7The output does not change when shuffling the inputs.
8The output changes in the same way the inputs are shuffled.

17

structured inputs. We follow the common way of formalizing a GNN via the message

passing framework and adapt the notation from Hamilton (2020) and Hu et al.

(2020).

A directed graph G = (V, E ,A,R) is a tuple of nodes V , edges E , node types A, and

edge types R. The functions τ : V → A and φ : E → R map nodes v ∈ V and edges

e ∈ E to their types. An edge e = (u, v) from source node u to destination node v

can be associated with a relation (τ(u), φ(e), τ(v)) that is a tuple of the types of the

source node, edge, and destination node. Graphs with one node type and one edge

type (|A| = 1 and |R| = 1) are called homogeneous, graphs with more than one node

or edge type are called heterogeneous.

Given a graph G and a set of node features {xu | u ∈ V}, xu ∈ Rd we want to compute

node representations9 zu, ∀u ∈ V. Usually we initialize hidden representations

h0u = xu, ∀u ∈ V

with the node features, perform L steps of message passing

hlu = messagepassingl
(
hl−1u

)
to update the hidden representations, and use the final hidden representations

zu = hLu ,∀u ∈ V

as node representations. Each message passing iteration can be seen as the equivalent

to a layer in other neural architectures. Similar to other architectures we can either

use the same set of learned parameters θ (parameter sharing) or learn and use a new

set of parameters θl for every GNN layer.

The message passing step is executed in parallel for all nodes u ∈ V and composed

9There are also ways to incorporate edge features and compute edge representations with GNNs
but we do not use them in this work.

18

of an aggregation and an update function. The aggregation function produces an

aggregated representationml
N (u) over node neighbors

10 called a message. The message

is then passed to the update function together with the current node representation:

hlu = messagepassingl
(
hl−1u

)
= updatel

(
hl−1u ,ml−1

N (u)

)
= updatel

(
hl−1u , aggregatel

({
hl−1v | v ∈ N (u)

}))
.

The aggregation function has to be permutation invariant because it takes a set as

input, but besides that it and the update function can be arbitrary differentiable

functions like e.g. multilayer perceptrons (MLPs) (Hamilton, 2020). For heterogeneous

graphs the aggregation function often consists of two stages: First, the messages

for every relation in the neighborhood of u are computed separately. And then the

messages are aggregated over all relations.

Transformer as GNN From a graph perspective the Transformer is an instance of

a GNN that uses multi-head attention as aggregation function and a feed forward block

as update function to perform message passing over a homogeneous fully-connected

graph (Hamilton, 2020; Joshi, 2020; Bronstein et al., 2021).

3.4 Edit operations and distances

Given two strings a and b, we can calculate a sequence of basic character transfor-

mations that turn a into b. We call them edit operations. The minimum number

of edit operations it takes to turn a into b is called the edit distance. If we allow

insertions, deletions, and replacements of characters as possible transformations, we

call this the Levenshtein edit distance. Further allowing the transposition of two

adjacent character gives us the Damerau-Levenshtein edit distance (Damerau, 1964;

10The neighbors N (u) = {v | (v, u) ∈ E} of a node u are all nodes for which an edge from v to u
exists.

19

Levenshtein, 1966; Boytsov, 2011). In practice, calculating the edit distance between

two strings is typically implemented with the dynamic programming approach by

Wagner and Lowrance (1975).

Unless stated otherwise, we always refer to the Levenshtein edit distance without

transpositions when we talk about edit distances or edit operations in the following

chapters.

3.5 Beam search

In Seq2Seq architectures the decoder at each step t models a distribution p(yt |

x, y<t), yt ∈ Y over an output vocabulary Y given an input sequence x and previous

outputs y<t = (y1, . . . , yt−1).

The overall probability of an output sequence y = (y1, . . . , yt) generated by such a

decoder is the product of probabilities at each step:

p(y1, . . . , yt) =
t∏
i=1

p(yi | x, y<i).

A common procedure is to generate the output sequence by choosing the output with

the highest probability at each step. This is called greedy search:

yt = argmax
yv∈Y

p(yv | x, y<t).

However, greedy search can find sub-optimal solutions because decoding paths with

lower probability will never be visited even if they would turn out to have a higher

overall probability in the end.

In contrast, beam search with beam width b keeps the top b partial solutions at each

step based on their sequence probability (Y. Yang, Huang, and Ma, 2018). Note that

beam search with b = 1 is equal to greedy search. At step t the set of partial solutions

20

Bt will therefore be (notation adapted from (Y. Yang, Huang, and Ma, 2018)):

B0 = {((<bos>), 1)},

Bt = top
b
{(y′‖yt, s · p(yt | x, y′)) | (y′, s) ∈ Bt−1 and yt ∈ V}.

While still not being optimal, beam search usually performs better than greedy search

at the cost of being slower and requiring more memory.

In our batched implementation of beam search, we record all finished paths (ending

with <eos>) that we encounter during decoding and stop once the overall best

path finishes or we hit a predetermined maximum search depth dmax. All solution

candidates are scored by their normalized sequence probability and the best one is

returned as solution:

top
1

{(
y,
p(y)

|y|

) ∣∣∣ y ends with <eos> or |y| = dmax

}
.

21

4 Approach

This chapter describes the proposed models for the SEDS, SEDW, and SEC tasks

as well as other important aspects like the datasets used or the spell checking

procedure.

4.1 Data

We use a full English Wikipedia dump1 (Wikidump) and the Bookcorpus dataset2

as our base datasets. They contain diverse texts from various domains and can be

assumed to be mostly free of misspellings.

We extract articles from Wikidump using WikiExtractor3 and split them and all

books in Bookcorpus into paragraphs on newlines. Finally, to clean the data we

remove empty paragraphs, paragraphs containing any kind of markup, and paragraphs

that do not contain any alphabetic characters using regular expressions and remove

duplicate, leading, and trailing whitespaces from those who did not get removed.

By this procedure we end up with 69,174,513 cleaned paragraphs for Wikidump and

35,459,363 for Bookcorpus. We reserve about 1% of all cleaned data for development

and testing, the rest is used for training. We also use the three training datasets by

Neuspell (Jayanthi, Pruthi, and Neubig, 2020) with a total of 4,095,638 misspelled-

correct sentence pairs for finetuning on sentence-level data.

1https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
2https://battle.shawwn.com/sdb/books1/books1.tar.gz or https://huggingface.co/datasets/bookcorpusopen
3https://github.com/attardi/wikiextractor

22

https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://battle.shawwn.com/sdb/books1/books1.tar.gz
https://huggingface.co/datasets/bookcorpusopen
https://github.com/attardi/wikiextractor

4.1.1 Tokenization

For regex tokenization we employ the following regex: \w\S+\w|\w+|[^\w\s]+. This

is a modified version of the regex used by Hugging Face (2022) for splitting strings

into words. It differs by the first expression \w\S+\w which is there to avoid splitting

hyphenated words or words containing other punctuation marks in between their

first and last characters. For example, the Hugging Face regex \w+|[^\w\s]+ splits

Welcome to U.S.A! into (Welcome, to, U, ., S, ., A, !), but with our added expression

the text splits into (Welcome, to, U.S.A, !). Note that we keep track of the whitespace

information in the input text, which is removed when splitting with our regex, so we

can restore the original text anytime.

For subword tokenization we use the byte-level BPE implementation from Hugging

Face (2022). We respect whitespace information as leading whitespaces belonging to

the word that comes after them (e.g. Welcome to U.S.A! is tokenized into (W, el, c,

ome, #to, #U, ., S, ., A, !). We train our tokenizer to a maximum vocabulary size

of 10,000 tokens on a subset of the Wikidump and Bookcorpus training paragraphs.

This is a decent tradeoff between vocabulary size and tokenization granularity which

affects training and inference speed.

4.1.2 Misspellings

To our knowledge there exist no large datasets with pairs of misspelled and correct

sequences for spelling error correction. Similar to most prior work we therefore focus

on corrupting correctly spelled texts to generate training data ourselves. We define

two methods to inject misspellings into text that we expect to cover the spelling error

types occurring in real data:

• Artificial for generating arbitrary typographic errors and

• Realistic for generating real-world typographic and cognitive errors.

23

Both methods are able to generate real-word and nonword errors, so they are covered

too.

Artificial

We produce artificial misspellings by applying one or more of the four edit operations

insertion, deletion, replacement and transposition defined by Damerau (1964) to

correctly spelled words.

First, we sample the number of edit operations to apply k from a geometric distribu-

tion

P(X = k) = p · (1− p)k−1

with k ∈ Z+ and p = 0.8. This follows the findings in Damerau (1964) because about

80% of our artificial misspellings will be the result of applying one edit operation.

Afterwards, we perform k rounds of editing. Each round, we first uniformly sample

the type of edit operation from all valid edit operations (e.g. we can not perform a

transposition if the word only has one character). For insert and replace operations

we also uniformly sample the character to insert or use as replacement from the set

of all lowercase and uppercase letters in the English alphabet. Then we uniformly

sample a valid character position within the word and apply the edit operation at

that position. We keep track of the character positions that were previously edited,

such that when we sample k > 1 we do not edit the same characters multiple times.

This way we can be sure the word will be edited and avoid cases like e.g. deleting a

previously inserted character.

Realistic

To generate realistic misspellings we replace correctly spelled words with a uniformly

sampled misspelling from a confusion set. We build the confusion sets using the

24

following sources of misspellings:

• Misspelling corpora made available by Roger Mitton4

• Wikipedia’s list of common misspellings5

• Spelling errors extracted from essays written for TOEFL exams 6

• Aspell’s and Hunspell’s7 top five replacement suggestions for every word in an

English dictionary

• Typos extracted from Tweets8

• List of homophones9

• Facebook’s list of 20M pairs of correctly and misspelled words, generated based

on an error model extracted from search engine query logs (Piktus et al., 2019)10

• Errors of type R:SPELL, R:ORTH, R:NOUN:INFL, R:NOUN:NUM, R:VERB:FORM

R:VERB:INFL, R:VERB:SVA, or R:VERB:TENSE extracted from the anno-

tated datasets of the BEA-2019 GEC task11

• Neuspell’s word replacement list with pairs of correctly and misspelled words 12

After filtering out any invalid words or misspellings we obtain a total of 2,303,867

misspellings for 119,725 correct words, which means there are on average 19 mis-

spellings in the confusion set of every word. For example, the confusion set for the

word playing contains 155 misspellings such as plaiing, plaiyng, pleying, pplaying,

playinng, or Playing.

We split the misspellings into disjoint sets for training, development, and testing

holding 95%, 2.5%, and 2.5% of all misspellings respectively.

Since we later want to evaluate on the Neuspell benchmarks which are built from

sequences and spelling errors from the BEA-2019 datasets, we create a second set

4https://www.dcs.bbk.ac.uk/ ROGER/corpora.html
5https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
6https://github.com/EducationalTestingService/TOEFL-Spell
7http://hunspell.github.io/
8https://luululu.com/tweet/
9https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/speech/database/homofonz/0.html
10https://github.com/facebookresearch/moe
11https://www.cl.cam.ac.uk/research/nl/bea2019st/
12https://github.com/neuspell/neuspell

25

https://www.dcs.bbk.ac.uk/~ROGER/corpora.html
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
https://github.com/EducationalTestingService/TOEFL-Spell
http://hunspell.github.io/
https://luululu.com/tweet/
https://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/speech/database/homofonz/0.html
https://github.com/facebookresearch/moe
https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://github.com/neuspell/neuspell

of misspellings that contain misspellings from all but the last two sources from

above. We use this set for training all models that will be evaluated on the Neuspell

benchmarks. Not excluding those misspellings from our confusion sets could lead to

serious data leakage.

Injecting misspellings

To inject misspellings into text we first split it with our regex tokenizer and then

corrupt each word with probability pcorrupt = 0.2. Because we believe the errors

created by the Realistic method to be harder to correct and more relevant in practice,

we choose to create 80% of misspellings with the Realistic and 20% of the misspellings

with the Artificial method. Therefore, we set prealistic = 0.8 · pcorrupt = 0.16 and

partificial = (1− 0.8) · pcorrupt = 0.04, such that overall about 16% and 4% of all words

will be realistic and artificial misspellings respectively.

