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Abstract

Non-intrusive load monitoring (NILM) is the process of using the energy consumption

of a house as a time-series, which is the sum of the consumptions of the individual

appliances to predict the individual appliance’s consumption time-series. The goal of

this thesis is to predict the load profiles of high energy consuming appliances such

as electric vehicle chargers and heat-pumps using the overall energy consumption

time-series of a house. NILMTK is an open-source toolkit for comparative analysis

of NILM algorithms across various datasets. Different deep learning algorithms are

compared using NILMTK on both a synthetic and real dataset. The Seq2point

algorithm outperformed the other deep learning algorithms in most houses of both

datasets. Additional weather data improved the performance of the Seq2point and

BERT models in predicting energy consumed by heat-pumps. This additional data

also helped in improving the performance of the Seq2point algorithm in predicting

energy consumed while charging an electric vehicle. Converting the BERT and

Seq2point algorithm into a multi-output algorithm resulted in only a small decrease

in performance. These multi-output models can be used in order to save time since

one model can predict more than one appliance at a time.
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1 Introduction

The war in Ukraine and a rebound from an economic slowdown during the COVID-19

pandemic have led to a sharp rise in energy prices and an energy crisis. The need

for energy management has become more important than ever. Energy management

includes planning and operation of energy production, energy consumption, energy

distribution and energy storage. Energy monitoring is the process of tracking the

energy consumption of either the individual appliances or the entire building/house.

Energy monitoring is one of the most important aspects of energy management.

There is a need to monitor energy consumption to plan and implement the technical

measures needed to reduce energy consumption. Energy monitoring can also help

end users to save energy by taking energy-saving measures. These include using

energy-efficient devices, more efficient use of electrical equipment and eliminating

unwanted energy activity. Energy monitoring not only helps end users to reduce their

electricity bills, but is also an important step that is needed to reduce the emission of

greenhouse gases and combat climate change.

In order to reduce the burden of the power sector by its major challenges like the

cost of electricity, energy crisis and global warming, some of the critical inefficiencies

of the sector can be spotted and removed using energy monitoring at a very low cost.

There are great benefits if the patterns of appliance usage could be automatically

detected to modify consumer habits (Darby et al. (2006)), with a potential reduction

of 12%, depending on the type of feedback that is provided, as shown in Figure 1.
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Figure 1: Residential savings due to energy consumption feedback. (taken
from Armel et al. (2013)).

The two main ways of monitoring energy usage are Intrusive Load Monitoring

(ILM) and Non-Intrusive Load Monitoring (NILM). ILM involves the installation of

sensors at one or a few appliances in order to monitor the power consumed by them.

Using these sensor readings, the energy consumption is monitored at the appliance

level. NILM is the process of de-constructing the aggregate energy consumption

time-series (main-meter readings) into its individual appliances as seen in Figure 2.

This process does not require intrusion into the individual appliances to monitor their

power consumption.

Figure 2 shows us that many appliances follow some characteristic patterns.

NILM algorithms try to understand these underlying patterns and how it affects the

overall consumption of the house. This is then used to predict the energy consumption

of a particular appliance when only the overall consumption is known.

2



Figure 2: Non-Intrusive Load Monitoring concept (taken from Pujić et al.
(2020))

NILM can be formulated as either a classification problem or a regression problem.

The regression problem is when the algorithm needs to predict the power consumption

of each device at each time interval. NILM can also be used for classification by

determining whether the device is ON or OFF instead of predicting its consumption

at each time interval.

1.1 Problem Statement

Let the time series of aggregate measurements Y = (Y1, Y2, . . . , YT ) where Yt ∈ R+

represent the energy or power measured in Watt-hours or Watts consumed by the

building at time t. The building facility is assumed to have m appliances and for

each appliance, the energy signal is represented as X = (Xi1, Xi2, . . . , XiT ) where

Xit ∈ R+. Then, the aggregate energy consumed at time t can be expressed as the

3



sum of energy consumed by individual appliances plus some error.

Yt =
m∑
i=1

Xit + εt ,

where εt represents the error at time t.

NILM aims to retrieve the unknown signals Xi when the aggregate signal Y is

given.

In the classification approach, NILM is used to predict whether a given appliance

at time t is in ON state (Sit = 1) or OFF state (Sit = 0). It is not recommended

to determine if the appliance is ON or OFF by using just its energy consumption

(Precioso et al. (2020)). Thus, the usual criterion is to establish a threshold Ti for

each appliance and define

Sit = H(Xit − Ti) ,

where Xit is the energy consumed by individual appliance i, H(x) is the Heaviside

step function

H(x) =


1, x >= 0

0, x < 0

.

1.2 Advantages of NILM

• Detailed information regarding how much energy is being used by individual

appliances can be obtained with the help of NILM. This information allows

the consumer to figure out which appliances are consuming a high amount of

energy and helps end users in reducing their electricity consumption.
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• Since NILM can detect which machines consume the most energy, the end users

can avoid using these appliances when electricity is either costly or has a high

carbon footprint. Demand Response (DR) is a term used for programs designed

to encourage end-users to make short-term reductions in energy demand in

response to a price signal from the electricity hourly market, or a trigger

initiated by the electricity grid operator. This helps end users by reducing their

consumption when electricity is costly.

• Peak demand is the highest amount of energy used during a 15-minute period

during the month. This peak demand determines the rate at which the end

users (who consume more than 100 MWh a year) are charged for the electricity

they consume. With the help of NILM, industries can identify when they are

using the most power each day, along with which machines they are using at

that time. This information can help industries to find ways to reduce their

peak demand. The process of reducing peaks either by temporarily scaling

down consumption, activating an on-site power generation system or relying on

a battery is known as peak shaving.

1.3 Challenges with NILM

• Different houses have different numbers and types of appliances. These appli-

ances also have multiple versions that consume different amounts of energy. For

example, many versions of the appliance microwave exist from various brands.

These microwaves can consume varying amounts of energy.

• To use NILM, data must be collected to train the NILM algorithms. This data

collection process is expensive. Smart meters are needed which monitor the

energy consumption of various appliances and the overall energy consumption.
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• NILM solutions need to give real-time results and depend on simple hardware

infrastructure to also make it inexpensive.

• The NILM algorithms that are trained on a limited number of houses need to

be able to generalize to other houses (or datasets). NILM solutions need to be

able to give good results on different houses with different energy consumption

patterns.

1.4 Motivation

In the transition to a renewable energy system, many devices with high-connection

powers, for example, electric vehicle chargers, PV systems and heat-pumps are

installed on the low voltage electrical grids. With the increasing number of such

devices in the grid, it becomes a more complex task to keep the grid stable. In Germany,

these devices have to be registered in big databases and hence are theoretically known

to the grid operator but in reality, the knowledge that the grid operators have is

often incomplete. Besides, electric vehicles are moved when used and may change the

grid connection point. Therefore, the detection of high energy consuming appliances’

load profiles enables grid operators to identify critical events early and react to them.

A load profile is the time-series data that contains the electrical consumption of an

appliance/house. Energy management and monitoring is thus a crucial step to help

stabilize these grids.

Energy monitoring is also needed to acquire appliance-specific energy consumption

statistics. Knowledge of statistics like electric vehicle charging patterns is also required

for smart grid solutions like Vehicle-to-Grid (V2G) and DR. V2G is a technology

that enables energy to be sent back to the power grid from the battery of an electric

car. Information about the overall energy consumed as a result of charging EVs could

be useful for households to manage the running costs of EVs just like fuel costs for

6



petrol and diesel cars. In this thesis, we detect electric vehicle charging events and

energy consumption from heat-pumps and show the suitability of the used NILM

algorithms for this task.

When the energy consumed by a client household is above 10000 kWh per year,

the smart meter data will be transferred at a 15-minute rate to the grid operators.

Since the grid operators receive the smart meter data at a 15-minute rate, it makes

sense to test the performance of the NILM algorithms at this sample rate. Since the

energy used by heat-pumps depends on the outdoor temperature, it would be useful

to see if this information helps the model in the disaggregation task.

1.5 Contributions

• Creation of the synthetic dataset in NILMTK format from the outputs of the

Synpro tool.

• Analysis of the different datasets by visualizing the data.

• Evaluating the impact of weather information used as additional input to the

models.

• Converting the BERT and Seq2point models into multi-input or multi-output

models.

• Adapting the NILMTK API to run variations of different deep learning models

used like the multi-input or multi-output models.

• Converting the BERT model to the BERT2Point model.

7



• Comparing the performance of different deep learning models on the two datasets

used in this thesis.

• Analyzing if the additional training data from the Synpro dataset improves the

performance of Seq2point and BERT algorithms when training on both the

Synpro and the Dataport dataset and testing it on the Dataport dataset.

• Analyzing the performance of the Seq2point and BERT algorithms in predicting

EV charging events.

1.6 Overview

This thesis is structured as follows:

• Section 2 contains the literature review of the relevant research publications in

NILM.

• In Section 3, we first explain some additional information about NILM. It then

explains the background of the deep methods used in this work.

• In Section 4, we introduce the different datasets used.

• In Section 5, we describe the different algorithms used in this thesis and is

followed by a description of evaluation metrics.

• In Section 6, we discuss the results of the experiments conducted.

• In Section 7, we summarize the findings of this thesis and give a conclusion.

• In Section 8, we propose future works on this topic.

8



• Appendix A contains results of some hyper-parameter optimization experiments.
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2 Related Work

The field of NILM aroused great research interest after it was proposed in 1992 by

Hart (Hart (1992)). Today there is a large amount of published information on the

topic. In this section, we will explore some of the relevant and successful approaches

used for NILM. Section 2.1 presents some related work using legacy algorithms.

Section 2.2 presents some related work using deep learning based algorithms.

2.1 Legacy Algorithms

The first algorithm for NILM was proposed by George Hart in 1992 (Hart (1992)). It

is based on dividing the aggregate energy time series data into steady time states

as seen in Figure 3 below. The signal is then considered to be a sequence of stable

states. A new sequence starts when the level of power changes as seen in Figure 3.

Thus, edges in the steady time series data can be detected, which signifies that an

appliance has changed its state. The difference between the old and new steady state

power is used to determine which appliance has changed its state.

Figueiredo et al. (2011) and Dong et al. (2013) added to the solution suggested

by Hart by improving the way unique signatures of individual appliances are collected.

This results in better targets for signature matching. Another common approach

used for NILM which does not involve neural networks is hidden Markov models

(HMM) and their many adaptations. Parson et al. (2011) first proposed the idea

10



Figure 3: Edge detection from “Prototype Non Intrusive Appliance Load
Monitoring”, G. W. Hart, 1985

of using HMM. The main drawback of using this approach is that the number of

possible states that result in aggregate energy consumption increases exponentially

with the number of appliances. So the disaggregation task was limited to the top

3 energy-consuming devices. Kolter and Jaakkola (2012) solved this problem by

replacing the HMM with an additive factorial hidden Markov model (AFHMM) for

each appliance. Here each appliance has its own HMM which is independent of other

appliances. This reduces the computational complexity and ignores the correlation

between appliances. Bonfigli et al. (2017) improved on the previous approach by

using both active and reactive power as inputs to AFHMM.

