
Master Thesis

Albert-Ludwigs-Universität

Freiburg

Entity Disambiguation using Freebase and Wikipedia

Author:

Ragavan Natarajan

Supervisor:

Prof. Dr. Hannah Bast

This report is submitted in partiful fulfillment for the master thesis at the at the

Chair of Algorithms and Data Structures

Department of Computer Science

http://www.uni-freiburg.de
www.uni-freiburg.de
mailto:n.ragav@gmail.com
http://ad.informatik.uni-freiburg.de/staff/bast
http://ad.informatik.uni-freiburg.de/
http://www.informatik.uni-freiburg.de/

Declaration

This thesis is an account of research undertaken between September 2013 and March 2014

at the Department of Computer Science, Faculty of Engineering, Albert-Ludwigs-Universität,

Freiburg, Germany.

Except where acknowledged in the customary manner, the material presented in this thesis is,

to the best of my knowledge, original and has not been submitted in whole or part for a degree

in any university.

Ragavan Natarajan

March, 2014

i

Acknowledgments

I would like to start by thanking my supervisor Prof. Dr. Hannah Bast for the course she

offered on Information Retrieval, which helped me develop a lot of interest in this field, and

which has also given me a great career in this field. I am greatly thankful to her availability on

e-mail, whenever I had some queries. I would also like to thank Florian Bäurle for his valuable

feedback and critical suggestions at crucial times, without which this work would not have been

possible.

I am also greatly thankful to Prof. Dr. Christian Schindelhauer, who has offered some very good

courses in the field of Distributed Computing, all of which I have taken part in and throughly

enjoyed, during the first half of my master degree. It was in the Seminar course on Distributed

Algorithms, jointly offered by him and Dr. Alexander Souza, I developed the necessary skills

on where to look for, how to read and understand research papers, not to mention, the skills to

write one.

ii

https://ad.informatik.uni-freiburg.de/staff/bast
http://ad-wiki.informatik.uni-freiburg.de/teaching/InformationRetrievalWS1213
http://ad.informatik.uni-freiburg.de/staff/baeurlef
http://cone.informatik.uni-freiburg.de/lehre/alt/old-uni-fr/distalgws11/distalgws11
http://cone.informatik.uni-freiburg.de/lehre/alt/old-uni-fr/distalgws11/distalgws11
http://ac.informatik.uni-freiburg.de/lak_formem/souza.php/

Abstract

This thesis addresses the problem of entity disambiguation, which involves identifying important

phrases in a given text and linking them to the appropriate entities they refer to. For this work,

information extracted from both Freebase and Wikipedia served as the knowledge base. A fully

functional entity disambiguation tool is made available online and the challenges involved in

each stages of the development are addressed in this paper.

It explains how the phrases in a text are assigned importance measure, both before and after

the disambiguation process, based on several studies available in the literature and experimental

analysis conducted as a part of this work. Additionally it explains the implementation of the

collective-entity-linking algorithm by Han et al.[1] for entity disambiguation.

Several highly reusable code have been developed, whose usability extend well beyond the work

described here. Stages involved in the development, from parsing the database dump to storing

them in a high-speed, memory efficient key-value store are addressed. By means of D3js a

JavaScript based vector graphics library for bringing data to life, visualization of the ambiguity

tree is provided, which helps the user easily comprehend the results.

iii

Zusammenfassung

Diese Masterarbeit beschäftigt sich mit der Erkennung von wichtigen Begriffen in einem Text

und der Verknüpfung dieser Begriffe mit den entsprechenden Entitäten. Dafür wurde eine Wis-

sensdatenbank aus Freebase und Wikipedia hergestellt. Eine voll funktionierende Anwendung

wurde entwickelt und jeder Schritt der Entwicklung der Anwendung wird hier erklärt.

iv

Contents

Declaration i

Acknowledgments ii

Abstract iii

Zusammenfassung: Abstract in German iv

1 Introduction 1

1.1 Entity disambiguation: defined . 1

1.2 Organization of the thesis . 2

2 Knowledge-Base Creation 4

2.1 Creating knowledge base from Wikipedia . 5

2.1.1 Obtaining the Wikipedia database dump 5

2.1.2 Types of pages in Wikipedia . 5

2.1.3 Free Links in Wikipedia . 6

2.1.4 Format of the data . 6

2.1.5 Keyphrase extraction . 7

2.1.5.1 Composition of a keyphrase . 7

2.1.5.2 Extracting from articles . 8

2.1.5.3 Extracting from page titles . 8

2.1.5.4 Extracting from article titles . 9

2.1.5.5 Extracting from redirect titles 9

2.1.5.6 Extraction from disambiguation titles 10

2.1.5.7 Nested disambiguations . 10

2.1.5.8 Chained disambiguations . 11

2.1.6 Additional extracted information . 11

2.2 Creating knowledge base from Freebase . 11

2.2.1 Obtaining the Freebase database dump 12

2.2.2 Parsing the Freebase database dump . 12

2.3 Storing the knowledge base . 13

2.4 Challenges involved in Knowledge-base creation 13

3 Entity Disambiguation 15

3.1 Anterior phrase importance measure . 15

3.1.1 Keyphraseness . 16

3.1.2 tf × idf based importance . 16

i

Contents ii

3.1.3 Phrase retention score . 17

3.2 Anterior phrase-entity compatibility measure . 17

3.3 Anterior entity-entity relationship measure . 18

3.4 Construction of the Referent Graph . 18

3.5 Evidence Propagation . 19

3.5.1 Evidence propagation through Compatibility Edges 19

3.5.2 Evidence propagation through Semantic Relatedness Edges 19

3.6 The Collective Entity Linking Algorithm . 19

3.6.1 Computing rd(e) . 20

3.7 Posterior phrase importance measure . 20

4 The Entity Disambiguation Tool 22

4.1 Recognize and Disambiguate: RnD . 22

4.2 The code base . 24

4.2.1 Licensing the code . 25

5 Results 26

5.1 Precision and Recall . 26

5.2 Sample document and result . 27

5.2.1 Result of entity recognition and disambiguation 27

5.2.1.1 Analysis of the result . 27

5.2.2 Results summary . 28

6 Future Work 29

6.1 Anterior importance of phrases . 29

6.2 Using Freebase’s knowledge-graph for EL decisions 29

7 Conclusion 31

A Computing the n-grams 32

B tf × idf score 33

Term Frequency. 33

Document Frequency. 33

Inverse Document Frequency. 33

Bibliography 34

Chapter 1

Introduction

Entity Disambiguation in a text is a multi step process. At a high level, it involves the

identification of significant phrases in the input text and associating them to the entities they

correspond to. The following section discusses this in more detail.

1.1 Entity disambiguation: defined

The job of an entity disambiguator, as mentioned earlier, encompasses the identification of

significant phrases (and not just words) in a text, and linking them to appropriate entities.

Following are some of the challenges involved in this.

1. Abbreviations of some importance should be identified in the text and be matched to

appropriate entities.

2. Partial name mentions, such as Obama or Congress should be identified and matched

appropriately.

For example, consider the following text:

At BKC rally, BJP’s prime ministerial candidate Narendra Modi takes a dig at Rahul

Gandhi for his remarks on corruption, slams Congress government in state for trying to

shield its leaders by sweeping Adarsh scam case under the carpet.

In the text given above, the significant phrases, i.e., those that the disambiguator should be

able to identify as appropriate for the text, are marked in bold. As shown in figure 1.1, however,

1

Chapter 1. Introduction 2

BJP

Congress

Bharatiya Janata Party

Bangladesh Jatiya Party

Indian National Congress

United States Congress

National Democratic Alliance

Figure 1.1: Identifying the correct one from ambiguous entities based on context.

each of the phrase could mean entirely different things. Therefore, the disambiguator should be

able to understand the context and disambiguate name mentions.