We adjust partificial and prealistic on a per-sample basis to account for words that can

or must not be edited with our methods. Let n be the number of words in a text,

nartificial the number of words which we can corrupt with the Artificial method,13 and

nrealistic the number of words which we can corrupt with the Realistic method.14 We

update the corruption probabilities as follows:

partificial ←


partificial·n
nartificial

if nartificial > 0

0 else,

prealistic ←


prealistic·n
nrealistic

if nrealistic > 0

0 else.

Note that if n = nartificial = nrealistic partificial and prealistic do not change. We ignore

that partificial+prealistic in theory could get larger than one, because this never happens

13All except for numerical words or punctuation marks.
14All except for numerical words, punctuation marks, and words with an empty confusion set.

26

in practice due to nartificial and nrealistic typically being very close to n.

4.2 Models

This section introduces our model architectures for spelling error detection and

correction.

In accordance with our problem statement (see section 1.2) most of the models are

designed to work on text without split and merged words. However, we also state

that handling such errors is an important problem in practice that, if done properly,

significantly improves the capabilities of a spell checking system. Therefore, we adapt

the tokenization repair problem as an auxiliary task for spell checking and integrate

it into some of our models.

Tokenization repair The term tokenization repair (TR) was coined by Bast,

Hertel, and Mohamed (2020) and describes the task of correcting missing or spurious

spaces in text. Bast, Hertel, and Mohamed (2020) show that it is possible to achieve

good results for this problem both with and without misspelled input texts. They also

show that first repairing the whitespacing in text can significantly improve spelling

error correction methods applied afterwards. For our implementation we follow the

work by Walter (2021) which uses a Transformer encoder to predict whitespace repair

tokens for all characters in a text at once. This approach is much faster than the

one from Bast, Hertel, and Mohamed (2020) who use bidirectional LSTMs and beam

search, but gives similar quality results.

All our models are implemented using PyTorch (Paszke et al., 2019). To implement

GNNs we use the PyTorch backend of DGL (M. Wang et al., 2019).

We use a hidden dimensionality dhidden = 512 and learned input token embeddings

to which we add fixed sinusoidal positional encodings (Vaswani et al., 2017) for all

models.

27

4.2.1 Models for spelling error detection

We only define models for SEDW. For SEDS we convert the outputs from SEDW

models to the sequence level. During initial experiments with models explicitly

designed for SEDS we found them to be much more unstable during training15 and

more sensitive to distribution shifts in the number of misspellings between training

and test time than SEDW models.

We treat SEDW as a binary classification task and optimize all models with a standard

binary cross-entropy loss function. To achieve fast inference speeds we employ two

bidirectional encoder architectures, a Transformer encoder and a GNN, both of which

can detect spelling errors in parallel.

Furthermore, we have the idea of enriching regular text input with word-level features

specifically tailored towards spelling error detection. We perform our experiments

with the following 13 binary features:16

• is_punct : All characters of the current word are punctuation marks.

• is_currency : The word is a currency symbol.

• is_digit_or_like_num: The word is a number or represents one.

• like_url : The word resembles an URL.

• like_email : The word resembles an email address.

• has_trailing_whitespace: The character after the word is a whitespace.

• is_title: The word is in title case (first character is capitalized, the others are

lowercase).

• is_upper : All characters of the word are capitalized.

• is_lower : All characters of the word are lowercase.

• is_stop: The word is in a list of common English words (e.g. the, a, or and).

• is_alpha: The word consists of alphabetic characters only.

15One reason could be that sequence level labels are much more prone to noise in the training data
than word level labels.

16We derive all of the features except for in_dict and lower_in_dict from spaCy token objects
(https://spacy.io/api/token).

28

https://spacy.io/api/token

• in_dict : The word is in an English dictionary.

• lower_in_dict : The lowercase version of the word is in an English dictionary.

We hope that adding these features improves neural models by

• contributing strong low-noise signals for the presence (e.g. in_dict=false) or

absence (e.g. is_stop=true or is_punct=true) of spelling errors and

• providing a better starting point for training17 which can help in speeding up

convergence and finding regions of low loss especially during early stages.

The word features are supposed to be calculated for words after regex tokenization.

Features like in_dict or is_punct only make sense for separated punctuation and

word tokens. However, the output for SEDW is defined for words obtained by splitting

on whitespaces. To avoid confusion between these two notions of a word, we will call

words obtained by splitting on whitespaces whitespace words and words obtained by

regex tokenization regex words from now on.

We propose the use of GNNs because they learn token-level and regex-word-level

representations simultaneously and allow us to inject the regex-word features into the

graph directly from the beginning. These are both reasons why it might be able to

learn better representations than the Transformer architectures. Because GNNs take

graph structured input we need to define how to convert texts into graphs first.

Graph representation

We tokenize a text into a sequence of regex words w = (w1, . . . , wn). We then

tokenize every regex word wi into a sequence of subword tokens xi respecting leading

whitespaces. Let W be the set of all words, T be the set of all subword tokens and

17One can argue that, given the in_dict feature, the neural model starts training as out-of-dictionary
classifier and not from a random initialization.

29

s : T →W be a function that given a subword token returns the word it belongs to.

A word graph G = (V, E ,A,R) is then defined by nodes V =W ∪ T , edges

E ={(wsrc, wdst) | wsrc, wdst ∈ W}

∪ {(xsrc, xdst) | xsrc, xdst ∈ T and s(xsrc) = s(xdst)}

∪ {(xsrc, wdst) | xsrc ∈ T and wdst ∈ W and s(xsrc) = wdst},

node types A = {word, token} and edge types

R = {connects to token, connects to word, in, self}.

We define the node type function τ to be

τ(v) =


word if v ∈ W

token else

and the edge type function φ to be

φ(u, v) =



in if u ∈ T and v ∈ W

connects to token if u, v ∈ T and u 6= v

connects to word if u, v ∈ W and u 6= v

self else.

It follows that the set of possible relations in a word graph is

{(word, connects to word, word), (word, self, word),

(token, connects to token, token), (token, self, token),

(token, in, word)}.

A graphical depiction of a word graph for the text Corect this sentesne! is shown in

Figure 2.

30

C ore ct #this #sent es ne !

Corect this sentesne !

Token level

Word level

Figure 2: Word graph: A directed graph representing text on two levels: the word
and the token level. On the word level the graph contains a node for
every regex word in the text. The word nodes are then fully connected
including self loops (blue and red edges on word level). On the token level
we split each word further into subword tokens. We then fully connect
all tokens within the same word including self loops (black and red edges
on token level).18 Finally we connect the two levels by adding an edge
from every token to the word it is contained in (green edges from token
to word level). The blue rectangles represent the additional word features
associated with each regex word.

For reference we also show a token graph like it would be processed by the GNN

equivalent of a Transformer encoder in Figure 4. The self-attention mechanism, being

the aggregation function of a graph-based Transformer encoder, always aggregates

over all tokens (see Figure 5).

Model architectures

Transformer and Transformer+ Both models use the default Transformer en-

coder to encode sequences of subword tokens. The whitespace-word-level classification

head for both models is a two-layer MLP with a GELU activation (Hendrycks and

Gimpel, 2020) in between the layers.

For the Transformer model the inputs to the classification head are the whitespace-

31

C ore ct #this #sent es ne !

Corect this sentesne !

Token level

Word level

Figure 3: Word graph neighborhood: In a word graph the neighborhood of a
word is given by all other words, the word itself, and all tokens belonging
to it. In our example the Corect word has incoming edges from all other
words and itself as well as from the tokens C, ore, and ct. A token in a
word graph is connected with all other tokens that belong to the same
word and itself. For example, the #sent token has incoming edges from
the es and ne tokens and itself.

word-averaged token representations outputted by the last Transformer encoder layer.

For the Transformer+ model we add an additional aggregation stage between the

encoder and the classification head. In this stage we first average the token represen-

tations to regex-word representations, concatenate those with our 13 additional word

features, and pass them through a two-layer MLP with GELU activation. The regex-

word representations we get out the MLP are further averaged to whitespace-word

representations and fed into the classification head.

Figures 6 and 7 show the architectures of the Transformer and Transformer+ models.

GNN and GNN+ Both models receive a word graph as defined above as input.

We use our learned input token embeddings to initialize the hidden representations

h0v, ∀v ∈ T for all token nodes. To initialize the hidden representations h0u, ∀u ∈ W of

32

C ore ct #this #sent es ne !

Figure 4: Token graph: A homogeneous, fully-connected, and directed graph of
all tokens in a text including self loops. This graph structure is implicitly
assumed when we process token sequences using a Transformer encoder
with self-attention as mentioned in section 3.3.

the regex-word nodes, we average the token hidden representations per regex word:

Tu = {v | v ∈ T and s(v) = u},

h0u =
1

|Tu|
∑
v∈Tu

h0v.

Next we need to define our aggregation and update functions. There are three flavors

of GNN aggregation functions from which we can choose: Convolutional, attentional,

or general message passing (Bronstein et al., 2021). We choose the attentional style

which computes weighted aggregations based on the similarity between a node and

its neighbors because it is the most comparable to the Transformer’s multi-head

attention.

There are a number of previous works that use attention-based aggregation functions

in GNNs like Veličković et al. (2018), Hu et al. (2020), and X. Wang et al. (2021). Since

our word graph is a heterogeneous graph we also want to respect the different types

of relations in our aggregation function. That is why we choose to adapt a similar

parameterization approach to Hu et al. (2020) that uses separate weights for each node

and edge type and shares them across relations. To aggregate over the neighborhood

33

C ore ct #this #sent es ne !

Figure 5: Token graph neighborhood: In a token graph every token is connected
to every other token. This means that every single token has all tokens of
the sequence in its neighboorhod. In our example the #sent token has
incoming edges from all other tokens and itself.

of a node u, we determine all relations R = {(τ(v), φ(v, u), τ(u)) | v ∈ N (u)}19 the

node is a part of, separately aggregate over each relation using a multi-head attention

mechanism, then sum and project the results to get the message ml−1
N (u):

ml−1
N (u) =

(∑
r∈R

(headr1‖ . . . ‖headrh)

)
WO
τ(u),

headri = attention
(
QW

(Q,rdst)
i W

redge
i ,KW

(K,rsrc)
i W

redge
i , V W

(V,rsrc)
i W

redge
i

)
with Q = hl−1u ‖fu

and K = V = H l−1
N (u,r)‖FN (u,r),

whereN (u, r) are all neighbors of u for relation r and FN (u,r) and fu are the additional

word features for the neighbors and u respectively that we concatenate with their

hidden representations.20 We can see that the learnable weight matrices W for the

multi-head attention now also depend on node and edge types and that they are

shared across multiple relations.21

19We access the type of the source node, edge, and destination node for a relation r with rsrc, redge,
and rdst.

20Since we do not have additional features for token nodes they are just zero-dimensional vectors in
this case.

21We also learn type dependent bias vectors together with every weight matrix but omit them here
for clarity.

34

C ore ct #this #sent es ne !Encoder

Agg. Agg. Agg.

l̂1 l̂2 l̂3

f f f
Classifier

Figure 6: Transformer for word-level spelling error detection: The input
token representations are encoded with a standard Transformer encoder,
averaged to whitespace-word representations and passed through a shared
MLP classifier.

After aggregation we employ a simple residual connection and layer normalization as

update function to get hlu:

hlu = layernorm
(
hl−1u +ml−1

N (u)

)
.

The final whitespace-word-level classification head is again a shared two-layer MLP

whose inputs are the whitespace-word-averaged regex-word representations extracted

from the word nodes of the word graph. The only difference between the GNN and

GNN+ models is that GNN does not use the additional word features in the word

graph. A visualization of the GNN approach is shown in Figure 8.

Tokenization repair plus spelling error detection (TR+) This model uses

the medium-sized pretrained tokenization repair model by Walter (2021) as backbone.

We keep the parameters of the backbone fixed during training and only use it for

TR and feature extraction. In particular, we choose to learn a weighted average over

35

C ore ct #this #sent es ne !Encoder

Agg. ‖ Agg. ‖ Agg. ‖ Agg. ‖

Corect this sentesne !

Word features f f f f

Agg. Agg. Agg.

l̂1 l̂2 l̂3

f f f
Classifier

Figure 7: Transformer+ for word-level spelling error detection: First, we
encode the input tokens with a standard Transformer encoder. As an
intermediate step we average the token representation to regex-word
representations and concatenate them with additional word features.
After passing the regex-word representations through a shared MLP we
further average them to whitespace-word representations and feed them
into a shared MLP classifier.

representations extracted from the last three layers of the model. The reason is that

we can not tell which layer produces the best features for detecting spelling errors.

