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Zusammenfassung

In Publikationen werden oftmals synonyme Begriffe für eine genetische Variation ver-
wendet. Für die verbesserte Suche nach Veröffentlichungen über genetische Variatio-
nen in wissenschaftlichen Publikationsdatenbanken wie PubMed und PubMedCen-
tral, sollen die unterschiedlich verwendeten Begriffe auf die präferierte Bezeichnung
der jeweiligen genetischen Variation zurückgeführt werden. Mit ClinVar existiert ei-
ne manuell kurierte Datenbank, in der die Begriffe welche in Standardnomenklatur
geschrieben werden enthalten sind. Um auch Begriffsvariationen zusammenzuführen,
welche nicht der Norm entsprechen sollen diese aus den Veröffentlichungen extrahiert
werden.
Der Text wird mittels Named Entity Recognition und anderen Algorithmen der
Sprachverarbeitung vereinfacht.
In einem "word embedding"Modell werden aus dem Text Begriffe und ihre Kontexte
extrahiert und miteinander verglichen. Gleiche Kontexte für unterschiedliche Begriffe
weisen darauf hin, dass es sich bei den Begriffen um Synonyme handeln könnte.
Dieses Modell wird auf unterschiedliche Schreibweisen von genetischen Variationen
angewandt.
Das Modell wird gegen ClinVar evaluiert. Hierbei zeigt sich, dass der überwiegende
Teil der normierten Standardbegriffe teils verschwindend gering in der verwendeten
wissenschaftlichen Literatur enthalten ist. Zudem zeigt sich, dass das Modell nicht
ohne zusätzliche Filterung der Ergebnisse verwendet werden kann.
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Abstract

In publications often synonymous terms are used for genetic variations. Improving
the search results for genetic variants in scientific publication databases like PubMed
and PubMedCentral, the different terms used in publications shall be linked to their
preferred name. ClinVar is a manually curated database in which terms in standard
nomenclature are stored and linked together. To link mutation mentions that are
not written obeying the nomenclature, the mutation mentions are extracted from
the text.
As part of this thesis the text is simplified. This is done using Named Entity
Recognition and other algorithms of natural language processing.
In a word embedding model the terms and their contexts are extracted and com-
pared. Similar contexts but different terms indicate that the terms are synonyms.
The model is applied to various spellings of genetic variants.
The model is evaluated against ClinVar. It is shown that most of the terms follow-
ing the standard nomenclature are not present in the analyzed scientific literature.
Additionally it is shown that the model is not applicable without further filtering of
the results.
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1 Introduction

1.1 Motivation

Personalized Healthcare is a new step in drug development as it sees the patient
as an individual. Formerly patients have been separated into different groups, by
looking at causes of a disease. With this more fine grained approach it is possible to
use targeted medicines to treat diseases in a more effective way ([DS14], [BTZ+12]).
This should result in fewer adverse events and better patient outcomes. For achieving
this goal, researchers, pharmaceutical companies and clinics are intensely working
on identifying the disease differences on a molecular level. Especially in cancer
more than 250 of these molecular subtypes have been identified [Ltd18]. With the
information about the drivers of a disease, doctors are enabled to select the treatment
with the highest success probability for the patient.
The research in these topics is performed by many different scientists in different
clinics, laboratories and companies all over the world. One common point is that
the results are published in scientific papers. An extremely valuable resource for the
research results can be found in PubMed, a public corpus provided by the National
Institute of Health (NIH). It is explained in more derail in subsection 5.2.1. PubMed
contains about 27 million abstracts and is growing daily [MU17]. Every day about
2400 entries are added to PubMed which is overloading the manual curation of
literature [RE15]. Querying this corpus with an entity name is not sufficient, as
for many entities in the biomedical domain more than one term exists. Although
there are curated databases using standardized nomenclatures, they can not be used
easily, because entities and especially mutations are often spelled differently.
With Information Extraction (IE) systems it is possible to build a knowledge base
out of textual data. Therefore it is essential to extract these entities at first in a
Named Entity Recognition (NER) step and to normalize these detected entities to
common names in a Named Entity Normalization (NEN) step. Having normalized
entities enables researchers to ask quantitative queries about successful experiments
without the necessity to search for all available text or searching for all possible
synonym combinations.
In the biomedical domain there are various entities of major importance. For the
scope of this work the following three entities are of central importance:
• Gene
• Mutation
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Chapter 1 Introduction

• Disease
Other entities of high importance like drug, protein or institute have not been used
in the context of this work.

1.1.1 Mutations and their implications

In humans, each cell normally contains 23 pairs of chromosomes, for a total of 46.
These chromosomes are made of DNA that has about 3 billion base pairs. A gene is
called a certain sector of the DNA (see Figure 1.1). The DNA is built by a sequence
of four different nucleotides. Each nucleotide contains of one of four nucleobases:
adenine (abbreviated by A), cytosine (C), guanine (G) and thymine (T). The bases
are always pairs of A with T, C with G that bind with each other on the opposite
DNA strand.

Figure 1.1: Genes are sections of the DNA which is winded up in chromosomes.
[MUGHR13b]

The information encoded in a gene is decoded in a two step process: transcription
and translation [ABH+12]. In a first step information from the DNA is transcribed
into an RNA sequence. In this process the information of the DNA is transferred
into a different chemical format but still based on nucleotides. Figure 1.3 shows this
in the upper part. The bases are the same only Uracil (U) is used instead of T. In
the translation process the RNA is decoded into a protein. Each triplet of bases
encodes for a specific amino acid. The lower part of Figure 1.3 is showing on the
left side the translation of the triple ’G’, ’A’, ’G’ to the amino acid glutamatic acid.
Each cell contains a copy of the same DNA. However in some cases there are ap-
pearing variations of this DNA e.g. through replication errors, external influences or
cancerous cells. When these errors occur on a certain position of the DNA and only
affect a single base pair the mutation is called a ’Single Nucleotide Polymorphism’
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1.1 Motivation

(SNP). SNPs are often written down as <reference amino acid><position offset
from the start of the gene><mutated amino acid> (e.g. ’T1799A’). They are often
prefixed with a ’c.’ to indicate that the mutation is explicitly occurring on the c-
DNA level, a special form of DNA. Through transcription and translation processes
triplets of the DNA encode for one protein. The description of a mutated protein
is similarly as the one of mutations on DNA level: <reference protein><position
offset of proteins from the start of the gene><mutated protein> (e.g. ’Val600Glu’).
In Figure 1.2 an illustration of a SNP is shown. In this case G is replaced by A.

Figure 1.2: A Single Nucleotide Polymorphism (SNP) - A single base pair is
changed compared to the reference. In this example Guanine (G) with its base
pair partner Cytosine (C) is replaced by Adenine (A) with its base pair partner
Thymine (T) [MIS14]

Figure 1.3 shows the mutation ’c.20A>T’. This can be read as A is exchanged by
T at position 20 on the DNA level. With the transcription process the DNA is
transcribed to RNA and later translated to proteins. On the protein level the DNA
mutation is reflected into two different proteins: Glutamatic acid is constructed from
the reference DNA and Valine is the amino acid constructed from the mutated form.
This mutation happens at the offset 6 and is therefore written down as: ’p.Glu6Val’.
There exists also single letter code for amino acids; in this case it would be: ’p.E6V’.
The prefix ’p.’ explicitly denotes that a mutation on protein level is mentioned.
The consequences of different proteins from Figure 1.3 are shown in Figure 1.4 where
the abnormal form of the protein (hemoglobin) is sticking together and forms chains
[MUGHR13a]. Because of this clumped hemoglobin the red blood cells are not in
the same shape but like a sickle shape as shown in Figure 1.5. Because of this sickle
shape the blood cells cannot float around like normal blood cells which can result
in blockades [Pal18]. This disease is called sickle cell anemia.
In the previous example already three different types of writing down a mutation
have been presented: ’c.20A>T’, ’p.Glu6Val’ and ’p.E6V’. All of these three men-
tions are referring to the same mutation and act as synonyms. In case of ’c’ and ’p’
the authors might want to focus on either DNA or the protein level but principally
refer to the same mutation but on different abstraction levels.
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Chapter 1 Introduction

Figure 1.3: In this case one Single Nucleotide Polymorphism (SNP) alters the pro-
teins constructed from the DNA: here Adenine is replaced by Thymine in the
DNA, through transcription and translation processes proteins are constructed
from the information encoded in the DNA. Through the different DNA informa-
tion different proteins are constructed: Valine instead of Glutamic acid is inte-
grated at position 6 of the protein. This leads to abnormal protein form and
function (in this case hemoglobin) [Pal18].

