
Master’s Thesis

Predicting Personalities through
Multimodal Signals

Omar Kassem

Examiner: Prof. Dr. Hannah Bast &
Prof. Dr. Frank Hutter

Advisers: Prof. Dr. Hannah Bast

Albert-Ludwigs-University Freiburg

Faculty of Engineering

Department of Computer Science

Chair of Algorithms and Data Structures

September 02nd, 2019

Writing Period

02. 03. 2019 – 02. 09. 2019

Examiner

Prof. Dr. Hannah Bast

Second Examiner

Prof. Dr. Frank Hutter

Advisers

Prof. Dr. Hannah Bast

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare, that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Acknowledgments

First and foremost, I would like to thank...

• Professor Bast for agreeing to be the supervisor of this thesis, even though it is

an external project and giving me insightful guidance.

• Professor Hutter for agreeing to be an examiner.

• My family for their continuous support and encouragement.

• My friends and colleagues, Mostafa M. Mohamed and Mina Nessiem for the

discussions and ideas that brought out this work and several proofreadings.

• MSc. Markus Näther for proofreading my thesis.

• SyncPilot GmbH for providing me with the opportunity to conduct this research.

iii

Abstract

Automatic personality perception is a research area that has recently gained attention

from the scientific community due to the wide range of fields that could benefit from

personality predictions. The rise of social media platforms is providing access to huge

amounts of labelled personality data. The dataset used for this research has been

collected from the social media website Youtube. In this thesis, deep neural networks

have been used to predict personality from one of three communication modalities:

text, audio and images, or combinations thereof. The performance of the different

trained models was used to compare the information embedded in each modality with

respect to personality. This work’s analysis points to visual information has the most

personality content.

v

Zusammenfassung

Automatiserte Persönlichkeitserkennung (AP) ist ein Forschungsgebiet, das zunehmend

in den Fokus der Forschungsgemeinschaft gerät. Das Spektrum an Gebieten, die

von AP profitieren könnten, ist sehr gross. Der steigende Zuwachs von sozialen

Netzwerken erlaubt den Zugriff auf große Mengen von persönlichkeitsannotierten

Daten. Der Datensatz, der die Grundlage dieser Arbeit bildet,wurde von der Web-

seite des sozialen Netzwerks "Youtube" gesammelt. In dieser Arbeit wurden tiefe

neuronale Netze angewendet, um Persönlichkeiten vorherzusagen. Dies erfolgte auf

Basis von einem der drei Kommunikatsionsmodalitäten: Text, Audio und Bilder oder

deren Kombinationen. Die Leistung von verschiedenen trainierten Modellen wurde

angewendet, um die in den jeweiligen Modalitäten verankerten persönlichkeitsbezoge-

nen Informationen zu vergleichen. Diese Arbeit zeigt, dass visuelle Informationen am

meisten persönlichkeitsbezogene Informationen enthalten.

vii

Contents

Acknowledgments iii

1 Introduction 1

2 Related Work 5

3 Background 9

3.1 Machine learning pipeline . 9

3.2 Neural networks . 13

3.2.1 Single layer perceptron . 14

3.2.2 Multilayer perceptron . 15

3.2.3 Loss functions . 17

3.2.4 Parameter optimization . 19

3.2.5 Activation functions . 23

3.2.6 Dropout . 25

3.2.7 Hyperparameters . 26

3.3 Convolutional neural networks . 27

3.3.1 Convolutional layer . 28

3.3.2 Pooling layers . 31

3.3.3 Explaining CNNs performance 32

3.3.4 Transfer learning . 34

3.4 Recurrent Neural Networks . 35

3.4.1 Bidirectional RNNs . 37

ix

3.4.2 Drawbacks of RNNs . 37

3.4.3 Gated RNNs . 39

3.5 Word embeddings . 41

4 Approach 43

4.1 Text modality . 43

4.1.1 Word model . 43

4.1.2 Character model . 44

4.2 Audio modality . 45

4.3 Image modality . 49

4.3.1 Image based model . 49

4.3.2 Video-based model . 51

4.4 Multimodality . 52

4.4.1 Early fusion . 53

4.4.2 Late fusion . 53

5 Experimental Setup 57

5.1 Datasets . 57

5.1.1 First Impressions . 57

5.1.2 PAN . 59

5.2 Metrics . 60

5.2.1 Mean absolute accuracy . 61

5.2.2 Root Mean Square Error . 61

5.2.3 Confusion matrix . 61

5.2.4 Area Under ROC Curve . 62

6 Results 67

6.1 PAN evaluation . 67

6.2 First Impressions evaluation . 68

6.3 Discussion . 72

6.3.1 Baseline model . 72

x

6.3.2 Comparison between single modalities 74

6.3.3 Comparison between multiple modalities 76

6.4 Interpretations . 78

6.4.1 Image features . 78

6.4.2 Audio features . 78

7 Conclusion 81

Bibliography 95

xi

List of Figures

1 Figures showing examples of the extreme values for each personality

trait. 4

2 An illustration of the difference between regression and classification

problems. 10

3 Plots illustrating the differences between the predictions of an under-

fitting, overfitting and good fitting. 13

4 Single unit neural network . 14

5 A plot showing an SLP approximating the XOR function. 15

6 A plot of the XOR function in a transformed space. 16

7 An example of a Multilayer perceptron with two hidden layers. . . . 17

8 A plot of the binary cross entropy function 19

9 Example plots of activation functions and their derivatives. 26

10 An example of the convolutional operation. 29

11 An image and the output feature map of applying an edge detector

filter to the image. 30

12 An illustration of the filters of a CNN processing a colored image. . . 31

13 An example of max and average pooling. 32

14 An illustration of a CNN that extracts hierarchical features. 34

15 Unfolding of an RNN through time. 36

16 An illustration of a Bidirectional RNN. 38

17 An LSTM cell. 40

xiii

18 A visual representation of words in vector space. 41

19 A visual representation of the word-based neural network implemented

by [1] . 44

20 The architecure of the C2W2S4P network 46

21 An example of wave sampling. 47

22 End-to-end neural network for audio input 49

23 A visual preview of the DAN+ model. 51

24 A visual representation of the video-based model 52

25 Fusion between audio end-to-end model and video-based model . . . 54

26 Fusion between audio end-to-end model and DAN+V model 55

27 Fusion between audio end-to-end model and C2W2S4P model 55

28 Fusion between DAN+V model and C2W2S4P model. 56

29 Fusion between audio end-to-end model, DAN+V and char model. . 56

30 Data distribution of the First Impressions dataset 64

31 Data distribution of the PAN dataset. 65

32 Plots of curves with different AUC values 66

33 Saliency heat maps of a CNN . 79

xiv

List of Tables

1 A list of words that have positive or negative correlations with the

personality traits of their authors. 6

2 Mean and standard deviation of the First Impressions dataset for each

personality trait. 59

3 Mean and standard deviation of the PAN dataset for each personality

trait. 60

4 Confusion matrix . 61

5 RMSE of the models trained by PAN dataset 68

6 MAA scores of models implemented in the thesis and models from the

First Impressions competition. 70

7 AUC scores of models implemented in the thesis and models from the

First Impressions competition. 71

8 MAA and AUC scores of models that use single modality 72

9 Audio features extracted by the pyAudioAnalysis library. 80

xv

1 Introduction

Personality is a psychological model that identifies traits and characteristics that

describe or explain a person’s behaviors [2]. Successfully assessing personality could

be beneficial in several contexts, for example:

• Diagnosing patients with psychiatric disorders [2].

• Social counselling or assisting hiring decisions of job applicants [2].

• Often people prefer to have conversations with people who have the same

personality traits [3].

In other words, personality assessment might improve human to human interactions

[3]. Additionally, algorithms that can assess peoples’ personalities might also improve

human-computer interactions [3]. For example, conversational chatbots could have

customized responses for different personalities [3].

Automatically mapping information about some person to their personality is known

as Automatic Personality Perception (APP) [4], and is the problem with which this

thesis concerns itself. There are various types of data that could be utilized to solve

this problem; however, in this work only the following data types were used, on the

basis that these are the communication modalities that coexist the most together:

• Text written by the subject.

1

• Audio recordings of the subject.

• Spontaneous pictures of the subject.

The personality model used in this research is the Big Five (BF) [5] model, due to it’s

dominance and acceptance in the personality computing field [6]. The model defines

personality as five traits:

• Openness: Shows the tendency of a person to be creative or curious to try new

experiences. High openness is often correlated with a person being unpredictable,

while with low openness are thought to be straight forward and having an easily

predicted behaviour [3].

• Conscientiousness: Shows how organized and self-disciplined a person is.