In the context of the text, which is Indian Politics, the word BJP probably is more related

to the entity Bharatiya Janata Party, a political party in India, than to Bangladesh Jatiya

Party. Similarly, in the same context, the word Congress is more related to Indian National

Congress, another Indian political party, than to United States Congress.

1.2 Organization of the thesis

While the notion of significant phrases could be clear to a human being, a machine needs a

knowledge base, in order to be able to say what significant phrases are, and to be able to

make well informed decisions. In other words, given a text like the one in the example, the

machine should be able to automatically identify those very phrases that were marked in bold,

as important ones. Therefore, a significant amount of effort has been made in the creation of

the knowledge base. Data extracted from Freebase1 and Wikipedia serves as the knowledge base

for this work, and chapter 2 explains this process in great detail.

Chapter 3 explains how phrases are identified in the input text and an anterior importance score

is assigned to them, based on information available from the knowledge base. Doing so, helps

to eliminate insignificant phrases from being part of the phrases that are to be disambiguated,

and hence, speeds up the entire process and gives more accuracy too.

1Section 2.2 explains what Freebase is

http://www.freebase.com
http://www.wikipedia.org

Chapter 1. Introduction 3

Additionally, it also discusses how the phrases are disambiguated using the Collective Entity

Linking algorithm of Han et al.[1] and explains, how by means of posterior importance scores,

insignificant phrases are further discarded from the results.

Chapter 4 talks about the application that has been developed as a part of this work, and shows

how the results are presented to the user in an easily comprehensible manner, by means of D3js,

a JavaScript vector graphics library.

The results are discussed in chapter 5, whereas chapter 6 discusses the room for improvement

in the future. Finally, chapter 7 provides conclusion with a short note on the future work.

http://www.d3js.org

Chapter 2

Knowledge-Base Creation

A carefully-crafted knowledge-base is very important in helping the machine make entity-linking

decisions. This chapter addresses the task of creating a knowledge-base, covering everything

from obtaining the Freebase and Wikipedia database dump files, to parsing and extracting

information from them, and also addresses the challenges involved in it, and ways to increase

the size of the extracted vocabulary of significant phrases (hereinafter referred to by the word

keyphrases).

The importance of a knowledge-base cannot be understacated, as the outcome of phrase recog-

nition and entity disambiguation heavily depends upon the correctness of the information

available in the knowledge base. Because Wikipedia was considered unsuitable for function-

ing as knowledge-base for high-recall1 entity-linking tasks due to the sparse annotation of the

keyphrases[1], special efforts have been made to extract keyphrases from unannotated entities

too, in an attempt to overcome this drawback. Doing so has helped identify ca. 11 million

keyphrases from the database dump.

Additionally, for entities that are in Freebase but not in Wikipedia, information is added to

the knowledge base by processing the Freebase dump and extracting information from the

textual description of those entities. Several restrictions are imposed upon what can constitute

a keyphrase. Doing so, guarantees uniformity in the process of identifying keyphrases in an

input document, as well as in extracting them from the database dumps, for knowledge-base

creation.

Furthermore, storing the information in an efficient randomly accessible manner is of great im-

portance. There are ca. 7.5 million unique articles (otherwise known as, entities) on Wikipedia,

45.5 million unique entities on Freebase, 11 million phrases, 35 million unique words which are

1Recall is a metric explained later.

4

Chapter 2. Knowledge-Base Creation 5

not stop words with an average size of 9.65 characters per word, 5 million entities with incoming

references and so on.

To further emphasize the need for efficient retrieval, for example, during the course of disam-

biguation, a compatibility relation between a phrase and an entity is computed which is based

on the words appearing around the phrase and all the words appearing in the document, i.e.,

the Wikipedia article, corresponding to the entity. Additionally, the words are weighted based

on their tf × idf scores. Therefore, the article corresponding to an entity and the precomputed

idf of words need to be fetched efficiently to be able to compute the results quickly. Section 2.3

addresses how the knowledge base is stored for efficient random retrieval.

2.1 Creating knowledge base from Wikipedia

This section addresses how the knowledge base is created from the database dump of Wikipedia.

Section 2.1.1 discusses how the Wikipedia database dump could be obtained and the sections

that follow explain the different types of pages available in the dump and how a knowledge base

is obtained from them.

2.1.1 Obtaining the Wikipedia database dump

The Wikipedia database dump file containing the latest pages and articles could be down-

loaded from http://download.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2.

It contains only the current revisions and no talk or user pages − but it is sufficient. The

size of the database dump as on February 2014 is approximately 9.85GB compressed, 44GB

uncompressed.

The Perl module MediaWiki::DumpFile::FastPages, available in CPAN2, has been used to parse

the uncompressed database dump. It enables simultaneous iteration over the title and content

of each page in the database dump in a sequential manner.

2.1.2 Types of pages in Wikipedia

Three different types of pages of interest could be identified based on the page-title of a page

in the Wikipedia database dump. They are mentioned below.

1. Disambiguation pages:

2http://www.cpan.org/

http://download.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://search.cpan.org/~triddle/MediaWiki-DumpFile-0.1.7/lib/MediaWiki/DumpFile/FastPages.pm
http://www.cpan.org/
http://www.cpan.org/

Chapter 2. Knowledge-Base Creation 6

The content of one such page on Wikipedia contains one ore more links to existent

articles or other disambiguation pages. Such a page could be identified by the pres-

ence of the phrase (disambiguation) in its title text. For example, if the phrase Austin

(disambiguation) is the title text of a page, then its content would be a list of one or more

links as mentioned above.

2. Redirect pages:

The content of one such page contains a single link that causes Wikipedia to redirect to a

page (hereinafter referred to as the target page) referred by that link. It is possible that

the target page in the dump file is also of type redirect page. Wikipedia uses the term

double redirects[2] to denote such pages. In order to prevent infinite loops, Wikipedia

stops the chain after the first redirect[2]. Hence, at the time of knowledge-base creation

double redirects are ignored.

3. Articles:

A page of this type is an article written about the topic contained in its title-text. This

is what an user gets to see when they search for an existent article on Wikipedia. For

example, following the URL https://en.wikipedia.org/wiki/Chennai, takes to a page on

Wikipedia, which is of type article.

2.1.3 Free Links in Wikipedia

In Wikipedia, free links are used to produce internal links between pages[3], which enable users

to access information related to the article they are reading. They are created by enclosing

a page-title in double square brackets. Thus, enclosing the word Chennai in double square

brackets, like this, [[Chennai]], will cause the text to be anchored with a hyperlink to the

respective Wikipedia article, http://en.wikipedia.org/wiki/Chennai, in this case. Optionally a

vertical bar ‘|’ could be added to customize the anchor text. For example, typing [[Chennai | the

capital city of Tamilnadu]] would result in the text the capital city of Tamilnadu being anchored

to the respective Wikipedia article, which is, in this case, the aforementioned article.

2.1.4 Format of the data

The Wikipedia database dump is an XML file containing both metadata and data. As mentioned

earlier, the Perl module MediaWiki::DumpFile::FastPages, available in CPAN, is used to process

the database dump. Pages are written in Wikitext language3, a lightweight markup language

for writing Wikipedia pages.

3http://en.wikipedia.org/wiki/Wikitext

http://en.wikipedia.org/wiki/Austin_(disambiguation)
http://en.wikipedia.org/wiki/Austin_(disambiguation)
https://en.wikipedia.org/wiki/Chennai
http://en.wikipedia.org/wiki/Chennai
http://en.wikipedia.org/wiki/Chennai
http://search.cpan.org/~triddle/MediaWiki-DumpFile-0.1.7/lib/MediaWiki/DumpFile/FastPages.pm
http://en.wikipedia.org/wiki/Wikitext

Chapter 2. Knowledge-Base Creation 7

2.1.5 Keyphrase extraction

Keyphrase extraction is one of the major tasks involved in the knowledge-base creation. This

section begins by defining certain rules on what constitutes a keyphrase. As mentioned before,

a keyphrase can be composed of one or more words, but for reasons mentioned later in this

section further restrictions are imposed on keyphrases.

