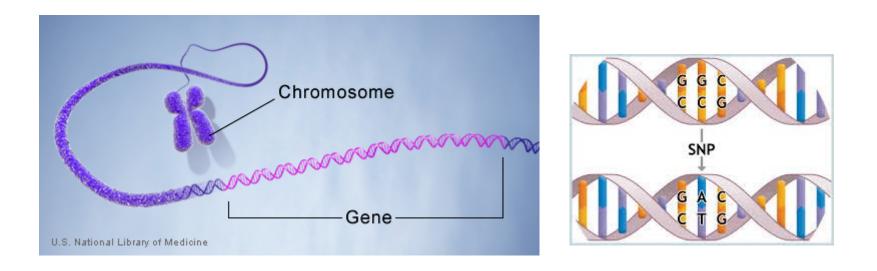


Masterthesis Philip Schledermann Knowledgebase construction of genetic variants in literature

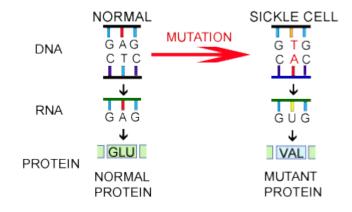
Date: 2018-11-20

What are genes and mutations?



Left: "What is a gene?" 18 July 2018 : https://ghr.nlm.nih.gov/primer/basics/gene Rigth: "Single Nucleotide Polymorphism (SNP) Allele Frequency DNA Pools " 18 July 2018 : http://www.socmucimm.org/single-nucleotide-polymorphism-snp-allele-frequency-estimation-dna-po

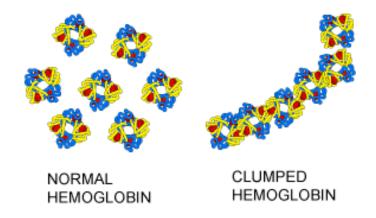
Consequences of a single change!



1 & 2 : Understanding Evolution. 2018. University of California Museum of Paleontology. 18 July 2018 < http://evolution.berkeley.edu/>.

3: Sickle Cell Anemia- Types, Symptoms, Causes, Diagnosis and Treatment. 18 July 2018 https://zovon.com/health-conditions/sickle-cell-anemia/

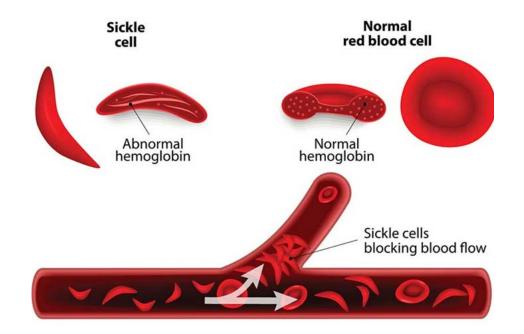
Consequences of a single change!



1 & 2 : Understanding Evolution. 2018. University of California Museum of Paleontology. 18 July 2018 http://evolution.berkeley.edu/.

3: Sickle Cell Anemia- Types, Symptoms, Causes, Diagnosis and Treatment. 18 July 2018 https://zovon.com/health-conditions/sickle-cell-anemia/

Consequences of a single change!



1 & 2 : Understanding Evolution. 2018. University of California Museum of Paleontology. 18 July 2018 < http://evolution.berkeley.edu/>.

3: Sickle Cell Anemia- Types, Symptoms, Causes, Diagnosis and Treatment. 18 July 2018 https://zovon.com/health-conditions/sickle-cell-anemia/

Motivation Different words, but same entity

Oncol Lett. 2018 Aug;16(2):2675-2681. doi: 10.3892/ol.2018.8913. Epub 2018 Jun 6.

Clinicopathological characteristics of malignant melanomas of the skin and gastrointestinal tract.

<u>Akiyama M</u>^{1,2}, <u>Matsuda Y</u>², <u>Arai T</u>², <u>Saeki H</u>¹.

