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Motivation

Computer understanding of human behaviour:
@ Enhancing human-computer interaction, e.g. conversations.

@ Augmenting interactions between humans, e.g. sales.
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Problem statement

Exploring the ability of deep learning approaches to predict the personality
traits of people based on data provided by them.

o Text
@ Audio

o Images
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How to define personality

Big five model (OCEAN):

Openness
Conscientiousness
Extraversion

Agreeableness

Neuroticism
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Openness

Creativity and imagination versus being predictable and straight forward.

Imaginative Practical

0.0777 | 0.9582

Correlation with used words (Yarkoni 2010):
@ Positive: culture, films and poetry

@ Negative: anniversary, diaper and hubby

ChalLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Conscientiousness

A measure of self-discipline and dedication, a sign of long term success.

Sloppy

Organized
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0.9708 | 0.9514 0.0873 0.1068

Correlation with used words (Yarkoni 2010):
@ Positive: achieved, discipline and persistence

@ Negative: boring, drunk and deny

ChalLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Extraversion

Willingness to share emotions with others and enjoying their company.

Friendly

Reserved

0.9158

0.9252

0.0521

Correlation with used words (Yarkoni 2010):

@ Positive: bar, concert and friends

@ Negative: books, computer and winter

0.0933

ChalLearn LAP 2016: First Round Challenge on First Impressions - Dataset and

Results, Victor et al.
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Agreeableness

Understanding or helpful versus selfish and cautious with other people.

Authentic

Self-interested

Correlation with used words (Yarkoni 2010):

0.9340

o Positive: gifts, together and joy

o Negative: a**hole, harm and violence

| 0.0879

ChalLearn LAP 2016: First Round Challenge on First Impressions - Dataset and

Results, Victor et al.
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Stability (Neuroticism)

Emotional stability versus vulnerability to displeasing emotions.

Uneasy

0.9585 0.9791 0.1005

Correlation with used words (Yarkoni 2010):
@ Positive: poem, mountain and sunset

@ Negative: awful, ashamed and stress

ChalLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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© First Impressions
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First Impressions dataset

Predicting personality traits from short videos.

@ 15 sec video clips
@ Collected from Youtube vioggers
@ 10,000 clips (total of 41 hours)

@ Regression labels in [0, 1]

http://chalearnlap.cvc.uab.es/dataset/20/description/
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First Impressions competition

Team AVG E A C N 0]

NJU 91.3 || 91.3 | 91.3 | 91.7 | 91.0 | 91.2
evolgen || 91.2 | 91.5 | 91.2 | 91.2 | 91.0 | 91.2
DCC 91.1 || 91.1 | 91.0 | 91.4 | 909 | 91.1

Figure: Percentages of mean absolute accuracy by top-3 competitors
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e Approaches
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char-LSTM

char-LSTM

char-LSTM

Figure: Character-based model for text modality

anut sentence
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Audio model
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Figure: End-to-End audio model for audio modality
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Image model

fet+sigmoid

Figure: DAN+ model for video modality

Deep Bimodal Regression of Apparent Personality Traits from Short Video
Sequences, Wei et al.
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Image model
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6 image frames

Figure: DAN+V model for video modality
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Multimodal models

Fusion techniques:
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Figure: Early fusion Figure: Late fusion (ensemble)
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@ Results
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MAA results

| Model [AVG] E | A[ C] N | O]
| Baseline [/ 88.4 881899874 879885 ]
Video 91.5 [ 91.7 [ 91.3[92.2[91.1 [ 915

DANT (NJU) || 9t1 | — | — | — | = | =
ResNet (NJU) | 91.0 | — — — - —

Audio 89.7 | 89.6 | 90.3 | 89.0 | 89.8 | 90.1
EtE. (NJU) | 895 | — | — | — | — | —
Lin. Reg. (NJU) [ 890 — | — | = | = | =

Text [ 88.8 [ 88.3 [ 89.0 | 88.4 | 88.6 | 88.8 |

Table: Percentages of models’ accuracies that use one modality
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Multimodal MAA results