2.1.5.1 Composition of a keyphrase

The following set of rules restrict what a keyphrase can be composed of.

1. A keyphrase can be composed of only alphanumeric characters. However, it is not just

limited to alphanumeric characters in the ASCII representation.

2. Every non-alphanumeric character found in the keyphrase should be replaced with a single

whitespace character.

3. It cannot contain punctuation of any form.

4. All the letters should be case-folded to lowercase.

5. In case of the phrase containing multiple words, the words are to be separated by a single

whitespace character.

6. The number of words in a keyphrase is limited to a maximum of 10.

These restrictions on the keyphrase offer the following benefits:

1. The set of target entities of two keyphrases, which are essentially the same but are under

different case foldings could then be combined. Consider two keyphrases austin and Austin

each having their own set of referred entities. Let the referred entities of the keyphrase

austin be Austin Island and Austin College, and let that of Austin be Austin College and

Austin Motor Company .

Applying the rules, the sets of entities of the two keyphrases could then be merged with

the case-folded austin acting as the keyphrase with referred entities being Austin Island ,

Austin College and Austin Motor Company .

2. Eliminating the non-alphanumeric characters in the keyphrases provides an uniform way

of recognizing the keyphrases in an input document at the time of wikification. Consider,

for example, the following excerpt in an input document.

Chapter 2. Knowledge-Base Creation 8

... Alaska’s residents grapple with changing climate ...

The rules for keyphrase extraction when applied to the input document case-folds it to

lowercase and replaces each of the non-alphanumeric characters in it with a single whites-

pace, causing the above excerpt to become as follows.

... alaska s residents grapple with changing climate ...

This makes it possible to recognize the word alaska in the document if such a keyphrase

existed in the keyphrase vocabulary. Imagine, without these rules, the entire word would

be Alaska’s which may not contain a matching keyphrase in the keyphrase vocabulary of

the knowledge-base.

2.1.5.2 Extracting from articles

An article is a special type of Wikipedia page as mentioned earlier. Keyphrases are extracted

from the free-links of articles, which is described in section 2.1.3.

• For free links without a vertical bar, i.e., without ‘|’, the enclosed text would act both

as the keyphrase and the target entity4. For example, for the free link [[Chennai]], the

extracted keyphrase and target entity would be the following.

chennai −→ Chennai

• For free links with a vertical bar, the text before the bar, i.e. the entity text, acts as the

target entity whereas the text that follows it acts as the keyphrase. In addition to that,

the entity text is also used as a keyphrase, just like it was used in a free link without

vertical bar. For example, for the free link [[Chennai|the capital city of Tamilnadu]], the

following keyphrase - target entity pairs are extracted.

the capital city of tamilnadu −→ Chennai

chennai −→ Chennai

Doing so, helps improve the keyphrase vocabulary, which in turn could increase the pos-

sibility of important phrases in a document being recognized at the time of wikification.

2.1.5.3 Extracting from page titles

Limiting the keyphrase extraction to free links in articles would severely limit the keyphrase

vocabulary leaving several non-linked article titles orphan. In other words, if there was an article

4A target entity is one of the several articles on Wikipedia that a keyphrase could possibly link to.

Chapter 2. Knowledge-Base Creation 9

on Wikipedia, not linked from any other article, then it will be left unlinked if the keyphrase

extraction procedure is limited to extracting keyphrases from the body of the articles, as done

above.

2.1.5.4 Extracting from article titles

As the parser iterates the article titles, keyphrases are extracted from the titles and the titles are

added to the set of target entities of those keyphrases. Any information enclosed in parenthesis

is discarded. For example, if a page title is Casablanca (film), then the following keyphrase −
target entity pair is extracted from it.

casablanca −→ Casablanca (film)

If another page title, such as Casablanca (volcano), is encountered, then another keyphrase −
target entity pair is generated with the same keyphrase, i.e. casablanca causing it to have two

different target entities.

casablanca −→ Casablanca (film), Casablanca (volcano)

It is necessary to understand why the text within parentheses is discarded. If it were not, then

the generated keyphrase would, for example, be casablanca film. It is very unlikely that an input

document has this exact word sequence. By discarding the text within parentheses, the chances

of a phrase in an input document being found in the keyphrase vocabulary increases. Since

there are algorithms to disambiguate entities in the later stages of wikification, this does not

cause any problem. Even if the word sequence casablanca film appeared in an input document,

the wikifier would still be able to identify the phrase casablanca in it.

2.1.5.5 Extracting from redirect titles

The keyphrase obtained from the title of a redirect page could not use the title as a target

entity, since the title redirects to another page on Wikipedia. Therefore, the keyphrase is

assigned to the title in the body of the redirect page (hereinafter referred to as the redirect

target). Additionally, a keyphrase is extracted from the redirect target and assigned to it. For

example, the title Air Transport on Wikipedia redirects to the title Aviation. In this case, the

following keyphrase − target entity pairs are extracted.

air transport −→ Aviation

aviation −→ Aviation

However, in order to avoid chain-redirects, if a redirect target redirects to another page, no

keyphrase − target entity pairs are obtained.

Chapter 2. Knowledge-Base Creation 10

2.1.5.6 Extraction from disambiguation titles

A keyphrase obtained from the title of a disambiguation page has, as its target, each of the

articles available in the page. For example, the title Casablanca (disambiguation) is that of a

disambiguation page on Wikipedia, containing the following entities.

[[Casablanca (volcano)]]

[[Casablanca Records]]

[[Casablanca (film)]]

As done before, the keyphrase casablanca is extracted from the disambiguation title, and each

of the entities in the disambiguation page is assigned to be target of this keyphrase, as shown

below.

casablanca −→ Casablanca (volcano), Casablanca Records, Casablanca (film)

2.1.5.7 Nested disambiguations

It is possible for an entry in a Wikipedia disambiguation page to link to another disambiguation

page. For example, the page Austin (disambiguation) on Wikipedia, contains the following entry

in its content, which is the title of another disambiguation page.

[[Austin Station (disambiguation)]]

A disambiguation entity cannot be assigned as the target of a keyphrase. Therefore, the page

of the nested disambiguation entity is fetched and all the non-disambiguation entities in its

content are assigned to this keyphrase. For example, if the page Austin Station (disambiguation)

contained the following content,

[[Austin (Amtrak station)]]

[[Austin (CTA Blue Line)]]

[[Austin (CTA Green Line)]]

all of these entities are assigned to be the target of the keyphrase austin, as shown below.

austin −→ Austin (Amtrak station), Austin (CTA Blue Line), Austin (CTA Green Line)

In addition to that, obviously, as done before, the keyphrase keyphrase austin station also gets

all these target entities.

austin station −→ Austin (Amtrak station), Austin (CTA Blue Line), Austin (CTA Green Line)

Chapter 2. Knowledge-Base Creation 11

2.1.5.8 Chained disambiguations

It is possible for a nested disambiguation page to further contain links to disambiguation pages.

Such entries are ignored to avoid having to go down a possibly infinite chain.

2.1.6 Additional extracted information

In addition to extracting the keyphrases, several other information are extracted from the

database dump. A list of all articles titles and their contents are extracted. Similar to what

was done during the keyphrase extraction, all non-alphanumeric characters are removed from

the article contents at the time of extraction. The content of an article is used to compute its

similarity with an input document, as discussed in the later chapters.

Moreover, for each article, a set of incoming links is also maintained. The incoming links of an

article is the set of all articles in Wikipedia that have free-links to this article. This information

is used to compute the semantic relatedness between two articles on Wikipedia.

2.2 Creating knowledge base from Freebase

Freebase is a large collaborative knowledge base consisting of metadata composed mainly by its

community members. It is an online collection of structured data harvested from many sources,

including individual ’wiki’ contributions[4].

For instance, the entity Nescafé is identified by Freebase as a type belonging to /business/brand

whose owner is identified as Nestlé. This information could help a machine make decisions

based on the facts available to it by means of knowledge-graph it could easily understand.