Author information
 G ReadCube

Abstract

The present study examined the differences between gastrointestinal melanoma (GM) and skin melanoma (SM). The clinicopathological characteristics, the expression of melanoma stem cell markers nestin, sex

V600E

n Y-box 2 and ATP-binding cassette sub-family B member 5, and the presence of the tigh were evaluated in 10 cases of GM and 31 cases of SM. Patients with GM had an

age compared with those with SM (76 vs. 68 years). In addition, GMs were significantly

more likely than SMs to be an The mitosis rate was also sign node metastasis (60 vs. 32%;

Different expression of the same thing

in GMs compared with SMs. The expression of stem cell markers did not differ significantly between groups, however, in the SM group advanced-stage disease was associated with a significantly higher expression of nestin than early-stage disease (P<0.05). Immunohistochemically, the expression of BRAF V600E was significantly lower in GMs compared with in SMs (1.0 vs. 3.3; P=0.01). These findings indicate that the identification of these features may aid in the diagnosis of GM and SM, as well as contribute to the development of novel targeted therapies against GM.

Biomed Res Int. 2018 Apr 2;2018:2582179. doi: 10.1155/2018/2582179. eCollection 2018.

BRAF 1799T>A Mutation Frequency in Mexican Mestizo Patients with Papillary Thyroid Cancer.

<u>Fernández-Ramírez E¹, Hurtado-López LM², López MA¹, Martínez-Peñafiel E^{1,3}, Herrera-González NE⁴, Kameyama L³, Sepúlveda-Robles O⁵.</u>

Author information
 G ReadCube

Abstract

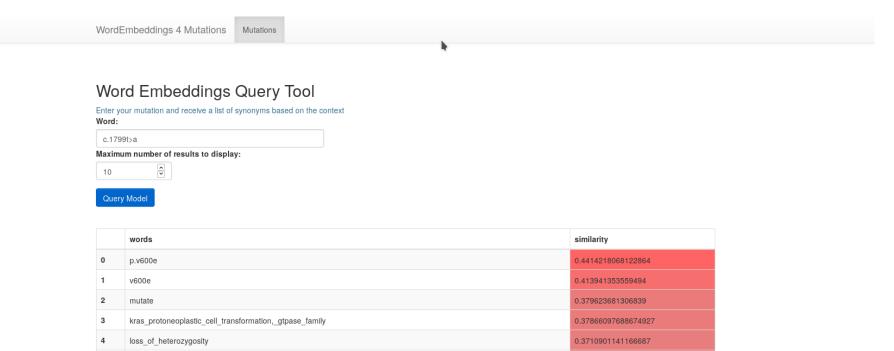
Thyroid cancer is the most frequent endocrine malignancy, and its incidence and prevalence are increasing worldwide. Despite its generally good prognosis, the observed mortality rates are higher in the less-developed regions. This indicates that timely diagnosis and appropriate initial management of this disease

We performed an observational study in order to describe the n Mexican mestizo patients with thyroid nodules, a scarcely Competitive allele-specific Tagman PCR was performed in 147

mples of thyroid tissue DNA obtained from patients histologically diagnosed with papillary thyroid cancer TC), colloid goiters, and follicular adenomas. The *BRAF* **1799T>A** mutation frequency was 61.1% in PTC samples ($p = 4.99 \times 10^{-11}$). Potential diagnostic values were as follows: sensitivity, 61.1%; specificity, 96%; PPV, 94.2%; NPV, 69.5%; accuracy, 77.9%. Taking into account the fact that this mutation is not frequently found in cytologically indeterminate nodules, we suggest that the *BRAF* mutational analysis should be implemented in the clinical setting along with other diagnostic criteria such as USG, in order to contribute to diagnosis and to surgical decision-making during the initial management of thyroid nodules in Mexican public hospitals.

Left: 18 July 2018 PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30013664 Right: 18 July 2018 PubMed : https://www.ncbi.nlm.nih.gov/pubmed/29808165

Knowledgebase of genetic variants and their synonyms



0.36764857172966003

5 p.val600glu

ClinVar

- human variation data

- Manual submission
- Manual curation

rs113488022

- c.1799T>A
- V600E
- g.140753336A>T
- p.Val600Glu
- g.176429T>A
- [...]