Figure 1.4: Abnormal hemoglobin sticking together. [Pal18]

When querying a knowledge base containing genetic variants by ’c.20A>T’ also
documents containing ’p.E6V’ shall be retrieved.

1.1.2 Identifying mutations in text

In the past there has been great success in recognizing and normalizing genes and
diseases by using Machine Learning models, for example in [BDS+08] and [UBP17].
The results of using Machine Learning models for the extraction of mutations have
been published this year and the year before in [CBU+], [WPF+17], [LKC+18].
These approaches are focusing on identifying a mutation. The normalization of the
found mutation is then done by regular expressions and database lookups like in
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1.2 Terminology

Figure 1.5: Through the abnormal hemoglobin chains the sickle cells do not have
the same structure which results in blocking of the blood flow. [She18]

[WPF+17] and [TRH+16].
In this thesis a system is shown to identify mutation mentions as well as normalizing
them to a preferred label without using rule based extraction.

1.2 Terminology

For the process of linking different entities to a standard concept the terminus
"Named Entity Normalization" (NEN) is used. NEN is also used by other publi-
cations in this area like [TRH+16], [TKF+11], [VLBW+13] and [WPF+17].

1.3 Guiding example

In this thesis an example is used to support the understanding of different concepts
for readers not familiar with the topic. The example reappears in different sections.
With this example and its explanations it is not intended to give a complete expla-
nation of the biological concepts. It applies simplifications whenever the details are
not necessary for this thesis.
The example is based on the BRAF gene. A study has shown that patients carrying
the V600E mutation of BRAF react to a drug resulting in a partial or complete
decrease of the metastatic melanoma tumor [DS14] [FPK+10].
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Chapter 1 Introduction

’V600E’ is a mutation on the protein level and the following other names are used
as synonyms:
• p.V600E : The short form but referring to the protein level explicitly
• Val600Glu : The long form of the protein level mutation without the explicit

mention of the level
• p.Val600Glu : The long form of the protein level mutation using three letter

codes for the proteins and meaning the protein level explicitly
• c.1799T>A : The DNA level mutation at the position 1799 where T is replaced

by A and meaning the cDNA level explicitly
• 1799T>A : The DNA level mutation without meaning the level explicitly
• T1799A : The DNA level mutation by using both; a common and ambiguous

naming
• rs113488022 : A standardized identifier contained in the dbSNP database

[SWK+01] (a SNP database containing mutation information for several species)
Exemplary a search in PubMed for V600E returns among others the article with
the PubMed ID ’30013664’ [AMAS18], where only V600E is used to describe the
mutation. While a query using ’1799T>A’ results in an article list containing the
article with the PubMed ID ’29808165’ [FRHLL+18]. Each article is not appearing
in the search results of the other.
With the eight terms acting as synonyms, querying for one term should return also
documents containing the synonyms.

1.4 Goals

A knowledge base shall be created, in which researchers can search for genes, their
mutations and diseases. The results shall be presented in a tabular format, where
each row represents a hit of a gene, a mutation or a disease on a sentence level.
The genes and diseases shall be tagged with standard tagging tools. For mutation
mentions there shall be used a tagging and normalization method that allows a high
recall. In addition to the knowledge base, a dictionary of genetic mutations and
their different spellings should be created. This shall enable mutation tagging and
normalization on other corpora. In the context of the described tasks the usage of
word embeddings for creating synonym candidates shall be evaluated. As input three
large corpora shall be used. First, PubMed, containing over 27 million scientific ab-
stracts (it is explained in more detail in subsection 5.2.1). Second, PubMedCentral,
the OpenAccess subset contains 1.7 million full text articles (see subsection 5.2.2).
Third, ScienceDirect, a subcorpus containing about 2 million full text articles (see
subsection 5.2.3). PubMed and PubMedCentral are publicly hosted by the National
Institute of Health (NIH). ScienceDirect is licensed from the publisher Elsevier.
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1.5 Related work

1.5 Related work

The extraction of mutations from public texts has been the topic of several research
articles that were published recently. Retrieving mutation mentions in text is a
topic that has been investigated for several years. As one of the still common base-
lines MutationFinder can be counted [CBR+07]. Therefore it is also referred to
MutationFinder as a baseline. MutationFinder scans through the text and applies
regular expressions to extract mutations from its input. It has been successful in
combining multiple of these rule-based systems and showed an increase in perfor-
mance compared to using a single system in recognizing mutations[YV14]. All of
these systems share that they are rule-based extraction tools that do not normalize
the found mutations.
In 2011 [TKF+11] there has been a proposal for a rule-based normalization proce-
dure. Combining recognizing and normalizing mutation mentions, a recent system,
SETH [TRH+16], was the first open-source system. The system tmVar2.0, proposed
in [WPF+17], can be regarded as the first system that combined machine learn-
ing techniques using Conditional Random Fields (CRFs) to recognize a mentioned
mutation and to apply normalization. This normalization process is similar to the
method proposed in [TKF+11] and applied in [TRH+16] as it applies regular ex-
pressions on the found mutation mention and matches them against a database. In
[CBU+] the focus is on natural language text mining with some mutations being
written in verbose language (e.g. ’Valine is replaced by Glutamatic Acid at position
600’). The method proposed uses word embeddings to improve the performance.
The system for mutation extraction proposed in [LKC+18] uses several models to
capture the relation of genes, mutations, diseases and drugs. With the focus on
relations of the entities, the mutation normalization is rule-based. Word embed-
dings are used to increase the performance of the algorithm by getting contextual
relationships of the terms.
The mutation extraction systems published before 2017 share that they are rule-
based and overtaken by performance of machine-learning based processes in and after
2017. Common to all normalization approaches is a small gold dataset regarding
normalization as well as a rule-based matching process.
This work can be best compared to tmVar2.0 [WPF+17], where the normalization
process is rule-based. There exist two mappings of mutations to unique identifiers.
The first is based on a database lookup and the second uses co-occurence in the text.
The database consists of mutation names along with their preferred identifiers and
is extracted from ClinVar [LLB+17] and dbSNP [SWK+01]. This co-occurrence is
evaluated by several patterns that match a pattern like ’gene’, ’mutation’, ’identifier’
in some distance and relate them to each other. This information is then curated
based on the knowledge in the database.
A direct application of using word embeddings for mutations is used [KLKK18].
In this publication word embeddings are used to improve the understanding of the
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Chapter 1 Introduction

differencees and dependencies between mutations.
With ClinVar and dbSNP beeing databases that do serve also synonyms and tm-
Var2.0 and SETH making use of it, no mutation synonym extraction system is known
to the author.
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2 Fundamentals

In this chapter, fundamental techniques and algorithms used in this thesis are ex-
plained. The given examples are based on section 1.3.

2.1 Named Entity Recognition (NER)

In Natural Language Processing (NLP) the task of Named Entity Recognition (NER)
is the process of assigning named tags to find entities in a text. As a computer
understands the text as a sequence of characters, neither the text nor the words
have a meaning to it. Using defined rules, there have been rather strict approaches
to extract certain entities. A different approach by asking for commonalities and
using statistical models has been successfully applied in NLP tasks [MMS99]. In
NER, machine learning methods are proposed to be the ’best independent solution’
[MAM08].
Using the guiding example, a simplistic rule to extract mutations like "V600E" from
text is: a single capital letter from the dictionary of the amino acids, followed by a
number of digits and trailed by another letter from the dictionary of amino acids
Similarly, there have to be extensions to this rule, like allowing space in between
and restrictions as to ignore the pattern if it occurs inside another word. Many
systems for recognizing such entities are based on rules, while machine learning
techniques typically outperform rule-based systems. A commonly used machine
learning technique are Conditional Random Fields (CRFs) [LMP01].