In their entity disambiguation framework, Zheng et al.[5] attempt to leverage two features of

Freebase, namely the naturally disambiguated entities and the rich taxonomy, to perform entity

disambiguation in an iterative manner.

However, their approach has some shortcomings, mainly due to the lack of maturity of Freebase

as a knowledge base. Considering the example of brands, while Freebase has in its knowledge

graph, information about a lot of international brands, it is still in expansion and does not have

information for many popular regional brands. This shortcoming of Freebase also applies to any

kind of entity, which is not a brand. For example, Mahindra XUV500, an automobile model,

while very popular in India[6], does not have its owner identified as Mahindra & Mahindra, even

though these entities independently exist on Freebase.

Therefore, in the experiments conducted with the approach of Zheng et al., attempt to achieve

good results for every piece of input text was not successful due to these shortcomings of

www.freebase.com
http://www.freebase.com/m/07t53r
http://www.freebase.com/business/brand?schema=
http://www.freebase.com/m/01556g
http://www.freebase.com/m/0h7mwj9
http://www.freebase.com/m/027gnm6

Chapter 2. Knowledge-Base Creation 12

Freebase. In other words, for text containing those entities that do not have a proper knowledge

graph, their method performed poorly.

However, since, Freebase has significantly more entities than Wikipedia[5], information about

these additional entities could be extracted from it. Therefore, the parser that was originally

developed as a part of this work to extract the knowledge-graph from Freebase for implementing

the algorithm of Zheng et al., was later modified to extract only the textual description from

Freebase for entities that did not exist in Wikipedia. The following sections explain this process

in great detail.

2.2.1 Obtaining the Freebase database dump

The Freebase database dump file could be obtained from here5. It constitutes a snapshot of the

data stored in Freebase and the Schema that structures it, and are provided under the Creative

Commons’ CC-BY license.

As of Feb 2013, it contains a total of 1.9 billion triples in N-Triples RDF format, encoded as

UTF-8 and compressed with GZip, whose compressed size is 22 GB and uncompressed size is

247 GB.

The following sections explain how the database dump file from Freebase is parsed to extract

information needed for the creation of the knowledge-base.

2.2.2 Parsing the Freebase database dump

openRDF6 provides a Java implementation for parsing RDF data. In this work, TurtleParser,

a concrete-implementation of the RDFParser interface, has been used for parsing the Freebase

database dump. The parser works based on Observer Pattern, a design principle in Software

Engineering. Through the setRDFHandler method of the interface RDFParser, a handler of

type RDFHandler is set and the RDFParser’s parse method is called, by means of which the

Freebase database dump is parsed.

As a part of the work, a parser was originally developed to extract the complete knowledge-

graph in Freebase. However, after the shortcomings of the disambiguation approach based on

Freebase’s knowledge graph, the parser was modified to parse and extract only information about

additional entities, as described earlier. The code took approximately 10 hours on a personal

computer with moderate configuration, to extract information about 45.5 million unique entities

from the Freebase database dump.

5https://developers.google.com/freebase/data
6http://www.openrdf.org/

https://developers.google.com/freebase/data
http://creativecommons.org/
http://creativecommons.org/
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.ietf.org/rfc/rfc3629.txt
http://www.gzip.org/
http://www.openrdf.org/
http://openrdf.callimachus.net/sesame/2.7/apidocs/org/openrdf/rio/turtle/TurtleParser.html
http://openrdf.callimachus.net/sesame/2.7/apidocs/org/openrdf/rio/RDFParser.html
http://en.wikipedia.org/wiki/Observer_pattern
http://openrdf.callimachus.net/sesame/2.7/apidocs/org/openrdf/rio/RDFParser.html#setRDFHandler(org.openrdf.rio.RDFHandler)
http://openrdf.callimachus.net/sesame/2.7/apidocs/org/openrdf/rio/RDFHandler.html
http://openrdf.callimachus.net/sesame/2.7/apidocs/org/openrdf/rio/turtle/TurtleParser.html#parse(java.io.InputStream, java.lang.String)
https://developers.google.com/freebase/data
http://www.openrdf.org/

Chapter 2. Knowledge-Base Creation 13

2.3 Storing the knowledge base

The importance of a highly efficient storage cannot be understated. The scale of data involved

has already been discussed in the beginning of this chapter. The stages in disambiguation

demands that the data be retrieved in a highly efficient manner. For example, as a first step,

n-grams are generated from the input text and matched against the set of keyphrases, which

is about a 11 million. Later, textual content of entities needs to be fetched at runtime and be

matched against the local context of phrases. Due to the amount of data involved, a highly

efficient storing scheme was required. Also, the scale of the data prevents it from being stored in

the memory, as the available memory in most of the general purpose personal computers rarely

exceed a couple of Gigabytes, as of this writing.

Therefore, after evaluating several SQL and NoSQL databases (including several DBM and

QDBM based databases such as BerkeleyDB) based on experiments with very large sets of

data, it was decided to use TokyoCabinet, a modern implementation of DBM written in C++.

Essentially it is an efficient implementation of B+ trees for storing data on disk, in other words,

a disk-based key-value store, with exceptional read performance and moderate to average write

performance.

Since the knowledge base is created only once and never written to again, it was the read

performance that was of huge importance. Therefore, TokyoCabinet was chosen to be the

key-value store that would store all the information.

2.4 Challenges involved in Knowledge-base creation

There are several challenges involved in the creation of the knowledge base. For example, section

3.1.2 discusses about an importance measure, for which the document frequency7 of each of the

11 million phrases needs to be computed.

There are, as mentioned earlier, over 7 million articles, and in computing the document frequency

of phrases, the occurrence of each of the 11 million phrase in each of the 7 million articles need

to be computed. A näıve approach of matching the phrases one after the other in all the articles

would take months, if not, years to complete the task, with the power of general purpose personal

computers available at the time of this writing. A more correct approach would be to generate,

for each of the 7 million articles, all the n-grams8 of up to 10 words and match them against the

dictionary of phrases. By means of highly efficient multi-threaded code written for this work,

this task was achieved in less than 5 hours.

7See Appendix B
8See Appendix A

http://en.wikipedia.org/wiki/NoSQL
http://fallabs.com/tokyocabinet/
http://en.wikipedia.org/wiki/Dbm

Chapter 2. Knowledge-Base Creation 14

Similarly, several other challenges were faced in creating the knowledge-base, all of which is not

explained here for brevity’s sake. Section 4.2 briefly discusses about the code base. The code is

very well documented and organized in the form of packages. Having a look at the code base

would help understand the challenges involved in creating the knowledge base and the efforts

made, in addition to giving the curious reader the answers to all their questions.

Chapter 3

Entity Disambiguation

As discussed before, entity disambiguation in an input text involves multiple stages. At a very

high level, significant phrases are to be identified in the input text and be associated to all the

possible entities they refer to, and then the right entity is chosen for each of the phrase, by

an algorithm, based on the context of occurrence of the phrases in the text. The algorithm

chosen for implementation is the one due to Han et al.[1]. Additionally, several experiments

were made at different stages to make the implementation very effective in terms of the quality

of the output that it generates. This chapter addresses all of it, in great detail.

3.1 Anterior phrase importance measure

An anterior importance score would help prevent phrases of less significance from being part

of the input to the disambiguation algorithm. As a first step, n-grams of up to 10 words are

generated from the input text. There are
∑10

i=1M − i+ 1 n-grams of size 1 to 10, for a text

with M words. For example, if the input text had 50 words, there are a total of 455 n-grams of

size 1 to 10. After ignoring about 1500 stop-words, the rest of the n-grams are matched against

a dictionary of phrases and the ones that match are retained.

However, many of the n-grams overlap with one another. For example, the phrase Indian

Cricket team could have two overlapping n-grams, such as, Indian Cricket team and

Cricket. If the overlapping n-grams are of different lengths, n-grams with the most num-

ber of words, in this case, Indian Cricket team is chosen over Cricket. However, there could

be many n-grams that overlap yet being equal in size, in terms of the number of words. An

anterior importance score helps choose the more significant n-gram in such cases.