Goals

- Detection of rare mutation mentions by not writing rules
- Normalize/Link entities (dbSNP identifiers)
- Compare the usage of word embeddings for knowledge extraction

Methodology

- 1. Getting the text content out of the data
- 2. Creating two text corpora
 - Basic corpus
 - Cleansed corpus
- 3. Applying word embeddings on the words/tokens in the corpora
- 4. Evaluating the models against ClinVar (contains human variation data)

PMC **Source Data** 1,863,349 articles 1,837,109 27,837,540 articles articles Pub Med **ScienceDirect**[®]

Logos are trademarks and brands are property of their respecive owners

Two input sets for the models beeing created

Basic corpus

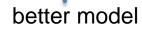
• Simple tokenization

Cleansed corpus

 Extensive cleansing and normalization applied where possible

Objectives with "Other Entities Tagged"

- Harmonize + simplify the text as much as possible
- Less tokens
 - Singular and plural forms are one
 - Removing stopwords
 - Eg. different company names, meaning the same entitiv are normalized to one word



Replace other entities by the preferred label and do basic NLP

Input

"BRAF is not associated with non small cell lung carcinoma, but with c.1799A>T and V600E."

Sentence in the **basic** corpus "braf", "is", "not", "associated", "with", "non", "small", "cell", "lung", "carcinoma", "but", "with", "c.1799a>t", "and", "v600e"

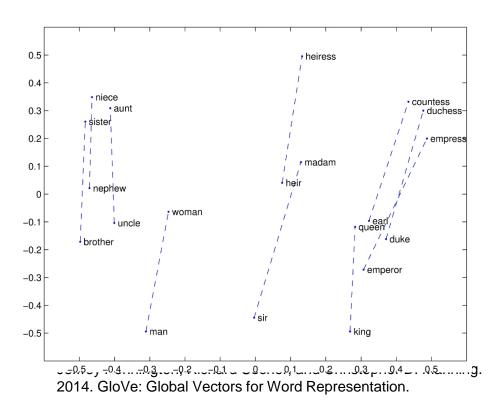
Sentence in the **cleansed** corpus "b-raf_proto-oncogene,_serine/threonine_kinase", "associate", "nonsmall_cell_lung_cancer", "c.1799a>t", "v600e"

Firth, J. R. 1957:11

You shall know a word by the company it keeps

What are word embeddings?

- Training a shallow neural network that predicts the surroundings words
- Taking the hidden layer and intepreting it as word vectors
- Synonyms that share similar contexts are placed near each other
- Relations between contexts are preserved



Corpus & model statistics

	Basic corpus	Cleansed corpus	
Records	29,354,945		
Words	11,936,304,678		
Distinct words	18,790,878		
Distinct words after cleansing	18,790,878	52,057,405	
Minimum count	25	40	
Distinct words in model	1,317,892	1,398,581	
Model construction runtime (shared HW)	11 hours	5 hours	

Evaluation data

- Based on ClinVar
- V600E: Label
 c.1799T>A
 - p.Val600Glu
 - o rs113488022
- With single letter and three-letter amino-acid codes, as well as with and without qualifier

Synonyms

• There are 350.832 records in the evaluation set

Evaluation – model only

	Basic model		Cleansed model	
Question direction	Label>Syn	Syn>Label	Label>Syn	Syn>Label
Number of tests	1055	1041	217	287
Precision@K1	00.90%	01.63%	03.23%	02.32%
K1	2	1	1	3
Recall@K2	05.98%	11.71%	15.67%	23.88%
K2	117	120	107	119

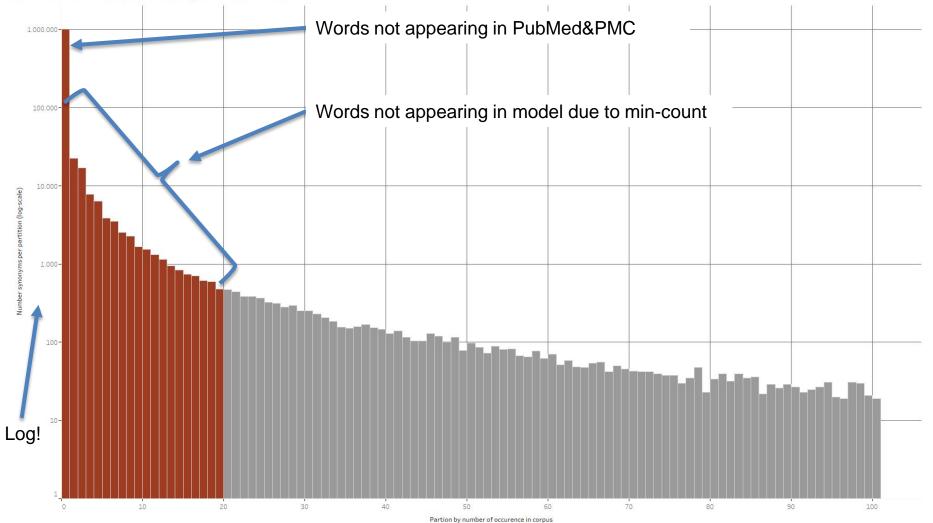
Evaluation – model plus a mutation tagger

