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Introduction

 Rising energy prices have affected industries and 
households

 Load Monitoring refers to monitoring of various 
devices in a power network

 Real-time appliance level feedback can result in 
energy savings of up to 12%
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Figure. Energy savings due to advanced levels of feedback [1]



Non-Intrusive Load Monitoring (NILM)

 Main meter – aggregate consumption
 Submeter – consumption of individual devices
 Intrusive Load Monitoring requires installing submeters for individual appliances
 Non-Intrusive Load Monitoring (NILM) estimates the power readings by disaggregating the main meter 

readings
 The aggregated signal Xt at time t can be represented as the summation of the power of the constituent 

appliances Yit at time t where ϵt is the error at time t.
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Figure. Sensing appliance power usage and consumption without sensors [2].



NILM for Industrial Data

 Most of the research work in NILM has been carried out in residential settings, fewer publicly available 
datasets for industrial use-case

 Households consume 26% of electrical energy, whereas the industrial sector is responsible for 44% of 
energy consumption1

 HIPE, High-resolution Industrial Production Energy data set [3] provides a comparative analysis using 
different NILM algorithms [4]

 Although, HIPE is smaller dataset and makes use of artificial aggregation

 Thus, we extend on the work provided in the HIPE paper
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1https://de.statista.com/statistik/daten/studie/236757/umfrage/stromverbrauch-nach-
sektorenin-deutschland/
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Non-Intrusive Load Monitoring Toolkit (NILMTK)

 NILMTK is an open-source toolkit designed to promote research in NILM 

 Allows comparative analysis with support for various publicly available datasets and well-known NILM 
algorithms

 Provides an end-to-end pipeline right from dataset conversion to evaluation metrics

 Easy integration of new datasets
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Figure. NILMTK workflow [5]



Seq2Seq and Seq2Point concepts
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Figure. Sequence-to-Sequence concept

Figure. Sequence-to-Point conceptFigure. Sequence-to-Sequence concept



CNN-Based Seq2Seq Architecture
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LSTM architecture
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BERT architecture
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Approach

Questions ?

Seite 13



Contents

 Introduction

 Approach

 Evaluation

Seite 14



Datasets

 Company A, which is a plastic recycling company

 Company B, which produces micromechanical parts
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Company A

 Various levels of disaggregation possible
 Underlined bulbs indicate the levels where disaggregation

tasks are performed in the thesis
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Figure. Flow of electricity from the main meter to the 
individual devices in Company A



Company A – Trafo1

 Disaggregation performed for Schredder and 
Starlinger

 Solar PV systems generate power 
 Data sampled at a rate of 60 seconds per 

sample
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 Starlinger consumes around 80% of energy
 Schredder only consumes around 5% of 

energy
 There is also a loss component 

Figure. Flow of electricity from 
Trafo 1 to its connected devices. 
The red arrows indicate the 
target devices for the 
disaggregation task.

Figure. Energy composition of Trafo1 in Company A



Company A - Extruder

 Sample rate of 900 seconds
 Extruder MAS (10) is the highest consumer
 Starlinger is also an extruder, therefore this disaggregation task has been used for transfer 

learning 
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Figure. Flow of electricity from extruder to its connected devices. The 
red arrows indicate the target devices for the disaggregation task.



Company B

 Primary focus on disaggregation of
trafo1

 Sample rate of 60 seconds
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Figure. Flow of electricity from the main meter to the individual 
devices in Company B



Company B – Trafo1
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 Disaggregation performed for MUT 
and Waschanlage 2002 devices

 MUT and WA 2002 consume around 85% of 
the energy

Figure. Flow of electricity from trafo 1 to its 
connected devices. The red arrows indicate 
the target devices for the disaggregation 
task.

Figure. Energy consumption mix of trafo1 
in Company B



Setup

 Training period – 1 year

 Test period – 5 months 

 Maximum number of epochs – 100, patience of 10

 Standardized input

 Implementation done using keras
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Evaluation Metrics

 Root Mean Square Error (RMSE):

 Normalized Disaggregation Error (NDE):
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Comparing different input features

 Sample rate – 300, Sequence length – 99
 Error metric – RMSE
 Active power, Reactive power performs the best 
 Similar trends observed for Starlinger, MUT and Waschanlage devices
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Table. RMSE results (measured in Watts) of different NILM algorithms on the Waschanlage 2002 device 
from Company B compared on different input features.



Comparison between different sample rates and sequence lengths
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Table. Snapshot of comparing different algorithms for MUT device showing results at 
sample rate of 900

 Effective sequence length (ESL) –
product of sample rate and sequence 
length

 BERT is the best performing algorithm 
for all 3 devices

 LSTM is the worst performing, 
especially at higher sequence lengths

 Results are worse at sample rate of 60
 Better results obtained at lower 

sequence lengths for higher sample 
rates and vice versa



Comparison between different sample rates and sequence lengths

Seite 25

 Effective sequence length (ESL) –
product of sample rate and sequence 
length

 BERT is the best performing algorithm 
for all 3 devices

 LSTM is the worst performing, 
especially at higher sequence lengths

 Results are worse at sample rate of 60
 Better results obtained at lower 

sequence lengths for higher sample 
rates and vice versa Table. Snapshot of comparing different algorithms for MUT device showing LSTM 

results



Comparison between different sample rates and sequence lengths

 Effective sequence length (ESL) –
product of sample rate and sequence 
length

 BERT is the best performing algorithm 
for all 3 devices

 LSTM is the worst performing, 
especially at higher sequence lengths

 Results are worse at sample rate of 60
 Better results obtained at lower 

sequence lengths for higher sample 
rates and vice versa
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Table. Snapshot of comparing different algorithms for WA 2002 device showing BERT 
and Seq2Point results