High conscientiousness values imply that a person is goal-oriented and handles

their work with respect. On the other hand, people with low conscientiousness

are often associated with being easy going and flexible [3].

• Extraversion: Shows how enjoyable is a person and active in other peoples’

company. People with high extraversion are seen as social and friendly people,

while people with low extraversion are often associated with being reluctant to

express emotions [3].

• Agreeableness: Describes how likely is that a person is helpful or understand-

ing versus being selfish or being cautious with other people. People who have

low agreeableness are often associated with being competitive or challenging,

while people with high agreeableness are often thought of as compliant or

manageable [3].

• Neuroticism: Describes how easy it is for a person to have displeasing emotions.

Some literature discuss neuroticism using it’s negation, emotion stability [3].

2

Figure 1 shows for each trait, photos of people who have high presence and absence of

the trait to give an understanding of how each one of these traits could be interpreted.

The BF model is also be referred to as OCEAN.

In this thesis, deep neural networks architectures that take as input each one of

the modalities previously discussed will be introduced and implemented, as well as

ensembles and multimodal neural networks. The goal of this thesis is to explore the

capabilities of deep neural networks to apply them to these modalities and predict

personality because of the advancments that deep learning achieved in other fields [8].

All of these models are trained and tested using the same dataset to have reliable

results that can be used to understand the relevance and amount of information

related to personality that is embedded in each modality.

Chapter 2 goes over related works in the literature that have attempted to solve

the APP problem using either one modality as input or several. The related work

includes works that have used classical machine learning algorithms or deep learning

algorithms. Chapter 3 is where the technical background of the algorithms and

models used in this work is discussed. The models implemented in this thesis are

explained in chapter 4. In chapter 5, the datasets and evaluation metrics are shown.

The results of this thesis are presented in chapter 6, also a discussion of the results

and interpretations of the used models are shown. This work concludes with chapter

7, wherein a summary of the methodologies and the results will be discussed.

3

(a) Openness

(b) Conscientiousness

(c) Extraversion

(d) Agreeableness

(e) Neuroticism

Figure 1: Figures showing examples of the extreme values for each personality trait.
Reprinted from [7]

4

2 Related Work

Tal Yarkoni has shown in his work [9], that there exists a correlation between the

choice of certain words and the personalities of people that chose them, Table 1

shows samples of words that correlate with each trait positively or negatively. Studies

such as [9] that suggests there is a relation between words used by people and

their personalities, gave motivation for using machine learning to predict peoples’

personalities from text using these kinds of relations. Data from social media can be

used to solve this problem [10]; due to the availability of huge amounts of people and

text that they have posted on these kinds of platforms.

Mypersonality.org was an application that was used to collect data from Facebook

users by pulling the users’ posts and asking them to fill a survey that will give these

posts the personality trait labels of their authors. However, in 2018 the owners of

the application stopped maintaining it and the data is not available anymore. Few

works have used the mypersonality dataset1 to predict the OCEAN traits either

using classical machine learning algorithms such as Support Vector Machines (SVMs),

Bayesian Logistic Regression, and Naive Bayes [11] or deep learning methods [12].

The best accuracy score achieved by [11] was the naive bayes model with an accuracy

of 61.70% and 70.78% was the best accuracy achieved by [12] using a multilayer

perceptron (MLP). Another dataset was collected from the social media website

Twitter, is the Plagiarism Analysis, Authorship Identification, and Near-Duplicate

Detection (PAN) dataset [13]. The dataset was made public as part of a competition

1https://sites.google.com/michalkosinski.com/mypersonalityMypersonality.org

5

https://sites.google.com/michalkosinski.com/mypersonality
https://sites.google.com/michalkosinski.com/mypersonality

Trait Correl. Related words

O High Culture, films, folk, humans, literature, moon, narrative,
novel, poet, poetry, sky.

Low Anniversary, detest, diaper, hate, hatred, hubby,
implore, loves, prayers, thankful, thanks.

C High Achieved, adventure, challenging, determined, discipline,
persistence, recovery, routine, snack, vegetables, visit.

Low Bang, bloody, boring, deny, drunk, fool, protest, soldier,
stupid, swear, vain.

E High Bar, concert, crowd, dancing, drinking, friends, girls,
grandfather, party, pool, restaurant.

Low Blankets, books, cats, computer, enough, interest,
knitting, lazy, minor, pages, winter.

A High Afternoon, beautiful, feelings, gifts, hug, joy, spring,
summer, together, walked, wonderful.

Low Asshole, bin, cost, drugs, excuse, harm, idiot, porn,
sexual, stupid, violence.

N High Annoying, ashamed, awful, horrible, lazy, sick, stress,
stressful, terrible, upset, worse.

Low Completed, county, ground, later, mountain, oldest,
poem, road, southern, sunset, thirty.

Table 1: A list of words that have positive or negative correlations with the person-
ality traits of their authors. Reprinted from [18].

where participants had to use machine learning algorithms that given a tweet would

predict it’s author age, gender, and personality. The participants with the best models

used classical machine learning algorithms such as Latent Semantic Analysis [14],

SVMs and Linear Discriminant Analysis [15] and Term Frequency-Inverse Document

Frequency (TF-IDF) [16]. Farnadi et al. wrote a survey about research works related

to the two former datasets and another one collected from Youtube [17].

Concerning the audio modality, the earliest work that the author knows of is by Polzehl

et al. [19], where the authors collected audio data with the help of a professional

voice actor who was asked to read a piece of text and then repeat it while imitating

different personality traits, in other words for each trait a speaker would read the text

in their normal voice and then read it twice, one as the high extreme value of the trait

6

and one as the low. Audio features like pitch, loudness and Mel Frequency Cepstral

Coefficients (MFCC) were then extracted and fed to an SVM classifier to predict each

trait of the speaker as positive or negative. In another work by Mohammadi et al, the

SSPNet Speaker Personality Corpus was introduced [4]. The dataset was extracted

from the French speaking Swiss national broadcast service and annotated by people

who did not understand French. The goal behind the annotators being selected while

lacking an understanding of French was so they would only consider the prosody,

but not the semantics of the text when annotating the audio. The authors also

extracted handcrafted audio features and fed them both to a logistic regression model

and an SVM model with average classification accuracies over all OCEAN traits

of 63% and 65%. Carbonneau et al. [20] have also used an SVM model to classify

the SSPNet data, but the used features were found by transforming the audio wave

into a spectrogram image and then applying dictionary learning to extract high-level

features. The benefit of using such approach, is that the extraction of hand-crafted

audio features that would require professional audio engineering knowledge, was

replaced by dictionary learning that will automatically extract features related to

solving the problem. The proposed model had an unweighted average recall of 67%

with much less handcrafted features.

Furthermore, there exist few research works that predict a person’s personality using

extracted facial features from the person’s images either using SVMs [21], neural

networks [22], or various classic machine learning algorithms [23]. In Cucurull et al.

[18], a deep learning model was used to infer if a personality trait has a positive or

negative presence in an image. The image dataset was collected from the social media

website Instagram and the images were chosen based on the textual tags that were

mostly correlated with personality traits based on Yarkoni’s work [9]. The model had

an average accuracy over the five personality traits of 72%.

Concerning related works that used several modalities as input, there are few models

that predict personality from audio-visual features using Support Vector Regression

7

for getting regression scores [24], SVMs for classification [25] and deep neural networks

[26]. Some experiments of early and late fusion of modalities were done in [26].

Additionally, there is the First Impressions competition, where a video dataset was

collected from the social media website Youtube and participants could use text,

audio, and visual content to predict the personalities of the video subjects [7]. The

deep learning approaches introduced by the top three participants of the competition

have heavily influenced this thesis [27][28][29], due to their high regression accuracies

(91.1%-91.3%). In the work of Kampman et al.[1], they used ensembles and multimodal

neural networks to predict personalities on the First Impressions dataset, but the

accuracies achieved were not that high, because the authors were more focused on

investigating the effect of predicting personality from each modality not getting the

best accuracies.

8

3 Background

In this chapter, the basic building blocks of the models that are used in this thesis

will be explained. In section 3.1, an introduction to the pipeline used to solve the

problem will be explained, next section 3.2 explains what are the artificial neural

networks and how they work. Sections 3.3 and 3.4 will showcase convolutional neural

networks and recurrent neural networks which are each used to handle certain types

of problems. Finally, section 3.5 introduces embedding vectors which are the method

used to represent text in neural networks.

3.1 Machine learning pipeline

Machine learning algorithms solve problems by estimating a function f , which could

map an input value X to the desired output y [30]. The function f has the ability to

extract information from data that are relevant to solving a given problem. There

are three types of machine learning problems:

• Supervised learning: Given a list of pairs of inputs and their corresponding

desired outputs (often referred to as labels), f should map X to y. This list of

pairs is called a dataset [30].