	Basic mode	I	Cleansed model		
Question direction	Label>Syn	Syn>Label	Label>Syn	Syn>Label	
Number of tests	86	125	42	71	
Precision@K1	11.05%	13.60%	16.67%	09.67%	
K1	1	1	1	1	
Recall@K2	73.33%	97.52%	80.95%	96.53%	
K2	120	120	107	119	

Error analysis

- Not all false positives are false positives
 - "brafv600e" is actually a true positive synonym for "v600e"
- Results without using a tagger.
- Compared to other applications of word embeddings
 - Many synonyms for one word
 - Very rare occuring words are used
 - Dedicated language and format

Number of mutations per occurence partition in PubMed&PMC



Error analysis

- The most mutation mentions are not even occuring in corpus
- Many mutation mentions are rarely occuring

0	1.015.502
1	22.606
2	17.107
3	7.875
4	6.417
5	3.925
6	3.551
7	2.552
8	2.274
9	1.666
10	1.546
11	1.326
12	1.159
13	957
14	850
15	749
16	708
17	614
18	596
19	480

Conclusion

- ClinVar contains more data than expected; 1,422,369 synonyms in total, that's 7,57% of all words in Pubmed, PMC & ScienceDirect
- The "synonym" relationship for genetic mutations cannot be easily extracted by word embeddings
- Using a cleaned text improves the results
- Approaches where tagged entities are linked using e.g. ClinVar will outperform this method

Outlook

- Use the created word embedding models
 - on target classes with less variability (genes, diseases)
 - and try finding common dimensions that classify a token as a mutation
- Investigate further on
 - vector dimensionality
 - context size
 - better cleansing
 - more input data
 - lower min-count

Doing now what patients need next

Backup Slides

Technical hurdles – data skew

- Many short articles/abstracts
- > 22 million, <1.6k characters
- Few long articles
- > 1.2 million articles, >16k characters
- Rare very long articles
- ~ 630k articles, > 33k characters

Oncol Lett. 2018 Aug;16(2):2675-2681. doi: 10.3892/ol.2018.8913. Epub 2018 Jun 6.

Clinicopathological characteristics of malignant melanomas of the skin and gastrointestinal tract.

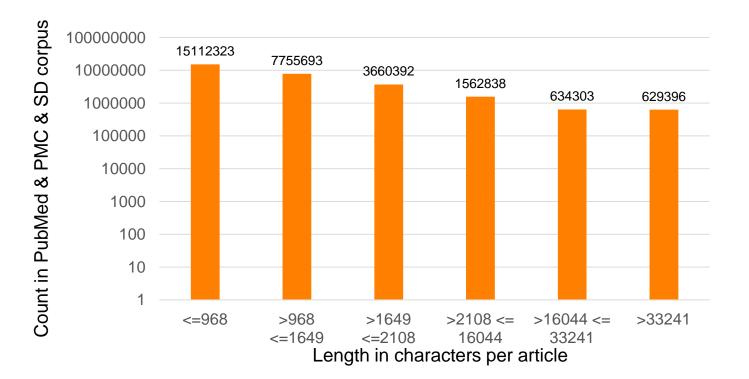
Akiyama M^{1,2}, Matsuda Y², Arai T², Saeki H¹.