Apart from overlapping n-grams, there could be many other insignificant n-grams still present,

which would form the input to the disambiguator. However, to achieve good results with the

15

Chapter 3. Entity Disambiguation 16

collective entity linking algorithm, it is important to eliminate as many insignificant phrases

as possible before the disambiguation step, so that the entity linking decisions could happen

in a collective sense. Having insignificant phrases would greatly affect this process, as many

irrelevant entities would take partake in the decision making, producing incorrect results. The

following sections discuss the different methods of ranking phrases before the disambiguation

step.

3.1.1 Keyphraseness

Mihalcea and Csomai[7] used this measure for assigning importance to phrases. The keyphrase-

ness of a phrase p, measures the significance of a phrase in any document. It is defined as

follows.

keyphraseness(p) =
|plink|
|DF(p)|

Where, |plink| is the number of articles in the knowledge base in which the phrase p appears as a

hyperlink, and DF(p) is the document frequency of p. It holds that |plink| ≤ DF(p), and hence,

0 ≤ keyphraseness(p) ≤ 1

A phrase with keyphraseness of 1.0 would mean that it is linked wherever it appears, and hence,

must be an important phrase, whereas a phrase with lower keyphraseness score would mean

that it is seldom linked, and hence, is a phrase of less significance. If P is the set of phrases, for

each phrase p ∈ P, the normalized keyphraseness Nk(p), is computed as follows.

Nk(p) =
keyphraseness(p)∑

p∈P
keyphraseness(p)

Therefore, one appropriate way would be to sort the phrases in the input document in descending

order of their respective normalized keyphraseness scores. For overlapping n-grams with same

number of words, the normalized keyphraseness feature is used to pick the most relevant of

them. The other ones are discarded from being part of the disambiguation process.

3.1.2 tf × idf based importance

The tf × idf measure, explained in more detail in Appendix B, computes how important is a

word for a given document in a collection. For the purposes of this algorithm, it as been modified

to assign importance to phrases (one or more words) rather than to single word. However, unlike

Chapter 3. Entity Disambiguation 17

the keyphraseness measure explained in the previous section, this measure takes into account

the input document to which the phrase belongs, in order to compute the term frequency. If P
is the set of phrases, then the importance I based on tf × idf is computed as follows.

I(p) =
tf× idf(p)∑

p∈D
tf× idf(p)

Where, D is the input text which is to be disambiguated. For this, a separate database con-

taining the idf of phrases is maintained in the knowledge base. It contains the list of all phrases

from the dictionary of phrases, and their idf score.

3.1.3 Phrase retention score

Let P be the collection of phrases whose retention score needs to be computed and let p ∈ P be

a phrase. Then, the phrase retention score R of a phrase p is computed based on Nk(p) and

I(p) as follows.

R(p) =
I(p)×Nk(p)∑

p∈P
I(p)×Nk(p)

By means of experimental analysis, phrases withR(p) < 0.1 are prevented from being part of the

disambiguation process. Additionally, out of the phrases thus retained, only a maximum of x%

of the phrases of the number of words in the input document are considered for disambiguation,

where 10 ≤ x ≤ 100, which could be chosen by the user. It is important to note, however, that

since most of the phrases are already discarded by means of the retention score, having a value

of x to be 100%, doesn’t mean that all the phrases in the input document will be considered for

disambiguation.

3.2 Anterior phrase-entity compatibility measure

An anterior phrase-entity compatibility helps to limit the amount of possible entities for a given

phrase and helps the collective entity linking algorithm make more well informed decisions by

restricting the set to a limited number of entities. The compatibility between a phrase p and

an entity e, denoted by CP(p, e) is defined as follows[1].

CP(p, e) =
~m · ~e
|~m||~e|

Chapter 3. Entity Disambiguation 18

Where, ~m is a vector containing the tf × idf scores of the words in the local context of the

keyphrase, ~e is a vector of tf × idf scores of the words in the entity, and |~m| and |~e| denote the

normalization of the vectors ~m and ~e, respectively.

The local context of a phrase p in a given text is the list of words surrounding the phrase for

a window size of 50 words, as determined by Pedersen et al.[8]. The entities are sorted in

decreasing order of their compatibility scores with the phrase, and only the top 10 entities are

taken into consideration for disambiguation.

3.3 Anterior entity-entity relationship measure

This relationship creates weighted edges between every entity in the set of all entities of all

phrases that are semantically related to each other. The semantic relatedness relationship, due

to Milne and Witten[9], between two entities a and b, denoted by SR(a, b), is defined as follows.

SR(a, b) = 1− log(max(|A|, |B|))− log(|A ∩B|)
log(U)− log(min(|A|, |B|))

Where, A and B are sets of all documents where the entities a and b appear as link, respectively,

and U is the set of all documents in the universe. If A∩B = ∅, then SR(a, b) is set to 0, meaning

that the two entities are not semantically related to each other. Note that, SR(a, b) = SR(b, a)

3.4 Construction of the Referent Graph

The Collective Entity Linking algorithm makes entity linking decisions by means of a Referent

Graph G = (V,E), a directed graph, with the following properties.

1. If P is the set of all phrases that were retained, and E is the set of all entities of all the

phrases in P, then the set of vertices V is simply P ∪ E.

2. If there is a compatibility relationship between a phrase p ∈ P and an entity e ∈ E, then

there is an edge (p, e) ∈ E, called the compatibility edge, whose weight is CP(p, e).

3. If {ei, ej} ⊆ E are semantically related, i.e., SR(ei, ej) 6= 0, then there are semantic

relatedness edges {(ei, ej), (ej , ei)} ⊆ E, whose weights are SR(ei, ej).

4. ∀ e ∈ E, p ∈ P, (e, p) /∈ E. In other words, no edges are permitted in the graph that

originate at an entity node and end at a phrase node.

The following section explains, how this graph is used for propagating the evidence.

Chapter 3. Entity Disambiguation 19

3.5 Evidence Propagation

The tf × idf based importance measure I discussed in section 3.1.2 is reinforced by means of

propagation through the edges in the dependency graph.

3.5.1 Evidence propagation through Compatibility Edges

∀ p ∈ P, e ∈ E, if there is a compatibility edge (p, e) ∈ E, then the evidence propagation ratio P
is defined as follows.

P(p→ e) =
CP(p, e)∑

e∈Np

CP(p, e)

Where, Np is the set of neighboring entities of the phrase p. Note that, there cannot be an

evidence propagation ratio P(e → p), as the referent graph cannot have edges from an entity

to phrase.

3.5.2 Evidence propagation through Semantic Relatedness Edges

∀ {ei, ej} ⊆ E, if there is a semantic relatedness edge (ei, ej) ∈ E, then the evidence propagation

ratio P is defined as follows.

P(ei → ej) =
SR(ei, ej)∑

e∈Nei

SR(ei, e)

Where, Nei is the set of neighboring entities of the entity ei. Note that, P(ei → ej) is not a

commutative function.

3.6 The Collective Entity Linking Algorithm

The collective entity linking algorithm, as its name indicates, aims to exploit the global interde-

pendence between different entity linking decisions and the local mention to entity compatibility,

which is modeled in the referent graph discussed earlier.

Let P be the set of phrases and let E be the set of entities. Let Ep be the set of target entities

of a phrase p ∈ P. Then the most relevant target entity T (p), of the phrase p, is identified as

follows.

Chapter 3. Entity Disambiguation 20

T (p) = argmax
e∈Ep

CP(p, e)× rd(e)

Where, CP(p, e) is the compatibility score discussed in section 3.2 and rd(e) is the evidence

score for the entity e to be a referent entity of the document d. The following section discusses

how rd(e) is jointly computed for all the candidate referent entities of a document d.