2.2 Deep learning Based Algorithms

Deep learning algorithms, with their ability to solve complex regression or time series

forecasting tasks are perfect candidates for solving NILM.

The first use of deep learning for NILM only happened with Kelly and Knottenbelt

(2015) where three different deep learning algorithms were compared. The first

algorithm uses a denoising autoencoder (DAE) for the disaggregation task. An

11



autoencoder is an unsupervised artificial neural network that first compresses the

data using an encoder and then learns to reconstruct the input from the reduced form.

A DAE is an autoencoder that attempts to reconstruct a clean target from a noisy

input. DAE was used for NILM by creating one model per appliance that considers

the main meter reading (aggregate reading) as a noisy input. The network then

reconstructs the clean power demand of the target appliance. DAE gets the main

meter reading of a specific length and then outputs the target appliance consumption

for the same sequence length. The second algorithm used a Recurrent Neural Network

(RNN) for the disaggregation task. RNN is a type of neural network that has internal

memory and works very well with sequential data. This network receives a sequence

of main meter readings and outputs a single value of power consumption of the target

appliance. Instead of having a normal RNN which has the vanishing gradient problem,

LSTMs are used. A bi-directional LSTM is used as it improves the performance of the

algorithm. The third algorithm was used to estimate the start, end and total energy

consumed by each activation of the appliance. This was done as many applications

of energy disaggregation do not require detailed second-by-second reconstruction of

the appliance power demand.

Le et al. (2016) used a Gated Recurrent Unit (GRU) instead of an LSTM. The

architecture used in this paper was a less complex model than LSTM that required

lesser training time. Rafiqet et al. (2018) regularized these models using dropout for

LSTM and GRU models and observed a performance improvement.

Research (Wibawa et al. (2022)) has shown that using one-dimensional Convolu-

tional Neural Networks (CNNs) for time series classification has several important

advantages over other methods. These 1D CNNs are able to extract very informative,

deep features, which are independent of time. Zhang et al. (2018) suggest replacing

the autoencoder from Kelly et al. (2015) which they call a sequence-to-sequence

(Seq2seq) disaggregator, with a CNN. The Seq2seq model generates multiple outputs

for a particular time point due to overlapping windows. Instead, this algorithm is
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trained to predict only the midpoint of the window. This allows the neural network

to focus on predicting the midpoint of the window, rather than on the more difficult

outputs on the edges, yielding more accurate predictions. This model, which the

author called sequence-to-point (Seq2point) disaggregator, will be discussed in further

detail in Section 5 as it is used in this thesis.

Transformer models proposed by Vaswani et al. (2017) and their variations have

proven to be especially effective in the field of natural language processing. Transform-

ers process the entire sequence in parallel and are thus fast in training. The attention

mechanism used in transformers retrieves information from the entire sequence and

thus helps with long-range dependencies. Bidirectional Encoder Representations

from Transformers (BERT) is an encoder only transformer introduced for language

understanding. Yue et al. (2020) use transformers for NILM and called their model

BERT4NILM. This was a sequence-to-sequence model that had positional encoding

and a transformer encoder block added. This model will be discussed in further detail

in Section 5 as it is used in this thesis.

I had previously explored the topic of NILM for electric vehicle charging event

detection [1]. In this project, the performance of five NILM algorithms (Seq2Point,

Seq2seq, GRU, DAE, RNN) from NILMTK at a 15-minute sample rate was compared

using UK-DALE dataset for three appliances (fridge, dish-washer, washer-dryer). The

performance of the Seq2Point algorithm is better than other algorithms in almost

all metrics and appliances. The sensitivity to the sample rate was analyzed for

the Seq2point algorithm by a comparison of its performance at a 15-minute sample

rate and a 5-minute sample rate. The Seq2point algorithm gave better results at a

5-minute sample rate as the amount of training data available to the algorithm when

trained at a sample rate of 5-minutes is 3 times more than when sampled at a rate

of 15-minutes. The sensitivity towards a higher number of datapoints in training in

a 5-minute sample rate was analyzed for the Seq2point algorithm by a comparison

of a 15-minute sample rate and a 5-minute sample rate with a similar number of
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datapoints. The performance in terms of RMSE of the algorithm at a sample rate

of 15-minutes compared to a sample rate of 5-minutes is better for the appliances

fridge and washer-dryer but worse for the appliance dish-washer. This shows that

the increased performance in the previous experiment is mainly due to an increase in

training data. The performance of the best Seq2point in predicting power consumed

while charging electric vehicles was analyzed and compared with other algorithms

in a synthetic dataset called the Synpro dataset. The RMSE error of the Seq2point

model is lower than the corresponding RMSE error in the RNN model in 11 houses

out of the 15 houses in the dataset. The Seq2point algorithm outperforms all other

algorithms in all 15 houses in all metrics used in the project. The performance of the

Seq2point algorithm in electric vehicle charging event detection was then analyzed.

The model was able to predict with high accuracy if the EVs were charging or not

(F1-Score of above 0.9 in 14 out of the 15 houses).

In this thesis, the heat-pump appliance was added to the Synpro dataset which

is a high energy-consuming device. This is expected to make the EV charging events

prediction harder. BERT algorithm’s performance is also compared using the datasets

mentioned in Section 4. The other contributions of this thesis are mentioned in Section

1.5.
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3 Background

This section gives information about NILM, neural networks, deep learning and

background information, notation and definitions for the reader to understand the

following chapters.

3.1 NILMTK

NILMTK (Batra et al. (2014)) is an open-source toolkit for comparative analysis of

NILM algorithms across various datasets. It also provides a pipeline from datasets to

metrics to lower the entry barrier for researchers. NILMTK was created for three main

reasons. Firstly, it allows the comparison of state-of-the-art approaches. Secondly, it

allows comparisons of the algorithm’s performance on various datasets, so that it can

be verified if the approach can be generalized to new data. Thirdly, it gives users

access to a stable set of metrics that help researchers access the performance of the

algorithms for various use cases. 1 The NILMTK workflow is shown in Figure 3. The

differences in the purpose of using each dataset have led to completely different data

formats being used. This results in a time-consuming barrier when using different

datasets. The data from the datasets used are first converted to NILMTK-DF which is

the standard energy disaggregation data structure used by the toolkit. NILMTK-DF

is a common data set format inspired by the REDD format (Kolter et al. (2011)), into

which existing data sets can be converted. NILMTK contains parsers for the different

1https://github.com/nilmtk/nilmtk
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Figure 4: NILMTK-Workflow

datasets from the literature which convert the dataset into NILMTK-DF. Various

statistics can be observed to analyze the dataset. NILMTK provides statistical

and diagnostic functions which provide a detailed understanding of each data set.

Preprocessing functions are available that help in mitigating the challenges with

NILM datasets. NILMTK provides the easy use of different algorithms to disaggregate

the data. Evaluation of results is possible with the metrics that are provided by the

toolkit. NILMTK also provides an API to run different experiments. The API makes

running experiments extremely quick and efficient, with an emphasis on creating

finely tuned reproducible experiments where model and parameter performances can

be easily evaluated at a glance.

3.2 Deep Learning

Deep learning is a subset of machine learning that uses algorithms inspired by

the human brain to solve complex tasks. Machine learning is a subset of artificial

intelligence that involves a computer algorithm that, given a particular context (data)

makes a complex decision to achieve a goal. Artificial intelligence is the process of

developing self-reliant machines that are inspired by human behavior. The techniques

and methods in this thesis are from the field of supervised learning. Supervised

learning is a branch of machine learning that involves using a model to learn a

mapping between input examples and the target variable. Neural networks make up
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the backbone of deep learning algorithms. In recent years, deep learning has quickly

become a tremendously popular field of research

3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are algorithms that are loosely inspired by biological

neural networks in the human brain. These networks contain multiple interconnected

artificial neurons, also known as nodes, which are organized in layers. In an ANN,

the output from certain artificial neurons is used as input to others allowing complex

calculations. There are many types of neural networks that are used on a wide variety

of tasks.

AMulti-Layer Perceptron (MLP) is a simple neural network that transforms

the input data through a series of non-linear transformations that are performed at

the different nodes to generate output. The MLP contains at least three layers, the

input layer, the hidden layer, and the output layer. The input layer receives all the

inputs needed by the model. Similarly, the output layer generates all the output

predictions. The layers in between the input and the output layer are called the

hidden layers and contain the hidden nodes. MLP can contain more than one hidden

layer, with each layer’s output serving as the next layer’s input. An example of MLP

is shown in Figure 5. It has n input neurons and m output neurons and two hidden

layers.
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Figure 5: Multi Layer Perceptron

Let the input to the MLP be a vector x and the MLP contains l − 1 number of

hidden layers. The last layer l is then the output layer. The hidden layers i computes

the output as shown below:

yi = fi(yi−1) ,

where y1 = f1(x) , x is the input vector to the model, fi is the transformation that

occurs at the layer i and yi is the output at layer i. The output of the first hidden

layer is then used as input to the next layer. Similarly, each layer uses its previous

layer’s output as input. Thus, the output of the MLP is:

ŷ = fl(yl−1) .

The output layer gives the prediction of the model ŷ.

The input to the hidden and the output layer is first transformed linearly. For

an input vector x, the linear transformation is:

z =Wx+ b ,

where W is the weight matrix and b is the bias.
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This is followed by a non-linear activation function g(z). Thus, the transformation

that occurs at a layer i can be described by

fi(yi−1) = g(Wiyi−1 + bi) ,

where g is the activation function, Wi is the weights connecting layer i and i− 1, yi−1

is the output of the layer i− 1 and bi is the biases at layer i.

Non-linear activation functions are used since the neural network would also like

to solve complex non-linear solutions. The rectified linear unit (ReLU) is a simple

widely used activation function:

ReLU(z) = max(0, z) .

3.2.2 Training a Neural Network

The weights W and the biases b are called trainable parameters of the model. A

neural network needs to be trained using the features (inputs) and ground truth

labels (expected outputs) to find the best trainable parameters.

Loss Function

Loss functions are used to evaluate how good or bad the model is at predicting the

outputs. Loss functions do this by determining the error between the output of our

algorithms and the given target value. Loss functions selected need to be differentiable

and continuous so that they can be used in training. A common loss function for the

regression task is the Mean Squared Error (MSE). It can be formulated as follows

MSE =
1

N

N∑
i=1

(ŷi − yi)2 ,
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where ŷi is the ith prediction and yi is the ith ground truth and N is the total number

of outputs to be predicted.