• Unsupervised learning: Given a list of input features X only, an unsuper-

vised learning algorithm will predict information based on the structure of X.

9

Figure 2: Two plots showing the difference between regression and classification
problems. For classification problems, a model should find the best
separator of the data, while in regression problems a model should find
the best fit of the data. Reprinted from [32]

An example of unsupervised learning would be clustering, where the algorithm

groups different subsets of the data based on their similarity [31].

• Reinforcement learning: Reinforcement learning models different kind of

problems than supervised and unsupervised learning. Where there is an agent,

a state space and actions that have consequences either good or bad. The goal

of a reinforcement learning algorithm is to predict the best set of actions that

will bring an agent the highest reward. A reinforcement algorithm learns using

repetitive trial and error [31].

The problem being dealt with in this thesis is a supervised learning problem. The

datasets used in this thesis are pairs of pieces of information in the form of modalities

(text, audio clip, or image) as input and the OCEAN traits of the person this data is

gathered from is the output. There are two types of supervised learning problems:

• Regression: Problems where the outputs are scalars. For example, predicting

the price of a house based on it’s specifications.

• Classification: Problems where the outputs have categorical values. For

example, predicting the kind of animal in an image.

10

Figure 2 illustrates the difference between classification and regression models. The

goal of classification models is to find a separator between data points belonging to

different categories. The goal of regression models is to predict values with minimum

distance from the output labels. For classification problems, if the data could be

separated by a straight line, then it is a linearly separable problem. This thesis

tackles the problem from a regression perspective, due to the author’s interest in

representing personalities on a scale as opposed to binary options.

To get the desired approximation function, a machine learning model is utilized which

will provide the approximation function as an output. In literature, there exists a

various number of machine learning models, such as SVMs [33], linear regression [30],

decision trees [34], and random forests [35]. The main difference between them is

how the model utilizes the inputs to map the outputs, for example, decision trees use

a list of binary rules to classify the input [34], while SVMs fit hyperplanes to separate

data that belong to different classes [33]. In this thesis, only one type of the machine

learning model known as Neural Networks was utilized to solve the APP problem

and in the next sections, the way it interacts with it’s inputs will be discussed. The

final essential component for the machine learning pipeline is the loss function, which

is a function, that given the ground truth labels of the dataset and the approximated

labels output of the model, would give a metric describing how far the approximation

made by the model is from the desired value. The machine learning pipeline could be

divided into the following steps:

1. Dataset splitting: The dataset is split into two parts: a training dataset and

a testing dataset. The idea behind this technique is generalizing how good the

model is in solving the problem when it gets as input data that it has not seen

before. When splitting a dataset the data used for learning is called training

data and test data is the data used for evaluating the model performance. One

input-output pair from the training dataset is called a training example.

11

2. Data pre-processing: In some cases, the format of the dataset can not be

directly used by the model and would need to undergo transformations before

being used. For example, a machine learning model that only accepts numbers

as input will transform the input text into a vector of numbers.

3. Model initialization: Initializing the parameters of the machine learning

model used.

4. Computing predictions: Training data is fed to the model to get predictions.

Then a loss value is computed using the predictions and the output labels. Based

on the loss value the model parameters will be updated. Each model has a set

of parameters that do not change during training, however they still affect how

the model does it’s predictions, these parameters are called hyperparameters.

5. Model training: What remains of the pipeline is a repetitive process of feeding

data to the model and then training the model to decrease the loss, until the

loss value is as small as possible.

6. Hyperparameter tuning: Based on the performance of a model after training,

an inference about how could a hyperparameter of the model be changed to

yield better results. So the pipeline could be repeated using the same model,

but with different hyperparameters.

A good strategy to understand a model’s performance is to evaluate the performance

of the model’s predictions using evaluation metrics on both training and testing

datasets. If the model’s metric scores are high when evaluating the training dataset,

but low for the testing dataset, the means that the model is only learning to predict

the training dataset and not the underlying problem represented in the dataset. This

is referred to as overfitting [30]. Conversely, if a model accuracy is low in predicting

both training and testing datasets, this means that the model is not complex enough

to learn the relationship between the datasets’ inputs and labels, this is referred to

12

Figure 3: Plots illustrating the difference between the predictions of underfitted,
overfitted and good fitted models. An underfitting model does not have
good predictions of the data. An overfitting model has very accurate
predictions, but the approximated function of the model does not gener-
alize to the data distribution. A good fit model does both, has accurate
prediction and generalize the function to predict the distibution of the
data. Reprinted from [36]

as underfitting [30]. Figure 3 shows an example of the predictions of an underfitting,

a good fit and overfitting models.

3.2 Neural networks

Neural networks are the class of machine learning models of interest in this thesis.

The choice of the name is due to the ideas of building this model that were inspired

by the biological neural networks [30]. The subsections 3.2.1 and 3.2.2 will show

examples of how simple neural networks process input data and predict the desired

output values. Subsection 3.2.3 will explain loss functions, while subsection 3.2.4

will show how do neural networks optimize their parameters. An overview of the

activation functions is shown in subsection 3.2.5. An algorithm that is used to avoid

overfitting of a neural network is explained in subsection 3.2.6 and examples of neural

networks hyperparameters are illustrated in subsection 3.2.7.

13

Figure 4: Single unit neural network

3.2.1 Single layer perceptron

This section will illustrate how neural networks work using an example of a single

layer perceptron (SLP) [37]. Figure 4 shows a single unit neural network that has two

input scalars (x1 and x2) and an output scalar ŷ. In neural networks methodology, a

neuron (also could be referred to as a unit or a perceptron) is a representation of an

approximation function that gets input values and applies a certain function to it

and then passes it as an output. Each neuron has a set of parameters known as the

bias value and a vector of weights that has a value corresponding to each input value

connected to the neuron which are all initialized with random values. The neuron

computes a linear combination of inputs and weights and adds the bias value to the

output:

ŷ = f(b+ w1 · x1 + w2 · x2)

The function f is a component in the neuron known as the activation function, which

is a function applied to the multiplication and addition operations of the inputs

and parameters of the neuron. There exist various activation functions that will be

discussed in details in subsection 3.2.5

The predictions of a single neuron are based on a linear combination of it’s inputs

and weights. However, if this combination is not linearly separable in terms of the

14

Figure 5: A plot showing the inputs x1 and x2 of an XOR function and the output
values are written on the plot. The plot shows that the output values
of the XOR function are not linearly separable in terms of x1 and x2.
Reprinted from [30]

desired output, an SLP can not approximate a mapping between the input and output.

Figure 5 shows a plot of the inputs (x1, x2) for the exclusive or (XOR) function

and their corresponding outputs are on the plot. XOR is an example of a linearly

non-separable problem that an SLP can not solve. To solve such problems the inputs

need to be mapped to another space where a separator could be defined with just a

line [30].

3.2.2 Multilayer perceptron

A multilayer perceptron (MLP) is a directed acyclic graph of neurons. In MLPs

neurons are arranged vertically in layers and these layers are arranged horizontally,

with each of the nodes in a layer connected to each of the nodes in the next layer [30].

The motivation behind the MLP structure is that each layer can transform it’s inputs

into a different space to solve more complex problems. For example, considering

again the XOR example, an MLP layer could be used to transform the inputs x1, x2

into two other values h1, h2, such that the outputs of the XOR are linearly separable.

Figure 6 shows a plot of the XOR function, in the transformed space.

The structure of an MLP is shown in Figure 7. The MLP in Figure 7 has four layers:

15

Figure 6: A plot of the XOR function in a transformed space h. This transformed
space is the representation of the inputs of the XOR function using an
MLP layer. The output of the XOR function is linearly separable in terms
of h1 and h2, making the MLP able to approximate the XOR function.
Reprinted from [30]

an input layer containing nodes that hold the values of the input values, an output

layer where the predictions of the network are computed and two other layers; the

layers between the input and output layers are called hidden layers. The depth

of a network is determined by the number of layers. An MLP is also known as a

fully-connected network because each node in every layer is connected to every node

from it’s previous layer.

The predictions ŷ of an MLP are computed using: the vector X of the input values

{x1, x2, x3, x4} which is fetched from the dataset, the weight matrices and bias of

the hidden layers and the output layer are W1, b1,W2, b2,W3, b3 and the activation

functions of the hidden layers and the output layer f1, f2, f3. The size of a weight

matrix is equal to [the number of units in the previous layer, the number of units

in the current layer], in this way the weight matrix of a layer has a weight value

describing the relation between each node in it and each node from the previous

layer. The output of the network can now be computed by computing the following

equations:

z1 = b1 +X ·W1 , h1 = f1(z1)

16

Figure 7: An example of a Multilayer perceptron with two hidden layers.

z2 = b2 + h1 ·W2 , h2 = f2(z2)

z3 = b3 + h2 ·W0 , ŷ = f3(z3)

After the predictions ŷ are calculated the loss value could be evaluated using the

loss function l and the output label y:

L = l(y, ŷ)

After the loss value is evaluated for the whole dataset, this loss value is used to

update the MLP’s parameters by means of backpropagation, which will be discussed

in details in subsection 3.2.4.