Comparison between different devices

 NDE – Evaluation Metric
 Starlinger consumes ∼ 80% of energy 
 Schredder consumes only ∼ 5% of energy
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Table. Results of different NILM algorithms on 4 different devices from Company A and 
Company B



Transfer Learning

 Transfer learning in residential setting has shown promising results [6], [7]
 Pre-trained model on Starlinger used for Extruder MAS (10)
 CNN-2L – leaving last two layers unfrozen
 CNN-FL – leaving all the layers unfrozen
 Transfer learning only beneficial for when little training data available
 Results of CNN-FL, especially, indicate some negative transfer  
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Table. Comparing the results of transfer learning with ‘normal’ learning

Training Data (Days)



Conclusion 

 Better results obtained as compared to the HIPE results (evaluated using NDE)
 Using active and reactive power yields better results than simply using active power
 BERT outperforms other NILM algorithms on all the devices
 Choice of sequence length must be made in accordance with sample rate
 Additional experiments can help in finding the optimal sequence length
 More effective transfer learning strategies needed
 Disaggregation can be performed at various levels in the power network
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Thank You!
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Electricity prices over the years
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Formal definition of NILM
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 Observed aggregate time series X = (X1, X2, ... , XT )

 m appliances, each represented by Yi = (Yi1, Yi2, ... , YiT ) where 1 < = i < = m

 The aggregated signal Xt at time t can be represented as the summation of the power measured of the 
constituent appliances at time t where ϵt is the error at time t.

 The goal is to estimate the unknown signals Yi given the aggregate signal X



HART
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Training Time
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Table. Training time for Bert without improvements



Comparison of different input features
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Comparing active and reactive power
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Comparison between different sequence lengths and sample rates

Seite 39

Table. Results for WA 2002 Table. Results for MUT

Table. Results for Starlinger



Trainable Parameters
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Layer (type) Output Shape Param # 
================================================================= 
conv1d_77 (Conv1D) (None, 99, 16) 144 
_________________________________________________________________ 
bidirectional_10 (Bidirectio (None, 99, 256) 148480 
_________________________________________________________________ 
bidirectional_11 (Bidirectio (None, 512) 1050624 
_________________________________________________________________ 
dense_190 (Dense) (None, 128) 65664 
_________________________________________________________________ 
dense_191 (Dense) (None, 1) 129 
================================================================= 
Total params: 1,265,041 Trainable params: 1,265,041 Non-trainable 
params: 0

Trainable parameters for RNN

Layer (type) Output Shape Param # 
================================================================= 
conv1d_85 (Conv1D) (None, 99, 64) 576 
_________________________________________________________________ 
encoder_15 (Encoder) (None, 99, 64) 232320 
_________________________________________________________________ 
flatten_27 (Flatten) (None, 6336) 0 
_________________________________________________________________ 
dropout_243 (Dropout) (None, 6336) 0 
_________________________________________________________________ 
dense_251 (Dense) (None, 99) 627363 
================================================================= 
Total params: 860,259 Trainable params: 860,259 Non-trainable 
params: 0

Trainable parameters for BERT



Trainable Parameters
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Layer (type) Output Shape Param # 
================================================================= 
conv1d_10 (Conv1D) (None, 90, 30) 630 
_________________________________________________________________ 
conv1d_11 (Conv1D) (None, 83, 30) 7230 
_________________________________________________________________ 
conv1d_12 (Conv1D) (None, 78, 40) 7240 
_________________________________________________________________ 
conv1d_13 (Conv1D) (None, 74, 50) 10050 
_________________________________________________________________ 
dropout_6 (Dropout) (None, 74, 50) 0 
_________________________________________________________________ 
conv1d_14 (Conv1D) (None, 70, 50) 12550 
_________________________________________________________________ 
dropout_7 (Dropout) (None, 70, 50) 0 
_________________________________________________________________ 
flatten_2 (Flatten) (None, 3500) 0 
_________________________________________________________________ 
dense_4 (Dense) (None, 1024) 3585024 
_________________________________________________________________ 
dropout_8 (Dropout) (None, 1024) 0 
_________________________________________________________________ 
dense_5 (Dense) (None, 1) 1025 
================================================================= 
Total params: 3,623,749 Trainable params: 3,623,749 Non-trainable 
params: 0

Trainable parameters for CNN-based models



Prediction plot
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Prediction plot for starlinger



Comparison between Seq2Point and Seq2Seq algorithms

 Comparing the performance of BERT2Point and Seq2Point vs BERT and Seq2Seq
 Seq2Seq methods fare better on Starlinger
 Seq2Point methods work comparatively better with MUT 

Seite 43

Table. Comparison of results of Seq2Point and Seq2Seq algorithms 

Algorithms Starlinger MUT

BERT vs 
BERT2point

14.9% 4.12%

Seq2Seq vs 
Seq2Point 
(CNN)

7.47% -2.62%

Table. Mean Error difference 



Comparison between Seq2Point and Seq2Seq algorithms
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Figure. The ground truth shows less sharper peaks for Starlinger Figure. The ground truth shows sharper peaks for MUT



Hyperparameter Optimisation
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Table. Hyperparameters and their search space



Transfer learning plots
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Zero-shot-Learning CNN-2L

Normal Seq2Point CNN-FL
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