Training and Backpropogation

Firstly, the model’s weight and biases are initialized. A common strategy used is

random initialization. The model then uses the input data to generate predictions of

the output. This is known as a forward pass and the error is calculated using the

loss function. The model then needs to update its trainable parameters to minimize

the loss function. The weights and biases are updated using the Gradient Descent

algorithm with the following equation:

wnew = wold − α
∂L(y, ŷ)

∂w
,

where wnew is the updated weight and wold is the old weight. α is the learning

rate and ∂L(y,ŷ)
∂w is the rate of change of the loss function L to the change in weight.

Similarly, the biases need to be updated.

The learning rate is an important hyperparameter that controls how much to

change the model in response to the estimated error each time the model weights are

updated.

Adam (Kingma and Ba (2015)) is an optimization algorithm that can be used

to update the trainable parameters. In addition to storing an exponentially decaying

average of past squared gradients, Adam also keeps an exponentially decaying average

of past gradients. The parameters are updated with the following rule:

θi = θi−1 −
αmt√
vt + ε

,

where mt and vt are estimates of the first moment (the mean) and the second moment

(the uncentered variance) of the gradients respectively, θi is the ithparameter, α is
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the learning rate and ε = 10−8.

Regularization and Hyperparameters

One of the most important aspects when training neural networks is to avoid overfitting.

Overfitting is the phenomenon where a neural network can give good results with the

training data but fails to generalize when it sees new data from the same problem

domain. A model with very high complexity can pick up and learn noise in the data

that is just caused by some random fluctuation or error. Thus, regularization refers

to a set of different techniques that lower the complexity of a neural network model

during training, thereby reducing the chance of overfitting.

Dropout is a commonly used regularization technique. During training, a

neuron of the neural network gets turned off with some probability P. This results

in temporarily removing the neuron that is turned off from the network, along with

all its incoming and outgoing connections. Dropout reduces the number of nodes in

training which results in reducing the complexity of the model. A less complex model

reduces the chance of overfitting.

Hyperparameters are the variables that determine the network structure and

the variables which determine how the network is trained. Several hyperparameters

exist that control model complexity, characteristics and optimization choices. The

number of nodes in each layer, the number of hidden layers and the learning rate are

common hyperparameters. Given these hyperparameters, the training algorithm learns

the trainable parameters from the data. Thus, finding the optimal hyperparameters

is an important task.
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3.2.3 Convolutional Neural Networks

A Convolutional neural network (CNN) is a neural network that has one or more

convolutional layers. CNNs are mainly used for image processing, image classification,

image segmentation and signal processing tasks. CNNs use convolution operations

that can handle spatial information available in images. CNNs have recently been

used for both natural language processing and time series data. CNNs use weight

sharing and are computationally efficient, requiring less training time compared to

many other neural networks. CNNs are very effective in reducing the number of

parameters and they can extract very informative and deep features.

CNNs can use convolutions in either one, two, or three dimensions for time-series,

images, and videos respectively. Figure 6 shows one-dimensional convolution used for

time series data.

Figure 6: 1D Convolution for time series data (taken from https:
//towardsdatascience.com/how-to-use-convolutional-neural-
networks-for-time-series-classification-56b1b0a07a57)

Let the length of the time series input x be n and have k features. As seen in

Figure 6 convolution kernels always have the same width as the time series input.

Unlike with image data where 2D Convolutions move in both length and width, 1D
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convolutions only move in one direction from the beginning of a time series towards its

end, performing convolution. A 1D convolutional operation involves a filter w ∈ Rn×k,

which is applied to a window of l time series inputs to produce a feature. For example

feature ci is generated from a window of inputs xi:i+l−1 by

ci = g(w · xi:i+l−1 + b) ,

where g is the activation function and b is the bias term.

This filter is then applied through each possible window of inputs x1:l, x2:l+1, ..., xn−l+1:n

to produce a feature map

c = [c1, c2, ..., cn−l+1],

with c ∈ Rn−l+1. This is the process by which one feature is extracted from one

filter. The model uses multiple filters with varying window sizes to obtain multiple

features.

Pooling

Convolutional layers in a CNN systematically apply learned filters to inputs to create

feature maps that summarize the presence of those features in the input. One of the

problems associated with the feature map output of convolutional layers is that they

record the precise position of features in the input. Therefore, small movements in

the position of the feature in the inputs will result in a different feature map. Pooling

layers are used to solve this problem. They operate upon each feature map separately

to create a new set of the same number of pooled feature maps. Pooling layers

provide an approach to down-sampling feature maps by summarizing the presence of

features in patches of the feature map. Thus pooling layers are commonly used after

convolutional layers. Two common functions used in the pooling operation are:
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• Average Pooling: Calculate the average value for each patch on the feature

map.

• Max Pooling: Calculate the maximum value for each patch on the feature

map.

3.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a type of neural network that is designed for

sequential data. When it comes to sequential data, a data point would be dependent

on the previous values in the data sequence. So, the MLP architecture cannot be

used in this case, since the inputs of the MLP are independent of one another. RNNs

take into consideration the input, as well as previous inputs to produce the output.

Figure 7: RNN Architecture: (taken from Feng et al. (2017))

As seen in Figure 7 the data flows through the RNN in a loop. When the

architecture is unfolded, it is observed that at each time step t, the model uses the

current input
(
x(t)
)
as well as the hidden state from a previous timestep (h(t−1)),

to produce the output (o(t)). Hidden state h is a representation of previous inputs.

Thus the formula for a vanilla RNN can be described by the equations:

a(t) = b+Wh(t−1) + Ux(t)
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h(t) = g(a(t))

o(t) = c+ V h(t) ,

where b and c biases, U, V and W are weight matrices and g is a non-linear activation

function.

Long short-term memory

RNNs suffer from the problem of vanishing gradients. The hidden state h(t) carries

information used in the RNN, and when it becomes too small, the parameter updates

become insignificant. This makes the learning of long data sequences difficult. Con-

versely, if the slope tends to grow exponentially instead of decaying, the gradients

would explode resulting in very large updates to the RNN model weights during

the training process. The Long short-term memory (LSTM) model (Hochreiter and

Schmidhuber (1997)) was a special version of RNN designed to overcome some of the

problems of the vanilla RNN. The architecture of LSTM is shown in Figure 8. LSTM

makes use of three gates to overcome the vanishing gradient problem. The following

transformations occur in an LSTM recurrent unit. The hidden state from a previous

timestep (ht−1) and the input at a current timestep (xt) are combined and are then

passed to the various gates.

The forget gate controls what information should be forgotten. It sets which

values in the cell state should be discarded (multiplied by 0), remembered (multiplied

by 1), or partially remembered (multiplied by some value between 0 and 1). The

forget gate vector ft can be formulated as,

ft = σ(Wf .[ht−1,xt] + bf ) ,

where σ is the sigmoid function, Wf is the weight matrix at forget gate, bf is the

bias at forget gate.
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Figure 8: LSTM Architecture: (taken from https://towardsdatascience.com/
lstm-recurrent-neural-networks-how-to-teach-a-network-to-
remember-the-past-55e54c2ff22e)

The input gate identifies which elements are important and is used to update

the cell status. The input gate vector it and cell state Ct can be formulated as,

it = σ(Wi.[ht−1,xt] + bi)

Ct = ft �Ct−1 + it � tanh(WC .[ht−1,xt] + bC) ,

where Wi is the weight matrix at input gate, bi is the bias at input gate. WC is the

weight matrix, bC is the bias and � denotes the element-wise dot product.

The output gate is used to update the hidden state. The latest cell state (Ct)

is passed through the tanh activation function and multiplied by the results of the

output gate. The input gate vector ot and hidden state ht can be formulated as,

ot = σ(Wo[ht−1,xt] + bo)
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ht = ot � tanh(Ct) ,

where Wo is the weight matrix at output gate, bo is the bias at output gate, ot is the

output gate vector

The current cell state Ct and hidden state ht are then used in the next time step

t+1. This process repeats until the end of the sequence is reached

Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRU) is a type of RNN that is similar to an LSTM. GRU is

a more lightweight RNN that has fewer trainable parameters compared to LSTM.

The architecture of GRU can be observed in Figure 9. GRU makes use of two gates

to overcome the vanishing gradient problem. It does not maintain any cell state and

solely relies on the hidden state for memory transfer between recurrent units. The

following transformations occur in a GRU recurrent unit.

27



Figure 9: GRU Architecture: (taken from https://towardsdatascience.com/
gru-recurrent-neural-networks-a-smart-way-to-predict-
sequences-in-python-80864e4fe9f6)

Similar to LSTM, the hidden state from a previous timestep (ht−1) and the input

at a current timestep (xt) are combined and are then passed to the two gates.

The reset gate is used to decide how much of the past information to forget.

The reset gate vector rt can be formulated as,

rt = σ(Wr.[ht−1,xt] + br) ,

where Wr is the weight matrix and br is the bias

The update gate is used to determine how much of the past information needs
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to be passed along to the future. The update gate vector zt can be formulated as,

zt = σ(Wz.[ht−1,xt] + bz) ,

where Wz is the weight matrix and bz is the bias

The hidden state then can be calculated using the formula

ht = zt � ht−1 + (1− zt)� tanh(W.[rt � ht−1,xt] + b) ,

where W is the weight matrix, b is the bias and � denotes the element-wise dot

product.

The hidden state ht is then used in the next time step t+1. This process repeats

until the end of the sequence is reached.

3.2.5 Transformers

The Transformer is a type of neural network that is characterized by an ’attention

mechanism’. This helps the model learn dependencies in long-range sequential

data. The Transformer architecture was first introduced in Vaswani et al. (2017)

to solve NLP tasks. Before the introduction of Transformers, RNNs, specifically

LSTM networks, were state-of-the-art for NLP tasks. But Transformers are more

advantageous since they can be efficiently parallelized. So larger models can be

trained and a large amount of data can be processed by the Transformer.
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Figure 10: Transformer Model Architecture: (Image from Vaswani et al.
(2017))

Figure 10 shows the architecture of the Transformer as proposed by Vaswani et

al. (2017). The main parts of the Transformer architecture are:

• Positional Encoding: This gives the model an idea of where an input lies in the

input sequence. So, each input is assigned a vector that denotes its position

in the sequence. This is useful since Transformer does not process the input

sequence one by one (like RNNs), but takes in the entire input sequence at

once. So the positional encoding gives the model information about the order

of the inputs in the sequence.
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• Token Embedding: The role of this layer is to transform inputs to the encoder

into vector representations of fixed dimensions.

• Attention Mechanism: This mechanism allows the model to go through every

single input in the input sequence and learn how important each input is to

produce the required output. The model learns this during training.

• Encoder: The transformer contains multiple encoder blocks stacked on top

of each other. In Figure 10, the encoder block can be seen to the left of the

architecture. The encoder takes the input and passes it through an attention

layer and then a feed-forward layer. The attention mechanism in the encoder is

applied between the same sequence, to learn underlying relationships within

the input data. This type of attention is known as self-attention.