3.2.3 Loss functions

As briefly mentioned in section 3.1, loss functions are evaluation functions that output

a value that describes how far the model predictions are from the desired outputs.

17

The choice of a neural network’s loss function depends on the problem the network is

trying to solve and the format of the output labels:

• Regression: Since both output labels and predictions are scalar values, a loss

function can compute the difference between the prediction and the label, so the

bigger the difference the worse the model is [30]. An example of a loss function

for regression problems is the mean squared error (MSE) function. MSE is the

loss function used to optimize the models described in chapter 4. MSE can be

computed using the following equation:

MSE(y, ŷ) = (y − ŷ)2

• Classification: In classification problems, the predicted output value of the

network is a probability value that an input feature vector should be classified

under one category. For example, in a binary classification problem there are

two classes, so the value of the output label y is either 0 or 1. A machine

learning model will output a probability p of the input belonging to class 1. A

loss function that could be used for classification problems is the binary cross

entropy function [38], the output of the function depends on the value of the

class label:

l(y, p) =


− log(p), y = 1

− log(1− p), y = 0

Figure 8 shows a plot for the cross entropy function for both classes. The plot

shows that for each class the farther the prediction is from the label, the higher

the loss values get.

18

0.0 0.2 0.4 0.6 0.8 1.0
y

0

1

2

3

4

lo
ss

Cross entropy loss
y=1
y=0

Figure 8: A plot of the binary cross entropy loss function for both cases of the
output label y. The plot shows that for both classes of y, whenever the
output probability p is far from the value of y the loss value is big and
the closer p is to y, the loss value decreases.

3.2.4 Parameter optimization

Parameter optimization is an iterative process of updating the parameters of a neural

network to improve it’s predictions. When an input vector is fed to a neural network

and information is propagated from the input layer to the output layer to generate

predictions, this sequence of operations is called forward propagation. The loss value

is then computed using the predictions ŷ computed from the forward propagation

and the labels y. Finally, the parameters are updated using the loss value.

Gradient descent

Gradient descent is an optimization algorithm used to solve problems that have no

analytical solution using gradients [38]. Assuming f is a function that maps the

variable x to the value y, to find the value of x that minimizes y, gradient descent

will start by assigning x a random value and then update the value of x iteratively in

the opposite direction of the gradient:

x = x− ∂f

∂x

19

In that sense, x is taking iterative steps to the value that solves:

∂f

∂x
= 0

Also, the size of the step is the magnitude of the gradient, so the closer the algorithm

is to the goal the smaller the value. Using an iterative approach does not guarantee

to find the global minimum, because the non-linearities lead to the presence of local

minimal points [38]. There are several strategies used to terminate gradient descent:

• Threshold: The algorithm is terminated when the function is minimized

beyond a desired threshold.

• Convergence: Sometimes the minimum desired threshold is not reachable

by the algorithm. In that case, gradient descent terminates when the values

converge, which implies that no more improvement could be done.

• Early stopping: When a neural network’s evaluation metrics indicate high

performance for the training dataset, but low for the testing dataset, that

is a sign of overfitting. The early stopping technique stops the parameter

optimization when detecting early signs of overfitting [39].

Types of gradient descent

When optimizing the parameters of a neural network, gradient descent can be used

in several ways:

• Batch gradient descent: The entirety of the dataset is fed to the network in

one batch and the average of losses from all of the training examples is used to

update the network’s parameters.

20

• Stochastic gradient descent: The parameters update is done based on the

loss computed from one training example. Stochastic gradient descent (SGD)

is more computationally expensive compared to batch gradient descent when

using huge datasets because the parameter update operations are done for

each training example in the dataset [30]. However, SGD could achieve better

results because it does not approximate the loss value, but rather update the

parameters using them all.

• Mini-batch gradient descent: The dataset is divided into equal batches of

size m. Forward propagation is applied to each mini-batch and the average loss

of the training examples in the mini-batch is computed and used to update

the network’s parameters. The size of a mini-batch m during training affects

the computed loss value and the parameter update values, which is why m is a

hyperparameter [30].

When gradient descent updates the parameters of a network using the computed loss

values from the entire dataset, this is referred to as one epoch of training.

Backpropagation

The backpropagation algorithm is the method used by neural networks to compute

gradients that will be used by gradient descent to update the network’s parameters

[40].

Since ŷ is part of the loss function, the contribution of the model’s prediction in the

amount of loss can be found by calculating the partial derivative ∂L
∂ŷ and since the

prediction ŷ is a function of the models’ parameter, therefore the derivative of the

loss function can also be expressed in terms of the model’s parameters by computing

(∂L
∂W0

, ∂L
∂W1

, ∂L
∂W2

) using the derivative chain rule:

21

∂L
∂z3

=
∂L
∂ŷ
· ∂ŷ
∂z3

∂L
∂W3

=
∂L
∂z3
· ∂z3
∂W3

∂L
∂b3

=
∂L
∂z3
· ∂z3
∂b3

∂L
∂h2

=
∂L
∂z3
· ∂z3
∂h2

∂L
∂z2

=
∂L
∂h2
· ∂h2
∂z2

∂L
∂W2

=
∂L
∂z2
· ∂z2
∂W2

∂L
∂b2

=
∂L
∂z2
· ∂z2
∂b2

∂L
∂h1

=
∂L
∂z2
· ∂z2
∂h1

∂L
∂z1

=
∂L
∂h1
· ∂h1
∂z1

∂L
∂W1

=
∂L
∂z1
· ∂z1
∂W1

∂L
∂b1

=
∂L
∂z1
· ∂z1
∂b1

These partial derivatives will be used to update the model parameters by the means

of gradient descent to minimize the loss:

W0 =W0 − α ·
∂L

∂W0

W1 =W1 − α ·
∂L

∂W1

W2 =W2 − α ·
∂L

∂W2

The value α in the previous equations denotes the learning rate, a hyperparameter

that could be used to scale down the magnitude of updating the parameter. The

learning rate value is usually less than one. Otherwise, gradient descent could skip

a minimum point by updating the parameters with a high magnitude. Another

22

hyperparameter is the learning rate decay, which is a value used to decrease α. The

motivation behind the decay rate is that at the beginning of the training process the

parameters need to take big update steps. Later on, the parameters are close to the

values that minimize the loss and need small update steps. The following equation

describes how the decay rate d updates the learning rate at every iteration i where

α0 is the initial learning rate:

αi = α0 ·
1

1 + d · i

The name backpropagation describes that the algorithm propagates partial derivatives

back through the network’s layers. The use of backpropagation enforces that the loss

function and all the activation functions to be differential, otherwise the derivatives

can not be calculated.

3.2.5 Activation functions

As mentioned in subsection 3.2.1, an activation function is function applied to the

output of the neuron before it gets propagated to the next layer. The activation

function used in the SLP example in subsection 3.2.1, is known as the linear activation

function and is defined by the following equation:

f(x) = x

When using the linear function as activation in a neural network, not only does that

limit the network to find a linear relation between the input features and label outputs,

but it also limits the network from gaining more predictive ability by increasing it’s

depth. For example the MLP from subsection 3.2.2, if the activation functions f1 and

f2 are linear activations, the network could be simplified to a single layer network

23

with one weight matrix W ′ :

z1 = X ·W1

z2 = X ·W1 ·W2

ŷ = X ·W1 ·W2 ·W0

ŷ = X ·W ′
where W

′
=W1 ·W2 ·W0

It has also been proven that neural networks with one hidden layer with a finite number

of units and a non-linear activation function are universal functional approximators

[41], which means that a neural network can approximate any measurable function

[42]. These facts gave motivation for using non-linear activation functions to improve

a neural network’s performance. There are three non-linear activation functions used

in this thesis:

• Sigmoid: An S-shaped curve that has range of (0, 1). It is often used as the

activation function of the output layer of classification problem, because the

output of these networks can be thought of as a probability score. Figure 9a

shows the plot of the sigmoid function. The sigmoid function and its derivative

are defined by the following equations:

σ(x) =
1

1 + e−x

dσ

dx
= σ(x) · (1− σ(x))

• ReLU: Rectified Linear Units. The function behaves like the linear function

when the input value is positive, otherwise the output is zero. The ReLU plot

is shown in Figure 9b. Known for solving the vanishing gradient problem [43].