Author information
 ReadCube

Abstract

The present study examined the differences between gastrointestinal melanoma (GM) and skin melanoma (SM). The clinicopathological characteristics, the expression of melanoma stem cell markers nestin, sex determining region Y-box 2 and ATP-binding cassette sub-family B member 5, and the presence of the *BRAF*^{V600E} mutation were evaluated in 10 cases of GM and 31 cases of SM. Patients with GM had an increased mean age compared with those with SM (76 vs. 68 years). In addition, GMs were significantly more likely than SMs to be amelanotic (50 vs. 7%; P=0.001) and display round cells (70 vs. 23%; P=0.02). The mitosis rate was also significantly higher in GM compared with SM (P<0.05). The incidence of lymphnode metastasis (60 vs. 32%; P<0.05) and distant metastasis (10 vs. 6.5%, P=0.02) was significantly higher in GMs compared with SMs. The expression of stem cell markers did not differ significantly between groups, however, in the SM group advanced-stage disease was associated with a significantly higher expression of nestin than early-stage disease (P<0.05). Immunohistochemically, the expression of BRAF^{V600E} was significantly lower in GMs compared with in SMs (1.0 vs. 3.3; P=0.01). These findings indicate that the identification of these features may aid in the diagnosis of GM and SM, as well as contribute to the development of novel targeted therapies against GM.

Technical hurdles - data skew



Is this big data?

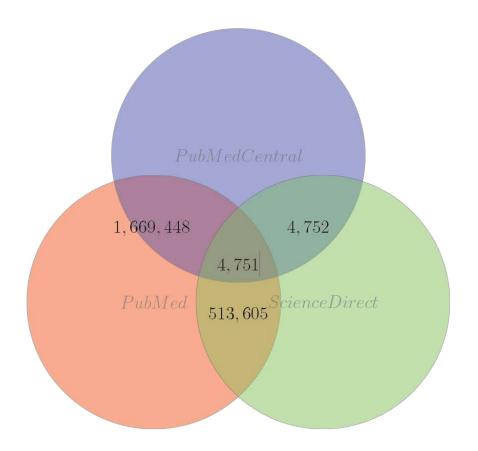
Spark / SPARK-6235 Address various 2G limits

Details				People	
Туре:	Umbrella	Status:	OPEN	Assignee:	O Unassigned
Priority:	∧ Major	Resolution:	Unresolved	Reporter:	Reynold Xin
Affects Version/s:	None	Fix Version/s:	None	Votes:	57 Vote for this issue
Component/s:	Shuffle, Spark Core			Watchers:	(116) Start watching this issue
Labels:	None				
				Dates	
Description			Created:	09/Mar/15 23:53	
An umbrella ticket to	track the various 2G limit we have in Spark, d	ue to the use of byte arrays and ByteBuffers.		Updated:	25/May/18 22:19

Technical limitations Spark mlib implementation of Word2Vec

2.147.483.647 / 400 dimensions ~ 5.300.000 words

```
345 val initRandom = new XORShiftRandom(seed)
346
347 if (vocabSize.toLong * vectorSize >= Int.MaxValue) {
348 throw new RuntimeException("Please increase minCount or decrease vectorSize in Word2Vec" +
349 " to avoid an 00M. You are highly recommended to make your vocabSize*vectorSize, " +
350 "which is " + vocabSize + "*" + vectorSize + " for now, less than `Int.MaxValue`.")
351 }
352
353 val syn0Global =
```

Evaluation of the embedding model Subsetting a "gold standard"

- ClinVar hgvs4variation / cross_references (accessed 2018-07-12 14:00)
- V600E:
 - c.1799T>A
 - o p.Val600Glu
 - o rs113488022
- With single letter and three-letter amino-acid codes, as well as with and without qualifier
- There are 350.832 records in the Evaluation Set

Genetic variant extraction until today

Framework Name	MutationFinder	SETH	nala	tmVar2	VarDrugPub
Authors	Caporaso et al.	Thomas et al.	Cejuela et al.	Wei et al.	Kyubum Lee et al.
Year published	2007	2016	2017	2018	2018
Data (based on)	PubMed	PubMed, dbSNP, UniProt	PubMed	PubMed, ClinVar	PubMed
Methods	regex Rule-Ba	a sed mmar matching, regex		reg Machine Learr CRF, Dictionary lookup	hing arch engine, Embeddings, CNN / Random Forest
Extraction	Mutation	Mutation	Mutation	Mutation	Relations on Gene- Mutation-Disease
Normalization	None	regext db query	None	Regex + db query Rule-Based	TOGOX

How good is MutationFinder in recognizing Variants?

Precision: 0.89

Recall : 0.37

F-Measure: 0.53

334 documents of PubMed from the tmVar training set (hand annotated only for Variants)

 \rightarrow Single-hit comparison (multiple matches ignored) aka. "Occurs in documents"

Current Situation

- Systems for extracting genes, diseases exist and are quite good
- Recent research on genetic variant extraction
 - Rule based systems
 - CRF systems
 - Normalization by regular expressions and database queries
- Data based on
 - PubMed
 - PubMedCentral (few)

What is wrong with only rule based normalization?