• Decoder: The decoder block is on the right of Figure 10. The input to the

decoder is the expected output (during training). This input is masked using

a look-ahead mask which prevents the model from looking at the entire

sequence to make predictions. The future sequences that the model has to

predict are hidden from the decoder and it is forced to use only the known

values to predict the next values in the sequence. The decoder input passes

through this masked attention layer (self-attention) and then is fed to the

encoder-decoder attention layer. This attention layer uses 2 inputs, the

output of the previous masked attention layer and the output of the encoder.

This encoder-decoder attention is applied between two different sequences and

is known as cross-attention. This then leads to a forward layer and then the

final linear layer to produce the output.

In this thesis, an encoder-only transformer model is used. The main hyper-parameters

of the model are :

• The number of encoder layers used.
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• The number of attention heads each encoder layer contains

• The dimensions of the feed-forward network in the encoder

• The dimension of the embedding used in token and positioning embedding

Attention Mechanism

Figure 11: Attention Mechanism: Image from Vaswani et al. (2017)

The attention mechanism is presented in more detail in Figure 11. The input to the

attention block is used as 3 tensors: the query, the key and the value, shown as Q, K

and V. These tensors are used as follows in one attention block:

attention(Q,K, V ) = softmax

(
QKT

√
dk

V

)
.

Figure 11 also shows multiple attention heads (h) in the Transformer. Hence the

attention blocks in the transformer are referred to as multi-head attention. Each

attention head is run in parallel. The output of the multi-head attention is as

follows:

multihead(Q,K, V ) = concat(head1, head2, ..., headh)W
0 ,
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Each head implements its attention as follows:

headi = attention(QWQ
i ,KW

K
i , V W

V
i ) ,

where h is the number of attention heads and WO, WQ
i , WK

i , W V
i are weight

matrices.

When the query, key and value tensors come from the same input sequence, then

it is known as self-attention. When the query, key and value tensors are all not

derived from the same input sequence, it is known as cross-attention.
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4 Datasets

This section gives information about the two different datasets used in this thesis.

Section 4.1 gives a brief description of both datasets, Section 4.2 gives information

on how the datasets were converted into NILMTK format and Section 4.3 gives the

basic statistics about both datasets.

4.1 Description of Datasets

NILM datasets can be divided into a low-frequency dataset being up to 1 Hz and

a high-frequency dataset when above that. So, the dataset that contains electricity

consumption for all the appliances (sub-meters) and main-meter (aggregate consump-

tion) at a rate of at least one measurement per second is considered a high-frequency

dataset. In this thesis, we make use of two low-frequency datasets: a publicly available

dataset from the literature and a synthetic dataset.

4.1.1 Synthetic Dataset (Synpro)

The synthetic dataset is created using the Synpro tool (Fischer et al. (2015)) which

was developed at Fraunhofer ISE. This tool is used to simulate the power demand for

households based on the harmonized European time usage study HETUS. Each house

in this dataset contains power time series for the entire year of 2017 at a sample

rate of 15 minutes. In addition to the demand of the house, the charging of electric
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vehicles at home with different charging powers and energy consumed by heat-pumps

is simulated. This dataset also has information about the outdoor temperature.

In this dataset, 4 houses are of type "Single Family house" and 8 of type "Multi-

family house". These houses have different number of occupants ranging from 1-8.

Each of these houses has a charging station that charges at either of the 3 charging

powers: 3.7 kW, 7.2 kW and 11 kW. A similar dataset without the appliance ’heat-

pump’ was used in my master’s project. In addition to the 12 houses used in the

thesis, the old dataset also contained 3 houses of type "Large-multi-family house".

There was some issue in generating energy consumed by the appliance ’heat-pump’

for the 3 houses of type "Large-multi-family house" and thus these houses were

excluded.

4.1.2 Dataport

Pecan Street Dataport (Parson et al. (2015)) database is the world’s largest publicly

available resource for residential energy use data. They provide free access to energy

consumption time-series data for 75 houses and the appliances in these houses

to students for academic research. These homes are from Austin, New York and

California regions. Out of the 75 houses, 11 have electric vehicle charging data. Out

of these 11 houses, 6 houses contain data for one entire year. Each of these 6 houses

in this dataset contains the power time-series for the entire year of 2018 at a sample

rate of 15 minutes.
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4.2 Conversion of Datasets into NILMTK-DF

4.2.1 Synthetic Dataset (Synpro)

The Synpro tool is used to generate four files for each house. The first file contains

time-series energy consumption of all appliances other than the heat-pump, heat-

pump backup, electric vehicle charging and the aggregate energy consumption of

the house. The second file contains time-series energy consumption while charging

an electric vehicle. The third file contains time-series energy consumption of the

heat-pump and heat-pump backup appliances. The fourth file contains the ambient

temperature of the house. These files from the Synpro tool are used to generate the

output folder. This output folder contains one file for each appliance which is its

energy consumption time series and one file for the aggregate energy consumption

of the house. A parser is then implemented which converts the output files into a

dataset in NILMTK format.

4.2.2 Dataport

NILMTK contains a parser for the Dataport dataset which is used to convert this

dataset into NILMTK-DF.

4.3 Basic Statistics of the Datasets

4.3.1 Synthetic Dataset (Synpro)

The synthetic dataset contains 12 houses, all possessing the same appliances. An

overview of the different houses is given in Table 1. All of these houses have different

input settings and this affects the usage and energy consumption of different devices

in these houses. This dataset is a comprehensive and clean dataset with no missing
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sections. In Figure 12, the fraction of energy consumed by all devices in house number

House Number House type Number of occupants Charging rate

1 Single Family house 1 3.7

2 Single Family house 2 7.2

3 Single Family house 3 11

4 Single Family house 4 3.7

5 Multi-family house 2 7.2

6 Multi-family house 2 3.7

7 Multi-family house 4 11

8 Multi-family house 4 7.2

9 Multi-family house 6 11

10 Multi-family house 6 3.7

11 Multi-family house 8 11

12 Multi-family house 8 7.2

Table 1: Overview of the Synpro dataset houses

10 of the Synpro dataset is visualized as a pie chart. Heat-pumps consume the most

amount of energy in this house. The EV also consumes a lot of energy but is not

used as often as the heat-pump and hence consumes less energy comparatively. The

heat-pump and the EV charger are the top consumers in most other houses in this

dataset.
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Figure 12: Fraction of energy consumption of appliances in house 10 of
the Synpro dataset

Figure 13 shows the energy consumption of heat-pump in house 10. Heat-pumps

consume more energy in the colder months and less energy in the hotter months.

Thus, heat-pumps add seasonality to the dataset as seen in Figure 14, which shows

the aggregate energy consumption in house 10 of the Synpro dataset.
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Figure 13: Energy consumption of heat-pump in house 10 of the Synpro
dataset

Figure 14: Energy consumption of the site meter (aggregate energy con-
sumption) in house 10 of the Synpro dataset
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Figure 15 shows the aggregate energy consumption along with the energy con-

sumption of an EV charger and the heat-pump for a single day in house 4 of the

Synpro dataset. The EV charger is used once between 15:00 and 17:30 while the

heat-pump has a repeating on-and-off pattern. These two devices are mostly respon-

sible for the aggregate energy consumption of this house for this day. The NILM

algorithms need to learn the characteristic patterns of the appliances and understand

how it affects the aggregate consumption of the house.

Figure 15: Energy consumption of the main meter (aggregate energy con-
sumption), an EV charger and the heat-pump for a single day
in house 4 of the Synpro dataset

4.3.2 Dataport

The Dataport dataset which we use contains 6 houses. These houses are either from

California or Texas region. The Dataport dataset is a clean and comprehensive

dataset. Figure 16 shows the fraction of energy consumption of the top 8 appliances
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in house 1 of the Dataport dataset. The air conditioner, an EV and an electric furnace

are some of the appliances that consume the most amount of energy.

Figure 16: Fraction of energy consumption of top 8 appliances in house 1
of the Dataport dataset

Figure 17 shows the energy consumption of the air conditioner in house 1. Air

conditioners are also seasonal appliances and consume more energy in the hotter

months and less energy in the colder months. Thus, air conditioners add seasonality

to the dataset as seen in Figure 18 which shows the aggregate energy consumption of

house 1.
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Figure 17: Energy consumption of air conditioner in house 1 of the Dat-
aport dataset

Figure 18: Energy consumption of the site meter (aggregate energy con-
sumption) in house 1 of the Dataport dataset
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Figure 19 shows the aggregate energy consumption along with the energy con-

sumption of an EV charger, an air conditioner, an electric furnace and a spin dryer

for a single day in house 4 of the Synpro dataset. The first large peak in consumption

is caused by using the EV charger between 12:30 and 13:30. The second peak is

caused by using the spin dryer between 17:00 and 18:00 and the magnitude of the

peak is similar to the first one. The three appliance EV charger, air conditioner and

electric furnace are used at the same time between 23:30 and 03:30 of the next day

resulting in a large peak. This house has many large energy consuming appliances

which are sometimes used concurrently.

Figure 19: Energy consumption of the main meter (aggregate consump-
tion), an air conditioner, an EV charger, a spin dryer and an
electric furnace for a single day in house 3 of the Dataport
dataset
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5 Deep Learning Algorithms for NILM

and Evaluation Metrics

This chapter explains the different deep learning algorithms used in this thesis. It is

then followed by a description of the evaluation metrics used in this thesis.

5.1 Deep learning Algorithms

The deep learning algorithms that are used in this are taken from NILMTK-Contrib

(Batra et al. (2019)). This repository contains many state-of-the-art algorithms in

the NILM domain, which have been made compatible with NILMTK and are added

here. 1

1https://github.com/nilmtk/nilmtk-contrib
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5.1.1 Sequence-to-Sequence

Figure 20: Sequence-to-Sequence concept

Sequence-to-Sequence learning is about training models to convert sequences of one

type to sequences of another type. The Sequence-to-Sequence algorithm (Seq2seq)

learns a regression map from the main meter sequence to the corresponding target

appliance sequence. The neural network maps a sliding window Xt:t+W−1 of the

aggregate input power to corresponding windows Yt:t+W−1 of the output appliance

power where W is window length (sequence length). Figure 20 shows the input and

output of the Seq2seq model where the window length is 7. Each input sequence

has a corresponding output sequence of the same length. Since there are multiple

predictions for a particular time, we take the mean for each sliding window that

contains that time. Architecture of Seq2seq is show in Figure 21.
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Input sequence with length W

1D Convolution: number of filters: 30; filter size: 10; strides: 2

1D Convolution: number of filters: 30; filter size: 8; strides: 2

1D Convolution: number of filters: 40; filter size: 6; strides: 1

1D Convolution: number of filters: 30; filter size: 10; strides: 1

Dropout

1D Convolution: number of filters: 30; filter size: 10; strides: 1

Dropout

Flatten

Dense: number of units: 1024

Dropout

Dense: number of units: W

(99,1)

(45,30)

(19,30)

(14,40)

(10,50)

(10,50)

(6,50)

(6,50)

(300)

(1024)

(1024)

Figure 21: Seq2seq model: Output shape of each layer is mentioned next to
arrows when W is 99
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5.1.2 Sequence-to-Point

Figure 22: Sequence-to-Point concept

Sequence-to-Point (Seq2point) is a similar algorithm to Seq2seq but is trained to

predict only the midpoint element of that sliding window. Thus, the output of this

model only has 1 node whereas the output of Seq2Seq has multiple nodes. The

neural network maps a sliding window Xt:t+W−1 of the aggregate input power to

the midpoint element of the corresponding window of the target appliance. Figure 22

shows the input and output of the Seq2point model where the window length is 7.