The ReLU function is not differential when the input is zero, however neural

networks implementation assume that it is one [30]. The ReLU function is

24

defined using the following equations:

ReLU(x) =


x, if x ≥ 0

0, otherwise

d

dx
ReLU(x) =


1, if x 0

0, otherwise

• Tanh: The Hyperbolic Tangent function is a function that has a zero centered

output and a range of (-1, 1). Figure 9c illustrates the tanh plot. The tanh and

it’s derivative are defined using the following equations:

tanh(x) =
1− e−2x

1 + e−2x

d

dx
tanh(x) = 1− tanh2(x)

3.2.6 Dropout

One inexpensive and simple technique used to avoid over-fitting a neural network

is called dropout [45]. To apply dropout a hyperparameter p needs to be picked, a

probability value of range (0, 1). Next, dropout is applied to neural network layer

such that for every unit in the layer there is a probability of p that this unit is going

to be dropped, which means that it’s output is going to be multiplied by zero and the

output of the remaining undropped units will be scaled by a factor 1− p fill the place

of dropped units. This technique is only applied in the training phase and is repeated

with every forward propagation so that each time different units get dropped and

different weight parameters get updated. Dropouts decrease the chance of overfitting

because they decrease the co-adaptation between units [46]. Co-adaptation in neural

networks means that neurons depend on each others’ outputs, this could lead to

25

(a) Sigmoid (b) ReLU

(c) tanh

Figure 9: Example plots of activation functions and their derivatives. Reprinted
from [44].

overfitting as if one neuron weights are overfitted that means that all neurons that are

dependant on it will output inaccurate values. Since the dropout technique neutralizes

neurons randomly, the dependencies between neurons decrease.

3.2.7 Hyperparameters

As mentioned in section 3.1, hyperparameters are the parameters of the model that

do not change during the training. Neural networks have the following hyperparame-

ters:

• Layer size: The number of units in a layer. Since layer maps input into new

space, the number of units decides the number of variables representing the

input in the new space.

• Network depth: The number of layers in a network.

26

• Dropout rate: The probability of dropping a unit in a layer that has dropout

applied to it.

• Activation functions: Each layer has an activation function applied to its

computed values. The choice of an activation function depends on the type of

features to extracted in layer.

• Optimizer parameters: Mini-batch size, learning rate and decay rate.

• Optimizer algorithm: Gradient descent is not the only algorithm that could

train the parameters of a neural network, there is also Rprop [47] and ADAM

[48].

3.3 Convolutional neural networks

One problem that arises when using fully-connected networks is the increase of the

number of network parameters with the input size. For example, an MLP with one

hidden layer of 512 units that gets as an input a small RGB image of size (320,

180). The size of the input layer will have 172,800 units (320× 180 pixels for each

one of the three primary colors) and the first hidden layer will have more than 88

million parameters (320× 180× 3× 512). Another drawback of using fully-connected

networks is that the extracted features are not translation invariant, in other words,

the extraction of a certain feature is dependant on it’s location in the input. This

section will describe Convolutional Neural Networks (CNNs), a variation of neural

networks that avoids the dimensionality problem and can process data with a grid-like

shape, like images or time sequences [30].

In subsections 3.3.1 and 3.3.2, convolutional and pool layers will be explained, these

layers are the building blocks of CNNs. Followed by a discussion of the reason behind

27

CNNs exceeding performance in subsection 3.3.3 and finally transfer learning, a

technique to utilize pre-trained CNNs will be discussed in subsection 3.3.4.

3.3.1 Convolutional layer

The main difference between using a fully-connected network and a CNN is that instead

of applying a matrix multiplication between input vectors and model parameters,

CNNs use the convolution operation. A layer that applies the convolutional operation

is called convolutional layer. Before illustrating how the convolution operation works,

a component of the convolution operation needs to be illustrated. Assuming x and w

are two 1-dimensional discrete functions of the same scalar variable a, the magnitude

of the overlap between the two functions could be computed by adding the product

of the two functions at every possible value of the variable a:

∑
a

x(a) · w(a)

The convolution operation given two functions x and w, would shift the function x

with the value t, and for every possible value of t, the convolution operation would

compute the overlap between x and w:

(x ∗ w)(t) =
∑
a

x(a) · w(t− a)

In CNNs, the function x is the input to the convolutional layer and the function w

is the parameter of the layer known as kernel or filter. The convolutional operation

can also extend to more than 1-dimensional functions. For example, When using

two-dimensional input and kernel the convolution operation uses two variables (i,j)

to convolve on both axes:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

28

Figure 10: An example of the convolutional operation. Every value in the feature
map is computed by a summation of the element-wise multiplication
between the kernel and the overlapped area of the input. Reprinted
from [49].

Figure 10 is an illustration of the convolutional operation. The convolutional operation

could be described as sliding the convolutional filter over the input from top left to

bottom right and each time the filter overlaps with the input, the sum of element-wise

multiplication overlapping between the filter and the input is calculated to output

one value in the output feature map. In Figure 10 the convolutional filter K is sliding

over the image i, the convolution operation is calculated using k and the highlighted

red box in I to output the value highlighted in green in the output feature map.

Technically, since the kernel size is smaller than the input and it convolves on different

parts of the image and the convolution operation is commutative [30], the convolution

function could be expressed as:

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

For simplicity, neural networks frameworks would implement the cross-correlation

operation [30], which is equivalent to the convolution operation:

(I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

Convolutional filters can extract features from points with respect to the relation

between them and their neighbors. Figure 11 shows an image and it’s output feature

29

Figure 11: An image and the output feature map of applying an edge detector filter
to the image and an example of a vertical edge detector K. Reprinted
from [30]

map after applying an edge detecting filter. The figure also shows a convolution filter

detects horizontal edges by subtracting the values to the right of a pixel from the left

values.

A convolutional layer could have multiple convolutional filters and the values of each

filter are the parameters to be trained by the network. However, the number and size

of the filters are hyperparameters. Another hyperparameter in CNNs is called the

stride which is the size of the step when moving the filters.

Another important concept about convolutions is how do convolutions interact

with three-dimensional inputs; for example, colored images have the dimensionality

width, height, and color. As mentioned before a convolutional kernel has the same

dimensionality as the input data, however the size of the kernel is not necessarily

equal to the input except for the final dimension. Figure 12 shows a CNN that has

an RGB image as an input. The figure shows that an image can be broken down into

three two-dimensional arrays (one for each primary color) and that each feature map

30

Figure 12: An illustration of the filters of a CNN processing each one of three image
colors to output one value in the feature map. Reprinted from [50]

output value is connected to all three arrays, which means that the convolutional

kernels convolve on the three arrays at same time, that’s because they have the same

depth value as the input image. This is described by the following function:

(I ∗K)(i, j) =
∑
m

∑
n

∑
k

I(i+m, j + n, k)K(m,n, k)

3.3.2 Pooling layers

Pooling layers are another type of layers used often after convolutional layers [51].

Pooling layers are used to decrease the dimensionality of its inputs, while also

summarizing the features extracted from a convolutional layer. The parameters of a

pooling layer are the size and step of a window that slides over the input image.

The pooling window slides on the input data in a similar way to the convolution

kernel and applies a reduction function to the overlapping area from the input that

will transform these values into one value in the output feature map. There are two

types of functions applied by pooling layers:

• Average pool: The kernel outputs the mean of the input values.

31

• Max pool: The kernel outputs the maximum of the input values.

Figure 13 shows an example of max pooling and average pooling layers being applied

to an input matrix.

3.3.3 Explaining CNNs performance

A benchmark in object category classification and detection from images is the

ImageNet Large Scale Visual Recognition Challenge(ILSVRC) [53], a competition

where competitors are asked to detect hundreds of different objects from thousands

of images. Winners of this competition have achieved very accurate performances

like AlexNet [54], GoogLeNet [55] and ResNet that has better classification accuracy

than humans in solving the ILSVRC dataset [56].

This exceeding performance of CNNs can be justified by that, CNNs take advantage

of several techniques to achieve better performance:

• Sparse interactions: Unlike fully-connected networks that have a weight

matrix to describe the relationship between each input and output values,

CNNs use kernels that would use only a subset of the input to compute an

Figure 13: An illustration of max and average pooling operations. The boxes of the
same color contribute to the same output feature. Reprinted from [52]

32

output value. In that sense, the computations needed to compute the output

in a CNN are much less than a feed-forward network [30].

• Parameter sharing: CNNs use the same parameters to extract low-level

features from all parts of the input. Not only does that make CNNs more

space-efficient as fewer parameters need to be saved, but also fewer parameters

needs to be trained [30].