After running the TR backbone, we are given the repaired text and the weighted

character representations for every character in the original input text. We then

average the character representations of those characters that end up in the same word

in the repaired text to obtain a representation for every regex-word in the repaired

text. If e.g. the input text Cor ectt hi s sente sne! gets correctly repaired to Corect

this sentesne! we will average the representations of the characters at position 1, 2, 3,

36

C ore ct #this #sent es ne !

Corect this sentesne !

Encoder

Agg. Agg. Agg.

l̂1 l̂2 l̂3

f f f
Classifier

Figure 8: Graph neural networks for word-level spelling error detection:
First, the word graph is encoded using a GNN. Afterwards we extract the
regex-node hidden representations from the word graph, further average
them to whitespace-word representations and pass them through a shared
MLP classifier.

5, 6, and 7 in the input text to get the regex-word representation of the word Corect.

At this point we add our word features to the regex-word representations and encode

them further using a regular Transformer encoder. Then, the final step again consists

of averaging the regex-word representations to whitespace-word representations and

feeding them into a shared MLP classifier for spelling error detection. See Figure 9

for a depiction of this model.

37

1. Get character representation rc for all characters C as a weighted average over outputs h of the top n tokenization repair layers:
rc =

∑n
i=1wih

c
i for c ∈ C with

∑n
i=1wi = 1

2. Group characters representations into regex-word representations according to tokenization repair ouptut leaving out whitespaces

Character
representations

Agg. ‖ Agg. ‖ Agg. ‖ Agg. ‖Word features

Corect this sentesne !Word encoder

Agg. Agg. Agg.

l̂1 l̂2 l̂3

f f f
Classifier

ce#roC t . . . n e !

Figure 9: Tokenization repair plus spelling error detection: This approach
uses a fixed tokenization repair model to repair and simultaneously extract
character representation from an input text. We compute a weighted
average of the character representations over the topmost tokenization
repair layers and further average them into regex-word representations
according to the repaired input text. We then add word features to the
regex-word representations and encode them with a Transformer encoder.
The outputs of this word-level encoder are averaged to whitespace-word
representations and passed through a shared MLP classifier.

4.2.2 Models for spelling error correction

All of our models for spelling error correction are Transformer-based encoder-decoder

models within the Seq2Seq framework. The main reason for this is that we want to

be able to perform open vocabulary spelling correction instead of predicting words

from a fixed vocabulary. In favor of this versatility we sacrifice the fast inference

speeds achieved by methods relying on parallel encoders like Neuspell’s BERT model

or GECToR. However, later we also present ways that turn out to bridge the gap in

speed between encoder-decoder and encoder-only models that make use of the special

38

properties of the spelling correction problem and our spelling error detection models.

We treat spelling error correction as a multi-class classification problem over the set of

possible next tokens and optimize all models using a categorical cross-entropy loss.

Transformer This model use the original Transformer encoder-decoder architec-

ture unchanged. We turn a misspelled text into a sequence of subword tokens, encode

it, and predict the correctly spelled output sequence one subword after another. Its

architecture is shown in Figure 10.

C ore ct #this #sent es ne !Encoder

<bos> Cor rect #this #sentence !<bos> <eos>1. 2. 3. 4. 5. 6.
Decoder

Figure 10: Transformer for spelling error correction: A Transformer encoder-
decoder model used for transducing subword sequences with spelling
errors into subword sequences without spelling errors. The decoder has
access to all subword representations generated by the encoder and its
own previous outputs.

Transformer word This model is equivalent to the Transformer model from above

regarding its architectural components. However, we differ in the way we apply the

decoder part of the model. Instead of predicting the full spelling corrected output

sequence at once based on the full input context, here we restrict the decoder to

only having access to single whitespace-word contexts and only train it to correct the

corresponding whitespace word. This requires that the model incorporates all the

relevant information from other subwords into the subword representations of each

whitespace word during the encoding step, because the decoder will only have access

39

to those. But this change also enables us to correct all whitespace words in parallel

by sharing the decoder among them since the correction of words that come later in

a sequence does not need to wait anymore for all previous corrections to be finished.

We consider this model to be a compromise between an encoder-decoder model that

autoregressively corrects the whole input sequence and an encoder-only model that

predicts corrections from a fixed vocabulary in parallel. Its architecture is shown in

Figure 11.

C ore ct #this #sent es ne !Encoder

<bos> #sentence ! <eos>1. 2. 3.

Shared decoder

Figure 11: Word Transformer for spelling error correction: A Transformer
encoder-decoder model used for transducing every whitespace-word in a
text to its correction separately. The decoder has access to the encoder’s
subword representation of a single whitespace-word and its own previous
outputs for that whitespace-word. For clarity, we only show the decoder
as we would use it to correct the (#sent, es, ne, !) whitespace word,
but the same is done in parallel for the whitespace words (C, ore, ct)
and (#this).

Tokenization repair plus spelling error detection and correction (TR++)

This model extends the TR+ model with a shared decoder like in the Transformer word

model. The context made available to the shared decoder are both the regex-word

representations given by the Transformer word encoder and the averaged character

representations from the tokenization repair backbone. Therefore, we change the

standard Transformer decoder into a multi-context decoder, such that it is able to

40

perform not one but two multi-head cross-attention mechanisms per layer, for the

regex word and character contexts respectively. Since the model tackles both the

spelling error detection and correction tasks at once, we optimize it using the sum of

their individual losses Ltotal = Ldetection + Lcorrection.

1. Get character representation rc for all characters C as a weighted average over outputs h of the top n tokenization repair layers:
rc =

∑n
i=1wih

c
i for c ∈ C with

∑n
i=1wi = 1

2. Group characters representations into regex-word representations according to tokenization repair ouptut leaving out whitespaces

Character
representations

Agg. ‖ Agg. ‖ Agg. ‖ Agg. ‖Word features

Corect this sentesne !Word encoder

ce#roC t . . . n e !

<bos> Cor rect <eos>1. 2. 3.

Shared decoder

Figure 12: Tokenization repair plus spelling error detection and correc-
tion: The model extends the TR+ model (see Figure 9) with a shared
decoder for correcting spelling errors analogously to the Transformer
word model. The difference is that this model receives both the regex-
word representations from the word encoder and the averaged character
representations from the tokenization repair backbone as context for ev-
ery whitespace word. The classification head for spelling error detection
from TR+ is still in use but not shown here for clarity.

Transformer with tokenization repair Again, this model uses the original

Transformer encoder-decoder architecture unchanged. But we tokenize its input on

the character level and train it to correct sequences that contain whitespacing and

spelling errors.

Table 1 gives an overview over all models with their parameter counts and layer

specifications.

41

Task Model #Parameters Inputs (Size) Outputs Layers

SEDW transformer 18.0M Subwords (10,000; BPE) Binary classification 6 encoder layers

SEDW gnn 23.5M
Word graph with

subwords (10,000; BPE)
Binary classification 6 message passing layers

SEDW transformer+ 18.5M
Subwords (10,000; BPE)

and word features
Binary classification 6 encoder layers

SEDW gnn+ 23.6M

Word graph with

subwords (10,000; BPE)

and word features

Binary classification 6 message passing layers

TR,

SEDW
tokenization repair+

32.1M

(19.0M fixed)
Characters (99)

Tokenization repair,

Binary classification

6 char encoder layers,

6 word encoder layers

SEC transformer 41.8M Subwords (10,000; BPE)
Sequence-level next token

classification (10,000; BPE)

6 encoder layers,

6 decoder layers

SEC transformer word 41.8M Subwords (10,000; BPE)
Word-level next token

classification (10,000; BPE)

6 encoder layers,

6 decoder layers

TR & SEC
transformer with

tokenization repair
49.3M Characters (99)

Sequence-level next token

classification (10,000; BPE)

12 encoder layers,

6 decoder layers

TR,

SEDW,

SEC

tokenization repair++
62.5M

(19.0M fixed)
Characters (99)

Tokenization repair,

Binary classification,

Word-level next token

classification (10,000; BPE)

6 char encoder layers,

6 word encoder layers,

6 multi-context decoder layers

Table 1: Model overview

4.3 Training

Before we start training we preprocess our cleaned Wikidump and Bookcorpus training

paragraphs. The preprocessing mainly involves misspelling injection, tokenization,

and subsampling or discarding of too long sequences (>512 tokens). An overview

over our generated datasets is shown in Table 2.

We use the same preprocessed dataset for training SEDW and SEC models, only

with different labels. For the TR+ and TR & SEC datasets we add whitespacing

errors22 on top of the already injected misspellings. They are the datasets we use to

22We remove all spaces or add spaces everywhere with 10% probability each, for the rest of the
sequences existing spaces are deleted with 50% probability and new spaces are inserted with 10%

42

train the TR+/TR++ and Transformer with tokenization repair models.

For all models except for TR+, TR++, and the Transformer with tokenization repair

model we will train two versions: One version trained on the SEDW/SEC dataset

with the full set of misspellings as shown in Table 2 and one version on a SEDW/SEC

dataset generated with a reduced set of misspellings (no misspellings from BEA-2019

and Neuspell, see subsection 4.1.2). The former versions of the models are used for

evaluation on our own benchmarks, whereas the latter versions of the models are

used to evaluate on the Neuspell benchmarks. Because the Neuspell benchmarks

are based on sentences but our training data consists of paragraphs, we additionally

finetune the latter models for one epoch on the sentence-level training datasets from

Neuspell.

Dataset/Task Source #Samples #Tokens Sample length* Sample length†

SEDW/SEC Wikidump/Bookcorpus 102.3M 6.0B 58 29
TR+ Wikidump/Bookcorpus 102.5M 17.4B 170 95
TR & SEC Wikidump/Bookcorpus 91,2M 11,5B 126 65
SEDW/SEC Neuspell 4.0M 143.8M 35 34
* We denote the mean with a single line.
† We denote the median with two lines.

Table 2: Dataset overview: The number of samples and tokens in the datasets
built from Wikidump and Bookcorpus deviate mainly due to differences
in tokenization and in the way we treat too long sequences. Mean and
median sample length are measured in tokens.

Unless stated otherwise we use the following training components and hyperparameters

to train all of our models:

• Optimizer: We use AdamW (Loshchilov and Hutter, 2019) with a weight

decay of 0.01.

• Learning rate: We warmup the learning rate linearly from 0 to 10−4 within

the first 5% of training. At 75% and 90% of training we reduce the learning

rate by a factor of 0.1.

• Batch size: We use bucket sampling as described below for batching. We

set a maximum of 32,768 and 98,304 tokens per batch for SEC models and

probability after every character.

43

SEDS/SEDW models respectively.

• Epochs: We train for 1 epoch (iteration over the training data).

• Precision: We use mixed precision (Micikevicius et al., 2018) to save memory

and speed up training.

For finetuning models on the Neuspell training dataset we change our training setup

in the following way:

• Learning rate: We warmup the learning rate linearly from 0 to 10−5 within

the first 5% of finetuning. Afterwards we linearly decay the learning rate from

10−5 to 10−7 throughout the rest of finetuning. The learning rate is updated

after each optimizer step.

• Batch size: We still use bucket sampling as described above for batching, but

set a maximum of 4,096 tokens per batch for all models.

• Epochs: We finetune for 1 epoch (iteration over the finetuning data).

We train in a distributed fashion with data parallelism. Data parallelism means that

every training process, which usually corresponds to one GPU, has the same model

parameters but only runs forward passes on a subset of the training data. To make

sure that all models stay in sync, gradients are averaged across and communicated to

all processes before each process updates its local model parameters.

In general, we choose the number of GPUs for training such that we do not get out

of memory errors. Depending on the model and task we train with 8 to 20 NVIDIA

GeForce RTX 2080 Ti GPUs. All models except for the TR+ and TR++ models

can be trained in less than two days.

Finetuning on the Neuspell dataset is done with a single NVIDIA GeForce RTX 2080

Ti for all models and takes not more than a few hours.

Bucket sampling Instead of splitting our input dataset into batches using a fixed

batch size, we generate batches by grouping samples with similar lengths (measured

in tokens) into buckets and sample from them without replacement until we hit a

44

maximum token limit. This is useful to speed up training because it reduces the

amount of padding required to batch sequences of different lengths into one tensor

before running a forward pass.