Each input has only one corresponding output which is the midpoint of the sequence.

[W/2] zeros need to be padded at the beginning and the end to make the first and

last [W/2] predictions. This allows the neural network to focus on the midpoint of

the window, rather than on the more difficult outputs on the edges, yielding more

accurate predictions. Many variants of Seq2point are also discussed in this thesis.

The architecture of the original Seq2point is shown in Figure 23.
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Input sequence with length W

1D Convolution: number of filters: 30; filter size: 10; strides: 2

1D Convolution: number of filters: 30; filter size: 8; strides: 2

1D Convolution: number of filters: 40; filter size: 6; strides: 1

1D Convolution: number of filters: 30; filter size: 10; strides: 1

Dropout

1D Convolution: number of filters: 30; filter size: 10; strides: 1

Dropout

Flatten

Dense: number of units: 1024

Dropout

Dense: number of units: 1

(99,1)

(45,30)

(19,30)

(14,40)

(10,50)

(10,50)

(6,50)

(6,50)

(300)

(1024)

(1024)

Figure 23: Seq2Point model: Output shape of each layer is mentioned next to
arrows when W is 99

5.1.3 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a type of neural network that has internal

memory and works very well with sequential data. This network receives a sequence

of main meter readings and outputs a single value of power consumption of the target

appliance like the Seq2point algorithm. Instead of having a vanilla RNN which has
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the vanishing gradient problem, LSTMs are used. Additionally, Bi-directional LSTMs

are used to improve performance. The architecture of RNN is shown in Figure 24

Input sequence with length W

1D Convolution: number of filters: 16; filter size: 4

Bidirectional LSTM: number of units: 128; return sequences: True

Bidirectional LSTM: number of units: 256; return sequences: False

Dense: number of units: 128

Dense: number of units: 1

(99,1)

(99,16)

(99,256)

(512)

(128)

Figure 24: RNN model: Output shape of each layer is mentioned next to arrows
when W is 99

5.1.4 Gated recurrent unit

This network is very similar to the RNN network but replaces the LSTMs with a more

lightweight RNN called Gated Recurrent Units (GRU). Similar to the RNN network,

Window GRU gets main meter readings of a specific length and then outputs a single

value of power consumption of the target appliance. The architecture of GRU is

shown in Figure 25.
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Input sequence with length W

1D Convolution: number of filters: 16; filter size: 4

Bidirectional GRU: number of units: 64: return sequences: True

Dropout

Bidirectional GRU: number of units: 128: return sequences: False

Dropout

Dense: number of units: 128

Dropout

Dense: number of units: 1

(99,1)

(99,16)

(99,128)

(99,128)

(256)

(256)

(128)

Figure 25: GRU model: Output shape of each layer is mentioned next to arrows
when W is 99

5.1.5 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is a deep learning

technique that only contains the encoder part of the transformer. The input and

output of the model are the same as that of sequence-to-sequence model. It learns a

regression map from the main meter sequence to the corresponding target appliance

sequence. Many variants of BERT are also discussed in this thesis. The architecture

of the original BERT is shown in Figure 26.
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Input sequence with length W

1D Convolution: number of filters: 16; filter size: 4; strides: 1

Average Pooling: pool size: 2

Token and Position Embedding: max length: W; embedding dimension: 32

Encoder: number of layers: N; number of attention heads: 2; feed forward network dimension: 32

Flatten

Dropout

Dense: number of units: W

(99,1)

(99,16)

(50,16)

(50,16,32)

(50,16,32)

(25600)

(25600)

Figure 26: BERT model: Output shape of each layer is mentioned next to arrows
when W is 99

5.2 Evaluation Metrics

Mean Absolute Error

Mean Absolute Error(MAE) is an error metric corresponding to the arithmetic mean

of the absolute error loss. If ŷi is the predicted value of the i-th sample, and yi is the

corresponding true value, then the MAE over n samples is defined as

MAE(y, ŷ) =
1

nsample

nsample−1∑
i=0

|yi − ŷi| .
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Root mean square error

Root mean square error (RMSE) is an error metric that computes the square root of

the average of squared differences between prediction and actual observation. If ŷi is

the predicted value of the i-th sample, and yi is the corresponding true value, then

the RMSE over n samples is defined as

RMSE(y, ŷ) =

√√√√ 1

nsample

nsample−1∑
i=0

(yi − ŷi)2 .

Normalized Disaggregation Error

The comparison between appliances having a high difference in power consumption

is problematic using RMSE. To compare the error between the different appliances,

Normalized Disaggregation Error (NDE) metric is used. If ŷi is the predicted value of

the i-th sample, and yi is the corresponding true value, then the NDE over n samples

is defined as

NDE(y, ŷ) =

√√√√∑nsample−1
i=0 (yi − ŷi)2∑nsample−1

i=0 (yi)2

NDE allows the comparison between errors in the prediction of energy consumed in

charging vehicles and heat-pumps in different houses in the synthetic dataset even

though they have different input settings, since the error is normalized.

Confusion matrix

The confusion matrix is a table that contains four entries as defined below. Since

the models are designed to predict the energy consumed by an appliance and not

whether the appliance is on or off, the appliance is considered to be on if its value is

above a certain threshold(T). Threshold T is set to 10% of the maximum power of

the appliance, which was seen in the ground truth.
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Let the predicted value of energy consumed by a device by a model be P and the

ground truth value of energy consumed by a device be G.

• The prediction at a particular time point is considered to be True Positive (TP)

if both P and G are above T.

• The prediction at a particular time point is considered to be True Negative

(TN) if both P and G are below T.

• The prediction at a particular time point is considered to be False Positive (FP)

if P is above T but G is below T.

• The prediction at a particular time point is considered to be False Negative

(FN) if P is below T but G is above T.

Accuracy, Precision, Recall, F1-Score

The accuracy of the model is the ratio of correctly predicted observations to the total

number of observations. Using the results from the confusion matrix the accuracy is

given by

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
.

The precision of the model is the ratio of correctly predicted positive observations to

the total predicted positive observations. It is defined as

Precision =
TP

(TP + FP )
.

The recall of the model is the ratio of correctly predicted positive observations to the

total actual positive observations. It is defined as

Recall =
TP

(TP + FN)
.
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The F1-score (F1) of the model is the weighted average of Precision and Recall.

Therefore, this score takes both false positives and false negatives into account. F1

is a better metric than accuracy when there is an uneven class distribution as the

accuracy of the model can be largely contributed by a large number of True Negatives

(if the device is mostly off). F1 is defined as

F1 = 2 ∗ (Precision ∗Recall)
(Precision+Recall)

.
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6 Experiments

This section explains the experiments we did to compare the performance of different

models using the two datasets. In Section 6.1 we explain the experimental setup.

In Section 6.2 we compare the performance of the NILM algorithms on the Synpro

Dataset. In Section 6.3 we compare the performance of the NILM algorithms on the

Dataport Dataset. In Section 6.4 we compare the performance of multi-input models

using weather as additional input to the Synpro dataset. In Section 6.5 we compare

the performance of multi-output models by using the same model to predict more

than one appliance at a time on the Synpro dataset. In Section 6.6 we convert the

BERT model into the BERT2point model and evaluate its performance. In Section

6.7 we compare the performance of Seq2Point and BERT algorithms when tested on

an unseen house. In Section 6.8 we compare the performance of Seq2Point and BERT

algorithms when trained on both the datasets and tested on the Dataport dataset.

In Section 6.9 we compare the performances of Seq2Point and BERT algorithms in

electric vehicle charging event detection.

6.1 Set-up

The training for experiments is completed using an NVIDIA Quadro RTX 8000

GPU. The dataset is first converted into NILMTK format and then data is split into

training and test data depending on the experiment. 15% of the training data is

used as the validation dataset. The optimizer used is the Adam optimizer and the
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loss function used is the mean square error in all the deep learning based algorithms.

Early stopping is used while training these neural networks to avoid overfitting. When

no improvement was seen after 15 epochs, the training would stop and the best model

would be saved. The sample rate of 15 minutes is used in all experiments. The

training time for the different NILM algorithms when the training period is set to

nine months is shown in Table 2. Multiple runs for the NILM algorithms are needed

because these algorithms are stochastic due to the random initialization of weights.

The results of Seq2point, Seq2seq, and RNN are averaged across five runs. Since the

GRU models and the BERT models with 1 encoder layer require approximately 1

hour of training time for every model, its results are averaged across two runs. The

BERT models with 4 and 6 encoder layers are only run once as these models require

approximately 3 hours or more to train.

Algorithm Number of epochs Average time taken per epoch Average total training time
Seq2seq 50 1 Second 50 Seconds
Seq2point 50 1 Second 50 Seconds

RNN 50 10 Seconds 500 Seconds
GRU 50 67 Seconds 3350 Seconds

BERT with 1 encoder layer 50 24 Seconds 4800 Seconds
BERT with 4 encoder layers 50 47 Seconds 9400 Seconds
BERT with 6 encoder layers 50 71 Seconds 14200 Seconds

Table 2: Training time of different NILM algorithms when training period is
set to nine months

6.2 Comparison between the NILM algorithms on the

Synpro dataset

The performance in terms of the NDE metric of the different algorithms in predicting

energy consumed while charging EV and energy consumed by heat-pumps using

the Synpro dataset are shown in Table 3 and Table 4 respectively. The default

hyper-parameter settings values are used in this experiment with sequence length

set to 99. Training is done in the first 9 months of the year 2017 and testing is
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done in the last 3 months of the year 2017 for all the different algorithms. Since no

default value for the number of encoder layers when using the BERT algorithm was

mentioned in the BERT paper (Yue et al. (2020)), BERT models with 1, 4 and 6

encoder layers are used. The results across different houses can be compared because

the error is normalized when using the NDE metric.