• Equivariant representations: Since CNNs use kernels to extract features

from an input, the location of the feature in the input is invariant as the CNN

will convolve the kernel on all of the input [30].

• Stacking layers: A convolutional layer has the ability to extract low-level

features. Stacking convolutional layers and feeding the output feature maps to

convolutional layers gives CNNs the ability to extract higher features as the

network goes deeper [57]. So for example, a deep CNN that processes image

data will start by extracting low-level features, such as edges and lines, in the

early layers. As the features are fed to more convolutional layers the extracted

features will be shapes and complicated objects. Figure 14 shows a CNN that

extracts hierarchical features. The first layer extracts edges, the edges feature

map is then passed to another convolutional layer to detect if there are edges

that can form shapes. Finally, the shapes feature map is then passed to another

layer that could detect if these shapes form objects.

• Receptive fields: Not only do the pooling layers decrease the dimensionality of

the data, but also they summarize the output feature maps of the convolutions

so that convolutions from the next layers could build new features using less

parameters. [51].

33

Figure 14: An illustration of a CNN that extracts hierarchical features. The network
starts by extracting low-level features in the first layer like edges. The
second layer extracts object parts based on the edges extracted from the
previous layer and make the features extracted more high-level and so
on. Reprinted from [58]

3.3.4 Transfer learning

As mentioned in subsection 3.3.3, there exists CNNs that have very high performances

when it comes to image recognition. These works have used deep CNNs that need

huge datasets like the one from the ILSVRC to train; however, the trained parameters

of these networks are available for public usage.

This gave motivation for the transfer learning concept, which is instead of training

a deep neural network from scratch to solve a specific problem, use a pre-trained

network that has good performance solving another problem and add just a few layers

on top of it that will relate to the specific problem. Transfer learning takes advantage

of the fact that the early layers in a deep CNN extract general low-level features that

are necessary to solve many problems, while the last few layers could be related to

solving many practical problems because they use the high-level features differently

to solve the final task.

34

3.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a variation of neural networks that are designed

to process data that has a sequential form like x(1), x(2), ..., x(t). Similar to CNNs,

RNNs also take advantage of parameter sharing to extract the same features from

different parts of data, so as CNNs can expand to extract features from images with

large width and height, RNNs can expand and extract features from long sequences

without increasing the number of parameters. Also, RNNs have some similarities

with 1D convolutions, where the output at each point of a convolution operation is a

function of the input and it’s neighbors, while in RNNs the output at each point is a

result of processing the input and the previous outputs.

The output of an RNN can be described using the classical form of a dynamic system

[30]:

s(t) = f(s(t−1); θ)

The former equation states that the output of the system at time t is a function of

the output of the system at time t− 1 and the parameters θ of the system and since

the output is computed recursively, s(t−1) is a representation of the outputs of all

the previous states. This function could be broken down to show the relationship

between the outputs of each time step; for example, the output at time t = 3 is:

s(3) = f(s2; θ)

= f(f(s1; θ); θ)

The same concept could be applied to an RNN, only RNNs also have inputs or

possibly just one input, that will affect the output computation. The first RNN model

was introduced in [59] and is known as vanilla RNN. Figure 15 shows an illustration

of unfolding a vanilla RNN through time. The left part of Figure 15 shows an RNN

with a recurrent unit that uses the hidden layer computed from previous steps to

compute the output and the right side shows the unfolded version of the same network.

35

Figure 15: Unfolding of an RNN through time. Reprinted from [50]

In Figure 15, x is the input sequence, U , W and V are parameter matrices of the

network, ht represents the hidden state of the network at time t and o is the output

sequence. An RNN could also have bias vectors denoted as b and c and an activation

function f . The forward propagation of an RNN starts by initializing the first hidden

state h(0) and for each time step t the following equations are computed:

a(t) = b+W · h(t−1) + U · x(t)

h(t) = f(a(t))

o(t) = c+ V · h(t)

The RNN in Figure 15 is a synced many to many RNN because both inputs and

outputs of the network are sequential and have the same sequence size. However,

there are other types of RNNs and each one of them is suitable for a different type of

problem:

• One to many: Only the output is sequential. This could be used for example

in the image captioning problem where the input is an image (non-sequential)

while the output is text (sequential) [60].

• Many to one: Only input is sequential. This could be used for solving a

sentiment analysis problem, when having a sequential input for example text

and the RNN will output the predicted sentiment of the input [61].

36

• Many to many: The network process variable sequence size input and output

a variable size sequence. This could be used for translation, where it is not

necessary that the input and output have the same sequence size [62].

• Synced many to many: A good application for these RNNs could be object

tracking, where for each input image frame the network outputs the location of

the object of interest [63].

A variation of RNNs will be explained in subsection 3.4.1. The drawbacks of using

RNNs will be discussed in subsection 3.4.2 and a variation of RNN that solves them

is explained in subsection 3.4.3.

3.4.1 Bidirectional RNNs

In some problems, the output of an RNN at a certain time step does not depend

only on the input and the previous state of the RNN, but also the inputs from the

following time steps. For example, understanding the meaning of a word that has two

meanings can only be resolved by reading the whole sentence. To solve this problem

the Bidirectional RNN (BRNN) has been introduced [64]. A BRNN uses two RNNs,

one that processes an input sequence forward and another one to process it backward.

At each time step t a BRNN will have two hidden states, one for the forward RNN

h(t) and one for the backward RNN g(t) and both of these states will be concatenated,

then fed to the output unit o(t). Figure 16 shows an example of a BRNN.

3.4.2 Drawbacks of RNNs

There are two drawbacks of using RNNs:

• Long term dependencies: Sometimes to predict an output in a time step

depends on an input that was fed to the network far from the current time

37

Figure 16: An illustration of a Bidirectional RNN. The figure shows how the input
is processed forward and backward before being propagated to the next
layer. Reprinted from [30]

step. For example, an RNN that given a sentence and should predict the next

word could get an input sentence like “I grew up in France . . . I speak fluent

”, the next word to be predicted by the network should be the “French”, but

this prediction depends on the word “France”. Although RNNs can use data

from the previous time steps using h(t−1); however, the processed data from all

the input sequence is decoded into this one vector and the network propagates

these information with no option of focusing on some parts more than others,

but rather all data is treated the same .

• Exploding and vanishing gradients: When the gradients are computed for

updating the parameters of a neural network the backpropagation algorithm

carries out multiple multiplication operations as illustrated in subsection 3.2.4.

However in a deep neural network or an RNN, the length of the multiplication

series is high and the updating value for the early parameters could be very low in

case of activation values being less than one through the series of multiplication

(vanishing gradient), or very high in case of high activation values (exploding

gradient) [30].

38

3.4.3 Gated RNNs

Gated RNNs are variations of RNNs that are used to avoid the drawbacks mentioned

in subsection 3.4.2 by adding more functions and parameters trained by the network

that will determine if the information encoded in the network should be kept or

removed, such functions are known as gates. In their work, Hochreiter et al. [65],

have introduced the gated RNN, Long Short Term Memory (LSTM), which is the

RNN used in this work. The structure of an LSTM is different than a vanilla RNN.

Figure 17 illustrates the internal structure of an LSTM. An LSTM has one more state

than a vanilla RNN, which is known as the memory state c(t) that has two weight

matrices Uc, Wc and a bias vector bc. An LSTM also has three gate functions: the

forget gate f , the input gate i and the output gate o. Each one of these gates has

two weight matrices and a bias vector. All of these gates are fed the input from the

current time step x(t) and the hidden state from the previous time step h(t−1). The

outputs of the gates are computed by the following equations:

ft = σ(bf + Uf · x(t) +Wf · h(t−1))

it = σ(bi + Ui · x(t) +Wi · h(t−1))

ot = σ(bo + Uo · x(t) +Wo · h(t−1))

All the gates values are computed using sigmoid activations so the output has the

range of (0, 1). These gates control the flow of information through the LSTM, so

zero means that no information would pass and one means that all of the information

should move on in the network. The forget gate f is used to compute at each step

how much of the memory state from the last time step c(t−1) remain in the memory

of the current time step c(t). The input gate i determines how much of x(t) and h(t−1)

should contribute in the current memory state c(t). The output gate determines the

contribution of the memory state in the output and hidden state h(t). To compute

39

Figure 17: A figure of an LSTM cell. The input and previous hidden state are fed
to the input, forget, and output gates. They are also fed to the input
modification gate to compute their contribution in the new memory
state. Reprinted from [66].

the forward propagation, c(0) and h(0) need to be initialized. After that for each time

step the following equations are used:

c̃(t) = tanh(bc + Uc · x(t) +Wc · h(t−1))

c(t) = ft · c(t−1) + it · c̃(t)

h(t) = ot · tanh(c(t))

Another gated RNN is the Gated Recurrent Unit (GRU) [62]. GRUs have a simpler

architecture than LSTM, but also was found to have a comparable performance for

few tasks [67].