4.4 Inference

To improve the runtime and performance of our Seq2Seq spelling error correction

models during inference we will use the detection outputs of our SEDW models:

• For SEC models with a shared whitespace-word decoder we discard all whitespace-

word contexts for which no spelling error was detected.

Example

Given the text This tetx has an eror! and spelling error detections

(0, 1, 0, 0, 1) we will only correct the second and last whitespace words tetx

and eror!.

• For SEC models with a standard Transformer decoder we only correct the

whitespace words for which a spelling error is predicted by stopping once we

have decoded a full whitespace word. All parts of the input for which no spelling

error is predicted stay as is.

Example

Given the text This tetx has an eror! and spelling error detections

(0, 1, 0, 0, 1) we will first correct starting from the prefix This until we

decoded a full whitespace-word. Assuming the whitespace-word was cor-

rectly decoded to be text, we then correct starting from the prefix This

text has an until we again decode a full whitespace-word or, as in this case,

hit the end of the sentence.

Because it limits the number of words for which the SEC models can predict cor-

rections, we expect this procedure to result in fewer false positives (words that are

changed by the spelling corrector even though they are not misspelled) but also in

45

more false negatives (words that are not corrected even though they are misspelled)

for our SEC models. In the ideal case the SEDW models will be fast enough, such

that the additional time spent on running them is small compared to the time savings

we get by skipping unnecessary corrections, and produce good enough detections,

such that the performance of our SEC models deteriorates not too much.

Furthermore, during inference we also split sequences that are too long to handle for

our models at once using a sliding window approach and recombine the individual

results of all windows afterwards.

46

5 Experiments

This chapter presents the results of our models in comparison with various baselines

on spell checking benchmarks.

5.1 Benchmarks

Our own benchmarks are built from the test paragraphs of Wikidump and Bookcorpus

and, in case for the realistic benchmarks, our misspellings test set. Because the

Neuspell (Jayanthi, Pruthi, and Neubig, 2020) benchmarks come in tokenized form,

but our spell checkers work on untokenized texts, we develop a rule-based approach

to map them back to regular text with proper whitespacing. We also do not use the

bea322 and bea4660 benchmarks for the SEDS and SEDW tasks because they only

contain lowercase sequences. For SEC we convert the corrections of all models to

lowercase before evaluating on them.

SEDW and SEC benchmarks We randomly sample 10,000 sequences from our

Wikidump test paragraphs and corrupt them with both of our Artificial and Realistic

methods exclusively with pcorrupt = 0.2. We do the same with Bookcorpus test

paragraphs.

Table 3 gives an overview over the resulting benchmarks.

SEDS benchmarks We adopt the same procedure from above to generate SEDS

benchmarks, but we only corrupt half of all sequences and set pcorrupt = 0.05 to make

47

it harder for the models to detect misspelled sequences. An overview over the SEDS

benchmarks is shown in Table 4.

Combined benchmarks The combined benchmarks are downsampled versions

of the SEC benchmarks to evaluate slow-running models. We randomly sample 200

sequences from each of the four Neuspell SEC benchmarks to build the combined

Neuspell benchmark. We do the same for our four benchmarks to obtain the combined

Wikibook benchmark.

Whitespace benchmarks We randomly sample 200 correct sequences from the

groundtruths of each of our four benchmarks. We then introduce misspellings into

the correct sequences with a mixture of the Artificial and Realistic methods. First

with pcorrupt = 0.05, the result of which we call low, and then with pcorrupt = 0.2, the

result of which we call high. For both low and high we introduce whitespace errors

on top, first with pins = 0.025, pdel = 0.1 and then with pins = 0.1, pdel = 0.4.1

In the end we obtain four benchmarks, high-high, high-low, low-high, low-low, where

the first part of the name indicates amount of spelling errors and the second part the

amount of whitespacing errors.

Runtime benchmark We create a distinct runtime benchmark used to measure

model runtimes. We randomly sample 200 text sequences from each of the four

Neuspell SEC benchmarks and from each of our own SEC benchmarks to obtain

a total of 1600 samples. This amounts to about 231K of text. We also create a

whitespace-corrupted version of this benchmark to evaluate the runtimes of models

that can deal with whitespacing errors in text.

1pins and pdel are the probabilities of inserting a space between two non-space characters and
deleting an existing space respectively.

48

Benchmark #Sequences #Words Sequence length* Word errors† Real-word errors‡ Nonword errors‡

bookcorpus artificial 10,000 407,347 193.8 83,124 (20.4%) 19,346 (23.3%) 63,778 (76.7%)
bookcorpus realistic 10,000 407,074 194.3 82,855 (20.4%) 22,868 (27.6%) 59,987 (72.4%)
neuspell bea322 322 5,275 75.9 323 (6.1%) 13 (4.0%) 310 (96.0%)
neuspell bea4660 4,660 136,475 143.4 5,714 (4.2%) 547 (9.6%) 5,167 (90.4%)
neuspell bea60k 63,044 997,600 75.5 70,064 (7.0%) 1,970 (2.8%) 68,094 (97.2%)
neuspell jfleg 1,601 33,414 105.6 2,041 (6.1%) 374 (18.3%) 1,667 (81.7%)
wikidump artificial 10,000 365,829 196.0 73,925 (20.2%) 14,783 (20.0%) 59,142 (80.0%)
wikidump realistic 10,000 365,753 196.2 73,390 (20.1%) 18,760 (25.6%) 54,630 (74.4%)
* Average sequence length measured in characters
† Error percentage with respect to the number of words
‡ Error percentage with respect to the number of word errors

Table 3: Word-level spelling error detection and spelling error correction
benchmarks

Benchmark #Sequences #Words Sequence length* Word errors† Real-word errors‡ Nonword errors‡ Sequence errors
bookcorpus artificial 10,000 407,126 193.7 11,797 (2.9%) 2,727 (23.1%) 9,070 (76.9%) 4,967 (49.7%)
bookcorpus realistic 10,000 407,083 193.7 11,816 (2.9%) 3,151 (26.7%) 8,665 (73.3%) 4,971 (49.7%)
neuspell bea60k 63,044 997,604 75.6 35,033 (3.5%) 936 (2.7%) 34,097 (97.3%) 31,596 (50.1%)
neuspell jfleg 1,601 33,411 105.7 1,024 (3.1%) 181 (17.7%) 843 (82.3%) 795 (49.7%)
wikidump artificial 10,000 365,755 195.9 11,541 (3.2%) 2,073 (18.0%) 9,468 (82.0%) 5,011 (50.1%)
wikidump realistic 10,000 365,750 195.9 11,584 (3.2%) 2,604 (22.5%) 8,980 (77.5%) 5,014 (50.1%)
* Average sequence length measured in characters
† Error percentage with respect to the number of words
‡ Error percentage with respect to the number of word errors

Table 4: Sequence-level spelling error detection benchmarks

5.2 Baselines

We compare our approaches with other spell checking techniques ranging from classical

dictionary based to recent Neural Network based methods. For all spell checking tasks

we include a do nothing baseline that keeps the input text unchanged. This baseline

serves as an indicator for how difficult a benchmark or task is and as a reference

point to show relative improvements (or deteriorations) achieved by applying spell

checking techniques.

Spelling error correction baselines

Aspell GNU Aspell (Atkinson, 2009) is a widely used spell checking tool for Linux

and Windows systems. It works by suggesting a list of possible replacements for

misspelled words. This list is ordered by a score that combines phonetic and edit

49

distance between the input and replacement word. For our baseline we split the input

text into words by regex and replace every word that is not a punctuation mark with

the top scoring suggestion from Aspell.

Jamspell Jamspell (Ozinov, 2022) provides a faster, modified version of the

SymSpell spelling correction algorithm developed by Garbe (2012). To incorporate

context it uses a word level n-gram language model to score candidate corrections.

LanguageTool LanguageTool (LanguageTool, 2022) is a company developing

proofreading software. They provide a free, open source version of their software2 on

which we base our baseline implementation. To run the LanguageTool server locally

we use an open source Docker image3. We also use the optional n-gram dataset4 to

be able to correct words depending on their context.

Close to dictionary For this baseline we split the input text into words by regex

and replace every word that is not a punctuation mark with the closest word from

a dictionary in terms of edit distance. In case of a tie between multiple words we

choose the word with the highest frequency in our training data.

Neuspell Bert This is the overall best model from Jayanthi, Pruthi, and Neubig

(2020) as described in section 2.2.1. The official implementation5 works by outputting

one corrected token for every input token in a text. Since the model tokenizes its

input text using regular expressions and not on whitespaces, we can not obtain a

valid output text by joining all output tokens with whitespaces.

Example

Tihs isn’t split on whitspaces! will be split into

(Tihs, is, n’t, split, on, whitspaces, !) and potentially corrected to

2https://github.com/languagetool-org/languagetool
3https://github.com/Erikvl87/docker-languagetool
4https://storage.googleapis.com/books/ngrams/books/datasetsv2.html
5https://github.com/neuspell/neuspell

50

https://github.com/languagetool-org/languagetool
https://github.com/Erikvl87/docker-languagetool
https://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://github.com/neuspell/neuspell

(This, is, n’t, split, on, whitespaces, !). Joining the output with whitespaces

gives us This is n’t split on whitespaces !.

Therefore, we extend the official implementation: We use the fact that we have both

access to the original input text and the input tokens as given by the model’s tokenizer.

If we find the positions at which we must join the input tokens with whitespaces to

get the original input text we can join the output tokens in the same way to get the

output text with proper whitespacing.

GECToR Bert and GECToR XLNet These are the Bert-based and XLNet-

based models proposed by Grammarly in Omelianchuk et al. (2020) as described in

section 2.2.2. We include them in our baselines to evaluate how modern state-of-

the-art GEC models perform for spelling error correction. We modify the official

implementation6 slightly: Before inference we sort the input texts by their length

to achieve faster runtimes. Because our benchmarks contain untokenized text, but

GECToR follows the format from Bryant et al. (2019) and expects its inputs to be

tokenized with spaCy7, we tokenize our benchmarks before feeding them to GECToR

and recombine its outputs again afterwards.

Since our spelling correction benchmarks consist of word-aligned pairs of misspelled

and correct sequences, we evaluate GECToR with only one correction iteration to

prevent it from changing the sequences too much and to make it more comparable

to all of the other single-round spelling correctors. All other relevant inference

parameters are left at their defaults.

NLMSpell NLMSpell is the best model from Hertel (2019) as described in section

2.2.1. We have access to the authors Docker setup for running NLMSpell and use it

unchanged.

GPT-3 This baseline uses GPT-3 (Brown et al., 2020) as described in section

2.2.1. At the time of writing there is no open source version of GPT-3 available,

6https://github.com/grammarly/gector
7https://spacy.io

51

https://github.com/grammarly/gector
https://spacy.io

which is why we base our implementation on the OpenAI Beta API8. In particular,

we use the best available model for the Edit API, called text-davinci-edit-001 (there

are no official specifications from OpenAI for the models available in their API, but

according to EleutherAI davinci comes closest to the 175B parameter version of

GPT-39). The Edit API itself receives an input and an associated prompt, edits the

input according to the prompt with GPT-3 and returns it. We pass misspelled texts

as input and set the prompt to Fix the spelling mistakes.

Google Google Docs is a free to use online service for writing documents developed

by Google (2022). It provides functionality to check a document for spelling and

grammatical errors. We use Google Docs as a spelling correction baseline by pasting

our benchmarks into a document and applying all suggested spelling corrections until

there are none left. We do this both with the option to check for grammatical errors

enabled and disabled.

Because of their slow runtimes or manual effort we evaluate the NLMSpell, GPT-

3, and Google baselines only on our combined and subsampled spelling correction

benchmarks with 800 sequences.

Word-level spelling error detection baselines

For SEDW we make use of the fact that any SEC algorithm can be used to detect

spelling errors as described in section 1.2. We reuse the baselines for correcting errors

from above and convert their output as follows:

Given: Input text S and corrected text S′

Goal: Find label sequence L = (l1, . . . , ln) with li ∈ {0, 1} and n being the

number of words in S

Procedure:

8https://beta.openai.com
9https://blog.eleuther.ai/gpt3-model-sizes

52

https://beta.openai.com
https://blog.eleuther.ai/gpt3-model-sizes

1. Find the edit operations transforming S into S′, restricting possible edit opera-

tions on whitespaces to insertions and deletions.