House RNN Seq2seq Seq2point GRU BERT-1 BERT-4 BERT-6

NDE NDE NDE NDE NDE NDE NDE

1 0.406 0.321 0.315 0.434 0.452 0.408 0.453

2 0.417 0.328 0.285 0.394 0.374 0.367 0.335

3 0.601 0.298 0.238 0.242 0.259 0.249 0.259

4 0.672 0.585 0.597 0.648 0.701 0.697 0.652

5 0.614 0.311 0.306 0.361 0.329 0.332 0.302

6 0.765 0.597 0.591 0.621 0.633 0.628 0.614

7 0.518 0.335 0.253 0.319 0.281 0.288 0.261

8 0.751 0.555 0.556 0.579 0.530 0.585 0.537

9 0.542 0.329 0.263 0.320 0.311 0.345 0.326

10 0.641 0.442 0.441 0.611 0.587 0.562 0.562

11 0.752 0.305 0.259 0.314 0.345 0.344 0.346

12 0.607 0.416 0.403 0.491 0.457 0.438 0.416

Table 3: Results of NILM algorithms using Synpro dataset on electric
vehicle charging power prediction where BERT-1, BERT-4, BERT-6
are BERT models with 1,4 and 6 encoder layers respectively
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House RNN Seq2seq Seq2point GRU BERT-1 BERT-4 BERT-6

NDE NDE NDE NDE NDE NDE NDE

1 0.437 0.273 0.141 0.148 0.453 0.395 0.403

2 0.688 0.300 0.201 0.209 0.533 0.516 0.464

3 0.625 0.254 0.149 0.133 0.492 0.488 0.499

4 0.544 0.268 0.162 0.164 0.531 0.474 0.466

5 0.738 0.238 0.141 0.124 0.446 0.396 0.419

6 0.612 0.239 0.156 0.165 0.495 0.425 0.424

7 0.473 0.251 0.163 0.146 0.537 0.489 0.520

8 0.716 0.318 0.244 0.229 0.583 0.520 0.572

9 0.594 0.334 0.252 0.256 0.609 0.554 0.545

10 0.626 0.316 0.234 0.237 0.595 0.552 0.538

11 0.546 0.299 0.219 0.224 0.548 0.547 0.552

12 0.484 0.393 0.310 0.321 0.583 0.555 0.559

Table 4: Results of NILM algorithms using Synpro dataset on heat-pump
energy consumption prediction where BERT-1, BERT-4, BERT-6 are
BERT models with 1,4 and 6 encoder layers respectively.

The performance of the Seq2point algorithm is better than the other algorithms in

10 out of the 12 houses when considering the EV charger appliance. The performance of

all models is better when predicting the energy consumed by the heat-pump compared

to predicting energy consumed while charging an EV. The GRU algorithm had

comparable performance to the Seq2point algorithm in predicting energy consumed

by the heat-pump. The performance of the different BERT models used is worse than

the Seq2point model in 11 out of the 12 houses when considering the EV charger

appliance and worse in all houses when considering the heat-pump appliance. BERT

models with more than 1 encoder layer outperformed the BERT model with just 1

encoder layer in most houses. The RNN had a high variance in its evaluation metrics

when it was run multiple times on the same house for the same appliance. None of
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the RNN models outperform any of the Seq2point models.

All models other than the RNN model perform better in terms of predicting

energy consumed by an EV in a house that contains a charger with a higher charging

rate compared to a house that contains an EV charger with a lower charging rate.

This is true when both houses have the same number of occupants and are of the

same type. For example house 5 and house 6 have the same number of occupants

and are of Multi-family house type. Predictions of the energy consumed by the EV

charger at house 5 which has an EV charger that charges at 7.2 kW is better than

that of house 6 which has an EV charger that charges at 3.7 kW. This is because the

NILM algorithms can detect larger spikes in energy consumption when charged at a

higher charging rate. Houses that have an EV charger that charges at the rate of

11 kW (Houses 3, 7, 9 and 11) have the best results in terms of predicting energy

consumed by an EV using the Seq2point algorithm.

Figure 27: Results of Seq2point algorithm on house 3 of the Synpro
dataset on electric vehicle charging power prediction
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Figure 28: Results of Seq2point algorithm on house 4 of the Synpro
dataset on electric vehicle charging power prediction

Figure 27 and Figure 28 shows the ground truth of the energy consumed by the

EV charger and the difference between the ground truth and the prediction of the

Seq2point algorithm for house 3 and 4 respectively. The Seq2point algorithm has

the lowest NDE in house 3 and the highest NDE in house 4 when predicting energy

consumed by an EV charger. In house 4 of the Synpro dataset, the EV charger is

only used once between 15th and 1st November. However, the Seq2point algorithm

continues to make large predictions in this period. This change in the pattern when

the EV charger is not used is one of the reasons why its performance is poor in house

4. Another factor for this poor performance in house 4 could be because the NILM

algorithms are unable to distinguish between the peaks caused by heat-pumps from

the peaks caused by a 3.7 kW EV charger. Even though both house 1 and house 4

have the same type of EV charger, the higher number of occupants in house 4 results

in more energy consumed by heat-pumps. This might explain the higher error in

house 4 as the NILM algorithms might find it harder to distinguish between high

energy consumed by the heat-pump and the EV chargers.

The BERT algorithm mentioned in Yue et al. (2020) only mentions the houses
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in which training and testing are done. It does not mention exactly which dates are

used. The experiments conducted in the BERT paper compare the performance of

the NILM algorithms (RNN, GRU, BERT, Seq2seq) at a 6-second sample rate. They

do not compare the performance of the BERT algorithm with Seq2point. One of

the reasons for the drop in performance seen in this experiment could be attributed

to the change in sample rate since the algorithms in this thesis are compared at a

15-minute sample rate.

6.3 Comparison between the NILM algorithms on the

Dataport dataset

The performance of the different algorithms in predicting energy consumed while

charging an EV using the Dataport dataset using NDE metric is shown in Table

5. The default hyper-parameter settings values are used in this experiment with

sequence length set to 99. Training is done in the first 9 months of the year 2018 and

testing is done in the last 3 months of the year 2018 for all the different algorithms.

House RNN Seq2seq Seq2point GRU BERT-1 BERT-4 BERT-6

NDE NDE NDE NDE NDE NDE NDE

1 0.317 0.256 0.202 0.393 0.415 0.388 0.453

2 0.399 0.306 0.229 0.253 0.417 0.369 0.335

3 0.503 0.404 0.371 0.398 0.478 0.444 0.438

4 0.364 0.310 0.250 0.262 0.316 0.290 0.302

5 1.12 1.03 1.14 1.046 1.072 1.009 1.041

6 0.689 0.539 0.524 0.608 0.633 0.538 0.561

Table 5: Results of NILM algorithms using Dataport dataset on electric
vehicle charging power prediction where BERT-1, BERT-4, BERT-6
are BERT models with 1,4 and 6 encoder layers respectively
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The Seq2point algorithm outperformed the other algorithms for this dataset as

well when predicting energy consumed while charging an EV. The performance of all

the algorithms in house 5 of this dataset was poor. Electric vehicle charger was not

used after November 15th and thus it was not used for approximately half of the test

dataset. This sudden change in the pattern of usage resulted in the bad performance

of these algorithms in house 5.

6.4 Multi-input models using weather as additional input

on the Synpro dataset

This experiment is similar to the experiment in Section 6.2 but additional input of

weather information (temperature) is used as the dataset has seasonality as shown

in Section 4. Experiments are only conducted for the Seq2point and BERT models

as the Seq2point model has the best performance in the previous experiments and

Transformer based models are state-of-the-art for many tasks. The best performing

model after comparing the performance of BERT with 1, 4 and 6 encoder layers in

terms of NDE for each house and the results averaged across 5 runs for Seq2point

are used in this experiment. Sequence length and learning rate hyperparameters

are optimized for the Seq2point algorithm. The learning rate hyperparameter is

optimized for the BERT model. The results of hyperparameter optimization for

both algorithms are shown in the Appendix (Section 9). The performance of these

algorithms in predicting energy consumed while charging EV and energy consumed by

heat-pumps using the Synpro dataset are shown in Table 6 and Table 7 respectively.

Additionally, these tables also show the performance of the best BERT model and

Seq2point model from Table 3 and Table 7 to compare their performances.
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House multi-input Seq2point Original Seq2point multi-input BERT Original BERT

RMSE (Watt) MAE (Watt) NDE NDE RMSE (Watt) MAE (Watt) NDE NDE

1 205 39 0.258 0.315 289 86 0.394 0.408

2 289 49 0.253 0.285 456 135 0.399 0.335

3 198 20 0.175 0.238 369 62 0.331 0.249

4 243 38 0.500 0.597 322 77 0.648 0.652

5 201 29 0.230 0.306 301 61 0.339 0.302

6 299 70 0.52 0.591 370 109 0.647 0.614

7 208 29 0.211 0.253 360 62 0.360 0.261

8 377 62 0.440 0.556 471 109 0.551 0.537

9 287 46 0.225 0.263 518 120 0.406 0.311

10 319 92 0.375 0.441 502 256 0.591 0.562

11 229 26 0.234 0.259 365 65 0.371 0.344

12 386 60 0.367 0.403 502 119 0.476 0.416

Table 6: Results of NILM algorithms using the Synpro dataset on electric
vehicle charging power prediction with temperature time-series
data used as additional input. The results from Table 3 are added for
comparison.

House multi-input Seq2point Original Seq2point multi-input BERT Original BERT

RMSE (Watt) MAE (Watt) NDE NDE RMSE (Watt) MAE (Watt) NDE NDE

1 192 52 0.134 0.141 296 183 0.205 0.403

2 272 84 0.178 0.201 397 242 0.258 0.464

3 218 74 0.142 0.149 331 206 0.217 0.499

4 211 52 0.136 0.162 337 211 0.218 0.466

5 186 49 0.116 0.141 329 214 0.205 0.419

6 213 53 0.133 0.156 336 221 0.210 0.424

7 232 75 0.144 0.163 366 238 0.232 0.520

8 352 137 0.227 0.244 507 345 0.330 0.572

9 363 142 0.236 0.252 515 367 0.335 0.545

10 315 110 0.205 0.234 461 318 0.300 0.538

11 290 108 0.188 0.219 486 341 0.317 0.552

12 429 153 0.287 0.310 581 411 0.392 0.559

Table 7: Results of NILM algorithms using the Synpro dataset on heat-
pump energy consumption prediction with temperature time-
series data used as additional input. The results from Table 4 are
added for comparison.

The additional input of weather information (temperature) improved the perfor-

mance of Seq2point in both appliances. BERT algorithms’ performance improved
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considerably in all houses for the heat-pump appliance. However, BERT’s perfor-

mance did not improve in most houses for predicting the energy consumed while

charging electric vehicles.