Model AVG E A C N 0
Baseline 88.4 88.1 89.9 87.4 87.9 88.5
| Audio, Text, Video(E.F.) | 91.3 [ 91.4 | 911 [ 919 [ 910 [ 911 |
NJU follow-up 92.1 — — — - —
Audio, Video(E.F.) 91.5 91.5 | 91.3 | 91.9 | 91.3 | 913
Audio, Video(L.F.) 914 [ 914 [ 913 [ 915 | 91.1 [ 915
NJU 913 [ 913 [ 913 [ 91.7 | 91.0 [ 91.2
evolgen 91.2 [ 915 [ 912 [ 91.2 | 91.0 [ 91.2
| Video, Text(E.F.) ] 912 [ 91.2 | 90.8 [ 91.8 [ 90.9 [ 912 |
| Audio, Text(EF.) ] 89.8 [ 89.6 | 90.3 [ 89.2 [ 89.8 | 90.0 |

Table: Percentages of models’ accuracies that use multiple modalities
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Data distribution

3000

2500

2000 -

1500 4

Frequency

1000 4

500 1

Value

Figure: Agreeableness data distribution
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Receiver Operating Characteristic curve

Area Under ROC Curve (AUC).

o Classification metric os

@ Plots TPR against FPR

@ Distinguishing between positive
and negative examples

Figure: ROC curve example
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AUC Results

| Model [AVG] E | A[ C | N | O |
| Baseline || 51.0 [ 49.9 | 51.3 [ 51.6 | 50.1 | 51.9 |
| Video [/ 82.7] 84.2]76.5[88.0 | 82.5 | 82.4 |
| Audio [ 742 [ 749 | 713 [ 725 | 76.4 | 75.9 |
| Text |[65.3] 63.0 ] 653 ] 675 66.9 | 64.0 |

Table: AUC percentages of models that use one modality
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Multimodal AUC results

| Model A E ] A CJ] N O]
| Baseline | 510 [ 49.9 | 513 [ 516 | 501 | 519 |
| Video, Audio, Text(L.F.) | 835 [ 842 | 79.0 | 87.1 [ 841 [ 834 |

Video, Audio(L.F.) 84.1 || 84.8 | 79.1 | 88.0 | 84.5 | 83.9
Video, Audio(E.F.) 832 [ 841 | 779 | 874 | 839 | 825
NJU 823 || 839 | 763 | 87.0 | 820 [ 822

evolgen 821 | 838 | 777 | 849 | 826 | 814
| Video, Text(L.F.) | 832 [ 844 | 78.0 | 87.7 [ 834 | 827 |
| Audio, Text(L.F.) ] 740 [ 742 | 713 | 735 [ 760 [ 752 |

Table: AUC percentages of models that use multiple modalities
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Results overview

| Model | AUC | MAA |

’ Baseline ‘ 51.0 ‘ 88.4 ‘

| Video | 827 | 91.5 |
Video, Audio, Text(E.F.) | 81.7 | 91.3
Video, Audio, Text(L.F.) | 83.5 | 90.8
Video, Audio(E.F.) 83.2 | 91.5
Video, Audio(L.F.) 84.1 | 914
Video, Text(E.F.) 815 | 91.2
Video, Text(L.F.) 83.2 | 90.9
Audio, Text(E.F.) 741 | 89.8
Audio, Text(L.F.) 740 | 89.6

Table: A comparison between AUC and MAA performances

Omar Kassem (Uni Freiburg) Predicting personality

October 7, 2019



Conclusion

@ Automatic personality prediction from different data types
@ Best MAA performance for single modality models
@ Best AUC performance

@ Comparing different fusion techniques for the same models
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Demo
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Questions?
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Backup slides: AUC validation

0.850

0.800 I/‘V'*J'”"

0.750 ORI -

0.700
0.650

0.600
0.550

2000 60.00 100.0 1400 180.0

Figure: Validation AUC performance through training time
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Backup slides: MAA train
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Figure: Train MAA performance through training time
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Backup slides: MAA validation
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Figure: Validation MAA performance through training time
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Backup slides: Heat maps
7 E A C N O

Figure: Saliency heat maps of a ResNet that predict OCEAN

Prediction of Personality First Impressions With Deep Bimodal LSTM. Yang et al.
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Backup slides: Heat maps

Big Five Traits ResNet

Figure: Saliency heat maps of different CNNs that predict OCEAN

Deep Bimodal Regression of Apparent Personality Traits from Short Video
Sequences. Wei et al. 2017
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Backup slides: Personality questionnaire

Instruction: How well do the following statements describe your personality?