2.2 Named Entity Normalization (NEN)

While NER is the task of assigning a concept to a word, Named Entity Normal-
ization (NEN) is the task of linking common concepts to a single entity. These
entities should preferably be normalized to unique database identifiers as proposed
in [TKF+11]. Although these databases can be used for high precision mapping,
they are not covering all different spellings of mutations actually used in the text.
Using the guiding example, the mutation "T1799A" should be recognized as being
a mutation entity in NER and subsequently normalized with the mutation "V600E"
to the unique identifier "rs113488022", following the information in [SWK+01].

13



Chapter 2 Fundamentals

The software TERMite from the company SciBite is used in this thesis to apply
NER and NEN on other entities than mutations [Lim18] , see also subsection 5.1.3.

2.3 Text cleaning and simplification

In addition to NEN (see section 2.2) also the cleaning and simplification of text is
important. One cleaning technique is the removal of stopwords. These stopwords are
words that are note relevant for the understanding of the text and can be removed
without changing the meaning of the text drastically. Examples of such words are
’and’ or ’or’.
To simplify the text after NEN is applied (see section 2.2), the found entities can
be replaced by the preferred label. This can reduce the complexity of a text. The
meaning of the word is then not encoded in the context anymore but made explicit
by the preferred label. With this also multiword entities can be reduced to a single
word in the text. Further simplification can be applied to words not normalized
by NEN: plural and singular forms can be reduced to the singular form, and the
multiple forms of a verb can be reduced to the simple form. This process is called
lemmatization.

2.4 Vector Space Model

In the supervised machine learning domain, features are extracted from the texts
for the tasks NER (see section 2.1) and NEN (see section 2.2). These features can
be very low level textual features like numbers occurring in a word but also high
level features like the surrounding words.

2.4.1 Vector encoding of words

The textual and contextual features can be understood as dimensions of the task
[MMS99]. For the training, the classification vectors are built according to the
rules of the features. For evaluation, the word that has to be tagged is placed in
this n-dimensional field according to the features and the nearest training vector is
searched. Looking at section 1.3, two exemplary features could be that the word
contains numbers or that it contains protein or nucleobase abbreviation letters. For
nucleobases this would be ’A’, ’C’, ’G’, ’T’. Figure 2.1 shows three vectors. ’V600E’
and ’T1799A’ are words containing both, protein and nucleobase abbreviation let-
ters. As the number of the abbreviation letters is the same, their ’abbreviation
letter’ axis part is the same. Also both are containing numbers inside, therefore
both vectors contain also a part for the ’contains numbers’ axis. The third vector
’BRAF’ which is the gene name, does not contain any numbers and has a negative
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2.4 Vector Space Model

amount on this axis. Containing one nucleobase letter (’A’) there is a little positive
amount in this axis. This is a false positive, as in this case the ’A’ does not stand
for a nucleobase.
Comparing the three vectors by the distance of their ending points, the vector
’V600E’ is more similar to the vector ’T1799A’ than to the vector ’BRAF’.

Figure 2.1: Vector illustration for tagging a word into categories.

containsproteinornucleobaseabbreviation

containsnumbers

V 600E
T 1799A

BRAF

2.4.2 word2vec

The example in Figure 2.1 gives an introduction to vector representations where the
dimensions are rule based. In [MCCD13] two word embedding models are proposed
that create a vector representation that preserves similarity of words based on the
context they share. To achieve this, each word is transformed into an abstract
vector representation in continuous space. In contrast to other vector encodings
the dimensions do not refer to anything explicitly, and are initialized randomly.
This is called the projection layer. It maps discrete entries (words) to a continuous
space (vectors). Using this projection layer, for each word the surrounding words
(the context) are predicted. Figure 2.2 shows the architecture of the Skip-gram
model. What is not pictured is the weight matrix between the projection layer
and the output layer. In using this weight matrix for each context word, a matrix
of candidates is produced. Each of these context matrices consist of all words in
the vocabulary. For each vocabulary word in each context matrix the weights and
the vectors are evaluated. The output is a probability that the word from the
vocabulary is the word that is expected at this contextual position. The loss function
is calculated and the matrices are updated.
These models are shallow neural networks that learn an abstract encoding based on
the prediction of context words. The probabilities of the context words are calculated
as explained in [Mey16] and [GL14]. In the Skip-Gram model the probabilities that
a word, that occurs at position t − x before the word in focus wt is the j-th word
in the vocabulary, is denoted as wt−x,j. In the sample wO,t−x is the actual occurring
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Chapter 2 Fundamentals

word at position t−x. A softmax function is used to calculate the probability. This
is the fraction of the probability to see this word at this position in the context of
the word in focus (written down as ut−x,j), against the sum of the predictions of all
other words (denoted by uj′) (see Equation 2.1).

P (wt−x,j = wO,t−x|wt) = exp(ut−x,j)∑V
j′=1 exp(uj′)

(2.1)

In the model implementation the word to context probabilities are saved into two
matrices. The first matrix has the dimension in number of words of the vocabulary
times the number of features. These features are abstract features to learn (com-
pared to the very explicit manual curated features from the example in Figure 2.1).
This matrix is called the projection matrix. The other matrix has the number of
features times the words as dimensions and is called the output matrix.
When using 2 abstract features with a vocabulary of 4 distinct words, the projection
matrix P is then a 4 × 2 matrix and the output matrix O is of size 2 × 4. The
prediction in the upper part of Equation 2.1: exp(ut−x,j) can be expressed as a
matrix multiplication of the projection matrix by the output matrix and selecting
the appropriate rows. With the first word as the word in focus, the first row is
selected and results in a vector of size 1 × 2 P1 from the projection matrix. This
vector is then multiplied with the output matrix 2×4 resulting in the 1×4 matrix R.
This encodes then the sum of the value from the projection layer and the weight from
the output layer to a value that resembles the probability of the word occurring in the
context of the word in focus. With probabilities not summing up but multiplying,
the logarithm of the probability is encoded into the features and weights and then
summed up. The result is then potentiated.

P =


p01 p02
p11 p12
p21 p22
p31 p32



O =
[
w10 w11 w12 w13
w20 w21 w22 w23

]

P1 =
[
p11 p12

]

R =
[
p11w10 + p12w20 p11w11 + p12w21 p11w12 + p12w22 p11w13 + p12w23

]
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This approach is very compute intensive. In every calculation step the probabilities
for each word is calculated, but this can be optimized. The softmax is not computed
for each word individually (so everytime a one vs. all calculation) in the first time.
But representing the output vocabularies as a binary tree where the inner nodes
represent the probabilities to take the path to reach the node. The actual probability
of seeing one word in the context (a leave) is then the product of the inner nodes
on the route to the root. This reduces the calculation for each context word from
the complete Vocabulary V to the depth of the tree, which is log2(V ) [MH09].
This reduces the training complexity Q to Equation 2.2 like shown in [MCCD13].
C is the context size of words (in the window), D the number of dimensions and V
the used vocabulary.

Q = C × (D + D × log2(V )) (2.2)

In contrast to the approaches in section 2.1 and section 2.2 word embeddings are
learning the contexts of words. Therefore the word vectors can be described as
the word encoding is learned based on contextual similarity. These contexts can be
measured according to their similarity and the words producing similar contexts
can be seen as synonyms. A word pair is a synonym of each other if they can be
exchanged without changing the meaning of the context.
Word embeddings have been applied in different fields for entity recognition, normal-
ization (e.g. in [CCKP16], [UBP17], [GCWL14], [SBSPM15] and [WXJ+15]) and
synonym extraction ([SCO09]), but also in the mutation domain ([LKC+18] and
[KLKK18]). Precomputed word embeddings exist for PubMed and PubMedCentral
([MA13]).