40

Figure 18: A visual representation of words in vector space. The figure shows that
the differences between the vectors can represent information, in this
case it represents gender. Reprinted from [70].

3.5 Word embeddings

Word embeddings are vectors used as features that represent words in neural networks.

Not only are these features unique for each word, but also they also capture meaning

and similarities between words [30]. The values of these vectors are constructed using

neural networks that are trained to understand words from the contexts they appear

in [68][69]. In this work, the Word2vec word embeddings model introduced in the

research work by Mikolov e.t a.l. [68], is used to represent text data as input features

for predicting personality. Figure 18 shows how the word2vec embeddings can capture

the meaning of gender as the distance between the vectors representing the words

"man" and "woman" is equal to the distance between the words "uncle" and "aunt"

and also "king" and "queen".

41

4 Approach

In this chapter, the details of the deep learning models used to predict the OCEAN

personality traits will be discussed. Each subsection of this chapter will handle the

models that take a certain modality as input and after that, the fusing techniques

that predict personality from several modalities will be discussed. The problem is a

regression problem with five output labels, one for each OCEAN personality trait

and the range of each is [0, 1]. The models that take text as input are described in

section 4.1, section 4.2 shows the audio model and the models that process images

are explained in section 4.3. Multimodal models are shown in section 4.4.

4.1 Text modality

This section considers the problem, that given some text a neural network should be

used to predict the OCEAN personality traits of the author of the text. The problem

is similar to text sentiment analysis [71]; however, instead of predicting positive or

negative sentiment, OCEAN traits are predicted. Two text neural network models

were implemented in this thesis: a word-based model and a character-based model.

4.1.1 Word model

A word-based neural network model is a neural network that takes input in the form

of text and uses word embedding vectors to transform each word into a vector and

43

Figure 19: A visual representation of the word-based neural network implemented
by [1]. Reprinted from [1].

thus an input sentence into a matrix. In this work, the word-based neural network

model by Onno Kampman et al. [1] has been re-implemented. Figure 19 shows the

neural network architecture of the model. Word2vec is used as the word embedding

layer, each word is modeled as a vector of size 300 and these vectors were pre-trained

on Google News data. The output word vectors are then fed in parallel to three 1D

convolutional layers with kernel sizes of 3, 4, and 5 words and a stride of one word.

Each one of the convolutional layers extracts features from different sequence lengths

(3, 4, 5) of words, which is equivalent to extracting features from n-grams where for

each convolution layer n is the kernel size. A global max-pooling layer is used to

summarize these n-grams features into three vectors of the size 64. The vectors are

then concatenated and passed to a fully-connected layer with 64 units and a ReLU

activation. Finally, an output layer with sigmoid activation function will transform

the feature vector into the OCEAN personality traits space.

4.1.2 Character model

One problem that arises when using a neural network model with word embeddings

is that no matter how many words the word embeddings matrix has, there will

always be new words that were not used in the embeddings’ training, leading to

44

an out-of-vocabulary problem. Additionally, when collecting text data from social

media websites, a significant number of words are noisy which will also lead to the

same problem, which gave the motivation of using a character-based model. Unlike

word-based models, character-based models encode each character with a unique

vector and feed the character vectors of a word to a recurrent neural network and the

output vector is the word encoding.

A research paper published by Xerox [72] has introduced a model named C2W2S4PT

(Character to Word to Sentence for Personality). Figure 20 illustrates how the model

works, an input sentence S is divided into a sequence of words w1, w2, ..., wn. To get

corresponding vectors of these words, each word is broken down to a sequence of

characters, so e.g. the word wi will be the sequence ci1 , ci2 , ..., cin , each element in

this sequence has a unique one-hot vector that will be fed to a bi-directional LSTM

to provide the encoding ewi of the word wi. The word encoding vectors are then fed

into another bi-directional LSTM that will output a feature vector representing the

whole sentence. These vectors will be fed then to a fully-connected layer with a ReLU

activation function and finally an output layer to map the sentence’s feature vector

to the OCEAN traits.

4.2 Audio modality

The focus of this section will be on the representation and the model used to analyze

audio data to predict the OCEAN personality traits of a person using their voice.

In the physical world, the source of any audio or sound is the vibration of an object

that sends a mechanical longitudinal wave that travels in space, these waves represent

the change of pressure in the space they are traveling in [73]. However, a limitation

arises for utilizing sound waves in the digital world is that these waves are continuous

and have different pressure values at every point on a time scale, to solve this problem

sampling is used. Sampling is the measurement of pressure of the wave at equally

45

Figure 20: A visual representation of the C2W2S4P network. The networks has bi-
directional LSTM that computes the vector representation of words using
a sequence of characters, these vectors are fed to another bi-directional
LSTM to generate a vector that represents a whole sentence. Finally the
sentance feature vector is fed to a full-yconnected layer and an output
layer to predict OCEAN traits. Reprinted from [72].

46

Figure 21: An example of samples extracted from a sound signal with a sampling
rate of 3520 sample/sec. Reprinted from [74].

distanced points on the timescale and then grouping these measurements in a list

that will represent the wave, this list is known as raw audio data. The distance

between the measured points is determined by the sample rate (the number of points

measured per second), the higher the sample rate the higher the quality of the audio.

Figure 21 shows an example of wave sampling, where the blue line is the wave and

the red points are the samples.

In their work, Tzirakis et al. introduced an end-to-end deep learning model, that

given raw audio data would predict the emotions of the speaker [75]. In this thesis,

the architecture of the neural network model introduced in [75] has been implemented

to solve the personality problem, but few hyper-parameters have been changed

to yield better performance. In particular, the authors of [75] have introduced a

new methodology to choose the pooling size of the max-pooling layers coming after

convolutional layers using the following equation :

R =
K − 1

K + P − 1

47

Where K is the kernel size, P is the pooling size and R is a variable called the overlap

rate. The assumption is that P should always have a value that will make R less

than 0.5, otherwise, the network will extract and analyze similar features from close

frames and the values used for the experiments yielded R with values around 0.4. In

the experiments performed in this work, P and k were set to values that made R

approximately 0.25 which had slightly better performance.

A visual representation of the neural network is found in Figure 22. The input of the

network is raw audio data with a sample rate of 16KHz (16,000 samples/sec), then

this data is fed to a stack of convolutional and max-pooling layers. The first part

of this block is a convolutional layer with 32 filters and a kernel size of 8, followed

by a max-pooling layer with kernel size 20 and the overlap rate R is 0.259. In order

to extract more high-level features, another convolution layer is used with twice the

number of filters of the previous convolution layer 64 and a kernel size of 6. To

preserve the value of R, the max-pooling kernel size is decreased to 16. The last

convolution layer has also the double amount of filters as the second convolution layer

128, but with the same kernel size and since the convolution kernel size did not change

so the max-pooling size is also the same having an overlap rate of 0.238. Like with

images, the first convolutional layer will extract low-level features, use a pooling layer

to summarize the features extracted, and pass the output to another convolutional

layer to extract higher-level features and so on. The output features from the last

pooling layer are 48 vectors of size 128, representing 128 features extracted from 48

sub-parts of the audio. These vectors are fed to two bi-directional LSTMs to extract

temporal relations between these features and then a fully-connected layer with 256

units with tanh as the activation function and finally an output fully-connected layer

with five units (one for each personality trait) and a sigmoid function for activation.

To prevent the network from overfitting dropout layers with a dropout rate of 0.5 are

added after the last max-pooling layer and the fully-connected layer.

There are only two differences in the implementation of this model in [75] and the

48

Figure 22: End-to-end neural network for audio input. Reprinted from [75].

implementation of this model in this thesis: the different overlap rate R and in this

work bi-directional LSTMs are used instead of regular LSTMs.

4.3 Image modality

In this section, the last data type will be discussed, images. This data type could be

utilized for the problem in two distinct ways, either as a single image containing one

person and in that case the problem would be analyzing the facial expressions and

background features and using them to predict the personality traits of the person in

the image or as a video where there is a stream of images from which these features

could be extracted from. In this work, experiments were only conducted on videos;

however, one of the models used was inspired from a work that is solving the problem

using images [27].

4.3.1 Image based model

In the work from Xiu-Shen Wei, et al.[27], several models that use a person’s image as

an input to predict their personality traits were introduced, the one with the highest

performance was a modification of another model created by the same authors called

Descriptor Aggregation Networks (DAN) and the modified version is called DAN+.