3.6.1 Computing rd(e)

For every v ∈ V of the referent graph G = (V,E), indices are assigned randomly to each of

the vertex from 1, . . . , |V | and the adjacency matrix A of size |V | × |V | is written, such that

∀{i, j} ⊆ {1, . . . , V }, Ai,j is the edge weight between node i and j, if e(i, j) ∈ E, or 0, otherwise.

Additionally,

1. let s be the initial evidence vector, a |V | × 1 vector, where, si = I(i) if i ∈ P

2. let r be the evidence vector of size |V | × 1, where ri is the evidence score of the node i to

be a target entity in document d if i ∈ E or ri = I(i), if i ∈ P.

3. let M be the evidence propagation matrix, a |V | × |V | matrix, where Mi,j is the evidence

propagation ratio from node j to node i, described in section 3.5.

Then, the evidence vector r is computed as follows, according to [1], [10].

r = λ(I− cM)−1 × s

Where, λ = 0.1 [1] is the fraction of the reallocation evidence and c = 1 − λ and I is the

identity matrix. This way, the algorithm combines the evidences from the interdependence

between entity linking decisions, and the local compatibility between phrase and entities, and

the relative importance of phrases.

3.7 Posterior phrase importance measure

After the collective entity linking algorithm is run, the phrases are assigned a posterior impor-

tance score, to further gain confidence. The posterior importance score of a phrase p, Ipost(p)
is defined as follows.

Chapter 3. Entity Disambiguation 21

Ipost = I(p)× rd(T (p))

Where, I(p) and T (p) are defined in sections 3.1.2 and 3.6, respectively.

Chapter 4

The Entity Disambiguation Tool

This chapter explains the functionality provided by the application and the supporting APIs. It

briefly talks about the user experience and the insight the application is able to provide to the

user by means of D3js, a JavaScript vector graphics library. It also briefly discusses the other

reusable components developed as a part of this application, and how the entire application is

bundled in a single deployment tool, to make life easier for anyone wanting to install and run

the application.

4.1 Recognize and Disambiguate: RnD

The tool is named so in accordance with the task it performs. It is a Java based web-application

served by the Apache Tomcat web container running a Java servlet. On the client side, the

application interacts with the server by means of Ajax using the jQuery library. The client side

user interface components are built using the jQuery UI, another rich JavaScript based library,

for building powerful UI components.

Additionally, for visualization, D3js, a rich JavaScript based vector graphics library is used.

Using this library, a graphical visualization of the ambiguity tree is provided, which shows the

list of all the phrases that were identified, sorted in decreasing order of their confidence scores,

and when the user clicks on a node in the tree, it would expand to show all the entities that

were referred to by the phrase and marks the entity that was declared by the algorithm to be

the winner.

Moreover, at the output, the phrases are color coded for different confidence levels. The user

could also choose a different anterior importance metric for the phrases and see how the results

are affected, in addition to being able to specify, in terms of percentage, the number of phrases

to be recognized at the output.

22

http://tomcat.apache.org/download-70.cgi
http://jquery.com/
https://jqueryui.com/
http://d3js.org/

Chapter 4. The Entity Disambiguation Tool 23

3/10/2014 RnD - Recognize and Disambiguate! - The Entity Disambiguation tool

http://localhost:8080/freebifier/ 1/1

The Entity
Disambiguation tool

More info available here

Sample
At BKC rally, BJP's prime ministerial candidate Narendra Modi takes a dig at Rahul Gandhi

for his remarks on corruption, slams Congress government in state for trying to shield its

leaders by sweeping Adarsh scam case under the carpet.

home contact

RnD
Recognize and Disambiguate

Disambiguate Reset

Figure 4.1: The input area

Figure 4.1 shows the application as it appears when the user opens it. The user enters the

text in the textarea and clicks on the Disambiguate button, after which, by means of Ajax,

communication with the server takes place and the response is printed in the response area, as

shown in figure 4.2. The colored text represent the phrases and the confidence achieved for the

phrase in its entity linking decision. The colors for different confidence percentage are explained

by means of a legend. When the user clicks on any of the disambiguated phrases, hyperlinks are

provided to the corresponding entity on both Freebase and Wikipedia, if they exist on both.

Additionally, when the user clicks on the Ambiguity tree tab which is seen in figure 4.2, the

user is shown an interactive tree, as seen in figure 4.3, which shows the set of disambiguated

phrases in sorted order of their respective confidence percentages, and when the user clicks on

a phrase, it expands to show the list of all contending entities it had to disambiguate, and the

most relevant target entity it declared as the winner, by means of a dark circle around the node.

It is clearly evident from 4.3 that the tool is capable of recognizing phrases and matching them

to the most appropriate entities based on context, rather than to what a human would do. For

example, in the context of the article that was given as the example, which is cricket, it is more

appropriate for the the word England to point to England National Cricket Team than to the

country England, which is what this tool exactly achieved.

Chapter 4. The Entity Disambiguation Tool 24
3/10/2014 RnD - Recognize and Disambiguate! - The Entity Disambiguation tool

http://localhost:8080/freebifier/ 3/3

Legend: Confidence Percentage

>=80 >=50 AND < 80 >=30 AND <50 >=10 AND <30 <10

Disambiguated Text

As forecast, a West Indies comeback gave England nightmares at Kensington Oval, but the much-heralded return of Chris

Gayle was overshadowed by Marlon Samuels. Samuels is the Yohan Blake to Gayle's Usain Bolt, the silver-medallist support

act, but his unbeaten 69 from 46 balls was a reminder ahead of the World T20 that both batsmen possess a considerable

threat. Samuels, a vital component of West Indies World T20 victory in Sri Lanka 18 months ago, spoke at the interval of

getting fit in the gym, and with lots of running. As ever with Gayle, his expression hidden behind shades, one imagined that

his fitness levels had been explored more languidly. It was no surprise that their joint presence persuaded West Indies'

captain Darren Sammy to announce that their bid to retain their World T20 crown in Bangladesh started here.

Phrases %

Phrases/Input Text Size: 100%

Output Ambiguity tree

Figure 4.2: The Disambiguated text

However, for entity linking decisions, where the tool is not confident enough (i.e., where the

confidence falls below 10%), the tool is forcefully made to select the full-text match, even if it

would be less accurate. For example, as seen in figure 4.3 the phrase Sri Lanka is forcefully

made to point to the country Sri Lanka rather than to the Sri Lankan national cricket team.

This is done to have more accurate results. From the text it is clearly evident to a human

reader, based on the context, that the country Sri Lanka is referred to by the phrase. But, since

the article is overall about cricket, the disambiguator is not sure whether the phrase Sri Lanka

refers to the country or its cricket team. Therefore, when it cannot make confident decisions, it

is forcefully asked to do a text match, which, in this case, selects Sri Lanka as the target entity,

which is also the correct result here.

4.2 The code base

The code base has over 10000 lines of code written in Java that span across 73 source files

forming the core components of the system. Additionally, over 1000 lines of code form the

supporting structure, which includes the HTML and JavaScript code for the web application,

the shell scripts for deployment, and any other supporting code.

The entire code base is available in an online git repository, www.bitbucket.org, and could be

obtained using the following command, after having git installed.

git clone https://rnatarajan@bitbucket.org/rnatarajan/freebifier.git

www.bitbucket.org

Chapter 4. The Entity Disambiguation Tool 25
3/10/2014

1/1

sri lanka

west indies

england

bangladesh

kensington oval
usain bolt

yohan blake
getting fit

darren sammy
chris gayle

marlon samuels

root

Elections in Bangladesh
Bangladesh Football Federation
Cricket in Bangladesh
Bangladesh national kabaddi team
Bangladesh national football team
Bangladesh Navy
Bangladesh
Bangladesh Under­19 cricket team
Bangladesh national cricket team

Kensington Oval, Adelaide
List of international cricket centuries at the Kensington Oval
The Oval
Kensington Oval

Sri Lanka national rugby union team
Sri Lanka national football team
Buddhism in Sri Lanka
Cricket in Sri Lanka
Portal:Sri Lanka
Sri Lanka
Sri Lanka Under­19 cricket team
Sri Lanka at the 2006 Commonwealth Games
Sri Lanka national women's cricket team
Sri Lanka national cricket team

Legend: Confidence Percentage

>=80 >=50 AND < 80 >=30 AND <50 >=10 AND <30 <10

Figure 4.3: The Ambiguity Tree created using the D3js library

4.2.1 Licensing the code

The code contains intellectual property, and is, therefore, as of this writing, strictly not available

for commercial use. It is, however, granted license forever for academic use only, to the

Department of Computer Science1 of Albert-Ludwigs-Universität, Freiburg2.

