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Problem Statement
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Introduction

▪ Companies and research institution collect and store lot of data

▪ Legally requirement to protect individual’s privacy

▪ De-identification means removing identifying information from a dataset 
so that individual data cannot be linked with specific individual

▪ Goals:

1. De-identified document should no longer be associated with the
person

2. De-identified record should retain as much information as possible
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Motivation

1. Enable new data centric use cases

- Medical domain

• Obtain insights to assist clinical practice in treatment design or

risk assessment, etc.

- Corporate domain:

• Classification of customer complaints, chatbots, etc.

2. Demonstrate digital responsibility

- Respect consumer trust and support compliance to regulations 

such as General Data Protection Regulation (GDPR) and Health 

Insurance Portability and Accountability Act of 1996 (HIPAA)
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Approach and Technique
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De-Identification Task

▪ 2014 i2b2/UTHealth shared task featured a track focused on the de-

identification of longitudinal medical records

▪ De-identified using the guidelines provided by HIPAA

▪ A set of 1304 longitudinal medical records describing 296 patients.
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De-Identification Task
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PHI Category Sub-Category

NAME PATIENT, DOCTOR, USERNAME 

PROFESSION None

LOCATION HOSPITAL, ORGANIZATION, STREET, CITY, STATE, COUNTRY, 

ZIP, OTHER 

AGE None

DATE None

CONTACT PHONE, FAX, EMAIL, URL, IPADDRESS 

IDs SOCIAL SECURITY NUMBER, MEDICAL RECORD NUMBER, 

HEALTH PLAN NUMBER, ACCOUNT NUMBER, LICENSE 
NUMBER, VEHICLE ID, DEVICE ID, BIOMETRIC ID, ID NUMBER 



Example: i2b2 2014

ENTITIES: NAME, PROFESSION, LOCATION, AGE,  DATE, CONTACT, 

IDs

Record date: 2074-10-01

Office Note Bobbie Albert #7000963 Tuesday, October 01, 2074

Reason for visit

Mr. Albert is a 39-year-old American man status post bilateral lung 

transplantation due to cystic fibrosis and a history of HCV. He now 

presents with rising creatinine over the past three months and is referred 

by Dr. Benjamin Earnest.
…
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Example: i2b2 2014

ENTITIES: NAME, PROFESSION, LOCATION, AGE,  DATE, CONTACT, 

IDs

…

Social-, Work-, and Family- History

…
Married with other lung transplant recipient (tx 9 years ago). No family 

history of renal disease. Nonsmoker, Marketing Manager.

…

Mr. Albert has progressive renal insufficiency, he does currently not 
require renal replacement therapy. Contributors may be Cyclosporine 

toxicity and intermittent dehydration. However, the recent more rapid rise 

makes biphosphonate toxicity or HCV-associated renal disease a worthy 

consideration.

Thomas Yockey, MD.
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Challenges

Following can be common sources of ambiguity causing a simpler 

algorithm to fail:

1. Overlap of words that can be names of people and medical 

terminologies.

“Mr. Parkinson” is PHI, while “Parkinson’s disease” is not

2. The names may be very uncommon or misspelled.

3. There is no standard data formatting scheme (bulleted data, 

paragraphs, tabular form etc).
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Challenges

4. Fragmented incomplete utterances

5. Domain specific language
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Methods

▪ Automated de-identification systems can be classified into two

categories

1. Rule Based Methods

2. Machine Learning based Methods

1. Feature-engineered supervised systems

2. Feature-inferring neural network systems
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Rule Based Methods

▪ Typically rely on patterns, expressed as regular expressions, dictionary

look-ups, and heuristics, defined and tuned by humans.
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PROS

- They do not require any labeled data

(aside from labels required for

evaluating the system).

- Easy to implement and interpret.

CONS

- Not robust to language changes (e.g., 

variations in word forms, typographical

errors, or infrequently used

abbreviations)

- Cannot easily take into account the

context (e.g., “Mr. Parkinson” is PHI, 

while “Parkinson’s disease” is not). 



Machine Learning based Methods

Feature-engineered supervised systems

- Supervised machine learning models learn to make predictions by

training on example inputs and their expected outputs, and can be used

to replace human curated rules. 
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PROS

- Typically more generalizable than rule-

based methods

- Automatically learn complex patterns

CONS

- Require a decent-sized labeled dataset

- Difficult to interpret

- Much feature engineering: quality

features are challenging and time-

consuming to develop



Feature-inferring neural network systems

- Recent approaches to natural language processing based on artificial

neural networks (ANNs) do not require handcrafted rules or features.
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PROS

- Robust to language and domain changes

- Low maintenance costs

- Take context into account

CONS

- Require a decent-sized labeled dataset

- Difficult to interpret.

