Predicting Personality through Multimodal Signals

Omar Kassem

University of Freiburg Prof. Dr. Hannah Bast

October 7, 2019

- 2 First Impressions
- 3 Approaches

Computer understanding of human behaviour:

- Enhancing human-computer interaction, e.g. conversations.
- Augmenting interactions between humans, e.g. sales.

Exploring the ability of deep learning approaches to predict the personality traits of people based on data provided by them.

- Text
- Audio
- Images

Big five model (OCEAN):

- Openness
- Conscientiousness
- Extraversion
- Agreeableness
- Neuroticism

Creativity and imagination versus being predictable and straight forward.

Correlation with used words (Yarkoni 2010):

- Positive: culture, films and poetry
- Negative: anniversary, diaper and hubby

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and Results, Victor et al.

A measure of self-discipline and dedication, a sign of long term success.

Correlation with used words (Yarkoni 2010):

- Positive: achieved, discipline and persistence
- Negative: boring, drunk and deny

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and Results, Victor et al.

Willingness to share emotions with others and enjoying their company.

Correlation with used words (Yarkoni 2010):

- Positive: bar, concert and friends
- Negative: books, computer and winter

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and Results, Victor et al.

Understanding or helpful versus selfish and cautious with other people.

Correlation with used words (Yarkoni 2010):

- Positive: gifts, together and joy
- Negative: a**hole, harm and violence

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and Results, Victor et al.

Emotional stability versus vulnerability to displeasing emotions.

Correlation with used words (Yarkoni 2010):

- Positive: poem, mountain and sunset
- Negative: awful, ashamed and stress

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and Results, Victor et al.

Predicting personality traits from short videos.

- 15 sec video clips
- Collected from Youtube vloggers
- 10,000 clips (total of 41 hours)
- Regression labels in [0, 1]

http://chalearnlap.cvc.uab.es/dataset/20/description/

Team	AVG	E	A	С	Ν	0
NJU	91.3	91.3	91.3	91.7	91.0	91.2
evolgen	91.2	91.5	91.2	91.2	91.0	91.2
DCC	91.1	91.1	91.0	91.4	90.9	91.1

Figure: Percentages of mean absolute accuracy by top-3 competitors

$$MAA = 1 - MAE = 1 - \frac{1}{n} \sum_{r=1}^{n} |Y_{pred} - Y_{true}|$$

Figure: Character-based model for text modality

Figure: End-to-End audio model for audio modality

Figure: DAN+ model for video modality

Deep Bimodal Regression of Apparent Personality Traits from Short Video Sequences, Wei et al.

Omar Kassem (Uni Freiburg)

Figure: DAN+V model for video modality

Fusion techniques:

Figure: Early fusion

Figure: Late fusion (ensemble)

- 2 First Impressions
- 3 Approaches

Model	AVG	E	A	С	Ν	0
Baseline	88.4	88.1	89.9	87.4	87.9	88.5
Video	91.5	91.7	91.3	92.2	91.1	91.5
DAN+ (NJU)	91.1	-	_	_	—	—
ResNet (NJU)	91.0	-	_	_	_	—
Audio	89.7	89.6	90.3	89.0	89.8	90.1
EtE. (NJU)	89.5	-	_	_	—	—
Lin. Reg. (NJU)	89.0	_	—	_	_	—
Text	88.8	88.3	89.9	88.4	88.6	88.8

Table: Percentages of models' accuracies that use one modality

Model	AVG	E	А	C	N	0
Baseline	88.4	88.1	89.9	87.4	87.9	88.5
Audio, Text, Video(E.F.)	91.3	91.4	91.1	91.9	91.0	91.1
NJU follow-up	92.1	-	_	_		_
Audio, Video(E.F.)	91.5	91.5	91.3	91.9	91.3	91.3
Audio, Video(L.F.)	91.4	91.4	91.3	91.5	91.1	91.5
ULN	91.3	91.3	91.3	91.7	91.0	91.2
evolgen	91.2	91.5	91.2	91.2	91.0	91.2
Video, Text(E.F.)	91.2	91.2	90.8	91.8	90.9	91.2
Audio, Text(E.F.)	89.8	89.6	90.3	89.2	89.8	90.0

Table: Percentages of models' accuracies that use multiple modalities

Figure: Agreeableness data distribution

Omar Kassem (Uni Freiburg)

Receiver Operating Characteristic curve

Area Under ROC Curve (AUC).

- Classification metric
- Plots TPR against FPR
- Distinguishing between positive and negative examples

Figure: ROC curve example

Model	AVG	E	А	С	Ν	0
Baseline	51.0	49.9	51.3	51.6	50.1	51.9
Video	82.7	84.2	76.5	88.0	82.5	82.4
Audio	74.2	74.9	71.3	72.5	76.4	75.9
Text	65.3	63.0	65.3	67.5	66.9	64.0

Table: AUC percentages of models that use one modality

Model	AVG	E	A	С	Ν	0
Baseline	51.0	49.9	51.3	51.6	50.1	51.9
Video, Audio, Text(L.F.)	83.5	84.2	79.0	87.1	84.1	83.4
Video, Audio(L.F.)	84.1	84.8	79.1	88.0	84.5	83.9
Video, Audio(E.F.)	83.2	84.1	77.9	87.4	83.9	82.5
NJU	82.3	83.9	76.3	87.0	82.0	82.2
evolgen	82.1	83.8	77.7	84.9	82.6	81.4
Video, Text(L.F.)	83.2	84.4	78.0	87.7	83.4	82.7
Audio, Text(L.F.)	74.0	74.2	71.3	73.5	76.0	75.2

