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Motivation

Computer understanding of human behaviour:

Enhancing human-computer interaction, e.g. conversations.

Augmenting interactions between humans, e.g. sales.
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Problem statement

Exploring the ability of deep learning approaches to predict the personality
traits of people based on data provided by them.

Text

Audio

Images
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How to define personality

Big five model (OCEAN):

Openness

Conscientiousness

Extraversion

Agreeableness

Neuroticism
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Openness

Creativity and imagination versus being predictable and straight forward.

Correlation with used words (Yarkoni 2010):

Positive: culture, films and poetry

Negative: anniversary, diaper and hubby

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Conscientiousness

A measure of self-discipline and dedication, a sign of long term success.

Correlation with used words (Yarkoni 2010):

Positive: achieved, discipline and persistence

Negative: boring, drunk and deny

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Extraversion

Willingness to share emotions with others and enjoying their company.

Correlation with used words (Yarkoni 2010):

Positive: bar, concert and friends

Negative: books, computer and winter

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Agreeableness

Understanding or helpful versus selfish and cautious with other people.

Correlation with used words (Yarkoni 2010):

Positive: gifts, together and joy

Negative: a**hole, harm and violence

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Stability (Neuroticism)

Emotional stability versus vulnerability to displeasing emotions.

Correlation with used words (Yarkoni 2010):

Positive: poem, mountain and sunset

Negative: awful, ashamed and stress

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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First Impressions dataset

Predicting personality traits from short videos.

15 sec video clips

Collected from Youtube vloggers

10,000 clips (total of 41 hours)

Regression labels in [0, 1]

http://chalearnlap.cvc.uab.es/dataset/20/description/
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First Impressions competition

Team AVG E A C N O

NJU 91.3 91.3 91.3 91.7 91.0 91.2
evolgen 91.2 91.5 91.2 91.2 91.0 91.2

DCC 91.1 91.1 91.0 91.4 90.9 91.1

Figure: Percentages of mean absolute accuracy by top-3 competitors

MAA = 1−MAE = 1− 1

n

n∑
|Ypred − Ytrue |
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Text model

Figure: Character-based model for text modality
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Audio model

Figure: End-to-End audio model for audio modality

Omar Kassem (Uni Freiburg) Predicting personality October 7, 2019 16 / 31



Image model

Figure: DAN+ model for video modality

Deep Bimodal Regression of Apparent Personality Traits from Short Video
Sequences, Wei et al.
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Image model

Figure: DAN+V model for video modality
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Multimodal models

Fusion techniques:

Figure: Early fusion Figure: Late fusion (ensemble)
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MAA results

Model AVG E A C N O

Baseline 88.4 88.1 89.9 87.4 87.9 88.5

Video 91.5 91.7 91.3 92.2 91.1 91.5
DAN+ (NJU) 91.1 − − − − −
ResNet (NJU) 91.0 − − − − −

Audio 89.7 89.6 90.3 89.0 89.8 90.1
EtE. (NJU) 89.5 − − − − −

Lin. Reg. (NJU) 89.0 − − − − −
Text 88.8 88.3 89.9 88.4 88.6 88.8

Table: Percentages of models’ accuracies that use one modality
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Multimodal MAA results

Model AVG E A C N O

Baseline 88.4 88.1 89.9 87.4 87.9 88.5

Audio, Text, Video(E.F.) 91.3 91.4 91.1 91.9 91.0 91.1

NJU follow-up 92.1 − − − − −
Audio, Video(E.F.) 91.5 91.5 91.3 91.9 91.3 91.3
Audio, Video(L.F.) 91.4 91.4 91.3 91.5 91.1 91.5

NJU 91.3 91.3 91.3 91.7 91.0 91.2

evolgen 91.2 91.5 91.2 91.2 91.0 91.2

Video, Text(E.F.) 91.2 91.2 90.8 91.8 90.9 91.2

Audio, Text(E.F.) 89.8 89.6 90.3 89.2 89.8 90.0

Table: Percentages of models’ accuracies that use multiple modalities
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Data distribution
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Figure: Agreeableness data distribution
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Receiver Operating Characteristic curve

Area Under ROC Curve (AUC).