Machine Learning based Methods



Preliminaries
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Types of Machine Learning
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Embeddings
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Word embeddings are a type of word representation that allows 

words with similar meaning to have a similar representation

▪ Classical word embeddings

- Same embedding vector is generated for a specific word, 

regardless of the context

▪ Contextual word embeddings

- Contextual embeddings aim to capture word semantics in 

different contexts.

- Capture complex characteristics of word use and how they 

differ across language contexts



Neural Network for Sequence Labeling

Sequence Labeling

- Assignment of a categorical label to each member of a sequence

▪ Most of the neural models used for sequence labelling have 

three main components, which are as follows.

▪ 1. Character representation layer

▪ 2. Word representation layer

▪ 3. Tag decoding layer
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Neural Network for Sequence Labeling
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S a m i s g o i n g t o J a p a n

Character Rep.
Character
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Character Rep.

Character
Rep.

Character
Rep.

Sam is going to Japan

Word Representation Layer: LSTM or CNN

Tag Decoding Layer: Softmax / CRF
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Neural Network for Sequence Labeling

Character representation layer:

▪ Two ways to extract character representation

1. CNN Character Representation Layer

2. LSTM Character Representation Layer
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Neural Network for Sequence Labeling

CNN Character Representation Layer
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Neural Network for Sequence Labeling

LSTM Character Representation Layer
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J a p a n

Character Embedding

Forward LSTM

Backward LSTM

Character Representation 𝐁𝐋𝐒𝐓𝐌 𝐅𝐋𝐒𝐓𝐌



Approach
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▪ In this thesis, we tend to investigate two semi-supervised approaches

which are as follows

1. Character-level contextual embedding (Flair) 

2. Cross-View Training



Flair Embedding

Character language model to produce a novel type of word 

embedding which we refer to as contextual string embeddings

Obtaining Flair embedding could be divided into two steps.

1. Training Language Model

2. Extracting Word Representations
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Flair Embedding

Training Language Model

▪ Sequence of characters passed to LSTM

▪ At each point in the sequence model is trained to predict the

next character in the sequence

▪ Goal to estimate a good distribution over sequences of

characters reflecting natural language production
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Flair Embedding

Extracting Word Representations

▪ From the forward language model, we extract the output

hidden states after the last character in the word

▪ From the backward language model, we extract the output

hidden states before the first character in the word

𝒓𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏
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Flair Embedding for Sequence Labelling

𝒓𝑮𝒆𝒐𝒓𝒈𝒆 𝒓𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏 𝒓𝒘𝒂𝒔 𝒓𝒃𝒐𝒓𝒏

Sequence Labelling Model

B-PER I-PER O O
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Pros and Cons of Flair

Advantages

▪ Different embeddings for polysemous words

▪ Handles rare and misspelled words

▪ Handles subword structures such as prefixes and endings

Disadvantages

▪ Learn generally useful representations

▪ Large model size
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Cross View Training (CVT)

▪ CVT is an effective training mechanism to make use of labeled 

and unlabeled data for training the model

▪ Based on self-learning in a neural world

▪ Learn representations targeted to a particular task
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Cross View Training (CVT)

Classic Self-Training

▪ Alternate learning on labeled and unlabeled examples

▪ For Labeled data

- Standard supervised learning as in the case of sequence 

labelling

▪ For unlabeled data

- Approach is to self label
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Cross View Training (CVT)

Labeled Data
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Cross View Training (CVT)

Unlabeled Data
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Auxiliary 1: He worked as an _________________
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Auxiliary 4: _____________________ in Germany

𝑝1

𝑝2

𝑝3
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Cross View Training (CVT)

Unlabeled Data: Main Predictor
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Cross View Training (CVT)

Unlabeled Data: Forward Predictor
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Cross View Training (CVT)

Unlabeled Data: Forward Predictor
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Cross View Training (CVT)

Forward predictor learns from Primary predictor

because Primary sees more of the input
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As it learns, Forward predictor improves the shared

representation (forward LSTM) which leads to a better Primary

predictor



Cross View Training (CVT)

Unlabeled Data: Future Predictor
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Cross View Training (CVT)

Unlabeled Data: Backward Predictor

04.09.2019
Präsentationstitel

40

engineer in Australia​

𝒚𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅

Backward

LSTM

Forward 

LSTM

Input



Cross View Training (CVT)

Unlabeled Data: Backward Predictor
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Cross View Training (CVT)