2.5 Knowledgebase construction

A knowledgebase (KB) contains entities, their relations and mentions. A KB con-
taining genetic variants enables the user to get information about a mutation and
about possible other names of the mutation occuring as synonyms. Also other sys-
tems are able to use the KB, as its data can be read in a relational format. This
upstream system can then evaluate the linked entities that are returned by the KB.
The KB can also serve as a starting point for creating an ontology of genetic variants
as they occur in the literature.

2.6 Full text

PubMed contains abstract texts (see subsection 5.2.1). These abstracts are rather
short in their nature and contain a condensed version of the fulltext article. In

17



Chapter 2 Fundamentals

[WST+17] and [VLBW+13] it is shown that extracting information from fulltext
articles is consistently outperforming an approach using only abstracts. Especially
to get enough data for genetic variants that are rarely occurring in text, fulltext
sources need to be used.
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2.6 Full text

Figure 2.2: The Skip-gram model architecture to create word embeddings pre-
sented in [MCCD13]. w(t) represents the word w at position t. The projection is
in the center. For every potsition in the context the output matrix is depicted.
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3 Model creation

The application of the word embedding algorithm is presented in this chapter. As
the preprocessing is important to the applicability of the algorithm, it is presented
as well. Figure 3.1 contains an overview of the data flow and how the models are
constructed.

3.1 Preparation of the data

3.1.1 Uploading the raw data to the cluster

The data from the sources has already been downloaded to a shared folder, and
it is therefore not necessary to download the data from the providers again. In
the case of PubMed and PubMedCentral the XML files are compressed together
in containers (e.g. based on Journal Name). ScienceDirect is stored as individual
xml files. As both formats do not fit optimal into the distributed filesystem of
Hadoop (HDFS), a small python application is used to combine the XMLdata into
a more Hadoop friendly format. Apache Parquet has been chosen as file format over
textfiles. Parquet enables the use of block-wise compression, contains the schema by
itself and allows fast reads and writes [Voh16]. The python application takes four
parameters:

1. The input folder

2. The target directory path on HDFS

3. The WebHDFS gateway (server name and port of the user facing server)

4. The number of documents to combine in one parquet file

The application reads through the input folder 1. and creates a list of all files in
the directory. While iterating through the parameter from 4. it creates batches.
For each batch it creates a parquet file with a single column, where the raw xml
content is put in. The folder structure from the source data and order of the files
is not relevant. This parquet file is then uploaded through the WebHDFS gateway
3. to the specified target directory 2. With this small intermediate step, a good
data distribution can be ensured and processes using this data later can benefit from
distributed reading. Table 3.1 shows the schema of the file.

21
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Row XMLcontent(String)
1 <?xmlversion = ”1.0”encoding = ”utf − 8”? >< article[...]
2 <?xmlversion = ”1.0”encoding = ”UTF − 8”? >< full − text[...]
3 [· · · ]

Table 3.1: XML content of the data is converted to a parquet table.

3.1.2 Extracting the data from the XML files

As the data is now living in HDFS, all applications are multi-process applications
that run on many machines in parallel. This advantage comes with additional effort
in the fields of programming, debugging and optimization. To ensure the data is
properly extracted, all necessary functions are implemented such that they can be
tested locally.

A Spark parquet reader loads the data into the Spark environment, and represents
it as one dataset. For each of the row elements in this dataset an XML extraction
function is called. This XML content is then fed into the function as a string. The
python built-in XML parser ETree is used to extract the data from the String content
and to return this information in a python dictionary. This python dictionary can
be directly used by Spark dataset tools to read it back to a nested table format. This
nested table format now contains the relevant columns like the title, abstract and if
available the full text of the article next to the metadata fields, like the publish date,
the corpus it was originated from and identifiers that can be used for deduplication
(e.g. PubMed Identifier).

All data sources are containing rich markups inside the text, for example section
titles, tables or an italic font. After the removement of these markups, the text
is extracted. Additionally also fields for identifiers are queried like the pmid, DOI
(Digital Object Identifier) or the journal name. The final layout of the data is shown
in Table 3.2.

3.1.3 Deduplication of the data

PMC data as well as the data from ScienceDirect contain PubMed identifiers (pmid).
This identifier is used to deduplicate the data. Deduplication of the data is necessary
as there is an overlap of abstracts from PubMed with content from the additional
full-text sources. A duplicate sentence would imbalance the training set for the
word embeddings. In the majority of the articles the deduplication of the content
is straightforward. Most articles from the full-text corpora contain the PubMed
identifier to which the full-text can be linked directly. By this process many articles
from PMC can be linked to Pubmed. For the ScienceDirect corpus many elements
have not been able to be deduplicated by using the pmid. The articles that cannot
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Chapter 3 Model creation

be linked are appended to the corpus. A common text field is created. This field
contains the whole text of the article: title, abstract and all body sections.

As the dataset combines a many short abstracts as well as long full texts, the data
is skewed. Half of the articles are very short with 968 characters or less. While there
are comparably few with more than 33241 characters per article (see Figure 3.2).

3.1.4 Tokenization of the text

For the simple model text is tokenized. In this process the whitespace (or similar
characters like tabs or newlines) is used to split the text into a sequence of words.
Splitting a sentence by any typical end of line symbol does not work, as the full stop
is contained in mutation expressions as well (eg. in ’c.1799T>A’). Therefore the full
stop must not be used when characters or digits follow directly. The words are then
lowercased. An example sentence of:

’BRAF is associated with the indication melanoma and the mutation c.1799T>A.’

would be tokenized and lowercased to the form:

’braf, ’is’, ’associated’, ’with’, ’the’, ’indication’, ’melanoma’, ’and’, ’the’, ’mutation’,
’c.1799t>a’

This list of words is representing just the lowercased tokenized words without any
alteration of the order or content of words. All words are contained as they occur
in the text.

3.1.5 Apply TERMite and Stanford CoreNLP

In the advanced model the software TERMite from SciBite is used to normalize
entities in the text to a common label. After the deduplication and before the model
construction, a NER and NEN step is introduced to replace different names for an
entity to a common label. Additionally a step using Stanford CoreNLP is used to
split the text into tokens, remove stopwords and lemmatize words [MSB+14]. With
stopword removal the filling words ’is’, ’not’, ’with’, ’but’ and similar are removed.
By lemmatizing for example the word ’associated’ is converted to its base form
’associate’. The order of the words is preserved.

With TERMite and Stanford CoreNLP the sentence:

’BRAF is not associated with non small cell lung carcinoma, but with c.1799A>T
and V600E.’

is tokenized and normalized to the array: ’b-raf_proto-oncogene,_serine/threonine_kinase’,
’associate’, ’non-small_cell_lung_cancer’, ’c.1799a>t’, ’v600e’

24



3.2 Model creation

3.2 Model creation

Using the Apache Spark MLlib word2Vec implementation, the model is trained on
the arrays that are produced on either the simple tokenization or the cleansing pro-
cess (through TERMite and StanfordNLP). The output is the projection layer of
the word embedding model that assigns for each word in the vocabulary a multidi-
mensional vector. Similar words, based on their context, will have similar vectors.

3.3 Knowledgebase creation

The mutations and their synonymous names need to be retrieved from the model
in a user friendly way. Therefore a web interface, where a user can enter the word
for that the synonyms are displayed, can be used. Additionally the similarity of the
input word to each of the synonyms is displayed.
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Figure 3.1: The data flow inside the application.
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3.3 Knowledgebase creation

Figure 3.2: The data is skewed, as many short articles are combined with relative
rare long full text articles. The columns are based on the median on the length of
the articles. The majority of the articles (the first thee columns) contains shorter
abstracs with less than 2108 characters per article.
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4 Information Extraction
The information about mutation mentions, their relations and how they are ex-
tracted from the raw text is described in this chapter.