1http://www.informatik.uni-freiburg.de/
2http://www.uni-freiburg.de/

http://www.informatik.uni-freiburg.de/
http://www.uni-freiburg.de/start-en.html?set_language=en
http://www.informatik.uni-freiburg.de/
http://www.uni-freiburg.de/start-en.html?set_language=en

Chapter 5

Results

This chapter begins by introducing the metrics for evaluating the result of entity disambigua-

tion. For the purpose of discussion of the results, a sample text is disambiguated, and later, a

generalization of the result for different categories of input documents, of different sizes each, is

provided.

5.1 Precision and Recall

Precision and Recall are widespread measures for evaluating the quality of the result. Let Pr

be the set of phrases linked correctly, Pi be the set of phrases that are insignificant but included

in the result, or phrases that are linked incorrectly, and let Pu be the set of significant phrases

that were unidentified. Then the precision and recall are defined as follows.

Precision, P =
|Pr|

|Pr|+ |Pi|

and,

Recall, R =
|Pr|

|Pr|+ |Pu|

Both precision and recall are measured in percentage. The quality of an entity disambiguator

could be considered perfect if both P and R are 100%. In practice, however, attempt to

increase either of the two may adversely affect the other. For example, R could be increased by

attempting to recognize many number of phrases in the input document. This may increase the

possibility of all relevant and significant phrases in the document being identified and linked,

thereby increasing R, but it may also, as a byproduct, increase the amount of irrelevant phrases

being identified and linked, causing P to plummet. Therefore, the aim should be to strike a

balance between these two quality metrics.

26

Chapter 4. Results 27

5.2 Sample document and result

In this section, the result of entity disambiguation of a sample document is presented and its

quality is evaluated based on the aforementioned metrics.

5.2.1 Result of entity recognition and disambiguation

As forecast, a West Indies comeback gave England nightmares at Kensington Oval , but

the much-heralded return of Chris Gayle was overshadowed by Marlon Samuels . Samuels

is the Yohan Blake to Gayle’s Usain Bolt , the silver-medallist support act, but his un-

beaten 69 from 46 balls was a reminder ahead of the World T20 that both batsmen possess

a considerable threat. Samuels, a vital component of West Indies World T20 victory in

Sri Lanka 18 months ago, spoke at the interval of getting fit in the gym, and with lots of

running. As ever with Gayle, his expression hidden behind shades, one imagined that his

fitness levels had been explored more languidly. It was no surprise that their joint presence

persuaded West Indies’ captain Darren Sammy to announce that their bid to retain their

World T20 crown in Bangladesh started here.

The phrases that were recognized in this document are highlighted using colored boxes. The

darkness of the color directly relates to the confidence level expressed by the application for

the phrase. A darker color means more confidence in the entity linking, whereas a light color

indicates lower confidence.

5.2.1.1 Analysis of the result

The ambiguity tree for this text is shown in figure 4.3. While the tool has made most of the

entity linking decisions correctly for the given text, a human reader would have liked to see the

phrase World T20 recognized, as it has some significance attached to it in the context of the

article. While, the phrase getting fit was linked to the correct entity, namely, Physical fitness,

there is probably no significance attached to it in the context of this article. Similarly the word

Bangladesh was incorrectly linked to the entity Bangladesh National Cricket Team, while in the

context, it was referring to the country. The reason for this behaviour was already explained in

the previous chapter. The quality of the result for this piece of text is discussed below.

Precision, P =
11

11 + 2
= 84.61% ; Recall, R =

11

11 + 1
= 91.6%

Chapter 4. Results 28

The quality metric suggests that the tool has done a fairly reasonable job of identifying and

correctly linking the significant phrases in the document (high precision), and that it has not

left too many significant phrases unrecognized (high recall).

Additionally, it is evident from the ambiguity tree shown in figure 4.3, that the phrases had

several contending entities and that the tool was able to identify the most appropriate of them.

5.2.2 Results summary

Table 5.1 provides a summary of the results of entity disambiguation, for input documents

belonging to different categories mentioned in the first column of the table, for which the contents

were randomly chosen from the Internet. The articles that were used are hyperlinked to, which

could be followed from the electronic version of this document.

Table 5.1: Summary of the results

Category Words # Pr Pi Pu P(%) R(%)

Nat. Geo. 665 14 0 2 100 87.5
Sports (Cricket) 768 18 2 2 90 90
Environment 795 31 4 2 88.5 93.9
News 249 15 4 2 78.9 88.2
Technology 408 23 6 3 79.3 88.4

Total 2885 101 16 11 86.3 90.1

For the evaluation, the articles were completely randomly chosen without any affinity towards

certain kinds of articles. Additionally, choosing the articles from news channels and from other

articles across the web, for the evaluation of this tool, helps us understand and appreciate its

applicability in automating entity recognition and disambiguation in this area.

The results show that the tool performs reasonably well (meaning that, it shows good precision

and recall) in one of its biggest application areas - automated entity linking for articles on the

web.

http://news.nationalgeographic.com/news/2014/03/140309-yosemite-national-park-time-lapse-video/
http://www.espncricinfo.com/india/content/current/story/726799.html
http://economictimes.indiatimes.com/news/news-by-industry/et-cetera/freak-climate-in-north-india-may-damage-crops-fears-of-el-nino-phenomenon-rising/articleshow/31803611.cms
http://www.thehindu.com/news/international/world/search-widens-for-missing-malaysian-jet/article5772835.ece
http://edition.cnn.com/2014/03/10/tech/mobile/ios-7-update/index.html

Chapter 6

Future Work

There are always improvements that could be made to the tool. This chapter aims to address

a few of them, and also discusses how.

6.1 Anterior importance of phrases

Even though the application did a reasonable job of identifying keyphrases and linking them to

appropriate entities, it was seen that phrases of less importance were sometimes given higher

rank than important phrases. This affects the precision, since those insignificant phrases are

more likely to be linked to irrelevant entities as the algorithm makes collective entity linking

decision, which also affects its overall decision making ability. Therefore, more research could

be done on the phrase ranking method, in order to minimize the recognition of insignificant

phrases. Ideally, all significant phrases should be ranked above any insignificant phrase.

Further, the line that separates the set of significant phrases from the insignificant ones should

be well defined. This would enable the application to pick only the significant phrases for

processing and discard all the insignificant ones.

6.2 Using Freebase’s knowledge-graph for EL decisions

It was seen in the example with brands in section 2.2 that the Freebase knowledge-graph is

not mature, in the sense that, it does not capture the relationship between most of the enti-

ties that are interrelated to each other in the real world, even though they exist on Freebase

independently. It is observed, as a part of this work, that the knowledge graph is mature for

entities originating from the United States and for other internationally well known entities and

29

Chapter 5. Future Work 30

for entities belonging to popular categories such as movies/music, whereas, many entities of the

rest of the word do not have a proper knowledge graph.

However, since Freebase is a very fast-growing knowledge base, in the future, when more mature

knowledge graph is available for significant amount of entities under different categories, the

method proposed by Zheng et al.[5] could be used for more accurate disambiguation. Essentially,

the knowledge graph could be used to augment the entity linking decisions from any existing

approach, like the one discussed in this work.