Unlabeled Data: Past Predictor

04.09.2019
Präsentationstitel

42

He worked as an engineer in Australia​

y

Backward

LSTM

Forward 

LSTM

Input

𝒚𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅

𝒚𝑷𝒂𝒔𝒕𝒚𝒇𝒖𝒕𝒖𝒓𝒆

𝒚𝑭𝒐𝒓𝒘𝒂𝒓𝒅



Pros and Cons of CVT

Advantages

▪ Effective usage of unlabeled data as model learn 

representations targeted to a particular task

▪ Comparable or better accuracy

▪ Works well for small labeled datasets

Disadvantages

▪ Requires in-domain unlabeled data

▪ Have to train for each task
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Evaluation: Setup and Main 

Results
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Datasets for Unsupervised Learning

Two datasets for unsupervised learning task

▪ 1 Billion Word Language Model Benchmark

- Dataset based on WMT 2011 News Crawl data

▪ MIMIC-III

- Containing information related to patients admitted to critical

care units

- Discharge summaries, which comprises of 59652 notes
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Experiments and Results

We examine two models with different configurations, 

which are as follows

▪ CVT(1b)

▪ CVT(MIMIC)

▪ Flair(1b)

▪ Flair(MIMIC)
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CVT(1b)
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CVT(MIMIC)
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Flair(1b)
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Flair(MIMIC)
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Results
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Model Precision Recall F1-Score

ANN + CRF [Dernoncourt et al. 2017] 97.92 97.83 97.87

Elmo + BiLSTM-CRF [Khinet all.. 2018] 98.30 97.37 97.83

BiLSTM-CRF 98.03 97.20 97.61

CVT(1b) 97.96 97.27 97.62

CVT(MIMIC) 98.22 97.69 97.95

Flair(1b) 98.46 97.52 97.99

Flair(MIMIC) 98.28 97.61 97.94

F1-Score (%) on HIPAA-PHI categories on 2014 i2b2 / UTHealth sharedtask Track 1



Results

04.09.2019 Präsentationstitel 52

F1-Score (%) on HIPAA-PHI categories on 2014 i2b2 / UTHealth sharedtask Track 1



Training Models on Small Dataset
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F1-Score (%) on HIPAA-PHI categories on 2014 i2b2 / UTHealth shared task Track 1



Conclusion

▪ Semi-supervised approaches are effective for the task of 

sequence modelling in medical domain

▪ Cross-View Training performs better than purely supervised 

methods

▪ Cross-View Training is only effective when in-domain data is 

available

▪ Cross-View training achieve same F1-Score as purely 

supervised using 50% of the data

▪ Character-level contextual embeddings produce best 

performance in terms of F1 Score.

▪ Character-level embeddings works with both in-domain or out-

of-domain data
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Future Work

▪ Combine both approaches for de-identification task

▪ More in-domain unlabeled data

▪ Multitask learning

▪ Hyperparameter optimization could be investigated
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Thank you!
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Examples of features used in the CRF model
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Feature types Features

Lexical/syntactic Token, lemma, tense, parts of speech

Morphological

Ends with s, contains a digit, is 

numeric, is alphabetic, is 

alphanumeric, is title case, is all 

lowercase, prefix, suffix

Temporal Season, month, weekday, time of day

Semantic/wordnet Hypernyms, senses, lemma names

Gazetteers

First names, last names, medical 

titles, medical specialties, cities, states 

(including abbreviations), countries, 

organizations, professions, holidays

Regular expressions
E-mail, age, date, phone, zip code, ID 

number, medical record number



Tokenization
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▪ Text is tokenizated aggressively

- Splitting after all punctuation marks

- Splitting if number is followed by text like 20yo with “20“ and “yo“

▪ Split using spaCy heuristics for English with additional rules

- Split after three newline characters

- Split for bulleted or numbered list items

- Split after three dashes



PHI types as defined by HIPAA, i2b2, and MIMIC.
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Tagging Scheme
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Smith is going to San Francisco

I-PER O O O B-LOC I-LOC

Smith is going to San Francisco

B-PER O O O B-LOC I-LOC

IOB Tagging Scheme

IOB2 Tagging Scheme



Cross View Training (CVT)

Classic Self-Training

▪ Alternate learning on labeled and unlabeled examples

▪ For Labeled data
- Standard supervised learning as in the case of Named Entity Recognition NER

▪ For unlabeled data

- Approach is to self label
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Cross View Training (CVT)

Co-Training

Example: He is an engineer
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Model 1 Model 2

He is an __________ _________ engineer
teaches

???



Cross View Training (CVT)

Co-Training

Example: He worked in design
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Model 1 Model 2

He worked in _______ _________ design
???

teaches



Results
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Results
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