2. Find the word boundaries ((s1, e1), . . . , (sn, en)) where si is the position of the

first character and ei is the position of the last character of the ith word in S.

3. Initialize a set E = ∅ that will contain the indices of all edited words in S.

For every edit operation check whether the edited position p in S falls within

the boundaries (si, ei) of an input word, that means si ≤ p ≤ ei. If this is

the case we consider the ith word in S to be edited by the spelling corrector:

E ← E∪{i}. If p falls exactly between the boundaries of two words, that means

ei < p < si+1, p can only be the position of a whitespace that gets deleted by

the spelling corrector. We consider such an operation to affect both the ith and

(i+ 1)th word: E ← E ∪ {i, i+ 1}.

4. Generate the SEDW label sequence L = (l1, . . . , ln):

Set li =


1 if i ∈ E

0 else
for i ∈ {1, . . . , n}.

Sequence-level spelling error detection baselines

We again reuse the SEC baselines for SEDS and convert their output as follows:

Given: Input text S and corrected text S′

Goal: Find label l ∈ {0, 1}

Procedure:

1. Set l =


1 if S 6= S′

0 else
.

53

5.3 Evaluation metrics

We now define metrics for each task to evaluate the baselines and our models

on benchmarks. A benchmark is given as a sequence of potentially misspelled

texts B = (B1, . . . , Bn) where n is the number of samples in the benchmark. The

groundtruth for a benchmark is given as a sequence G = (G1, . . . , Gn) and the

predictions of our baselines and models as a sequence P = (P1, . . . , Pn). Depending

on the task, the elements in G and P are of the same format as described in section

1.2.

Spelling error correction metrics

Correction F1 For our correction F1 metric we follow the spelling correction

metric from Hertel, 2019. For all i ∈ {1, . . . , n} we compute four index sets using

input text Bi, groundtruth text Gi and corrected text Pi:

misspelledi: This set contains the indices of all words in Gi that are misspelled

in Bi.

restoredi: This set contains the indices of all words in Gi that are present in

Pi.

changedi: This set contains the indices of all words in Bi that are changed in

Pi.

correcti: This set contains the indices of all words in Bi that are properly

corrected in Pi.

From these four sets we compute true positives TPi = misspelledi ∩ restoredi, false

negatives FNi = misspelledi \ restoredi, and false positives FPi = changedi \ correcti.

54

Summing them over all samples in the benchmark yields

TP =
n∑
i=1

TPi,

FP =
n∑
i=1

FPi,

and FN =
n∑
i=1

FNi,

with which we calculate

Precision =
TP

TP+ FP
,

Recall =
TP

TP+ FN
,

and F1 =
2 · Precision · Recall
Precision+ Recall

.

Mean normalized edit distance Given two strings a and b, we define the

normalized edit distance between them to be

ned(a, b) =
editdistance(a, b)

max{|a|, |b|}
.

We normalize the regular edit distance metric for two reasons:

1. Normalizing makes samples of different lengths comparable. Being 4 edits away

from the groundtruth when the input text is 10 characters long should be

worse than being 4 edits away from the groundtruth when the input text is 200

characters long. Here we assume that the number of spelling errors in an input

text scales approximately linearly with its length.

2. Since editdistance(a, b) is upper bounded by max{|a|, |b|} and lower bounded

by 0, ned(a, b) will always be between 0 and 1. Here 0 means that a and b

match exactly and 1 means that they have no characters in common.

The mean normalized edit distance (MNED) over benchmark groundtruths G and

55

predictions P is then defined as

mned =
1

n

n∑
i=1

ned(Gi, Pi).

Word-level spelling error detection metrics

We define four helper functions

eq(g, p) =
|g|∑
i=1


1 if gi = pi

0 else,

tp(g, p) =
|g|∑
i=1


1 if gi = pi = 1

0 else,

fp(g, p) =
|g|∑
i=1


1 if pi = 1 and gi = 0

0 else,

fn(g, p) =
|g|∑
i=1


1 if pi = 0 and gi = 1

0 else,

that all receive two equally long sequences g, gi ∈ {0, 1} and p, pi ∈ {0, 1} of zeros

and ones as input.

Word accuracy Given groundtruths G and predictions P we define word accuracy

to be

wordacc =
∑n

i=1 eq(Gi, Pi)∑n
i=1 |Gi|

,

that is the fraction of all words for which we make the correct prediction.

56

Detection F1 Given groundtruths G and predictions P we define word accuracy

TP =
n∑
i=1

tp(Gi, Pi)

FP =
n∑
i=1

fp(Gi, Pi),

and FN =
n∑
i=1

fn(Gi, Pi)

and calculate Precision, Recall and F1 as above.

Sequence-level spelling error detection metrics

Sequence accuracy For groundtruths G and predictions P sequence accuracy is

defined as

seqacc =
eq(G,P)

n
,

that is the fraction of all sequences for which we made the correct prediction.

Detection F1 Given groundtruths G and predictions P we define

TP = tp(G,P)

FP = fp(G,P)

and FN = fn(G,P)

and calculate Precision, Recall and F1 as above.

5.4 Results

Here we first present the result of our models and the baselines on benchmarks and

then their runtimes.

57

5.4.1 Benchmarks

We first evaluate our models on the SEDS task. Table 5 and 6 show the results on

our benchmarks.

We can see that the TR++ model outperforms all other methods both in terms

of F1 score and sequence accuracy, reaching almost 90% sequence accuracy on the

Bookcorpus benchmarks. We note that all of our models seem to perform worse on

the Wikidump benchmarks with about a 3% absolute decrease in terms of sequence

accuracy compared to the Bookcorpus benchmarks.

bookcorpus bookcorpus wikidump wikidump
artificial realistic artificial realistic

F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

aspell 79.75 69.84 92.95 79.25 69.63 91.95 74.94 61.19 96.67 74.77 61.12 96.27
jamspell 83.71 79.58 88.28 82.05 79.05 85.29 79.96 74.53 86.25 79.35 74.29 85.16
languagetool 82.60 75.83 90.70 82.12 75.67 89.78 76.58 65.30 92.58 75.63 64.86 90.69
gector bert 68.90 64.29 74.23 70.47 65.09 76.83 56.09 64.63 49.55 58.58 66.00 52.65
gector xlnet 69.12 65.11 73.67 70.74 65.93 76.32 56.10 64.98 49.35 57.92 65.97 51.62
neuspell bert 80.68 77.56 84.05 83.33 78.53 88.75 72.22 73.48 71.00 75.28 74.77 75.79

transformer 89.74 83.92 96.44 89.23 83.80 95.41 85.94 83.19 88.88 85.80 83.18 88.59
gnn 89.54 83.47 96.56 88.69 83.27 94.85 85.97 83.56 88.53 85.69 83.51 87.99
transformer+ 89.00 81.98 97.34 88.83 81.96 96.96 86.12 82.68 89.86 86.16 82.72 89.91
gnn+ 89.73 83.42 97.06 89.40 83.38 96.36 86.32 83.45 89.38 86.37 83.52 89.43
tokenization repair+ 89.44 82.89 97.12 89.42 82.93 97.02 86.34 83.83 89.00 86.69 83.98 89.59
tokenization repair++ 90.38 84.40 97.26 90.36 84.44 97.16 86.72 84.27 89.30 86.79 84.36 89.37

Table 5: Sequence-level spelling error detection: F1

Table 7 and 8 show the results on the Neuspell benchmarks. Here both Transformer+

and GNN+ perform well on the BEA60k benchmark mainly due to their higher recall

compared to the regular Transformer and GNN. However, on the JFLEG benchmark

Jamspell and the simple out-of-dictionary baseline perform best.

The benchmark results for the SEDW task can be seen in Tables 9, 10, 11 and

12. In the word accuracy tables, in addition to the word accuracy itself, we show

the detection rates of the models on real-word and nonword errors as percentages

and the absolute number of real-word and nonword errors for each benchmark. On

our benchmarks TR++ again achieves the best results. On the Neuspell BEA60k

benchmark our GNN+ model is at the top, whereas on the JFLEG benchmark

58

bookcorpus bookcorpus wikidump wikidump
artificial realistic artificial realistic

do nothing 50.33 50.29 49.89 49.86
out of dictionary 78.66 78.39 71.18 70.97
aspell 76.56 76.06 67.61 67.43
jamspell 82.93 81.45 78.34 77.78
languagetool 81.02 80.57 71.63 70.69
gector bert 66.72 68.00 61.13 62.66
gector xlnet 67.31 68.62 61.29 62.39
neuspell bert 80.00 82.35 72.63 75.04
transformer 89.05 88.55 85.43 85.30
gnn 88.79 87.97 85.52 85.27
transformer+ 88.05 87.88 85.49 85.52
gnn+ 88.96 88.64 85.80 85.85
tokenization repair+ 88.61 88.59 85.89 86.21
tokenization repair++ 89.71 89.69 86.29 86.36

Table 6: Sequence-level spelling error detection: Sequence accuracy

Neuspell BERT and Jamspell perform best. Overall, these benchmarks deliver a

pretty similar picture than the SEDS benchmarks.

For the MNED metric on our SEC benchmarks we show relative improvements over

a do nothing baseline as well as the absolute values. The MNED of do nothing gives

us the distance between the benchmark inputs and groundtruths.

We also show for each SEC benchmark the pipelines of our best SEDW method

on the corresponding benchmark with both the Transformer and Transformer word

models.

The results for the default SEC benchmarks can be seen in Tables 14, 13, 16 and

15. They show that, according to the F1 metric, both for our benchmarks and the

Neuspell benchmarks three out of four times a pipeline consisting of a SEDW and

a SEC model performs best. We see this as the confirmation that SEDW methods

indeed help in improving SEC models.

The benchmark results on the combined benchmarks are shown in Table 18 and 17.

59

neuspell neuspell
bea60k jfleg

F1 Precision Recall F1 Precision Recall

out of dictionary 90.18 83.57 97.93 90.71 93.11 88.43
aspell 89.29 81.76 98.34 89.35 91.22 87.55
jamspell 90.81 90.21 91.43 90.97 96.34 86.16
languagetool 89.79 83.45 97.17 90.29 91.70 88.93
gector bert 75.49 66.71 86.92 71.89 61.81 85.91
gector xlnet 75.36 66.37 87.17 71.95 62.63 84.53
neuspell bert 89.69 84.79 95.20 88.97 85.42 92.83

transformer 90.21 88.59 91.89 89.32 89.72 88.93
gnn 90.88 87.92 94.04 90.14 88.88 91.45
transformer+ 91.65 87.37 96.37 88.92 86.63 91.32
gnn+ 91.85 87.80 96.28 89.66 87.26 92.20

Table 7: Sequence-level spelling error detection Neuspell: F1

On the combined Neuspell benchmarks GPT-3 performs best by far, followed by our

methods. However, this is no surprise because one half of this benchmark consists of

ambiguous sequences where the immense language modeling capabilities by GPT-3

are extremely helpful.

We also show that decoding with beam search rather than greedy search for our

models might not be worth it as it only leads to marginal improvements most of the

time.

Our final set of benchmarks are SEC benchmarks with whitespacing errors shown in

Table 19 and 20. The best model here is the Transformer with tokenization repair

achieving the highest scores on three out four benchmarks. The results of the other

models and pipelines perform very similar on all of the benchmarks. The eo medium

model in these tables is the medium-sized tokenization repair model from Walter

(2021).

60

neuspell neuspell
bea60k jfleg

do nothing 49.88 50.34
out of dictionary 89.31 91.01
aspell 88.17 89.63
jamspell 90.73 91.51
languagetool 88.93 90.51
gector bert 71.71 66.65
gector xlnet 71.43 67.27
neuspell bert 89.04 88.57
transformer 90.01 89.44
gnn 90.54 90.07
transformer+ 91.20 88.69
gnn+ 91.43 89.44

Table 8: Sequence-level spelling error detection Neuspell: Sequence accu-
racy

5.4.2 Runtimes

Table 21 shows the runtimes of our models on the runtime benchmarks. As a first

observation we can see that no method is so slow that it is impossible to use it for

practical purposes. The slowest model overall is the Transformer with tokenization

repair, closely followed by the regular Transformer encoder-decoder model, achieving

still 2.8kB/s and 3.2kB/s of throughput respectively.

