

Evaluation of Non-Intrusive Load Monitoring Algorithms on Industrial Load Profiles

Presented by: Sambhav Shah

17.02.202

3

Examiners Advisers
Prof. Dr. Hannah Bast
Prof. Dr. Christof Wittwer Benedikt Köpfer

Contents

Introduction

Approach

Evaluation

Introduction

- Rising energy prices have affected industries and households
- Load Monitoring refers to monitoring of various devices in a power network
- Real-time appliance level feedback can re energy savings of up to 12%

Figure. Energy savings due to advanced levels of feedback [1]

Non-Intrusive Load Monitoring (NILM)

- Main meter aggregate consumption
- Submeter consumption of individual devices
- Intrusive Load Monitoring requires installing submeters for individual appliances
- Non-Intrusive Load Monitoring (NILM) estimates the power readings by disaggregating the main meter readings
- The aggregated signal X_t at time *t* can be represented as the summation of the power of the constituent appliances Y_{it} at time *t* where ϵ_t is the end of the summation of the power of the constituent $\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^$

$$X_t = \sum_{i=1}^{\infty} Y_{it} + \epsilon_t$$

Figure. Sensing appliance power usage and consumption without sensors [2].

NILM for Industrial Data

- Most of the research work in NILM has been carried out in residential settings, fewer publicly available datasets for industrial use-case
- Households consume 26% of electrical energy, whereas the industrial sector is responsible for 44% of energy consumption¹
- HIPE, High-resolution Industrial Production Energy data set [3] provides a comparative analysis using different NILM algorithms [4]
- Although, HIPE is smaller dataset and makes use of artificial aggregation
- Thus, we extend on the work provided in the HIPE paper

Seite 5

Introduction

Questions ?

Contents

Introduction

Approach

Non-Intrusive Load Monitoring Toolkit (NILMTK)

- NILMTK is an open-source toolkit designed to promote research in NILM
- Allows comparative analysis with support for various publicly available datasets and well-known NILM algorithms
- Provides an end-to-end pipeline right from dataset conversion to evaluation metrics

Seq2Seq and Seq2Point concepts

CNN-Based Seq2Seq Architecture

LSTM architecture

BERT architecture

Questions ?

Contents

Introduction

Approach

Evaluation

Datasets

Company A, which is a plastic recycling company

Company B, which produces micromechanical parts

Company A

Underlined bulbs indicate the levels where disaggregation tasks are performed in the thesis

Company A – Trafo1

- Disaggregation performed for Schredder and Starlinger
- Solar PV systems generate power
- Data sampled at a rate of 60 seconds per sample

- Starlinger consumes around 80% of energy
- Schredder only consumes around 5% of energy
- There is also a loss component

Company A - Extruder

- Sample rate of 900 seconds
- Extruder MAS (10) is the highest consumer
- Starlinger is also an extruder, therefore this disaggregation task has been used for transfer learning

Company B

- Primary focus on disaggregation of trafo1
- Sample rate of 60 seconds

Company B – Trafo1

Disaggregation performed for MUT and Waschanlage 2002 devices MUT and WA 2002 consume around 85% of the energy

Setup

- Training period 1 year
- Test period 5 months
- Maximum number of epochs 100, patience of 10
- Standardized input
- Implementation done using keras

Evaluation Metrics

Root Mean Square Error (RMSE):

$$RMSE(y, \hat{y}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Normalized Disaggregation Error (NDE):

$$NDE(y, \hat{y}) = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i)^2}}$$

Comparing different input features

- Sample rate 300, Sequence length 99
- Error metric RMSE
- Active power, Reactive power performs the best
- Similar trends observed for Starlinger, MUT and Waschanlage devices

Features	BERT	Seq2Point	LSTM
Active	10731	11768	15960
Active, Reactive	7818	9014	8775
Active, Reactive, Solar Power	8225	9420	9437
Active, Reactive, Voltage, Current	9060	10990	11322

Table. RMSE results (measured in Watts) of different NILM algorithms on the Waschanlage 2002 devicefrom Company B compared on different input features.