Chapter 7

Conclusion

This thesis presented the task of entity disambiguation, wherein all the independent stages, from

creating a knowledge-base, to ranking the phrases, to the collective entity linking algorithm that

performs disambiguation, were discussed. An application that performs entity recognition and

disambiguation was also presented. While we saw that the tool performed very well (with Preci-

sion , Recall consistently > 75%) for disambiguating articles across the web, the shortcomings of

the tool was also addressed. It was also discussed about the tremendous scope for improvement

of this tool, once Freebase as a knowledge-base matures, in the sense that, it starts having more

mature knowledge-graph for most of the entities of the world, unlike what it currently is - for

only entities related to popular categories, like movies or music, for example.

31

Appendix A

Computing the n-grams

In was mentioned earlier that n-grams of up to 10 words are computed from the input document,

and those that are not present in the keyphrase vocabulary are discarded. An n-gram of words

is a contiguous sequence of n words in a given text. For example, for the text The quick brown

fox jumps over the lazy dog , all its 4-grams are listed below.

The quick brown fox

quick brown fox jumps

brown fox jumps over

fox jumps over the

jumps over the lazy

over the lazy dog

The total number of n-grams in a text with M number of words, is M − n+ 1. A 1-gram of a

given text, is simply the list of all words in the text. For the input document, n-grams for each

value of n from 1 to 10, are computed.

32

Appendix B

tf × idf score

The term frequency × inverse document frequency score is a measure of the importance

of a word for a given document in a collection.

Term Frequency. The term frequency of a word w in a document d is simply the number

of times w occurrs in d.

Document Frequency. Given a collection C containing a set of documents, the document

frequency of a word w in C, written as DF(w,C), is the total number of documents in C, in

which w occurs. Mathematically,

DF(w,C) = |{d|d ∈ C ∧ w ∈ d}|

Inverse Document Frequency. The inverse document frequency of a word w in a collection

C, is defined as,

IDF(w,C) = log2

(
|C|

DF(w,C)

)

The tf × idf score of a word, is the product of its term frequency and inverse document fre-

quency.

33

Bibliography

[1] Xianpei Han, Le Sun, and Jun Zhao. Collective entity linking in web text: a graph-based

method. pages 765–774, 2011. doi: 10.1145/2009916.2010019. URL http://doi.acm.org/

10.1145/2009916.2010019.

[2] Wikipedia. Double redirects — Wikipedia, The Free Encyclopedia. . URL http://en.

wikipedia.org/wiki/Wikipedia:Double_redirects.

[3] Wikipedia. Free links — Wikipedia, The Free Encyclopedia. . URL http://en.wikipedia.

org/wiki/Wikipedia:Free_links#Free_links.

[4] Wikipedia. Freebase — Wikipedia, The Free Encyclopedia. . URL http://en.wikipedia.

org/wiki/Freebase.

[5] Zhicheng Zheng, Xiance Si, Fangtao Li, Edward Y. Chang, and Xiaoyan Zhu. Entity

disambiguation with freebase. pages 82–89, 2012. URL http://dl.acm.org/citation.

cfm?id=2457524.2457667.

[6] Autocar India. Mahindra xuv500 hits another sales mile-

stone. URL http://www.autocarindia.com/auto-news/

mahindra-xuv500-hits-another-sales-milestone-369053.aspx.

[7] Rada Mihalcea and Andras Csomai. Wikify!: linking documents to encyclopedic knowledge.

pages 233–242, 2007. doi: 10.1145/1321440.1321475. URL http://doi.acm.org/10.1145/

1321440.1321475.

[8] Ted Pedersen, Amruta Purandare, and Anagha Kulkarni. Name discrimination by clus-

tering similar contexts. pages 226–237, 2005. doi: 10.1007/978-3-540-30586-6 24. URL

http://dx.doi.org/10.1007/978-3-540-30586-6_24.

[9] David Milne and Ian H. Witten. Learning to link with wikipedia. In Proceedings of the 17th

ACM Conference on Information and Knowledge Management, CIKM ’08, pages 509–518,

New York, NY, USA, 2008. ACM. ISBN 978-1-59593-991-3. doi: 10.1145/1458082.1458150.

URL http://doi.acm.org/10.1145/1458082.1458150.

34

http://doi.acm.org/10.1145/2009916.2010019
http://doi.acm.org/10.1145/2009916.2010019
http://en.wikipedia.org/wiki/Wikipedia:Double_redirects
http://en.wikipedia.org/wiki/Wikipedia:Double_redirects
http://en.wikipedia.org/wiki/Wikipedia:Free_links#Free_links
http://en.wikipedia.org/wiki/Wikipedia:Free_links#Free_links
http://en.wikipedia.org/wiki/Freebase
http://en.wikipedia.org/wiki/Freebase
http://dl.acm.org/citation.cfm?id=2457524.2457667
http://dl.acm.org/citation.cfm?id=2457524.2457667
http://www.autocarindia.com/auto-news/mahindra-xuv500-hits-another-sales-milestone-369053.aspx
http://www.autocarindia.com/auto-news/mahindra-xuv500-hits-another-sales-milestone-369053.aspx
http://doi.acm.org/10.1145/1321440.1321475
http://doi.acm.org/10.1145/1321440.1321475
http://dx.doi.org/10.1007/978-3-540-30586-6_24
http://doi.acm.org/10.1145/1458082.1458150

Bibliography 35

[10] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and its

applications. In Proceedings of the Sixth International Conference on Data Mining, ICDM

’06, pages 613–622, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-

2701-9. doi: 10.1109/ICDM.2006.70. URL http://dx.doi.org/10.1109/ICDM.2006.70.

http://dx.doi.org/10.1109/ICDM.2006.70

	Declaration
	Acknowledgments
	Abstract
	Zusammenfassung: Abstract in German
	1 Introduction
	1.1 Entity disambiguation: defined
	1.2 Organization of the thesis

	2 Knowledge-Base Creation
	2.1 Creating knowledge base from Wikipedia
	2.1.1 Obtaining the Wikipedia database dump
	2.1.2 Types of pages in Wikipedia
	2.1.3 Free Links in Wikipedia
	2.1.4 Format of the data
	2.1.5 Keyphrase extraction
	2.1.5.1 Composition of a keyphrase
	2.1.5.2 Extracting from articles
	2.1.5.3 Extracting from page titles
	2.1.5.4 Extracting from article titles
	2.1.5.5 Extracting from redirect titles
	2.1.5.6 Extraction from disambiguation titles
	2.1.5.7 Nested disambiguations
	2.1.5.8 Chained disambiguations

	2.1.6 Additional extracted information

	2.2 Creating knowledge base from Freebase
	2.2.1 Obtaining the Freebase database dump
	2.2.2 Parsing the Freebase database dump

	2.3 Storing the knowledge base
	2.4 Challenges involved in Knowledge-base creation

	3 Entity Disambiguation
	3.1 Anterior phrase importance measure
	3.1.1 Keyphraseness
	3.1.2 tf idf based importance
	3.1.3 Phrase retention score

	3.2 Anterior phrase-entity compatibility measure
	3.3 Anterior entity-entity relationship measure
	3.4 Construction of the Referent Graph
	3.5 Evidence Propagation
	3.5.1 Evidence propagation through Compatibility Edges
	3.5.2 Evidence propagation through Semantic Relatedness Edges

	3.6 The Collective Entity Linking Algorithm
	3.6.1 Computing rd(e)

	3.7 Posterior phrase importance measure

	4 The Entity Disambiguation Tool
	4.1 Recognize and Disambiguate: RnD
	4.2 The code base
	4.2.1 Licensing the code

	5 Results
	5.1 Precision and Recall
	5.2 Sample document and result
	5.2.1 Result of entity recognition and disambiguation
	5.2.1.1 Analysis of the result

	5.2.2 Results summary

	6 Future Work
	6.1 Anterior importance of phrases
	6.2 Using Freebase's knowledge-graph for EL decisions

	7 Conclusion
	A Computing the n-grams
	B tf idf score
	Term Frequency.
	Document Frequency.
	Inverse Document Frequency.

	Bibliography