Since the Transformer and GNN models for SEDS/SEDW can predict spelling errors

in parallel, they are much faster in terms of absolute running times than the Seq2Seq

models for SEC. The models that are enriched with word features are also only

marginally slower than those without. However, the Transformer models are still

nearly twice as fast as their graph-based counterparts. We believe the slower runtimes

come mainly from two issues: First, for a GNN we have to explicitly create an input

graph before we can run the model, which can take up to a few milliseconds. And

second, the Transformer encoder layers can be very efficiently implemented in practice

using e.g. only a single matrix multiplication to calculate the attention scores between

61

bookcorpus bookcorpus wikidump wikidump
artificial realistic artificial realistic

F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

aspell 86.45 90.22 82.99 81.90 86.87 77.47 82.40 79.33 85.71 76.41 73.29 79.81
jamspell 83.70 95.62 74.42 76.71 93.85 64.86 84.29 93.30 76.86 76.92 90.33 66.98
languagetool 86.58 91.83 81.90 83.15 89.60 77.56 84.38 84.94 83.83 79.76 80.60 78.94
gector bert 52.43 73.85 40.64 60.02 74.70 50.16 50.18 77.23 37.16 60.47 78.55 49.16
gector xlnet 58.01 76.73 46.63 63.38 77.17 53.77 50.18 79.34 36.70 59.78 80.85 47.42
neuspell bert 76.36 94.40 64.11 91.50 94.95 88.30 71.84 92.73 58.63 89.49 93.74 85.61

transformer 96.46 97.52 95.43 92.56 97.04 88.47 95.08 97.39 92.88 93.22 96.94 89.76
gnn 96.51 97.51 95.54 92.57 96.98 88.54 95.30 97.44 93.26 93.36 96.95 90.04
transformer+ 96.62 97.01 96.22 95.36 96.56 94.20 95.52 97.20 93.90 95.61 96.81 94.45
gnn+ 96.62 97.41 95.84 95.02 97.01 93.10 95.44 97.48 93.49 95.33 97.12 93.60
tokenization repair+ 96.80 97.37 96.24 95.69 97.05 94.38 95.65 97.57 93.80 95.98 97.22 94.76
tokenization repair++ 97.04 97.64 96.46 96.15 97.26 95.07 95.80 97.67 94.00 96.27 97.37 95.19

Table 9: Word-level spelling error detection: F1

bookcorpus bookcorpus wikidump wikidump
artificial realistic artificial realistic

Accuracy Real-word Nonword Accuracy Real-word Nonword Accuracy Real-word Nonword Accuracy Real-word Nonword

19,346 63,778 22,868 59,987 14,783 59,142 18,760 54,630

do nothing 76.31 0.0 0.0 76.39 0.0 0.0 76.78 0.0 0.0 76.95 0.0 0.0
out of dictionary 92.32 0.0 96.4 91.41 0.0 99.8 91.51 0.0 97.0 89.61 0.0 99.3
aspell 93.84 32.4 98.3 91.92 35.2 93.6 91.50 36.1 98.1 88.64 37.8 94.2
jamspell 93.13 42.8 84.0 90.70 29.1 78.5 93.35 45.7 84.7 90.74 27.7 80.4
languagetool 93.99 35.0 96.1 92.58 38.7 92.4 92.79 37.9 95.3 90.76 41.1 91.9
gector bert 82.53 48.6 38.2 84.22 54.5 48.5 82.87 56.3 32.4 85.19 58.1 46.1
gector xlnet 84.01 54.8 44.1 85.33 58.6 51.9 83.08 59.2 31.1 85.29 58.7 43.6
neuspell bert 90.60 70.4 62.2 96.13 71.8 94.6 89.33 72.4 55.2 95.37 69.5 91.2

transformer 98.34 91.7 96.6 96.64 76.9 92.9 97.77 91.4 93.2 96.99 78.7 93.6
gnn 98.37 91.7 96.7 96.64 76.2 93.2 97.87 92.0 93.6 97.05 78.3 94.1
transformer+ 98.40 92.8 97.3 97.84 80.5 99.4 97.96 92.5 94.3 98.00 81.4 98.9
gnn+ 98.41 92.2 97.0 97.69 77.8 98.9 97.93 92.2 93.8 97.89 79.3 98.5
tokenization repair+ 98.49 93.1 97.2 97.99 81.1 99.4 98.02 92.9 94.0 98.17 82.2 99.1
tokenization repair++ 98.61 94.1 97.2 98.20 83.8 99.4 98.08 93.7 94.1 98.30 84.0 99.0

Table 10: Word-level spelling error detection: Word accuracy

all tokens in a sequence, which is not the case for the GNN.

For SEC our fastest single model is Transformer word. We can see that using any

of our SEDW models before the SEC models to filter for misspelled words gives a

significant boost in inference speed. Our fastest pipeline, Transformer and Transformer

word, even runs faster than the BERT model by Neuspell which is an encoder-only

model.

62

neuspell neuspell
bea60k jfleg

F1 Precision Recall F1 Precision Recall

out of dictionary 91.61 86.70 97.11 87.48 94.23 81.63
aspell 90.47 84.14 97.83 86.60 91.73 82.02
jamspell 90.68 91.73 89.65 88.36 96.85 81.23
languagetool 88.55 81.89 96.39 85.34 86.28 84.42
gector bert 67.08 58.41 78.78 57.74 49.53 69.23
gector xlnet 66.76 57.89 78.85 57.04 49.15 67.96
neuspell bert 88.65 84.23 93.56 88.37 86.88 89.91

transformer 90.02 89.81 90.22 86.97 89.91 84.22
gnn 90.94 89.26 92.69 87.92 89.79 86.13
transformer+ 91.88 88.69 95.31 87.40 87.83 86.97
gnn+ 92.02 88.86 95.42 88.23 88.91 87.56

Table 11: Word-level spelling error detection Neuspell: F1

neuspell neuspell
bea60k jfleg
Accuracy Real-word Nonword Accuracy Real-word Nonword

1,970 68,094 374 1,667

do nothing 92.02 0.0 0.0 93.23 0.0 0.0
out of dictionary 98.58 0.0 99.9 98.42 0.3 99.9
aspell 98.36 71.8 98.6 98.28 8.8 98.4
jamspell 98.53 41.4 91.0 98.55 18.2 95.4
languagetool 98.01 64.7 97.3 98.03 23.8 98.0
gector bert 93.83 60.9 79.3 93.14 53.2 72.8
gector xlnet 93.74 59.5 79.4 93.07 52.9 71.3
neuspell bert 98.09 60.4 94.5 98.40 56.4 97.4

transformer 98.40 50.4 91.4 98.29 38.0 94.6
gnn 98.53 51.4 93.9 98.40 36.1 97.4
transformer+ 98.66 46.5 96.7 98.30 38.2 97.9
gnn+ 98.68 47.6 96.8 98.42 40.4 98.1

Table 12: Word-level spelling error detection Neuspell: Word accuracy

63

bookcorpus bookcorpus wikidump wikidump
artificial realistic artificial realistic
Improvement MNED Improvement MNED Improvement MNED Improvement MNED

do nothing - 0.0671 - 0.0693 - 0.0561 - 0.0550
close to dictionary -18.8% 0.0545 -7.1% 0.0643 +24.8% 0.0700 +41.3% 0.0777
aspell +13.3% 0.0760 +43.2% 0.0992 +81.6% 0.1018 +113.2% 0.1172
jamspell -29.4% 0.0474 -18.1% 0.0568 -13.7% 0.0484 -3.6% 0.0530
languagetool -11.5% 0.0594 +6.9% 0.0741 +13.4% 0.0636 +42.9% 0.0785
gector bert +15.6% 0.0776 +17.9% 0.0817 +7.4% 0.0602 +8.3% 0.0595
gector xlnet +10.3% 0.0740 +11.7% 0.0774 +2.0% 0.0572 +2.9% 0.0566
neuspell bert -29.1% 0.0476 -34.2% 0.0456 -16.5% 0.0468 -19.1% 0.0445

transformer -75.2% 0.0167 -51.4% 0.0336 -67.9% 0.0180 -56.3% 0.0240
transformer word -75.6% 0.0163 -49.5% 0.0350 -69.8% 0.0169 -56.5% 0.0239
transformer+ → transformer -75.6% 0.0164 -52.4% 0.0330 -68.8% 0.0175 -58.9% 0.0226
transformer+ → transformer word -76.2% 0.0160 -50.6% 0.0342 -70.4% 0.0166 -59.2% 0.0224
tokenization repair++ -77.2% 0.0153 -52.1% 0.0332 -70.8% 0.0164 -60.3% 0.0218

Table 13: Spelling error correction: Mean normalized edit distance

bookcorpus bookcorpus wikidump wikidump
artificial realistic artificial realistic

F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

aspell 35.96 37.53 34.53 19.24 20.41 18.20 36.71 35.34 38.18 20.49 19.65 21.41
jamspell 47.70 54.48 42.41 48.03 58.76 40.61 49.52 54.81 45.16 46.57 54.69 40.55
languagetool 46.09 48.87 43.61 38.22 41.07 35.74 48.81 49.14 48.49 38.15 38.49 37.81
gector bert 27.06 40.45 20.33 27.91 37.39 22.26 29.18 47.79 21.00 30.10 42.57 23.28
gector xlnet 34.65 49.46 26.67 33.71 44.60 27.10 35.12 59.03 25.00 35.97 52.52 27.35
neuspell bert 56.79 70.21 47.69 61.82 64.15 59.66 56.01 72.29 45.71 57.67 60.41 55.17

transformer 87.47 88.04 86.92 72.66 74.00 71.37 87.97 89.27 86.70 74.87 76.02 73.75
transformer word 87.48 87.91 87.05 71.00 72.29 69.76 88.26 89.26 87.29 73.59 74.50 72.70
transformer+ → transformer 87.64 89.50 85.86 72.69 75.45 70.13 87.91 91.16 84.88 75.10 77.89 72.51
transformer+ → transformer word 87.62 89.32 85.99 71.10 73.60 68.77 88.15 91.17 85.31 73.82 76.28 71.51
tokenization repair++ 87.47 88.90 86.09 71.06 73.05 69.17 87.93 90.70 85.32 73.48 75.43 71.64

Table 14: Spelling error correction: Correction F1

64

neuspell neuspell neuspell neuspell
bea322 bea4660 bea60k jfleg

Improvement MNED Improvement MNED Improvement MNED Improvement MNED

do nothing - 0.0232 - 0.0118 - 0.0293 - 0.0156
close to dictionary +33.9% 0.0311 +14.1% 0.0134 -23.9% 0.0223 -49.4% 0.0079
aspell +44.6% 0.0336 +64.7% 0.0194 -9.6% 0.0265 -25.8% 0.0116
jamspell -18.7% 0.0189 -48.9% 0.0060 -44.6% 0.0162 -63.3% 0.0057
languagetool +17.4% 0.0273 +45.3% 0.0171 -21.0% 0.0231 -35.0% 0.0101
gector bert +8.8% 0.0253 +13.0% 0.0133 -11.7% 0.0258 +90.6% 0.0297
gector xlnet +4.2% 0.0242 +3.9% 0.0122 -9.6% 0.0264 +77.3% 0.0276
neuspell bert -3.9% 0.0223 -61.6% 0.0045 -32.4% 0.0198 -55.0% 0.0070

transformer -22.9% 0.0179 -62.1% 0.0045 -52.8% 0.0138 -69.2% 0.0048
transformer word -33.7% 0.0154 -65.8% 0.0040 -53.4% 0.0136 -68.0% 0.0050
gnn+ → transformer -31.5% 0.0159 -65.1% 0.0041 -56.6% 0.0127 -68.3% 0.0049
gnn+ → transformer word -36.1% 0.0149 -68.6% 0.0037 -57.6% 0.0124 -68.1% 0.0050