Comparison between different sample rates and sequence lengths

- Effective sequence length (ESL) product of sample rate and sequence length
- BERT is the best performing algorithm for all 3 devices
- LSTM is the worst performing, especially at higher sequence lengths
- Results are worse at sample rate of 60
- Better results obtained at lower sequence lengths for higher sample rates and vice versa

	Sample Rate	Sequence Length	ESL (minutes)	BERT	Seq2Point	LSTM
	39	585	6828	7683	7959	
	900	99	1485	6752	7341	9059
		159	2385	6980	7361	11733
		219	3285	7174	7767	14936

Table. Snapshot of comparing different algorithms for MUT device showing results atsample rate of 900

Comparison between different sample rates and sequence lengths

- Effective sequence length (ESL) product of sample rate and sequence length
- BERT is the best performing algorithm for all 3 devices
- LSTM is the worst performing, especially at higher sequence lengths
- Results are worse at sample rate of 60
- Better results obtained at lower sequence lengths for higher sample rates and vice versa

Sample Rate	Sequence Length	ESL (minutes		LSTM
	39	585		7959
900	99	1485		9059
	159	2385		11733
	219	3285		14936
	39	195	İ	8829
200	99	495		8909
300	159	795		10825
	219	1095		10631
	39	117		9594
190	99	297		9596
100	159	477		10542
	219	657		11281
	39	39	İ	10820
60	99	99		10479
00	159	159		10989
	219	219		11450

Table. Snapshot of comparing different algorithms for MUT device showing LSTMresults

Comparison between different sample rates and sequence lengths

- Effective sequence length (ESL) product of sample rate and sequence length
- BERT is the best performing algorithm for all 3 devices
- LSTM is the worst performing, especially at higher sequence lengths
- Results are worse at sample rate of 60
- Better results obtained at lower sequence lengths for higher sample rates and vice versa

Sample Rate	Sequence Length	ESL (minutes)	BERT	Seq2Point
	39	585	7149	8734
900	99	1485	6883	8290
	159	2385	6989	8507
	219	3285	7132	8788
	39	195	8207	9540
200	99	495	7860	9101
300	159	795	7432	8882
	219	1095	7802	9041
	39	117	9126	10758
190	99	297	8536	9625
160	159	477	8181	9217
	219	657	7986	9039
	39	39	9043	11624
60	99	99	8666	10308
00	159	159	8701	10163
	219	219	8313	9855

Table. Snapshot of comparing different algorithms for WA 2002 device showing BERTand Seq2Point results

Comparison between different devices

- NDE Evaluation Metric
- Starlinger consumes ~ 80% of energy
- Schredder consumes only ~ 5% of energy

Sequence Length	Sta	arlinger	Sch	Schredder MUT		Waschanlage		
	BERT	Seq2Point	BERT	Seq2Point	BERT	Seq2Point	BERT	Seq2Point
39	0.056	0.071	0.812	0.954	0.154	0.173	0.168	0.201
99	0.053	0.069	0.716	0.848	0.148	0.168	0.159	0.188
159	0.052	0.066	0.682	0.769	0.151	0.161	0.152	0.180
219	0.057	0.067	0.757	0.842	0.153	0.163	0.156	0.185

Table. Results of different NILM algorithms on 4 different devices from Company A and Company B

Transfer Learning

- Transfer learning in residential setting has shown promising results [
- Pre-trained model on Starlinger used for Extruder MAS (10)
- CNN-2L leaving last two layers unfrozen
- CNN-FL leaving all the layers unfrozen
- Transfer learning only beneficial for when little training data available
- Results of CNN-FL, especially, indicate some negative transfer

Training Data (Days)	Seq2Point	CNN-2L	CNN-FL	Zero-Shot Learning
10	7928	7568	7303	8227
30	4082	3531	3125	8227
60	2972	3958	3542	8227
120	2558	3207	2812	8227
180	2330	2963	2570	8227

Table. Comparing the results of transfer learning with 'normal' learning

Conclusion

- Better results obtained as compared to the HIPE results (evaluated using NDE)
- Using active and reactive power yields better results than simply using active power
- BERT outperforms other NILM algorithms on all the devices
- Choice of sequence length must be made in accordance with sample rate
- Additional experiments can help in finding the optimal sequence length
- More effective transfer learning strategies needed
- Disaggregation can be performed at various levels in the power network