- ClinVar / dbSNP
 - Hand-curated
 - Manual Submission by researches

Roche

High-level Workflow



Sources & Platform

- OpenAccess Data
 - Pubmed
 - PubmedCentral

- Hadoop / Spark
- SciBite TERMiteJ for NER
- Stanford CoreNLP for cleansing

- Licensed Data
 - ScienceDirect

Counts vs number of words PubMed&PMC

- 2 7768005
- 3 4663472
- 5 3115449
- 10 1946965
- 17 1382770
- 19 1289873
- 20 1250325

Benchmark Datasets & Tools

- Datasets
 - Fraunhofer SCAI Corpus for Normalization of Variation Mentions
 - tmVar Test https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661051/
 - OSIRIS http://ibi.imim.es/OSIRIScorpusv01.xml
- Tools
 - Mutationfinder http://mutationfinder.sourceforge.net/
 - tmVar https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/

Other research until now genetic variant extraction

- NER/NEN for genes, diseases works great
- NER for genetic variants:
 - Precision with rule based methods is good
 - Recall with rule base methods is low
- NEN for genetic variants Recent publications
 - NIH: tmVar2.0 Jan 2018
 - Lee, et al. : Deep learning of mutation-gene-drug relations from the literature Jan 2018
 - Thomas et al. : SETH detects and normalizes genetic variants in text Sep 2016

NIH : tmVar

- Enormous preprocessing (regexes)
- Conditional Random Field (CRF) for NER
- Normalization with regular expressions

But:

- No normalization from mutation to rs number
- "fine-grained rules"

For Variants: Recall has potential Unrecognized Variants:

{('15003823', '1067-1068 ins 5 bp'), ('17671735', 'c.35delG'), ('17671735', 'p.R32W'), ('19082493', 'G/C'), ('12737948', 'IVS10+1, g-->t'), ('17671735', 'p.R127H'), ('17002658', 'g.1755 G > A'), ('17549393', 'p.Y67X'), ('18257781', 'p.F482C'), ('17549393', 'Y67X'), ('15148206', '429A-->C'), ('22125978', 'c.659_660delTA'), ('2042570', 'c.2708_2711delTTAG'), ('19370764', 'p.G204VfsX28'), ('17065190', 'C/G'), ('12737948', 'IVS3-48C'), ('14722925', 'c.87+1G>A'), ('12791036', 'R238X'), ('18257781', 'IVS21-2delAG'), ('21080147', 'E325K'), ('17169596', 'c.671G>A'), ('19592582', 'c.467C>A'), ('19110214', 'p.D2267N'), ('18257781', 'c.1445T > G'), ('12862311', '79-1 G > T'), ('20005218', 'G/A'), ('17615540', 'T87M'), ('20806042', 'p.R198W'), ('16601880', 'p.N533Y'), ('17683901', 'p.G380R'), [...] }

Multi-word-phrases

- Create a text of bigrams and count the occurences
 - Bigram construction (x2 of space)
 - Count all bigram occurences in the text
 - Count all word occurences in the text
 - Compute a score = #bigram / (#wordA + #wordB)
 - Cutoff at threshold
 - Replace Text with relevant bigrams

repeat

Phrase-Construction \Rightarrow **Bi-grams**

2.087.023.506 Unique tokens (after NLP)

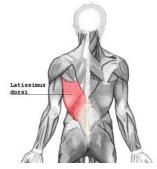
14.886.269 Unique bigrams \Rightarrow minOccurence 11!

20.674 bi-Grams with over 10% of co-occurence

bi-Gram generation:

- "hypothenemus hampei" more together than separated
- "latissimus dorsus" 7563 times together, 8169/10.670 individually
- "amino acid" occours 619.404, amino alone 687.695
- "significant difference" 789.247 > 10% of the cases any word is found together

Higher classification: Hypothenemus Rank: Species



Round 2

4.209 Bi-grams with over 10% of co-occurence Examples:

1,2-bi_2-aminophenoxy ethane-n_tetraacetic

giuseppe_gasparre rodrigue_rossignol

john_wiley sons_ltd.

inferior_vena cava

spiel_ohne grenzen

Doing now what patients need next