6.5 Converting the model into a multi-output model by

using the same model to predict the energy

consumption of more than one appliance at a time

on the Synpro dataset

In this experiment, the original Seq2point and BERT models are converted into

multi-output models that can be used to predict the energy consumption of more

than one appliance at a time. In this experiment, these models are used to predict

energy consumed while charging electric vehicles and energy consumed by heat-pumps

concurrently. The best performing model after comparing the performance of BERT

with 1, 4 and 6 encoder layers in terms of NDE for each house and the results averaged

across 5 runs for Seq2point are used in this experiment. The performance of BERT

and Seq2point multi-output algorithms in predicting both the energy consumed while

charging EV and the energy consumed by heat-pumps using the Synpro dataset are

shown in Table 8 and Table 9 respectively.
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House multi-output Seq2point Original Seq2point multi-output BERT Original BERT

RMSE (Watt) MAE (Watt) NDE NDE RMSE (Watt) MAE (Watt) NDE NDE

1 233 54 0.319 0.315 336 128 0.459 0.408

2 333 78 0.291 0.285 394 132 0.345 0.335

3 295 43 0.264 0.238 321 70 0.287 0.249

4 298 67 0.601 0.597 320 104 0.644 0.652

5 269 56 0.303 0.306 287 74 0.323 0.302

6 337 78 0.588 0.591 369 118 0.645 0.614

7 323 48 0.323 0.253 300 77 0.300 0.261

8 474 109 0.555 0.556 449 113 0.525 0.537

9 394 91 0.309 0.263 554 133 0.435 0.311

10 278 150 0.445 0.441 479 252 0.564 0.562

11 325 56 0.331 0.259 361 83 0.367 0.344

12 441 194 0.419 0.403 447 121 0.424 0.416

Table 8: Results of NILM algorithms using the Synpro dataset on electric
vehicle charging power prediction using a multi-output model.
The results from Table 3 are added for comparison.

House multi-output Seq2point Original Seq2point multi-output BERT Original BERT

RMSE (Watt) MAE (Watt) NDE NDE RMSE (Watt) MAE (Watt) NDE NDE

1 242 102 0.168 0.141 587 439 0.408 0.403

2 341 165 0.222 0.201 716 574 0.466 0.464

3 283 142 0.185 0.149 745 597 0.488 0.499

4 280 129 0.180 0.162 731 577 0.472 0.466

5 236 102 0.147 0.141 669 511 0.418 0.419

6 267 116 0.167 0.156 707 572 0.443 0.424

7 282 131 0.178 0.163 781 621 0.494 0.520

8 413 211 0.267 0.244 859 718 0.555 0.572

9 398 183 0.260 0.252 899 750 0.586 0.545

10 381 220 0.247 0.234 868 726 0.564 0.538

11 371 199 0.241 0.219 830 680 0.540 0.552

12 489 272 0.330 0.310 869 708 0.586 0.559

Table 9: Results of NILM algorithms using the Synpro dataset on heat-
pump energy consumption prediction using a multi-output
model. The results from Table 4 are added for comparison.

The performance of Seq2point was only slightly worse when comparing it with

the original Seq2point model when predicting both appliances using just one model.

The BERT algorithm’s performance was similar to that of the original BERT model
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in both appliances. These multi-output algorithms can be used to save training time

as one model can be trained for more than one appliance.

6.6 Converting the BERT model to the BERT2Point

model

The original BERT model has similar input and output architecture as the Seq2seq

model. In this experiment, the original BERT model is converted to the BERT2Point

model by changing the output to predict only the midpoint of the sequence just

like the Seq2point model. The original BERT model with 4 encoder layers was

converted to the BERT2point algorithm. The performance of the BERT2point

algorithm in predicting both the energy consumed while charging EV and the energy

consumed by heat-pumps using the Synpro dataset are shown in Table 10 and Table

11 respectively.
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House BERT2point Original BERT

RMSE (Watt) MAE (Watt) NDE NDE

1 385 149 0.529 0.408

2 444 118 0.388 0.335

3 290 39 0.260 0.249

4 351 97 0.707 0.652

5 355 86 0.400 0.302

6 379 106 0.662 0.614

7 326 57 0.325 0.261

8 491 115 0.574 0.537

9 444 77 0.348 0.311

10 510 212 0.600 0.562

11 353 50 0.359 0.344

12 495 118 0.470 0.416

Table 10: Results of BERT2point using the Synpro dataset on electric
vehicle charging power prediction. The results from Table 3 are
added for comparison.
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House BERT2point Original BERT

RMSE (Watt) MAE (Watt) NDE NDE

1 647 431 0.449 0.403

2 801 623 0.521 0.464

3 825 630 0.540 0.499

4 767 584 0.495 0.466

5 875 763 0.546 0.419

6 786 574 0.546 0.424

7 823 639 0.520 0.520

8 863 686 0.558 0.572

9 873 682 0.569 0.545

10 1048 966 0.681 0.538

11 860 666 0.560 0.552

12 897 729 0.605 0.559

Table 11: Results of BERT2point using the Synpro dataset on heat-pump
energy consumption prediction. The results from Table 4 are added
for comparison.

Converting the BERT algorithm to the BERT2point algorithm failed in improv-

ing the performance of the algorithm. In all houses, considering both appliances,

BERT2point’s performance was worse than the original BERT algorithm.
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6.7 Performance of the Seq2Point and the BERT

algorithms when tested on an unseen house

The experiments that were carried out so far were trained and tested on the same

house of the dataset. This experiment is carried out to test the ability of these

algorithms to generalize when tested on an unseen house. The ability to generalize

to similar house types, with the same EV charging rate and different numbers of

occupants is analyzed in this experiment. The best model for the BERT and Seq2point

algorithm for each of the houses in the Synpro dataset from the experiment in Section

6.2 is used as the trained model. Results of Seq2point and BERT algorithms using

the Synpro dataset on predicting energy consumed by an EV charging and heat-pump

when trained and tested on different houses are shown in Table 12 and Table 13

respectively. House 2 and House 3 of the Synpro dataset do not have any similar

houses in the dataset as there are no other houses of type ’Single Family House’ where

the charging rate of EV is 7kW or 11 kW.
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Serial Number House Train House Test Seq2point BERT

RMSE (Watt) MAE (Watt) NDE RMSE (Watt) MAE (Watt) NDE

1 1 4 355 77 0.714 448 168 0.902

2 4 1 355 80 0.485 386 115 0.526

3 5 8 560 116 0.655 492 176 0.576

4 5 12 546 130 0.519 643 197 0.611

5 6 10 577 200 0.679 575 244 0.676

6 7 9 364 72 0.285 407 98 0.319

7 7 11 320 53 0.325 425 94 0.433

8 8 5 474 90 0.533 468 113 0.526

9 8 12 560 142 0.531 604 186 0.574

10 9 7 304 52 0.304 293 76 0.293

11 9 11 356 153 0.232 804 672 0.524

12 10 6 384 90 0.671 409 172 0.714

13 11 7 443 54 0.442 346 78 0.346

14 11 9 592 89 0.465 416 102 0.326

15 12 5 409 54 0.460 368 72 0.414

16 12 8 521 84 0.610 464 97 0.543

Table 12: Results of NILM algorithms using the Synpro dataset on elec-
tric vehicle charging power prediction when trained and tested
on different houses
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Serial Number House Train House Test Seq2point BERT

RMSE (Watt) MAE (Watt) NDE RMSE (Watt) MAE (Watt) NDE

1 1 4 341 175 0.220 812 66 0.524

2 4 1 260 99 0.180 736 571 0.511

3 5 8 429 190 0.277 874 718 0.565

4 5 12 601 327 0.405 1074 940 0.724

5 6 10 480 224 0.312 978 826 0.635

6 7 9 400 167 0.261 911 775 0.594

7 7 11 363 156 0.236 903 773 0.588

8 8 5 334 144 0.209 790 643 0.493

9 8 12 507 249 0.342 912 778 0.615

10 9 7 319 136 0.202 876 713 0.554

11 9 11 356 153 0.232 804 672 0.524

12 10 6 398 166 0.250 967 808 0.606

13 11 7 326 154 0.206 957 756 0.605

14 11 9 406 187 0.265 888 731 0.579

15 12 5 480 247 0.300 1027 818 0.641

16 12 8 432 220 0.279 922 738 0.596

Table 13: Results of NILM algorithms using the Synpro dataset on heat-
pump energy consumption prediction when trained and tested
on different houses

The BERT algorithm outperforms the Seq2point algorithm in 8 out of the 16

tests conducted in this experiment when considering the EV charging appliance. The

Seq2point algorithm outperforms the BERT algorithm in all tests when considering

the heat-pump appliance. This might be because consumption patterns of the heat-

pump appliances are similar in these houses but the EV usage patterns are different.

However, the Seq2point algorithm when trained on House 9 and tested on House 11

performs better than when the Seq2point algorithm is trained and tested on House

11 when predicting energy consumed while charging an EV. The Seq2point algorithm

can generalize well to some houses with minimal loss in performance and is unable to

do so in other cases when considering EV charging appliance. Both the Seq2point

and the BERT algorithms do not have a large loss in performance in all houses when

predicting energy consumed by heat-pump.
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6.8 Training on both datasets and testing on Dataport

dataset

This experiment was run to check if the additional training data from a house of the

Synpro dataset helps improve the performance of the NILM algorithms in predicting

energy consumed while charging an EV in a house of the Dataport dataset. When

the energy consumed by an EV charger in the Dataport dataset was visualized, it

was observed that these houses had an EV charger that charged at the rate of less

than 4kW. Thus, only the houses which contained an EV charger at a rate of 3.7kW

from the Synpro dataset are used as additional data for this experiment (Houses

1,4,6,10). Training data consists of one of the 4 houses from the Synpro dataset for

the entire year 2017 and the first 9 months of the year 2018 for each of the houses in

the Dataport dataset. Testing is done for the same house of the Dataport dataset for

the last 3 months of 2018. For the Seq2point algorithm, this experiment is carried

out for each possible combination of the 4 houses in the Synpro dataset and the 6

houses in the Dataport dataset. Thus, the house from the Synpro dataset that had

the "best" result (lowest NDE) when it was added to a house in Dataport dataset

can be observed for the Seq2point algorithm. The experiment is carried out for each

house in the Dataport dataset and its corresponding "best" house from the Synpro

dataset when using the BERT algorithm. This was done as training for each possible

combination of houses using the BERT algorithm would take many days to complete.

The results of this experiment are shown in Table 14.
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House Dataport House Synpro Seq2point Seq2point-old BERT BERT-old

RMSE (Watt) MAE (Watt) NDE NDE RMSE (Watt) MAE (Watt) NDE NDE

1 6 159 33 0.195 0.202 724 259 0.886 0.388

2 6 273 69 0.277 0.229 836 326 0.849 0.335

3 6 441 131 0.381 0.371 520 98 0.826 0.438

4 1 372 78 0.227 0.250 520 98 0.318 0.290

5 4 673 176 1.120 1.140 578 170 0.961 1.009

6 10 395 118 0.509 0.524 642 298 0.827 0.538

Table 14: Results of NILM algorithms trained on both the datasets and
tested on the Dataport dataset. Where Seq2point-old and BERT-old
refer to results of the Seq2point model and best BERT model from Table
5

The two datasets are very different as shown in Section 4. One dataset is from

the USA and is a real dataset where the weather is warm for most of the year and

the other is a synthetic dataset from Germany where the weather is comparatively

cold. Even though this weather difference does not affect the energy consumed by

EV, it adds seasonality (as shown in Figure 18 and Figure 14) to the overall energy

consumed by the house. However, the performance in 4 out of 6 houses improve with

the additional data for the Seq2point algorithm. The additional data does not help

improve the performance of EV energy consumption prediction in any house when

the BERT algorithm is used. The additional data confuses the BERT algorithm and

results in worse performance.