References

- 1. K. Ehrhardt-Martinez, K. A. Donnelly, S. Laitner, et al., "Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities," American Council for an Energy-Efficient Economy Washington, DC, 2010.
- Rodriguez, Alejandro & Makonin, Stephen. (2019). Universal Non-Intrusive Load Monitoring (UNILM) Using Filter Pipelines, Probabilistic Knapsack, and Labelled Partition Maps. 1-6. 10.1109/APPEEC45492.2019.8994618.
- S. Bischof, H. Trittenbach, M. Vollmer, D. Werle, T. Blank, and K. Böhm, "Hipe An energy-status-data set from industrial production," in Proceedings of th Ninth International Conference on Future Energy Systems, pp. 599–603, 2018.
- 4. F. Kalinke, P. Bielski, S. Singh, E. Fouché, and K. Böhm, "An evaluation of nilm approaches on industrial energy-consumption data," in Proceedings of the Twelfth ACM International Conference on Future Energy Systems, pp. 239–243, 2021.
- 5. N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh and M. Srivastava, "Nilmtk: An open source toolkit for non-intrusive load monitoring," in Proceedings of the 5th international conference on Future energy systems, pp. 265–276, 2014.
- 6. M. D'Incecco, S. Squartini, and M. Zhong, "Transfer learning for non-intrusive load monitoring," IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1419–1429, 2019.
- 7. L. Wang, S. Mao, B. M. Wilamowski, and R. M. Nelms, "Pre-trained models for non-intrusive appliance load monitoring," IEEE Transactions on Green Communications and Networking, vol. 6, no. 1, pp. 56–68, 2021.

Questions?

Additional Slides

Electricity prices over the years

Annual spot market prices in Germany

Formal definition of NILM

- Observed aggregate time series $X = (X_1, X_2, ..., X_T)$
- m appliances, each represented by $Y_i = (Y_{i1}, Y_{i2}, ..., Y_{iT})$ where 1 < = i < = m
- The aggregated signal X_t at time *t* can be represented as the summation of the power measured of the constituent appliances at time *t* where ϵ_t is the error at time *t*.

$$X_t = \sum_{i=1}^m Y_{it} + \epsilon_t$$

The goal is to estimate the unknown signals Y_i given the aggregate signal X

HART

Training Time

Model	Total training time on average (s)
Seq2Point	200
Seq2Seq	200
LSTM	1900
BERT with 6 encoder layers	2500
BERT2Point	2400

Table 1: Training time for different algorithms at sample rate of 300 and sequence length of 99.

Algorithm	Number of epochs	Average time taken per epoch	Average total training time
Seq2seq	50	1 Second	50 Seconds
Seq2point	50	1 Second	50 Seconds
RNN	50	10 Seconds	500 Seconds
GRU	50	67 Seconds	3350 Seconds
BERT with 1 encoder layer	50	24 Seconds	4800 Seconds
BERT with 4 encoder layers	50	47 Seconds	9400 Seconds
BERT with 6 encoder layers	50	71 Seconds	14200 Seconds

Table. Training time for Bert without improvements

Comparison of different input features

Features	BERT	Seq2Point	LSTM
Active	15123	20220	21893
Active, Reactive	10242	12566	16140
Active, Reactive, Solar Power	10685	15371	17189
Active, Reactive, Voltage, Current	15632	22311	25526

 Table 2: RMSE results (measured in Watts) of different NILM algorithms on the Starlinger device from Company A compared on different input features.

Features	BERT	Seq2Point	LSTM
Active	8945	9759	11594
Active, Reactive	7341	8363	8380
Active, Reactive, Solar Power	7727	9183	10627
Active, Reactive, Voltage, Current	8051	10368	12068

Table 3: RMSE results (measured in Watts) of different NILM algorithms on the MUT device from Company B compared on different input features.

Comparing active and reactive power

Comparison between different sequence lengths and sample rates

Sample Rate	Sequence Length	ESL (minutes)	BERT	Seq2Point	LSTM
	39	585	7149	8734	8616
000	99	1485	6883	8290	8729
900	159	2385	6989	8507	14402
	219	3285	7132	8788	20151
	39	195	8207	9540	9571
200	99	495	7860	9101	8743
300	159	795	7432	8882	14235
	219	1095	7802	9041	14121
	39	117	9126	10758	9537
190	99	297	8536	9625	9067
160	159	477	8181	9217	9260
	219	657	7986	9039	14749
60	39	39	9043	11624	9780
	99	99	8666	10308	9347
	159	159	8701	10163	9721
	219	219	8313	9855	9725

Sample Rate	Sequence Length	ESL (minutes	BERT	Seq2Point	LSTM
	39	585	6828	7683	7959
000	99	1485	6752	7341	9059
900	159	2385	6980	7361	11733
	219	3285	7174	7767	14936
	39	195	7730	8387	8829
200	99	495	7474	8203	8909
200	159	795	7651	8082	10825
	219	1095	7712	8294	10631
	39	117	8334	9841	9594
190	99	297	8106	9255	9596
100	159	477	7994	9082	10542
	219	657	8027	8979	11281
	39	39	9880	11584	10820
60	99	99	9310	10210	10479
	159	159	9253	10197	10989
	219	219	9215	10032	11450