Table: AUC percentages of models that use multiple modalities

Model	AUC	MAA
Baseline	51.0	88.4
Video	82.7	91.5
Video, Audio, Text(E.F.)	81.7	91.3
Video, Audio, Text(L.F.)	83.5	90.8
Video, Audio(E.F.)	83.2	91.5
Video, Audio(L.F.)	84.1	91.4
Video, Text(E.F.)	81.5	91.2
Video, Text(L.F.)	83.2	90.9
Audio, Text(E.F.)	74.1	89.8
Audio, Text(L.F.)	74.0	89.6

Table: A comparison between AUC and MAA performances

- Automatic personality prediction from different data types
- Best MAA performance for single modality models
- Best AUC performance
- Comparing different fusion techniques for the same models

Demo

Questions?

Backup slides: AUC validation

Figure: Validation AUC performance through training time

Omar Kassem (Uni Freiburg)

Backup slides: MAA train

Figure: Train MAA performance through training time

Omar Kassem (Uni Freiburg)

Backup slides: MAA validation

Figure: Validation MAA performance through training time

Omar Kassem (Uni Freiburg)

Backup slides: Heat maps

Figure: Saliency heat maps of a ResNet that predict OCEAN

Prediction of Personality First Impressions With Deep Bimodal LSTM. Yang et al.

Omar Kassem (Uni Freiburg)

Backup slides: Heat maps

Figure: Saliency heat maps of different CNNs that predict OCEAN

Deep Bimodal Regression of Apparent Personality Traits from Short Video Sequences. Wei et al. 2017

Omar Kassem (Uni Freiburg)

Backup slides: Personality questionnaire

I see myself as someone who	Disagree strongly	Disagree a little	Neither agree nor disagree	Agree a little	Agree strongly
is reserved	(1)	(2)	(3)	(4)	(5)
is generally trusting	(1)	(2)	(3)	(4)	(5)
tends to be lazy	(1)	(2)	(3)	(4)	(5)
is relaxed, handles stress well	(1)	(2)	(3)	(4)	(5)
has few artistic interests	(1)	(2)	(3)	(4)	(5)
is outgoing, sociable	(1)	(2)	(3)	(4)	(5)
tends to find fault with others	(1)	(2)	(3)	(4)	(5)
does a thorough job	(1)	(2)	(3)	(4)	(5)
gets nervous easily	(1)	(2)	(3)	(4)	(5)
has an active imagination	(1)	(2)	(3)	(4)	(5)

Instruction: How well do the following statements describe your personality?

Figure: BFI-10

Measuring personality in one minute or less. Rammstedt et al.(2007)

Omar Kassem (Uni Freiburg)

Backup slides: Image model

Figure: Conv-3d model

Backup slides: Text model

Figure: Word based model

Investigating Audio, Video, and Text Fusion Methods for End-to-End Automatic Personality Prediction. Kampman et al.

Visual demo of AUC: http://www.navan.name/roc/

$$TPR = \frac{TP}{TP + FN}$$
$$FPR = \frac{FP}{FP + TN}$$

Figure: Openness data distribution of First Impressions dataset

Omar Kassem (Uni Freiburg)

Figure: Conscientiousness data distribution of First Impressions dataset

Figure: Extraversion data distribution of First Impressions dataset

Omar Kassem (Uni Freiburg)

Figure: Neuroticism data distribution of First Impressions dataset

Omar Kassem (Uni Freiburg)

First Impressions labels:

- Collected by Amazon Mechanical Turk (AMT)
- Uses pairwise comparisons
- The labels are output of a Bradley Terry Luce (BTL) model
- Fits a maximum likelihood
- Sigmoid output layer

Backup slides: Pairwise comparisons

Please assign the following attributes to one of the videos:

Friendly (vs. reserved)	Left	Don't know	Right
Authentic (vs. self-interested)	Left	Don't know	Right
Organized (vs. sloppy)	Left	Don't know	Right
Comfortable (vs. uneasy)	Left	Don't know	Right
Imaginative (vs. practical)	Left	Don't know	Right

Who would you rather invite for a job interview?

Left	Don't k	Right	
	Submit	Skip	

Figure: Data labeling

ChaLearn LAP 2016: First Round Challenge on First Impressions - Dataset and Results, Victor et al.

PAN dataset:

- Text dataset from twitter.
- A tweet is maximum 140 characters.
- The dataset has more than 28,000 tweet.

Figure: Openness data distribution of the PAN dataset

Omar Kassem (Uni Freiburg)

Figure: Conscientiousness data distribution of the PAN dataset

Omar Kassem (Uni Freiburg)

Figure: Extraversion data distribution of the PAN dataset

Omar Kassem (Uni Freiburg)

Figure: Agreeableness data distribution of the PAN dataset

Omar Kassem (Uni Freiburg)

Predicting personality

October 7, 2019 20 / 21

Figure: Neuroticism data distribution of the PAN dataset

Omar Kassem (Uni Freiburg)