6.9 Performance of Seq2Point and BERT algorithms in

electric vehicle charging event detection

A particular timepoint is considered to be positive in the ground truth if the electricity

consumed while charging is above 10% of the maximum power consumed while

charging the EV, else it is considered negative. Similarly, a particular timepoint is

considered to be positive in the prediction if the electricity consumed while charging

is above 10% of the maximum power consumed while charging the appliance, else it is
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considered negative. The performance of Seq2Point and BERT algorithm in electric

vehicle charging event detection is shown in Table 15.

House Seq2point BERT

Accuracy F1-score Accuracy F1-score

1 99.0% 0.902 97.6% 0.794

2 99.0% 0.911 97.9% 0.821

3 99.8% 0.931 99.6% 0.885

4 98.5% 0.742 97.7% 0.628

5 99.7% 0.946 99.2% 0.843

6 97.6% 0.708 96.1% 0.843

7 99.6% 0.903 99.3% 0.825

8 98.6% 0.770 98.0% 0.695

9 99.4% 0.907 98.7% 0.768

10 96.5% 0.861 87.9% 0.637

11 99.5% 0.88 99.2% 0.795

12 98.9% 0.851 97.9% 0.734

Table 15: Results of NILM algorithms using Synpro dataset on electric
vehicle charging event detection

The accuracy of the model in predicting charging events is very high. This is

because the task of predicting if the car is charging is simpler than predicting how

much energy is consumed while charging the car. As the car is normally only charged

a few times a week, most events are negative (Non-charging events). The accuracy of

the Seq2point algorithm has decreased compared to its performance in my project
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[1]. This is because the energy consumed by the heat-pump was added to the dataset

in this thesis.

75



7 Conclusion

Non-intrusive load monitoring is used in order to estimate the electrical consumption

of individual appliances using the aggregate power meter reading. The different deep

learning NILM algorithms that were used created one model per appliance. These

NILM algorithms considered the aggregate time-series energy consumption of the

house as input and the appliance time-series energy consumption as output. The

appliances of interest in this thesis are the energy consumed while charging electric

vehicles and the energy consumed by heat-pumps. Different algorithms were compared

using both a synthetic and a real dataset in order to identify the best performing

model. The performance of the Seq2point algorithm is better than other algorithms

in predicting both appliances’ energy consumption in both datasets. All models other

than the RNN model perform better in terms of predicting energy consumed by an EV

in a house that contains a charger with a higher charging rate compared to a house that

contains an EV charger with a lower charging rate. The NILM algorithms failed to

adapt to sudden behavioral changes when the EV charger was not used for long periods

of time as seen in house 5 of the Dataport dataset. The performance of the Seq2point

algorithm in predicting both appliances’ energy consumption improved when the

model also received additional weather input data (outdoor ambient temperature).

Seq2point and BERT models were then converted into multi-output models to predict

the energy consumption of more than one appliance using just one model. Converting

the Seq2point model into a multi-output model resulted in a small loss in performance.

The multi-output BERT model had a similar performance to that of the original
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BERT model. Converting a model to a multi-output model can be used to reduce

the training time.

The additional training data from Synpro improved the performance of the

Seq2point algorithm in predicting energy consumed while charging an EV in 4 out of

6 houses in the Dataport dataset. However, the additional data did not improve the

performance of the BERT model in all houses of the Dataport dataset. Converting

the BERT model to BERT2point did not improve the performance of the algorithm

in both appliances of interest using the Synpro dataset. The BERT and Seq2point

algorithms were able to generalize when tested on an unseen house of the Synpro

dataset only in some cases when considering the EV charging appliance. The BERT

and Seq2point algorithms suffered a small loss in performance when they were tested

on an unseen house when predicting energy consumed by heat-pumps.
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8 Future Work

• Testing the performance of an encoder-decoder transformer model

for NILM tasks: In our experiments, an encoder-only transformer model’s

performance was compared to other models. It would be interesting to see if

adding a decoder improves the current BERT algorithm’s performance.

• Training on a larger dataset in which data is available for more than

one-year: In most of our experiments, the NILM algorithms were trained for 9

months and tested on the last three months of the year. It would be interesting

to compare the performance of these algorithms when they could be trained

for more than one year. Additionally, it would be interesting to compare the

performances of these algorithms when tested on the other months of the year.

• Creating a model that can be used to detect EVs that are charging

at different rates and are used in different types of houses: In most of

our experiments we created one model per house per appliance in a dataset.

Another possible future approach could be to test the performance of one model

which is trained on multiple different types of houses and tested on an unseen

house.

• Generating a synthetic dataset which improves the performance of

the model on a real dataset: Since the collection of real data for NILM is

a complex and expensive process, a synthetic dataset could be used to improve
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the performance of NILM algorithms on a real dataset. The Synpro dataset

and the Dataport dataset have different aggregate energy consumption patterns

and EV chargers that are charged at different rates. Synthetic data can be

generated that is very similar to the real data to improve the performance of

NILM algorithms on a real dataset.

• Creating a more robust algorithm that is able to handle sudden

changes in patterns of usage of appliances: The NILM algorithms failed

to adapt to the changes in patterns of usage of the EV charger in house 5 of

the Dataport dataset. Models should be able to adapt to changes in patterns

of usage.
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9 Appendix

This chapter contains some additional experiments and hyperparameter optimization

experiments.

9.1 Effect of sequence length hyperparameter on the

multi-input Seq2Point algorithm using the Synpro

dataset

This experiment is carried out to visualize how the RMSE varies with sequence length

for both the appliances of interest using the Synpro dataset. This experiment is

carried out by increasing the sequence length by 10 from 39 to 149 for each of the 12

houses. Results of how the RMSE in predicting energy consumed while charging EV

varies with sequence length for the first 4 houses of type Single Family house and

the next 8 houses of type Multi-family house can be seen in Figure 29 and Figure

30 respectively. Results of how the RMSE varies with sequence length in predicting

energy consumed by heat-pump for the first 4 houses of type Single Family house and

the next 8 houses of type Multi-family house can be seen in Figure 31 and Figure 32

respectively.
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Figure 29: Sequence length vs RMSE in predicting energy consumed
while charging EV for houses 1-4 of the by heat-pump for
houses 5-12 of the SynproSynpro Dataset

Figure 30: Sequence length vs RMSE in predicting energy consumed
while charging EV for houses 5-12 of the Synpro Dataset
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Figure 31: Sequence length vs RMSE in predicting energy consumed by
heat-pump for houses 1-4 of the Synpro Dataset

Figure 32: Sequence length vs RMSE in predicting energy consumed by
heat-pump for houses 5-12 of the Synpro Dataset
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In some houses, a lower sequence length than the default value (99) results

in lower RMSE whereas in other houses higher sequence length than 99 results in

improved performance. A direct correlation between sequence length modifications

and RMSE error cannot be made for both appliances.

9.2 Effect of learning rate hyperparameter on the

multi-input Seq2Point algorithm using the Synpro

dataset

This experiment is carried out to test different learning rates for the muti-input

Seq2point algorithm. The learning rates are varied between 0.01, 0.005, 0.001, 0.0005

and 0.0001 for each of the 12 houses. The results averaged across all houses in terms

of NDE for an EV charger and the heat-pump respectively are shown in Table 16.

Learning rate EV charger Heat-pump

NDE NDE

0.01 0.924 0.307

0.005 0.877 0.187

0.001 0.334 0.180

0.0005 0.364 0.185

0.0001 0.402 0.203

Table 16: Learning rate hyperparameter optimization for the Seq2point
algorithm

The default value of 0.001 for the learning rate has the best results for the multi-

input Seq2point algorithm when predicting energy consumed by both appliances of

interest.
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9.3 Effect of learning rate hyperparameter on the

multi-input BERT algorithm using the Synpro dataset

This experiment is carried out to test different learning rates for the muti-input BERT

algorithm with 4 encoder layers. Only 3 houses were selected for the BERT learning

rate hyperparameter experiment because of the long training time required by the

BERT models. One house for each of the different rates at which EV charging takes

place is selected. House 1, house 5 and house 9 are selected. The learning rates are

varied between 0.01, 0.005, 0.001, 0.0005 and 0.0001 for these 3 houses. The results

averaged across these houses in terms of NDE for an EV charger and the heat-pump

respectively are shown in Table 17.

Learning rate EV charger Heat-pump

NDE NDE

0.01 0.989 0.451

0.005 0.894 0.304

0.001 0.421 0.259

0.0005 0.461 0.274

0.0001 0.491 0.301

Table 17: Learning rate hyperparameter optimization for the BERT algo-
rithm

The default value of 0.001 for the learning rate has the best results for the

multi-input BERT algorithm when predicting energy consumed by both appliances

of interest.
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9.4 Visualising predictions of BERT and Seq2point

algorithm for a single day

Figure 33 and Figure 35 show the energy consumption of the main-meter, the

heat-pump and the predictions of energy consumed by the heat-pump using BERT

and Seq2point algorithms respectively. Figure 34 and Figure 36 show the energy

consumption of the main-meter, an EV charger and the predictions of energy consumed

by an EV-charger using the BERT and Seq2point algorithms respectively.

Figure 33: Energy consumption of the main meter, the heat-pump and
the heat-pump prediction by BERT algorithm for a single day
in house 1 of the Synpro dataset
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Figure 34: Energy consumption of the main meter, an EV charger and
the EV charger prediction by BERT algorithm for a single day
in house 1 of the Synpro dataset

Figure 35: Energy consumption of the main meter, the heat-pump and
the heat-pump prediction by Seq2point algorithm for a single
day in house 1 of the Synpro dataset
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Figure 36: Energy consumption of the main meter, an EV charger and
the EV charger prediction by Seq2point algorithm for a single
day in house 1 of the Synpro dataset

Both Seq2point and BERT models are able to correctly predict both the peaks

caused when an EV is charged. The BERT model fails to correctly predict the

magnitude of energy consumed when the heat-pump is used in many cases. The

BERT model falsely predicts many small peaks in energy consumption when the

heat-pump is not in use. The BERT model also predicts the energy consumed by the

heat-pump to be greater than the main-meter consumption in some cases. However,

the Seq2point model is able to correctly predict most peaks and their magnitudes

caused by the heat-pump.
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