Table. Results for WA 2002

Table. Results for MUT

Sample Rate	Sequence Length	ESL (minutes)	BERT	Seq2Point	LSTM
	39	585	11789	13869	17112
000	99	1485	11892	13658	21347
900	159	2385	11751	14123	33645
	219	3285	12136	14105	35527
	39	195	11347	13928	14644
200	99	495	10615	13664	16477
300	159	795	10311	13021	23316
	219	1095	11182	13299	24482
	39	117	11184	12955	13677
180	99	297	10598	12485	15662
100	159	477	10338	12713	22176
	219	657	10287	12157	21868
	39	39	12165	14450	13520
60	99	99	12208	13324	12880
00	159	159	11360	13105	15078
	219	219	11140	12788	17366

Table. Results for Starlinger

Trainable Parameters

Layer (type) Output Shape Param # convld_77 (ConvlD) (None, 99, 16) 144

bidirectional_10 (Bidirectio (None, 99, 256) 148480

bidirectional_11 (Bidirectio (None, 512) 1050624

dense_190 (Dense) (None, 128) 65664

dense_191 (Dense) (None, 1) 129

Total params: 1,265,041 Trainable params: 1,265,041 Non-trainable params: 0

Trainable parameters for RNN

Layer (type) Output Shape Param #

convld_85 (ConvlD) (None, 99, 64) 576

encoder_15 (Encoder) (None, 99, 64) 232320

flatten_27 (Flatten) (None, 6336) 0

dropout_243 (Dropout) (None, 6336) 0

Trainable parameters for BERT

Trainable Parameters

Layer (type) Output Shape Param # convld 10 (ConvlD) (None, 90, 30) 630 convld_11 (Conv1D) (None, 83, 30) 7230 conv1d_12 (Conv1D) (None, 78, 40) 7240 convld_13 (ConvlD) (None, 74, 50) 10050 dropout_6 (Dropout) (None, 74, 50) 0 convld_14 (Conv1D) (None, 70, 50) 12550 dropout_7 (Dropout) (None, 70, 50) 0 flatten_2 (Flatten) (None, 3500) 0 dense_4 (Dense) (None, 1024) 3585024 dropout_8 (Dropout) (None, 1024) 0 dense_5 (Dense) (None, 1) 1025 _____ Total params: 3,623,749 Trainable params: 3,623,749 Non-trainable params: 0

Trainable parameters for CNN-based models

Prediction plot

Prediction plot for starlinger

Comparison between Seq2Point and Seq2Seq algorithms

- Comparing the performance of BERT2Point and Seq2Point vs BERT and Seq2Seq
- Seq2Seq methods fare better on Starlinger
- Seq2Point methods work comparatively better with MUT

Sequence Length	Starlinger			MUT				
	BERT	BERT2Point	Seq2Seq	Seq2Point	BERT	BERT2Point	Seq2Seq	Seq2Point
39	0.056	0.0663	0.064	0.071	0.154	0.163	0.174	0.173
99	0.0529	0.0628	0.0612	0.069	0.148	0.155	0.171	0.168
159	0.0523	0.0605	0.0626	0.066	0.151	0.156	0.167	0.161
219	0.057	0.0609	0.0646	0.067	0.153	0.157	0.170	0.163

Algorithms	Starlinger	MUT
BERT vs BERT2point	14.9%	4.12%
Seq2Seq vs Seq2Point (CNN)	7.47%	-2.62%

Table. Comparison of results of Seq2Point and Seq2Seq algorithms

Table. Mean Error difference

Comparison between Seq2Point and Seq2Seq algorithms

Figure. The ground truth shows less sharper peaks for Starlinger

Figure. The ground truth shows sharper peaks for MUT

Hyperparameter Optimisation

Description	Range	Best Configuration
Learning Rate	$[1 \cdot 10^{-4}, 5 \cdot 10^{-4}, 1 \cdot 10^{-3}, 5 \cdot 10^{-2}, 1 \cdot 10^{-2}]$	$1 \cdot 10^{-3}$
Number of Enc. Layers	[1, 2, 4, 6]	6
No. of filters	[8, 16, 32, 64]	64
No. of attention heads	[1, 2]	2
Dropout rate	[0.1, 0.2]	0.2

Table. Hyperparameters and their search space

Transfer learning plots

Zero-shot-Learning

2022-04

CNN-FL

2022-05

2022-06

60000

40000

Energy (Wh) 50000

-20000

2022-01

2022-02

2022-03