4.1 Named Entity Recognition

Named Entity Recognition in the biomedical domain is often performed using Con-
ditional Random Fields like in [BDS+08], but also dictionary approaches exist as
used in [PSP+06]. In [TSV+12] a combination of various tools is used to tag the
entities and create links between them. For the recognition of mutations, a rule
based approach makes sense at the first glance: The nucleobases are known and
are limited, as well as amino acids. Additionally normalization is possible using
standardized databases like [LLB+17] or [SWK+01]. Benefitial of these standard-
ized databases is, that these are typically manual curated databases that also follow
strong nomenclatures. This indicates a low false positive rate. Otherwise, these
strong nomenclatures are probably not always reflecting how entities are written
down in a publication. A prominent example from section 1.3 is ’T1799A’, that
occurs in text (the PubMed search interface returns 86 results on 2018-0-06). It
does not follow a standard nomenclature and is hereby also not contained in the
evaluation set (see section 5.4).
Therefore an entity extraction that detects mutation mentions similar to a stan-
dardized entity naming is neccessary.

4.2 Word Embeddings

The word embedding model (described in subsection 2.4.2 and explained in detail
in [Ron14]) is based on the principle that words producing a similar context share
a similar vector encoding (in the projection layer). This principle is used to extract
mutation mentions from the text only based on contextual co-occurence.
Based on the guiding example (see section 1.3), and using the two queries presented
in the same section next to a fictive example, three exemplary training samples can
be constructed:

1. ’[...] presence of the BRAF V600E mutation were evaluated [...]’ (excerpt from
[AMAS18])
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2. ’[...] frequency of the BRAF 1799T>A mutation in Mexican [...]’ (excerpt
from [FRHLL+18])

3. ’[...] synonyms from the BRAF 1799T>A mutation have been [...]’ (fictive
example)

These three sentences are transformed through tokenization and lowercasing into a
list of words:

1. [...], ’presence’, ’of’, ’the’, ’braf’, ’v600e’, ’mutation’, ’were’, ’evaluated’, [...]

2. [...], ’frequency’, ’of’, ’the’, ’braf’, ’1799t>a’, ’mutation’, ’in’, ’mexican’, [...]

3. [...], ’synonyms’, ’from’, ’the’, ’braf’, ’1799t>a’, ’mutation’, ’have’, ’been’, [...]

The word embedding model predicts the surrounding words for the word in focus.
Table 4.1 shows the words for that the model is training with the word ’1799t>a’
in focus. Only sentence 2 and 3 are selected as training samples, as sentence 1 does
not contain ’1799t>a’.

sentence w(t-3) w(t-2) w(t-1) w(t) w(t+1) w(t+2) w(t+3)
2 ’of’ ’the’ ’braf’ ’1799t>a’ ’mutation’ ’in’ ’mexican’
3 ’from’ ’the’ ’braf’ ’1799t>a’ ’mutation’ ’have’ ’been’

Table 4.1: Word samples for the words in focus

Table 4.1 can be read in the following way:

• The word w(t) is the word that is used for the prediction.

• The context window is 3; therefore 3 words before and after the current word
are predicted.

• For each training sample the probability that word w is occurring at offset x
from the current word is calculated.

Using the training words from Table 4.1 and the equation from subsection 2.4.2 the
likelihood of seeing each word at its offset is maximized.

P (w(t− 1) =′ braf ′|w(t) =′ 1799t > a′) = exp(ut−1,j)∑V
j′=1 exp(uj′)

(4.1)

In Equation 4.1 the likelihood of the word ’braf’ directly preceding the word in focus
’1799t>a’ is evaluated against all other words. The probability is calculated for ’braf’
against the probability of all other words. j is the position of the word ’braf’ in the
vocabulary V . u is the prediction value from the projection layer multiplied with
the output layer.

30



4.3 Similarity

With many additional training samples (sentences in the corpus containing ’v600e’ or
’1799t>a’), the model updates the probabilities in the projection and weight matrix
appropriately. In the case of ’braf’ as the current word and the context size 1, the
word ’the’ at position w(t-1) would get a higher probability than the words ’v600e’
or ’1799t>a’. The probabilities are encoded into the matrix multiplication of the
projection matrix and the weight matrix (see subsection 2.4.2). Many contexts are
not the same as in the constructed example and even in this example the items 1 and
2 share many words. With a larger context more words are different than shared.
Therefore it is essential to not explicitly compute the probabilities for an individual
word but to reduce the amount of features (not words but abstract dimensions) to
create inference. Using these abstract features with the weights, word embeddings
create a fuzzy matching of words to contexts.
Word embeddings are very sensitive to word boundaries as it operates on single
words. In case the full stop would be treated as a token to separate sentences or
words, the ’c.1799t>a’ and the ’p.v600e’ would be split by the full stop. This needs
to be avoided, as these parts need to stay together for the synonym normalization.
Therefore, the basic NLP tasks like lemmatization or stopword removalcan help
in this context or erase valuable information. In [FFJ+16] it is proposed to use
lemmatization to simplify the input text for a synonym generator.

4.3 Similarity

The similarity of two words wp and wq can be measured by their vector representa-
tions ~p and ~q. There exist two different measurements:
• Euclidian distance : the distance is measured by the square root of the sum of

square differences of each component for each vector. d(~p, ~q) =
√

(p1 − q1)2 + · · ·+ (pn − qn)2

• Cosine similarity : the cosinus of the angle between the vectors compared to
their length. This is then: sim(~p, ~q) = ~p·~q

||~p||||~q|| . In case of normalized vectors
this can be computed with the dot product directly ([MMS99]).

The more similar the contexts are, the more similar are the vector representations
of the words. This leads to a low distance or high similarity score. Both methods
produce the same ranking, therefore the cosine similarity is used.
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5 Implementation

The used tools to implement the extraction of the data up to the evaluation of the
model are presented in the following.

5.1 Tools

Various tools, programming languages as well as execution frameworks are used to
implement word embeddings from the raw publication data to the web interface for
querying.

5.1.1 python and libraries (ETree)

The programming language python is chosen as default implementation language.
The main reasons are availability of the modules for handling the data, interfaces
to the used frameworks and reusability of the code. For extracting the content
from the XML to the content fields the module lxml is used (see subsection 3.1.2).
The benefits of using lxml are that it features an iterative parser for reading the
data in blocks, understands namespaces and gives the possibility to remove certain
tags. Iterative parsing is important for the very long documents occurring in the
ScienceDirect subcorpus. Removing certain tags is used in PubMedCentral and
ScienceDirect data as both contain rich markups in the text (e.g. italics, tables or
figures).

5.1.2 Apache Parquet, Hadoop and Spark

As implementation platform Apache Hadoop is used. This platform enables a data
parallel processing for applying the extraction from the xml (see subsection 5.1.1),
as well as the deduplication and corpus generation (see subsection 3.1.3), the tok-
enization (see subsection 3.1.4), the distribution of the text simplification through
SciBite TERMite (see subsection 3.1.5) and the word embedding model training (see
subsection 2.4.2).
As the source data is not substantially large, even commodity computers can handle
the data volume. But executing the processing on parts of the data in parallel can
reduce the overall runtime.
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In case of the text simplification and tokenization even with running at 50.000
words/second/core, for the nearly 12 billion words in the corpus over 66 hours would
be needed on a single core. As the text annotation and replacement is an extensive
task, the speed drops to around 5.000 words/second/core. Parallelization on 30
cores with individual models runs in a day.

Training the word embedding model (subsection 2.4.2) on a single machine would
require a moderate amount of memory but a substantial amount of time. The
projection and output matrix, each with the dimension V ×D (with V as the size
of the vocabulary, D as the number of dimensions), as well as the tree for the
hierarchical softmax need to be kept in memory. Also in [MCCD13] a distributed
approach is used for an even smaller data set with 1.6 billion words in total.