Table 15: Spelling error correction Neuspell: Mean normalized edit dis-
tance

neuspell neuspell neuspell neuspell
bea322 bea4660 bea60k jfleg

F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

aspell 27.23 25.13 29.72 15.82 15.02 16.70 55.76 51.86 60.30 66.91 70.83 63.40
jamspell 53.74 55.23 52.32 71.70 70.53 72.91 69.87 70.67 69.08 81.54 89.32 75.01
languagetool 28.96 28.24 29.72 25.33 23.27 27.77 60.30 55.95 65.37 71.31 72.97 69.72
gector bert 55.23 48.70 63.78 67.30 55.46 85.56 60.44 53.62 69.23 48.00 42.72 54.78
gector xlnet 55.49 49.88 62.54 70.34 58.78 87.54 60.31 53.33 69.39 48.29 42.97 55.12
neuspell bert 65.36 59.54 72.45 85.14 78.77 92.61 74.73 71.00 78.87 83.03 81.60 84.52

transformer 61.94 58.15 66.25 82.32 77.79 87.42 75.37 73.98 76.82 85.92 86.80 85.06
transformer word 66.86 63.26 70.90 84.84 80.44 89.74 74.85 72.30 77.58 85.27 85.88 84.66
gnn+ → transformer 64.25 62.65 65.94 83.41 79.96 87.17 77.43 78.74 76.16 85.48 88.55 82.61
gnn+ → transformer word 68.48 66.76 70.28 85.75 82.27 89.55 77.43 78.09 76.78 85.18 88.03 82.51

Table 16: Spelling error correction Neuspell: Correction F1

65

combined combined
neuspell wikibook
Improvement MNED Improvement MNED

do nothing - 0.0194 - 0.0613
gpt3 -69.5% 0.0059 +82.3% 0.1118
nlmspell -38.8% 0.0119 -56.2% 0.0268
google -5.7% 0.0183 -31.4% 0.0421
googlew/o grammar -5.8% 0.0183 -31.4% 0.0421

transformer -47.8% 0.0101 -63.0% 0.0227
transformerbeam -48.2% 0.0101 -64.8% 0.0216
transformer word -53.1% 0.0091 -62.6% 0.0229
transformer wordbeam -53.3% 0.0091 -62.4% 0.0230
transformer → transformer -50.4% 0.0096 -63.0% 0.0227
gnn → transformer -49.8% 0.0097 -63.4% 0.0224
transformer+ → transformer -51.7% 0.0094 -64.6% 0.0217
gnn+ → transformer -52.1% 0.0093 -62.5% 0.0230
transformer → transformer word -54.3% 0.0089 -62.8% 0.0228
gnn → transformer word -57.2% 0.0083 -63.1% 0.0226
transformer+ → transformer word -56.0% 0.0085 -64.5% 0.0218
gnn+ → transformer word -56.4% 0.0085 -62.6% 0.0229
tokenization repair++ - - -60.3% 0.0243
tokenization repair++

beam - - -63.8% 0.0222

Table 17: Spelling error correction Combined: Mean normalized edit dis-
tance

66

combined combined
neuspell wikibook

F1 Precision Recall F1 Precision Recall

gpt3 89.50 89.40 89.60 74.13 88.87 63.59
nlmspell 72.68 68.39 77.54 78.86 80.38 77.39
google 71.52 64.04 80.97 58.31 73.01 48.54
googlew/o grammar 71.61 64.05 81.19 58.74 72.78 49.24

transformer 77.03 74.01 80.31 79.64 80.54 78.76
transformerbeam 77.07 74.08 80.31 80.28 81.21 79.37
transformer word 78.92 75.71 82.41 79.21 79.94 78.50
transformer wordbeam 78.88 75.63 82.41 79.25 79.99 78.53
transformer → transformer 77.83 77.79 77.88 78.59 82.73 74.85
gnn → transformer 78.27 77.67 78.87 78.64 82.80 74.88
transformer+ → transformer 78.42 77.66 79.20 80.02 82.88 77.35
gnn+ → transformer 78.73 77.84 79.65 79.11 81.57 76.79
transformer → transformer word 80.22 80.58 79.87 77.97 81.74 74.53
gnn → transformer word 80.97 80.53 81.42 78.08 81.78 74.71
transformer+ → transformer word 80.64 79.98 81.31 79.39 81.89 77.04
gnn+ → transformer word 81.10 80.35 81.86 78.43 80.45 76.51
tokenization repair++ - - - 79.11 81.27 77.07
tokenization repair++

beam - - - 79.37 81.54 77.32

Table 18: Spelling error correction Combined: Correction F1

whitespace whitespace whitespace whitespace
high-high high-low low-high low-low
Improvement MNED Improvement MNED Improvement MNED Improvement MNED

do nothing - 0.1885 - 0.0900 - 0.1496 - 0.0464
transformer with tokenization repair -84.0% 0.0301 -69.2% 0.0277 -91.8% 0.0123 -77.8% 0.0103
transformer with tokenization repairbeam -84.7% 0.0288 -70.9% 0.0262 -92.2% 0.0116 -79.0% 0.0098
tokenization repair++ -78.9% 0.0399 -66.9% 0.0297 -91.1% 0.0133 -78.2% 0.0101
tokenization repair++

beam -79.1% 0.0395 -67.4% 0.0293 -91.1% 0.0133 -78.5% 0.0100
eo medium → transformer+ → transformer -77.9% 0.0416 -65.7% 0.0309 -90.8% 0.0137 -76.7% 0.0108
eo medium → transformer+ → transformer word -78.1% 0.0412 -65.7% 0.0308 -91.3% 0.0130 -77.9% 0.0103
tokenization repair+ → transformer -77.5% 0.0424 -64.4% 0.0320 -89.8% 0.0153 -73.7% 0.0122
tokenization repair+ → transformer word -77.6% 0.0422 -64.3% 0.0321 -90.4% 0.0143 -75.2% 0.0115

Table 19: Spelling error correction Whitespace: Mean normalized edit
distance

whitespace whitespace whitespace whitespace
high-high high-low low-high low-low

F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

transformer with tokenization repairbeam 89.28 87.54 91.10 85.93 84.85 87.04 94.44 93.27 95.63 91.77 89.64 94.00
tokenization repair++ 85.90 84.14 87.73 83.64 83.34 83.95 94.08 93.10 95.09 92.81 91.92 93.71
tokenization repair++

beam 86.02 84.29 87.83 83.85 83.56 84.14 94.08 93.09 95.09 92.88 91.99 93.80
eo medium → transformer+ → transformer 85.71 83.84 87.66 83.98 83.88 84.09 94.03 93.05 95.02 92.67 91.72 93.63
eo medium → transformer+ → transformer word 85.70 83.89 87.58 83.84 83.62 84.06 93.96 92.95 95.00 92.63 91.69 93.59
tokenization repair+ → transformer 85.89 84.09 87.77 84.22 84.21 84.23 94.06 93.10 95.05 92.74 91.94 93.55
tokenization repair+ → transformer word 85.85 84.09 87.69 84.05 83.90 84.19 94.02 93.04 95.03 92.73 91.95 93.53

Table 20: Spelling error correction Whitespace: Correction F1

67

Task Model/Pipeline Runtime in s kB/s
TR* eo large 7.9 29.9
TR* eo medium 6.1 38.5
TR* eo small 5.8 40.4
SEDS/SEDW† tokenization repair+/tokenization repair++ 13.1 18.0
SEDS/SEDW† gnn+ 9.7 24.3
SEDS/SEDW† gnn 9.2 25.7
SEDS/SEDW† transformer+ 5.6 42.3
SEDS/SEDW† transformer 4.8 49.5
SEC transformer 73.5 3.2
SEDW → SEC transformer+ → transformer 47.2 5.0
SEDW → SEC gnn+ → transformer 46.4 5.1
SEC transformer word 37.2 6.4
SEC neuspell bert 21.8 10.8
SEDW → SEC gnn+ → transformer word 13.7 17.3
SEDW → SEC transformer+ → transformer word 13.5 17.5
TR & SEC transformer with tokenization repair 83.1 2.8
TR → SEDW → SEC eo medium → gnn+ → transformer 60.4 3.9
TR → SEDW → SEC tokenization repair+ → transformer 57.6 4.1
TR → SEDW → SEC eo medium → transformer+ → transformer 56.2 4.2
TR → SEDW → SEC eo medium → gnn+ → transformer word 28.0 8.4
TR → SEDW → SEC tokenization repair+ → transformer word 24.7 9.5
TR → SEDW → SEC tokenization repair++ 24.4 9.7
TR → SEDW → SEC eo medium → transformer+ → transformer word 23.6 10.0
* Ported models from https://github.com/ad-freiburg/trt, shown here for reference
† The overhead of converting word level detections into sequence level detections is negligible

Table 21: Runtimes: Model runtimes on our runtime benchmark (see section 5.1).
The pipelines for tasks starting with TR are run on the whitespace-
corrupted version of our runtime benchmark. For all models we sort the
benchmark inputs by length before inference and reorder the outputs
afterwards. We measure the runtimes on a system equipped with a
NVIDIA GeForce GTX 1080 Ti GPU and an Intel Core i7-9750H CPU.

68

https://github.com/ad-freiburg/trt

6 Conclusion and future work

Deep learning models dominate classical methods Our evaluations show that

deep learning models outperform classical dictionary and edit distance based methods,

as well as methods using n-gram language models on virtually all benchmarks, often

by large margins.

GNNs are competitive to Transformers for spelling error detection Rep-

resenting text as a word graph and processing it with a GNN can give similar and in

some cases better results compared to Transformer models. However, Transformer

models are still faster.

Adding word features helps spelling error detection In our experiments we

find that spelling error detection models with access to word features consistently

outperform their respective counterparts without word features on most of the

benchmarks. The word features especially seem to help in achieving higher detection

rates.

Spelling error detection can improve spelling error correction in runtime

and performance In our experiments running a spelling error detection model

before spelling error correction to filter out correctly spelled words always led to

faster inference and most of the time to better performance judging by our metrics.

Sequence-to-sequence approaches to spelling error correction can perform

well Previous work by Hertel (2019) found that formulating spelling error correction

69

as a machine translation task can be hard because the model e.g. has to deal with

many ambiguities when translating from misspelled to correct text. However, our

models for spelling error correction which are exclusively Seq2Seq models show, that

translation models are able to reach high levels of performance when trained carefully

on a large dataset.

We think there are a lot of interesting aspects and open questions that could be

subject in future work:

• Make more word features or information available to the models: We

presented 13 word features that we have shown to improve the performance of

spelling error detection models. Adding either more features or information

from other sources could help improving them further.

• Data generation techniques: We generated pairs of misspelled and correct

sequences for training using two relatively simple methods: Applying random

character transformations and replacing correct words with misspellings from

confusion sets. An interesting direction of future work could be to compare

multiple different data generation techniques and determine the ones that work

better than ours.

• Word graph structure: Our GNN-based spelling error detection models

show equal if not better performance compared to regular Transformer-encoders.

Finding out to what part this is based on the explicit modeling of natural

language text as graph itself and finding graph structures that might perform

even better is a task left for future work.

• Full end-to-end training of TR+ models: We have shown that we can

use pretrained tokenization repair models for fixed feature extraction and

successfully detect spelling errors on top of them. It would be of interest

whether we can also train the whole model in an end-to-end fashion and

whether this benefits performance.

• Language model pretraining: We have seen some examples of ambiguous

70

and hard to detect spelling errors where methods that use large pretrained

language models like BERT, XLNet or GPT-3 tend to perform better than our

models. Pretraining our models with a language modeling task and checking

whether this improves the capabilities of our models when dealing with such

errors is an interesting task for future work.

• Scale: Our models mainly reside in the small to medium-sized regime when

compared to other modern deep learning architectures. Although we think

keeping models as small as possible is desirable for fast inference speed it would

be of interest to see how the performance of our models would improve by

scaling them up in size.

• Multilingual models: One of the most interesting aspects from our per-

spective is the possibility of generalizing our methods to work on multiple

languages with a single model. Since our spelling correction methods all use

open vocabularies it should be easy to get them to run on multilingual data by

training multilingual tokenizers. For our spelling detection models one would

need to either design features that work across languages (e.g. multilingual

dictionaries) or drop them entirely and use the Transformer and GNN models

without features. The tokenization-repair-based models should be portable to

multiple languages as well, as long as these languages split their word boundaries

with whitespaces.

71

Bibliography

Ahmadi, Sina (Sept. 21, 2018). Attention-Based Encoder-Decoder Networks for Spelling

and Grammatical Error Correction. arXiv: 1810.00660 [cs].

Atkinson, Kevin (2009). GNU Aspell. url: http : / / aspell . net/ (visited on

04/12/2022).

