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Introduction

 Energy monitoring and real-time 
appliance level feedback can result in 
energy savings of upto 12%.

 Energy monitoring
 Intrusive Load monitoring (ILM)
 Non-intrusive load monitoring (NILM)
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Problem statement



3



Motivation

 Grid stability
 Conceive energy management strategies 

for optimal usage of appliances
 EV charging patterns are required for 

smart grid solutions like V2G
 Overall energy used by appliances can be 

determined
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Introduction
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NILMTK

 Open-source toolkit for comparitive analysis of 
NILM algorithms across various datasets.

 Provides a pipeline from datasets to evaluation 
metrics to lower the entry barrier for researchers.
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Datasets

 Synpro dataset (synthetic)

 Dataport dataset
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Synpro Dataset

 The synthetic dataset is 
created using the Synpro tool 
which was developed at 
Fraunhofer ISE.

 Contains energy consumption 
time series of main meter, 
heat-pumps, EV charger and 
other appliances in a house.

 The sample rate used in this 
thesis is 15-minutes.
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House 
Number

House Type Number of 
Occupants

Charging Rate
(kW)

1 Single-Family House 1 3.7

2 Single-Family House 2 7.2

3 Single-Family House 3 11

4 Single-Family House 4 3.7

5 Multi-Family House 2 7.2

6 Multi-Family House 2 3.7

7 Multi-Family House 4 11

8 Multi-Family House 4 7.2

9 Multi-Family House 6 11

10 Multi-Family House 6 3.7

11 Multi-Family House 8 11

12 Multi-Family House 8 7.2



Synpro Dataset

Energy consumption of the main meter, an EV
charger and the heat-pump for a single day in house 
4 of the Synpro dataset

Aggregate energy consumption in House 10 of 
Synpro dataset 
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Dataport Dataset

 Pecan Street Dataport database is the world’s 
largest publicly available resource for residential 
energy use data.

 They provide access to time-series energy 
consumption data for 75 houses.

 Only 6 houses contain energy consumption time-
series for an EV charger for an entire year.

 These houses are located in Austin and California.
 The sample rate used in this thesis is 15-minutes.
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Dataport Dataset

Energy consumption of the main meter, an EV
charger and the air conditioner, electric furnace and 
spin dryer for a single day in house 3 of the dataport
dataset

Aggregate energy consumption in House 1 of 
dataport dataset 
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Deep learning NILM algorithms

 Sequence-to-Sequence

 Sequence-to-Point
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Seq2seq and Seq2point model architecture

Seq2seq Architecture Seq2point Architecture
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RNN and GRU model architecture

RNN Architecture GRU Architecture
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BERT model architecture

BERT architecture
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Evaluation metric regression

 Mean Average Error (MAE):

 Root Mean Square Error (RMSE):

 Normalized Disaggregation Error (NDE):
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Evaluation metric classification

 Let the predicted value of energy consumed by a device by a model 
be P, the ground truth value of energy consumed by a device be G 
and threshold is T.

 At a particular timepoint the prediction is :
 True Positive (TP) if P>T and G >T
 True Negative (TN) if P<T and G<T
 False Positive (FP) if P>T and G<T
 False Negative (FN) if P<T and G>T

 Accuracy:

 Precision:

 Recall

 F1
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Approach

 Questions?
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Setup

 Training and testing done on the same house

 Train dataset- January-September
 Test dataset – October-December

 Early stopping – 15 epochs
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1.Comparison between various algorithms using 
Synpro dataset for EV charger energy prediction
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1.Comparison between best and worst performing 
Seq2point model for EV charging power prediction

Results of Seq2point algorithm in 
house 3 of Synpro dataset on EV 
charging power prediction.

Results of Seq2point algorithm in 
house 4 of Synpro dataset on EV 
charging power prediction.
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1.Comparison between various algorithms using 
Synpro dataset for heat-pump energy prediction
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2. Comparison between various algorithms using                                                                               
Dataport dataset
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3. Effect of using multi-input models with weather 
(temperature) as additional input on the Synpro 
dataset.
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4. Effect of using multi-output models by using the same 
model to predict more than one appliance at a time on the 
Synpro dataset.
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5. Effect of Converting the BERT model to BERT2Point 
model.
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6.Performance of the Seq2Point and BERT algorithms in 
terms of NDE when tested on unseen house
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7.Effect of training on both datasets and testing on 
Dataport dataset
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8.Performance of Seq2Point and BERT algorithms in 

electric vehicle charging event detection
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Conclusion

 Seq2point outperforms other NILM algorithms on 
both datasets.

 Additional weather data improved the performance 
of the Seq2point and BERT models in predicting 
energy consumed by heat-pump.

 Multi-output models can be used to save training 
time.
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Thank You!
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Evaluation

 Questions?
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Training time
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BERT EV charger single day predictions
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Seq2point EV charger single day predictions
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BERT heat-pump single day predictions
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Seq2point heat-pump single day predictions
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