In all stages Apache Parquet is the chosen format for the data. It can be seen as
a data container that allows to store the data in a columnar format (in contrast
to a row oriented format). The container supports commonly used datatypes. The
built-in compression can reduce the size of the data and reduce the time to read the
data. Parquet is well integrated into the Hadoop framework such that most tools
support the file format natively. Also the python module pyarrow supports parquet
files and therefore enables to upload the data as Parquet files directly.

Apache Hadoop also supports Parquet files directly. The Hadoop ecosystem con-
tains several different frameworks for storing and executing tasks on many different
computers in parallel [SKRC10]. The foundational part of storing data across multi-
ple computers is called the Hadoop Distributed Filesystem (HDFS). HDFS handles
computer failures in software and allows to store data larger than a single commod-
ity computer. The filesystem is exposed as it would reside on a single machine.
Therefore a developer does not need to know on which computer which file part is
stored.

Executing tasks on this data stored in Hadoop is possible with different tools in
its ecosystem. One of the tools is Apache Spark which does not necessarily need
to run on Hadoop but integrates well into it. Running on Hadoop, Spark reduces
the exchange of data over the network by executing tasks on the computers, where
Hadoop has stored the part of the data. Spark incorporates several libraries, from
that Spark SQL and MLlib are used. The SQL library allows to use query expressions
based on a table like format of the data. It reads/writes parquet data natively. The
query expressions look familiar to SQL function used in relational databases.

In addition, it is possible to extend the functionality of Spark by User Defined
Functions (UDFs). With UDFs other functions, like a non Spark python function
can be included in the workflow and then applied to a column. In the Spark MLlib
there exists a word2vec implementation for training word embeddings using the Skip-
Gram model ([ZCF+10]). There exist other implementations for running word2vec
on a very large corpus ([SSWT17]). As the corpus was not that large in size, the
good integrated solution from MLlib is used.
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5.1.3 SciBite TERMite

The company SciBite offers the software TERMite for doing Named Entity Recog-
nition and Named Entity Normalization on various datasources [Lim18]. The key
components of the software are called Vocabs. These Vocabs (from now on called
vocabularies) can be understood as taxonomies including exclusion rules to mini-
mize overlap in the tagging. The server component allows tagging via a REST API,
a batch process, a web interface as well as an embedded Java application called
TERMiteJ. With the license of TERMite that was granted for this thesis, vocabu-
laries are included. These vocabularies enable matching entities that occur in the
biomedical context of the coprora. These entities include: genes, drugs, indications,
chemicals and many more.
The TERMite vocabularies also offer a vocabulary for tagging dbSNP identifiers and
mutations. But with these vocabularies no normalization of the recognized variants
is performed. With TERMite it is possible to use a custom build vocabulary, and
to apply this vocabulary for NER/NEN on other data.
For running it on top of the substantial amount of text, TERMiteJ is included into a
scala User Defined Function (UDF). In this UDF not only the text is annotated but
also the text is replaced by its preferred label. For ambiguous annotations, always
the first proposed label is used.
In cases were TERMite is not able to assign any label to the text, the actual text
content is used. Therefore it is expected that the number of tokens can grow.
The run of TERMite for annotating the text with 37 dictionaries in the distributed
environment is done in less than 12 hours in a shared distributed environment on
nearly 12 billion words (including reading and writing from disk, replacing with the
peferred labels and Stanford CoreNLP stopword removal and lemmatization).

5.1.4 Stanford CoreNLP

The Stanford CoreNLP ([MSB+14]) toolkit is used to simplify the text even further.
One of the simple tasks is to remove constant stopwords. These stopwords are words
like ’and’ or ’or’. This can be done using a simple blacklist approach. This enables
the word embedding model to include more important words without increasing
the window size. Another important step performed is the lemmatization of words.
This removes the inflected forms of a word and keeps only the lemma of the word.
For example the words ’good’ and ’better’ would be two distinct words without the
lemmatization. With it, ’better’ would be replaced by ’good’.

5.1.5 N-Gram creation

Before training the embedding model, bi-, tri- and quad-grams on words have been
computed for the PubMed and PMC data. This step was excluded from the final
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workflow as some mutation mentions (anyway being rare) are preceded by the gene,
and succeeded by a rs identifier. This coincidence is use in [WPF+17] to get more
information about mutation mentions. The multiword construction is based on the
algorithm used in [MCCD13]. The algorithm is counting the co-occurence of word
pairs. In case a word is often occurring together these words are joined together
whenever they occur together. This is done down to a certain threshold. By exe-
cuting this procedure two times and feed the output from the first in the input of
the second round, also tri- and quad-grams are constructed.
By using this simple method many interesting multi-word entities can be recon-
structed that have been separated by a space character before. For example ’amino
acid’ occurs nearly 620,000 times in the whole PubMed corpus together, while
’amino’ without ’acid’ only around 70,000 times. But also publishers (’john wi-
ley sons ltd’) or gene names (’spiel ohne grenzen’) can be reconstructed using this
algorithm. The runtime of the two rounds is around 47 hours on 40 cores with a to-
tal memory of 460GB. This computation runs on a total of 28,031,441 entries, with
a compressed size of 34.4 GB on disk. With this amount of memory it is possible to
hold the complete Dataset of over 27 million abstracts of PubMed with the fulltexts
of the 1.7 million PubMedCentral in memory as well as the tables for the bi-gram
and the tri- and quad-gram exchange.

5.1.6 WordEmbeddings

The word embedding implementation that is included in Apache Spark MLlib is
used. It provides the Skip-Gram model architecture and runs in the distributed
environment. The word2vec model is executed on several replicas of the matrices
that get merged after a training phase. As the training data (the text) is split over
multiple computers each computer trains a model on the data it has on its own
disks and the models later get merged. Having many partitions of the data and only
one update step much information will get lost. Therefore the merge of the model
parameters is done several times (here: 5 times).

5.2 Data

The total raw data size is 100 GB zip compressed. With the upload of the XML
content these files are unzipped and the content is uploaded as a compressed parquet
file to HDFS.

5.2.1 PubMed

The National Institute of Health (NIH) offers with PubMed one of the largest cor-
pora of scientific abstracts that are free to download and use in applications. The
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corpus is offered in a semi-structured XMl format which contains metadata of the
publication in a structured format (for example the PubMed ID, DOI, authors, and
more), as well as the abstract text inside a field. The corpus currently contains
about 27 million entries and has a download size of nearly 30 GB. The documents
in focus are mainly publications in medicine, pharmaceuticals and life sciences top-
ics. Furthermore there exists a minor amount of publications in other fields such as
chemistry or physics. In addition to this corpus the NIH offers a web search interface
for querying the corpus, as well as a suite of tools that are used to tag different types
of entities like chemicals, genes, and recently also mutations. The system used to
tag mutations is called tmVar ([WPF+17]). The application of these tools is offered
in PubTator, an annotated version of PubMed, which is usable through a public
web search application and for download.

5.2.2 PubMedCentral

In addition to the abstract corpus, the NIH also offers an additional corpus con-
taining full-text articles for the articles in PubMed. A subset of this corpus, the
OpenAccesss subset can be used for machine learning tasks. The NIH is offering
the full corpus through a search interface as well as download. Currently the full
corpus contains about 5 million full-text articles of which more than 1.7 million are
present in the OpenAccess subset. The data is as well provided in XML format,
and contains additionally extensive text-markups (e.g. XML tags for italics or cross
references). In the structured part of the text there exists for most of the articles
also the corresponding PubMed identifier to simplify the linkage and deduplication
between the two datasets.

5.2.3 ScienceDirect by Elsevier

The publisher Elsevier is offering full-text articles based on a license for individ-
ual retrieval, based on searches. The sub-corpus contains articles related to genes,
mutations and diseases. The dataset that is used has a size of about 64 GB and
contains approximately 2 million full-text articles. These articles are focused on the
pharmaceutical, medical and life sciences domain and contain only a few articles
from other domains. The xml format has more content than PubMedCentral.