Classification metric

Plots TPR against FPR

Distinguishing between positive
and negative examples
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Figure: ROC curve example
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AUC Results

Model AVG E A C N O

Baseline 51.0 49.9 51.3 51.6 50.1 51.9

Video 82.7 84.2 76.5 88.0 82.5 82.4

Audio 74.2 74.9 71.3 72.5 76.4 75.9

Text 65.3 63.0 65.3 67.5 66.9 64.0

Table: AUC percentages of models that use one modality
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Multimodal AUC results

Model AVG E A C N O

Baseline 51.0 49.9 51.3 51.6 50.1 51.9

Video, Audio, Text(L.F.) 83.5 84.2 79.0 87.1 84.1 83.4

Video, Audio(L.F.) 84.1 84.8 79.1 88.0 84.5 83.9
Video, Audio(E.F.) 83.2 84.1 77.9 87.4 83.9 82.5

NJU 82.3 83.9 76.3 87.0 82.0 82.2

evolgen 82.1 83.8 77.7 84.9 82.6 81.4

Video, Text(L.F.) 83.2 84.4 78.0 87.7 83.4 82.7

Audio, Text(L.F.) 74.0 74.2 71.3 73.5 76.0 75.2

Table: AUC percentages of models that use multiple modalities
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Results overview

Model AUC MAA

Baseline 51.0 88.4

Video 82.7 91.5

Video, Audio, Text(E.F.) 81.7 91.3

Video, Audio, Text(L.F.) 83.5 90.8

Video, Audio(E.F.) 83.2 91.5
Video, Audio(L.F.) 84.1 91.4

Video, Text(E.F.) 81.5 91.2

Video, Text(L.F.) 83.2 90.9

Audio, Text(E.F.) 74.1 89.8

Audio, Text(L.F.) 74.0 89.6

Table: A comparison between AUC and MAA performances
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Conclusion

Automatic personality prediction from different data types

Best MAA performance for single modality models

Best AUC performance

Comparing different fusion techniques for the same models
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Demo
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Questions?
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Backup slides: AUC validation

Figure: Validation AUC performance through training time
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Backup slides: MAA train

Figure: Train MAA performance through training time
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Backup slides: MAA validation

Figure: Validation MAA performance through training time
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Backup slides: Heat maps

Figure: Saliency heat maps of a ResNet that predict OCEAN

Prediction of Personality First Impressions With Deep Bimodal LSTM. Yang et al.
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Backup slides: Heat maps

Figure: Saliency heat maps of different CNNs that predict OCEAN

Deep Bimodal Regression of Apparent Personality Traits from Short Video
Sequences. Wei et al. 2017
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Backup slides: Personality questionnaire

Figure: BFI-10

Measuring personality in one minute or less. Rammstedt et al.(2007)
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Backup slides: Image model

Figure: Conv-3d model
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Backup slides: Text model

Figure: Word based model

Investigating Audio, Video, and Text Fusion Methods for End-to-End Automatic
Personality Prediction. Kampman et al.
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Backup slides: AUC visualization

Visual demo of AUC: http://www.navan.name/roc/

TPR =
TP

TP + FN

FPR =
FP

FP + TN
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Figure: Openness data distribution of First Impressions dataset
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Backup slides: FI data distribution
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Figure: Conscientiousness data distribution of First Impressions dataset
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Backup slides: FI data distribution
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Figure: Extraversion data distribution of First Impressions dataset

Omar Kassem (Uni Freiburg) Predicting personality October 7, 2019 12 / 21



Backup slides: FI data distribution
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Figure: Neuroticism data distribution of First Impressions dataset
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Backup slides: Labels construction

First Impressions labels:

Collected by Amazon Mechanical Turk (AMT)

Uses pairwise comparisons

The labels are output of a Bradley Terry Luce (BTL) model

Fits a maximum likelihood

Sigmoid output layer
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Backup slides: Pairwise comparisons

Figure: Data labeling

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Backup slides: PAN dataset

PAN dataset:

Text dataset from twitter.

A tweet is maximum 140 characters.

The dataset has more than 28,000 tweet.
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Backup slides: PAN data distribution
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Figure: Openness data distribution of the PAN dataset
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Backup slides: PAN data distribution
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Figure: Conscientiousness data distribution of the PAN dataset
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Backup slides: PAN data distribution
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Figure: Extraversion data distribution of the PAN dataset
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Backup slides: PAN data distribution
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Figure: Agreeableness data distribution of the PAN dataset
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Backup slides: PAN data distribution
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Figure: Neuroticism data distribution of the PAN dataset
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