I see myself as someone who ...  Disagree Disagree Neither agree Agree Agree
strongly  alittle nor disagree  a little strongly
... is reserved ) ) 3 ) (5)
... is generally trusting e8) ) 3) 4 5)
... tends to be lazy (1) @) 3 4 )
... is relaxed, handles stress well (1) ?2) 3) “4) %)
... has few artistic interests 6)) ) ©)) 4 ®)
... is outgoing, sociable €)) @) 3 “4) )
... tends to find fault with others (1) ) 3) 4) ®)
... does a thorough job €)) ) 3) 4 ®)
... gets nervous easily 1) @) (3) ) )
.. has an active imagination 1 ) 3) (C)) (5)
Figure: BFI-10

Measuring personality in one minute or less. Rammstedt et al.(2007)
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Backup slides: Image model

21504
NV3I2O0

6 image frames 3d convolutional block

Figure: Conv-3d model
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Backup slides: Text model

Input
sentence embedding

@ Convolution + RelU
. Max pool over temporal axis

6 Concatenation

' Fully connected layer + ReLU

Figure: Word based model

Investigating Audio, Video, and Text Fusion Methods for End-to-End Automatic
Personality Prediction. Kampman et al.
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Backup slides: AUC visualization

Visual demo of AUC: http://www.navan.name/roc/

TP
TPR = TP+ FN

FP
FPR = FP+ TN
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Backup slides: Fl data distribution
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Figure: Openness data distribution of First Impressions dataset
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Backup slides: Fl data distribution
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Figure: Conscientiousness data distribution of First Impressions dataset
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Backup slides: Fl data distribution
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Figure: Extraversion data distribution of First Impressions dataset
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Backup slides: Fl data distribution
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Figure: Neuroticism data distribution of First Impressions dataset
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Backup slides: Labels construction

First Impressions labels:

Collected by Amazon Mechanical Turk (AMT)

Uses pairwise comparisons

The labels are output of a Bradley Terry Luce (BTL) model

Fits a maximum likelihood

Sigmoid output layer
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Backup slides: Pairwise comparisons

P cmme 004 ) cmm——e @

> == 002 ) emm——. @

Please assign the following attributes to one of the videos:

Friendly (vs. reserved) Left Don't know Right
Authentic (vs. self-interested) Left Don't know Right
Organized (vs. sloppy) Left Don't know Right
Comfortable (vs. uneasy) Left Don't know Right
Imaginative (vs. practical) Left Don't know Right
Who would you rather invite for a job interview?
Left Don't know Right
submit | skip |

Figure: Data labeling

ChalLearn LAP 2016: First Round Challenge on First Impressions - Dataset and
Results, Victor et al.
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Backup slides: PAN dataset

PAN dataset:
@ Text dataset from twitter.
@ A tweet is maximum 140 characters.
@ The dataset has more than 28,000 tweet.
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Backup slides: PAN data distribution

9000

8000 -

7000 -

6000 -

5000 -

Frequency

4000 -

3000 -

2000 -

1000 -

0.0 0.2
Value

Figure: Openness data distribution of the PAN dataset
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Backup slides: PAN data distribution

9000

8000 -

7000 -

6000 -

5000 -

Frequency

4000 -

3000 -

2000 -

1000 -

0.0

Value

Figure: Conscientiousness data distribution of the PAN dataset
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Backup slides: PAN data distribution
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Figure: Extraversion data distribution of the PAN dataset
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Backup slides: PAN data distribution
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Figure: Agreeableness data distribution of the PAN dataset
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Backup slides: PAN data distribution
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Figure: Neuroticism data distribution of the PAN dataset
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