5.3 Runtime and Hardware

As the data size and the amount of computations on it is at the border of being a
good fit for a distributed architecture, the pipeline can use the parallel execution
on multiple cores (see subsection 5.1.2). For all processes a shared Apache Hadoop
cluster was used. This cluster consists in total of 12 worker nodes with a usable 725
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GB Memory and 192 CPU cores. The machines are shared with other processes of
the Hadoop environment, the memory and the CPUs are dedicated to the processes.
The cluster is also shared with other tasks, so the runtimes can fluctuate a bit. All
data is first transferred to the distributed filesystem, and all processes are started
in the environment. Apache Spark is used from python as a framework for the
distributed computation. Although the complete size of the data is not as large
to be a perfect fit for a distributed setting, using a substantial amount of memory
for using distributedXMLxml conversion and extraction as well as for building the
model enables reasonable runtimes for a more interactive workflow.

• PubMed (xml conversion): For the conversion of PubMed XMLs to a tabular
format the databricks XML parser has been used to extract 27,837,540 articles.
The extraction took an hour to complete on shared hardware.
• PubMedCentral (XML conversion): As the databricks XML parser is failing

at the deeply nested and open XML markups of PubMedCentral files, an XML
extractor based on ETree has been developed. This extractor directly extracts
the necessary fields and removes all markups that are not relevant. With this
1,863,349 articles are extracted. Of these articles 134,915 have no PubMed
identifier. The storage size is nearly the same as for PubMed as the articles
contain the full text.
• Science Direct conversion: For the extraction of ScienceDirect the XML parser

had to be extended to iteratevely parse the documents. Some of the documents
contain very much text. The ScienceDirect XMLs contain many markups like
tables or references that are removed while parsing. From the ScienceDirect
subcorpus 1,837,109 articles are extracted.

5.3.1 Deduplicating PubMed and PMC

The deduplication of the data is performed using the PubMed Identifier that was
extracted from the XMLs. If there is no deduplication partner found in PubMed
then a new entry is added. An overview about the overlapping of the data is given
in Figure 5.1.

5.3.2 Model preprocessing

For each entry in the deduplicated data depicted in Figure 5.1, either a simple
tokenization is called or the extensive simplification.
The simple tokenization runs in less than half an hour. For PubMed and PubMed-
Central this results in 11,227,566 distinct and 10,804,447,233 total words. These
numbers are in line with the reported corpus statistics in [CCKP16].
The TERMite and Stanford CoreNLP normalization and cleansing takes less than
12 hours on the PubMed, PMC and ScienceDirect corpus.
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PubMed

PubMedCentral

ScienceDirect

1, 669, 448

513, 605

4, 752

4, 751

Figure 5.1: A visual representation of the overlaps of the articles in PubMed, Pub-
MedCentral and the ScienceDirect subcorpus based on the PubMed identifier.

5.3.3 Word Embedding construction

In [CCKP16] hyperparameters based on PubMed, PubMedCentral and the combi-
nation together have been evaluated in detail. Based on their results, the Skip-Gram
model is outperforming the CBOW model in its similarity benchmark by more than
10%. Also in [MCCD13] and [MSC+13] lowercasing the words is improving the
similarity, by reducing the number of tokens. For the context window size, 20 was
reported to have the hightest score in intrinsic evaluation, but with a window size
of 1 leading to the best results in the extrinsic evaluation. In [LGD15] the window
size showed a small effect on the intrinsic evaluation. The window size in [LGD15]
and [CCKP16] indicate only minor differences between 5 and 10 words with similar
performance in the extrinsic ( [CCKP16]) and the intrinsic ( [LGD15] ) performance.
Using the results from [MSC+13], the default context window size of 5 is chosen.
The reported number of dimensions having a good performance in the intrinsic
evaluation on the similarity benchmark is 400, while for the semantic relatedness
benchmark 500 performs slightly better. But on the extrinsic evaluation 200 dimen-
sions have performed best. Additionally it is indicated that there is a huge increase
from very low dimensions (25) and plateauing after 100 dimensions.
For the minimum count the highest value tested (2400) worked well in the intrin-
sic evaluation while in the extrinsic a middle-range number (50) performed better
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[LGD15]. For the minimum count, domain specific effects are assumed as the eval-
uation data in the intrinsic evaluation is scoring the word pairs (test word pair
similarity vs. cosine similarity inside the model), with ignoring words that are not
contained in the test set. The intrinsic evaluation data used in their experiments con-
tains rather often appearing names of drugs, symptoms and disorders ([PMA+10]).
Setting the minimum count to a high number, only pairs with a high number of oc-
currence in the corpus are tested. For including also the rare mentions of mutations
that are in focus, the minimum count is set to 20.
The vector dimensions encode the different semantic concepts contained in the text
[SUY+17]. With the three large categories in the corpus, the rather medium amount
of dimensions is appropriate for the evaluation in [CCKP16]. In the context of
mutations the number of dimensions is set to the well performing 400 dimensions.
Using the hyperparameter benchmark results from [CCKP16] and [LGD15] with
the adaptions discussed before, the parameters that are used for constructing the
models are shown in Table 5.1.

Parameter Value
Model type Skip Gram
Vector dimensionality 400
Min count 20
Window size 5
Learning rate 0.05
Lowercasing Yes

Table 5.1: Initial hyperparameters for the word embedding models.

For constructing the word embedding model, the Apache Spark MLlib WordEmbed-
ding model is used.
For constructing word embeddings the runtime based on PubMed and PubMedCen-
tral data is: 12 hours on 100 cores with 490 GB memory and results in an embedding
model that contains 1,250,325 words in the wordlist. The time is measured on shared
hardware. Therefore the amount of cores that are available to the software is fluctu-
ating. Table 5.2 shows that clearly on the cleansed model that runs in less than half
of the time when the cluster is not occupied. The distinct words after the cleansing
increase as not all words can be cleansed and therefore both versions of a word are
kept. This is also valid for the lemmatization. Additionaly due to a limitation in
Spark MLlib, it is necessary to increase the minimum count.

5.4 Evaluation data

The ClinVar data is downloaded and joined together. The final test data is converted
to a tabular format for later usage. Table 5.3 shows the test example for the V600E
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Chapter 5 Implementation

mutation of section 1.3.

gene prefered label synonyms
’BRAF’ ’V600E’ [’c.1799T>A’, ’p.Val600Glu’, ’rs113488022’,

’Val600Glu’, ’p.V600E’, ’1799T>A’]
Table 5.3: Example for the evaluation data.

In the intrinsic evaluation data there are 1,422,369 synonyms for labels. Looking at
the number of words that are contained in the model not all synonyms can occur
(see Table 5.2). Compared to the number of total distinct words it also seems to
be a fairly high number (12,67 % of all words would then be mutations mentions).
Therefore the test set is reduced to the amount of words actually occurring in the
corpus (see Table 5.4).
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6 Results

6.1 Evaluation

As this model is not used for entity tagging, the model is not compared to other en-
tity taggers. With the dataset from [TKF+11] also tagging entities are mandatory.
Therefore an intrinsic evaluation is performed. The intrinsic evaluation is the eval-
uation of the model itself and whether it contains the key concepts [CFL13]. These
key concepts are mutation mentions and their similarity, regarding to meaning the
same mutation but on a different level (e.g. ’T1799A’ and ’V600E’). With finding
the closest points in the word embedding model in regards to cosine similarity, a
open ended list is created. Through the nature of the problem, multiple correct
answers for a mutation mention exist; searching for "V600E" from section 1.3 should
output as well "p.V600E" as a close point. An absolute ranking is not applicable
but a relative with common names that are closer to the input name. Measuring
performance in precision and recall is performed with only the top n.
Here ClinVar is used as a source for genetic variants in humans. ClinVar is also
maintained by the NIH and contains "more than half a million submitted records"
([LLB+17]). With the downloaded data from ClinVar, a table with preferred labels
and their synonyms is created. Following section 1.3 the entry for ’V600E’ is looking
like:
• p.V600E
• Val600Glu
• p.Val600Glu
• c.1799T>A
• 1799T>A
• rs113488022

The model extracts synonyms from the text and does not tag mutations mentions.
Therefore it is not comparable to other mutation taggers. Comparing the extracted
synonyms with he manual curated data from ClinVar is applicable. ClinVar can be
treated as a subset of a gold standard.
The evaluation allows to ask the question of similarity in two directions:

1. Querying the model for the preferred label and matching whether the syn-
onyms are occurring in the top N results.
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Model Number of words in evaluation set
Unfiltered evaluation set 1,102,973
PubMed & PMC model 10,513
PubMed & PMC & ScienceDirect 8,935
PubMed & PMC & ScienceDirect Cleansed 2985

Table 6.1: Number of words in the evaluation set per model.