Awasthi, Abhijeet et al. (Nov. 2019). “Parallel Iterative Edit Models for Local Sequence

Transduction”. In: Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP). EMNLP-IJCNLP 2019. Hong Kong,

China: Association for Computational Linguistics, pp. 4260–4270. doi: 10.18653/

v1/D19-1435.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton (July 21, 2016). “Layer

Normalization”.

Bast, Hannah, Matthias Hertel, and Mostafa M. Mohamed (Oct. 15, 2020). “Tok-

enization Repair in the Presence of Spelling Errors”.

Belinkov, Yonatan and Yonatan Bisk (Feb. 24, 2018). “Synthetic and Natural Noise

Both Break Neural Machine Translation”.

Boytsov, Leonid (May 2011). “Indexing Methods for Approximate Dictionary Search-

ing: Comparative Analysis”. In: ACM Journal of Experimental Algorithmics 16.

issn: 1084-6654, 1084-6654. doi: 10.1145/1963190.1963191.

Bronstein, Michael M. et al. (May 2, 2021). “Geometric Deep Learning: Grids, Groups,

Graphs, Geodesics, and Gauges”.

Brown, Tom B. et al. (July 22, 2020). “Language Models Are Few-Shot Learners”.

72

https://arxiv.org/abs/1810.00660
http://aspell.net/
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.1145/1963190.1963191

Bryant, Christopher et al. (Aug. 2019). “The BEA-2019 Shared Task on Grammatical

Error Correction”. In: Proceedings of the Fourteenth Workshop on Innovative Use

of NLP for Building Educational Applications. Florence, Italy: Association for

Computational Linguistics, pp. 52–75. doi: 10.18653/v1/W19-4406.

Chelba, Ciprian et al. (Mar. 4, 2014). “One Billion Word Benchmark for Measuring

Progress in Statistical Language Modeling”.

Chollampatt, Shamil and Hwee Tou Ng (Jan. 26, 2018). “A Multilayer Convolutional

Encoder-Decoder Neural Network for Grammatical Error Correction”.

Chowdhery, Aakanksha et al. (Apr. 19, 2022). “PaLM: Scaling Language Modeling

with Pathways”.

Damerau, Fred J. (Mar. 1964). “A Technique for Computer Detection and Correction

of Spelling Errors”. In: Communications of the ACM 7.3, pp. 171–176. issn: 0001-

0782, 1557-7317. doi: 10.1145/363958.363994.

Devlin, Jacob et al. (May 24, 2019). “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding”.

Gao, Ji et al. (May 23, 2018). “Black-Box Generation of Adversarial Text Sequences

to Evade Deep Learning Classifiers”.

Gao, Mengyi, Canran Xu, and Peng Shi (Sept. 29, 2021). “Hierarchical Character

Tagger for Short Text Spelling Error Correction”.

Garbe, Wolf (June 2012). SymSpell.

Ge, Tao, Furu Wei, and Ming Zhou (July 2018). “Fluency Boost Learning and Infer-

ence for Neural Grammatical Error Correction”. In: Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers). ACL 2018. Melbourne, Australia: Association for Computational Linguistics,

pp. 1055–1065. doi: 10.18653/v1/P18-1097.

Golding, Andrew R. and Dan Roth (Oct. 31, 1998). “A Winnow-Based Approach to

Context-Sensitive Spelling Correction”.

Google (2022). Google Docs. url: https://docs.google.com (visited on 05/17/2022).

73

https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.1145/363958.363994
https://doi.org/10.18653/v1/P18-1097
https://docs.google.com

Grundkiewicz, Roman and Marcin Junczys-Dowmunt (June 2018). “Near Human-Level

Performance in Grammatical Error Correction with Hybrid Machine Translation”.

In: Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume

2 (Short Papers). NAACL-HLT 2018. New Orleans, Louisiana: Association for

Computational Linguistics, pp. 284–290. doi: 10.18653/v1/N18-2046.

Grundkiewicz, Roman, Marcin Junczys-Dowmunt, and Kenneth Heafield (Aug. 2019).

“Neural Grammatical Error Correction Systems with Unsupervised Pre-training

on Synthetic Data”. In: Proceedings of the Fourteenth Workshop on Innovative

Use of NLP for Building Educational Applications. Florence, Italy: Association for

Computational Linguistics, pp. 252–263. doi: 10.18653/v1/W19-4427.

Hamilton, William L. (2020). “Graph Representation Learning”. In: Synthesis Lectures

on Artificial Intelligence and Machine Learning 14.3, pp. 1–159.

Hendrycks, Dan and Kevin Gimpel (July 8, 2020). “Gaussian Error Linear Units

(GELUs)”.

Hertel, Matthias (Dec. 6, 2019). Neural Language Models for Spelling Correction.

Hládek, Daniel, Ján Staš, and Matúš Pleva (2020). “Survey of Automatic Spelling

Correction”. In: Electronicsweek 9.10, p. 1670.

Hu, Ziniu et al. (Mar. 2, 2020). “Heterogeneous Graph Transformer”.

Hugging Face (Apr. 12, 2022). Huggingface/Tokenizers. Hugging Face.

Jayanthi, Sai Muralidhar, Danish Pruthi, and Graham Neubig (Oct. 2020). “NeuSpell:

A Neural Spelling Correction Toolkit”. In: Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: System Demonstrations.

Online: Association for Computational Linguistics, pp. 158–164. doi: 10.18653/

v1/2020.emnlp-demos.21.

Joshi, Chaitanya (2020). “Transformers Are Graph Neural Networks”. In: The Gradi-

ent.

Junczys-Dowmunt, Marcin et al. (June 2018). “Approaching Neural Grammatical

Error Correction as a Low-Resource Machine Translation Task”. In: Proceedings

74

https://doi.org/10.18653/v1/N18-2046
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/2020.emnlp-demos.21
https://doi.org/10.18653/v1/2020.emnlp-demos.21

of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).

New Orleans, Louisiana: Association for Computational Linguistics, pp. 595–606.

doi: 10.18653/v1/N18-1055.

Kukich, Karen (Dec. 1, 1992). “Techniques for Automatically Correcting Words

in Text”. In: ACM Computing Surveys 24.4, pp. 377–439. issn: 0360-0300. doi:

10.1145/146370.146380.

LanguageTool (2022). LanguageTool - Online Grammar, Style & Spell Checker. Lan-

guageTool. url: https://languagetool.org/ (visited on 04/26/2022).

Levenshtein, Vladimir (Feb. 1966). “Binary Codes Capable of Correcting Deletions,

Insertions and Reversals.” In: Soviet Physics Doklady 10, pp. 707–710.

Li, Hao et al. (Nov. 1, 2018). “Spelling Error Correction Using a Nested RNN Model

and Pseudo Training Data”.

Lichtarge, Jared et al. (June 2019). “Corpora Generation for Grammatical Error

Correction”. In: Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers). NAACL-HLT 2019. Minneapolis, Minnesota:

Association for Computational Linguistics, pp. 3291–3301. doi: 10.18653/v1/N19-

1333.

Loshchilov, Ilya and Frank Hutter (Jan. 4, 2019). “Decoupled Weight Decay Regular-

ization”.

Mays, Eric, Fred J. Damerau, and Robert L. Mercer (1991). “Context Based Spelling

Correction”. In: Information Processing & Management 27.5, pp. 517–522. issn:

0306-4573. doi: 10.1016/0306-4573(91)90066-U.

Micikevicius, Paulius et al. (Feb. 15, 2018). “Mixed Precision Training”.

Napoles, Courtney, Keisuke Sakaguchi, and Joel Tetreault (Feb. 13, 2017). “JFLEG:

A Fluency Corpus and Benchmark for Grammatical Error Correction”.

Omelianchuk, Kostiantyn et al. (July 2020). “GECToR – Grammatical Error Correc-

tion: Tag, Not Rewrite”. In: Proceedings of the Fifteenth Workshop on Innovative

75

https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.1145/146370.146380
https://languagetool.org/
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.1016/0306-4573(91)90066-U

Use of NLP for Building Educational Applications. Seattle, WA, USA → Online: As-

sociation for Computational Linguistics, pp. 163–170. doi: 10.18653/v1/2020.bea-

1.16.

Ozinov, Filipp (Apr. 13, 2022). JamSpell.

Pandu Nayak (Mar. 29, 2021). The ABCs of Spelling in Google Search. Google. url:

https://blog.google/products/search/abcs- spelling- google- search/

(visited on 04/25/2022).

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Advances in Neural Information Processing Systems 32.

Ed. by H. Wallach et al. Curran Associates, Inc., pp. 8024–8035.

Piktus, Aleksandra et al. (June 2019). “Misspelling Oblivious Word Embeddings”.

In: Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational

Linguistics, pp. 3226–3234. doi: 10.18653/v1/N19-1326.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (June 10, 2016). “Neural Machine

Translation of Rare Words with Subword Units”.

Stahlberg, Felix and Shankar Kumar (Apr. 2021). “Synthetic Data Generation for

Grammatical Error Correction with Tagged Corruption Models”. In: Proceedings of

the 16th Workshop on Innovative Use of NLP for Building Educational Applications.

BEA-EACL 2021. Online: Association for Computational Linguistics, pp. 37–47.

Tran, Hieu et al. (May 28, 2021). “Hierarchical Transformer Encoders for Vietnamese

Spelling Correction”.

Vaswani, Ashish et al. (2017). “Attention Is All You Need”. In: Advances in Neural

Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,

Inc.

Veličković, Petar et al. (Feb. 4, 2018). “Graph Attention Networks”.

76

https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://blog.google/products/search/abcs-spelling-google-search/
https://doi.org/10.18653/v1/N19-1326

Wagner, Robert A. and Roy Lowrance (Apr. 1975). “An Extension of the String-

to-String Correction Problem”. In: Journal of the ACM 22.2, pp. 177–183. issn:

0004-5411, 1557-735X. doi: 10.1145/321879.321880.

Walter, Sebastian (May 28, 2021). Tokenization Repair Using Transformers. url:

https://ad-blog.cs.uni-freiburg.de/post/tokenization-repair-using-

transformers/ (visited on 05/22/2022).

Wang, Minjie et al. (2019). “Deep Graph Library: A Graph-Centric, Highly-Performant

Package for Graph Neural Networks”.

Wang, Xiao et al. (Jan. 20, 2021). “Heterogeneous Graph Attention Network”.

Yang, Yilin, Liang Huang, and Mingbo Ma (Oct. 2018). “Breaking the Beam Search

Curse: A Study of (Re-)Scoring Methods and Stopping Criteria for Neural Machine

Translation”. In: Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing. EMNLP 2018. Brussels, Belgium: Association for

Computational Linguistics, pp. 3054–3059. doi: 10.18653/v1/D18-1342.

Yang, Zhilin et al. (Jan. 2, 2020). “XLNet: Generalized Autoregressive Pretraining

for Language Understanding”.

Yasunaga, Michihiro, Jure Leskovec, and Percy Liang (Oct. 7, 2021). “LM-Critic:

Language Models for Unsupervised Grammatical Error Correction”.

Zhou, Yingbo, Utkarsh Porwal, and Roberto Konow (May 17, 2019). “Spelling Cor-

rection as a Foreign Language”.

77

https://doi.org/10.1145/321879.321880
https://ad-blog.cs.uni-freiburg.de/post/tokenization-repair-using-transformers/
https://ad-blog.cs.uni-freiburg.de/post/tokenization-repair-using-transformers/
https://doi.org/10.18653/v1/D18-1342

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem statement and task definitions

	2 Related Work
	2.1 Classical methods
	2.2 Deep Learning methods
	2.2.1 Spelling error correction
	2.2.2 Grammatical error correction

	2.3 Contributions

	3 Background
	3.1 Tokenization
	3.2 Transformer
	3.3 Graph neural network
	3.4 Edit operations and distances
	3.5 Beam search

	4 Approach
	4.1 Data
	4.1.1 Tokenization
	4.1.2 Misspellings

	4.2 Models
	4.2.1 Models for spelling error detection
	4.2.2 Models for spelling error correction

	4.3 Training
	4.4 Inference

	5 Experiments
	5.1 Benchmarks
	5.2 Baselines
	5.3 Evaluation metrics
	5.4 Results
	5.4.1 Benchmarks
	5.4.2 Runtimes

	6 Conclusion and future work
	Bibliography