2. Querying the model for any synonym and matching whether the preferred
label fo each synonym is occurring in the top N results.

In case a word is not present in the model it shall not be rated as a miss but
is excluded from the evaluation. For querying the models, the evaluation dataset
is filtered, whether the evaluation word is contained in the model. The resulting
words for the evaluation are shown in Table 6.1. The lower number of words in the
evaluation sets for the larger corpora is due to a higher minimum count value.
With these tests the results from Table 6.2 are obtained.
The subset contains only data where at least one match is found in the whole data.
It is only evaluating on data that the model has actually seen. This evaluation
is asking for the symbol that is the preferred label and then checks, whether the
synonyms are contained in the resultset.

6.2 Error Analysis

The majority of the words is not occurring in the corpus (for example from Table 6.6).
Many rare occurring mentions are not considered due to the minimum count (Table 5.4).
Otherwise even for those mutation mentions occurring in the text and being con-
tained in the model, the evaluation shows poor results.
The model shows better results results for queries that ask for a synonym and not
the preferred label (compare Table 6.4 to Table 6.5). For the synonym > label query
the expected label is ranked second, while in case ’v600e’ is queried then ’c.1799t>a’
is occurring at position 228. This is possibly because many other words sharing more
similar contexts with the word than actually the other mutation mentions.
The model shows better results for queries that ask for a synonym and not the
preferred label (comparing for example Table 6.4 to Table 6.5).
The initial baseline model using all word occurring in the model results in poor
performance for the extraction of mutations. With the minimum occurrence of the
words being set at 20, many rare mutation mentions are not contained in the model
(see Table 6.6). While otherwise a token like "etc." occurs 72294 times in the text.
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Word Cosine similarity
p.v600e 0.4414218068122864
v600e 0.413941353559494
mutate 0.379623681306839
kras_protoneoplastic_cell_transformation,... 0.37866097688674927
loss_of_heterozygosity 0.3710901141166687
p.val600glu 0.36764857172966003
nras_protooncogene,_gtpase 0.36736059188842773
kras_protooncogene,_gtpase 0.36403611302375793
p.q61r 0.36346468329429626
mutates 0.3626430928707123
t12;15 0.36259788274765015
v600k 0.3617314398288727
polymerase_chain_reactionsingle_strand 0.3608422577381134
3p21 0.3605020344257355
mutation,_missenses 0.3583070635795593
polymerase_chain_reactionpolymorphism,... 0.35616233944892883
e545k 0.3508622646331787
mutates; 0.350714772939682
mutateal 0.3476957082748413
braf_protooncogene,_serine/threonine_kinase 0.3465832471847534

Table 6.4: Words near the vector of ’c.1799T>A’.
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Word Cosine similarity
braf_protooncogene,_serine/threonine_kinase 0.7897012233734131
kras_protooncogene,_gtpase 0.7098353505134583
v600k 0.6978196501731873
nras_protooncogene,_gtpase 0.6833683848381042
v600 0.626879096031189
t790m 0.6217910051345825
mutates 0.619806170463562
braf_protooncogene,_serine/threonine_kinase... 0.6184836626052856
braf_protoneoplastic_cell_transformation,... 0.6061273217201233
phosphatidylinositol4,5bisphosphate_3kinase... 0.5964162349700928
mutate 0.5953807234764099
braf_protooncogene,_serine/threonine_kinasev600e 0.5880165100097656
mutatepositive 0.5861457586288452
l858r 0.5852635502815247
p.v600e 0.5781044363975525
ret_protooncogene/ptc 0.5680065155029297
vemurafenib 0.5650728344917297
hras 0.5468088388442993
tumor_protein_tumor_protein_p53 0.5445054769515991
g13d 0.5407660007476807

Table 6.5: Words near the vector of ’V600E’.

Word Number of occurence in PubMed&PMC
c.199-10t 13
c.1393-1g 12
c.1129-5923 12
c.1210-12t 10
c.118-308c 9
c.1534-3c 8
c.1091-2a 8
c.1-25c 8

Table 6.6: Selected examples from the word not in the model because of the mini-
mum count higher than the occurrence of the word.
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7 Discussion

The evaluation shows that using the databases from [LLB+17] as evaluation data
results in a poor performance. A detailed look in the results shows that the retrieved
synonyms contain a large amount of false positive in regards to the evaluation set.
Looking at the Table 6.5 the false positive rate in the top result is very high. On one
side, there exist real false positives like ’v600k’ (another mutation), genes mentions
but also verbs and names appear.
An additional tagger could potentially help sorting out the false positives and reduce
the output data.
On the other side, there exists false positives in regards to the evaluation set, that
are actually true positives. As in Table 6.5 the name occurring at position 12 in the
output ’braf_protooncogene,_serine/threonine_kinasev600e’ that originates from
’BRAFV600E’ in the text that is not untypical for researches to write (gene and the
mutation).
When restricting only on tests where there has been at least one mutation in the
result set, the recall is on a good level, while the precision is still not acceptable (see
Table 6.3). These results indicate that the top ranked results (being most similar to
the input word) are similar, but are not expected mutation mentions. Also without
any knowledge in some cases the model placed two words that are just sharing
contexts in a similar way and ranked the two words similar in a window of 120
words by co-occurrence compared to other more than a million words.
This example shows that the model can extract strong relationships from the text
by containg a large amount of false positives. A fixed threshold could not be used
as the cosine similarity has high absolute differences.
This indicates that the two classes "is a mutation" and "is not a mutation" cannot
be easily separated based on their current vector representation. When having more
vector dimensions eventually there exist one or more dimensions encode for the "is
a mutation" relationship.
Additionally the performance is most likely improvable by choosing a smaller context
size as well as using more dimensions. A simple logistic regression model based on
the vectors and trained by positive and negative "is a mutation mention" relationship
has poor performance as well (Area under ROC = 0.58).
As the low frequency words cannot be included, the rare mutation mentions cannot
be captured. Also possible key words only occurring with a certain mutation might
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occur below the minimum count border. Probably a model with a very low min
count can capture the rare mutation mentions.
The overwhelming results achieved in sentence completion tasks and machine trans-
lation using word embeddings might come through enough samples in a very well
connected everyday language model. The specialized language used in publications
with many rare occurrences of individual words probably makes it hard for a model
using co-occurence of the context words to learn good vector representations for the
words.
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8 Outlook and future work

Future key points to improve are:
• Lower min count : include more words, more predictions and also rare muta-

tion mentions are included.
• Smaller window size : the larger the context size the larger the abstraction of

the word beeing in focus. A smaller window size might help to separate the
different words better.
• Better cleansing : The TERMite and Stanford CoreNLP processing increases

the precision and recall, the cleansing of the data can be stronger and nor-
malizing e.g. ’mutates’ and ’mutate’ and ’mutation’ occur on a level were one
form should be enough (Table 6.4)
• Add rules for tagging known mutations : As this model is not a tagger, this

information can improve one. By querying the model for a vector the sim-
ilar words can be processed and decided whether one or more synonyms of
the term to tag is actually a mutation. Based on that the tagger can then
make an informed decision using the word embeddings as additional context
information.
• More data: It is shown that most of the mutations are not contained in the

used corpus. Using a larger corpus with also the rare occurring mutation
mentions often enough, will enable the model to train appropriate vectors.
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