49

A visual representation of DAN+ is shown in figure 23. The architecture of DAN+ is

based on the VGG-16 network [76], a network well known for it’s high performance

in object recognition and classification. However, instead of connecting the last

pooling layer with fully-connected layers, each of the last pooling layer (pool_5) and

the activation layer before the last convolution layer (relu_5_2), are fed to global

average-pooling and global max-pooling layers to output four 512 dimensional vectors.

Each one of these vectors is normalized using the l2 function1, then they are all

concatenated and fed to one fully-connected output layer with sigmoid activation. The

DAN+ model uses transfer learning by initializing the weights of the network using

the pre-trained weights of the VGG-16 network that solves the object classification

problem, to solve the APP problem. The VGG-16 weights were trained from the

ImageNet dataset and are available and could be used by the deep learning framework

Keras2. The difference between the architecture of the VGG-16 and DAN+ gives

DAN+ few advantages. Since the DAN+ architecture does not use fully-connected

layers before the output layer, the model has less parameters making it easier and

faster to train and also the final representation of the image before the output layer

is smaller.

Conversely, in this thesis the DAN+ model was extended to predict personality using

video instead of a single image. In order to do that, six frames are extracted randomly

from a video and each image will be input to a separate DAN+ network with the same

architecture as in [27]. Furthermore, the outputs of the six networks are concatenated

and fed to a single fully-connected output layer also with sigmoid activation. This

model will be referred to as DAN+V in the rest of the thesis.

1l2(x) =
√∑

n x2
n[30]

2Keras version 2.2.4 https://keras.io/

50

https://keras.io/

Figure 23: A visual preview of DAN+. Reprinted from [27].

4.3.2 Video-based model

The work of Subramaniam et. al [28] has introduced a multimodal neural network

model that participated in the First Impressions competition in 2016 and won second

place. The model processes both audio and visual data. However, in this section the

visual neural network is the subject of interest. As input, the model is fed six image

frames extracted from a video, the images are grouped together in one 4-dimensional

tensor with the dimension (color channels, number of images, image width, image

height). The vector is then input to a 3-dimensional convolution layer with a ReLU

activation function, followed by a 3-dimensional max-pooling layer. The output tensor

is then passed twice to 3-dimensional convolution and max-pooling layers, but with

kernels of smaller size and the final output vector is then flattened and concatenated

with the audio features and passed to a fully-connected layer. The architecture

of this model is using 3-dimensional convolutional layers, that train 4-dimensional

kernels to extract visual features from several images. The intuition is that features

extracted from several images using the same kernels could have a deeper meaning or

information than features extracted from several images separately, thus solving the

problem more accurately.

In this thesis, another video-based convolution model has been implemented based on

the same motivation as the previous model. Figure 24 shows a visual representation

51

Figure 24: A visual representation of the video-based model. The model consists
of a stack of five convolutional-pooling blocks and the output is fed
to a fully-connected layer and then an output layer to make OCEAN
predictions.

of the model. The model aligns the six input frames the same way as [28]. After that,

the input vector is fed in parallel to three 3-dimensional convolution layers with three

different kernel sizes, the outputs are then concatenated and fed to a 3-dimensional

max-pooling layer. The parallel convolution layers were inspired by the architecture

of the Inception network [55]. The convolution max-pooling block is repeated five

times before being fed to a fully-connected layer and finally the output layer with

sigmoid activation function.

4.4 Multimodality

In this section, the models that predict OCEAN traits using information from more

than one modality will be discussed. There were two strategies used to build these

models: early fusion (mentioned as middle fusion in some literature) and late fusion,

also known as ensembles.

52

4.4.1 Early fusion

The early fusion technique is based on the idea of fusing features from different data

types and training a model that will learn and utilize the correlations between high

level features of each modality[77]. In order to test the early fusion technique, several

models were implemented for each combination of modalities.

The fusion of several neural networks is done by picking a subset of layers from each

network. This subset is the networks’ layers excluding the last fully-connected layers.

Next, the outputs of the last layer of each sub-network are merged into one vector

that represents the high level features extracted from all modalities. The high level

features are then fed to fully-connected layers to map these features to the OCEAN

traits.

Figures 25-29 show the architectures of the multimodal neural networks implemented

in this thesis.

4.4.2 Late fusion

The late fusion technique work as follows: several models that take a single modality

as input are trained separately and after that certain heuristics are used, e.g. majority

vote or averaging [77]. In this work the final prediction was calculated by averaging

the predictions of the trained models. The use of this technique was motivated

by the work of [27], as they have used this technique while participating the First

Impressions competition and it has yielded the best performance in the competition.

Also, ensembles can be expected to have less generalization error than one neural

network [78]. In addition, ensembles can be easily extended to multiple models to

add more diversity to the predictions by using several diverse models.

53

Figure 25: Fusion between audio end-to-end model and the video-based model.
From the video data, the raw audio data and six image frames are
extracted. The raw audio data is fed to the end-to-end audio model to
extract audio features. The six image frames are fed to the video-based
conv-3d model to extract visual features. Audio and visual features are
merged and fed to a fully-connected layer and output layer to predict
OCEAN traits.

54

Figure 26: Fusion between audio end-to-end model and DAN+V model. From the
video data, the raw audio data and six image frames are extracted. The
raw audio data is fed to the end-to-end audio model to extract audio
features. The six image frames are fed to the DAN+V model to extract
visual features. Audio and visual features are merged and fed to the
output layer to predict OCEAN traits.

Figure 27: Fusion between audio end-to-end model and C2W2S4P model. From the
video data, the raw audio data and text are extracted. The raw audio
data is fed to the end-to-end audio model to extract audio features. The
text is fed to the C2W2S4P model to extract text features. Audio and
text features are merged and fed to the output layer to predict OCEAN
traits.

55

Figure 28: Fusion between DAN+V model and C2W2S4P model. From the video
data, six image frames and text are extracted. The six image frames are
fed to the DAN+V model to extract visual features. The text is fed to
the C2W2S4P model to extract text features. Visual and text features
are merged and fed to the output layer to predict OCEAN traits.

Figure 29: Fusion between audio end-to-end model, DAN+V and char model. From
the video data, raw audio data, six image frames, and text are extracted.
The six image frames are fed to the DAN+V model to extract visual
features. The text is fed to the C2W2S4P model to extract text features.
The raw audio data is fed to the end-to-end model to extract audio
features. All features are merged and fed to the output layer to predict
OCEAN traits.

56

5 Experimental Setup

This chapter will discuss the details of the experiments, what kind of data was

used, and how performance was measured. A description of the datasets and their

underlying distribution will be shown in section 5.1. The metrics used to evaluate

the implemented models are explained in section 5.2.

In this thesis, the code used to carry out the experiments was in Python 3. For

reading and splitting the datasets the library pandas was used, the library Keras was

used to implement all the neural network models and the libraries NumPy and SciPy

where used for calculating some of the evaluation metrics.

5.1 Datasets

This section describes the datasets that were used to train and test the performance of

the models described in chapter 4. Subsection 5.1.1 will describe the First Impressions

dataset, while the PAN dataset will be described in subsection 5.1.2.

5.1.1 First Impressions

The First Impressions dataset was introduced by the organizers of the competition

First Impressions (ECCV ’16, ICPR ’16) [7]. The dataset consists of 10,000 video clips

extracted from the video sharing website YouTube. The organizers of the competition

57

found Q&A videos to be the most suitable type of videos for the problem as there is

only one person in the video and the subject person of the video is centered in front

of the camera with very few movements. Therefore, all the video clips are 15 second

tracks cut out of Q&A videos of people who have YouTube channels. The 10,000 clips

were extracted from 3,060 unique videos across 2,764 Youtube channels; however,

a channel may have one or more video makers. Additionally, for each channel, the

organizers considered at most three videos and the clips were extracted such that a

maximum of six clips were cut from the same video. These limiting decisions could

be justified as forcing more diversity in the dataset, due to the fact that the same

speaker will have the same personality traits. Furthermore, the dataset comes with

transcribed text and the OCEAN personality traits of the subject person for each clip.

The split of the dataset was 8,000 videos for training and 2,000 videos for testing. A

Bradley Terry Luce (BTL) model, which is a probabilistic model that uses pairwise

comparisons between objects to predict a latent trait, was used by the organizers

to obtain labels for the videos. The model was fitted using Maximum Likelihood

and had a sigmoid function as the output making the predictions follow a logistic

distribution. The pairwise comparisons where gathered using Amazon Mechanical

Turk. More details about the BTL model are described at [79]. The reason for using

the BTL model instead of doing interviews or asking the subjects of the video to fill

surveys was that, these methods suffer from biased and variable results. Additionally,

using such techniques is not feasible with huge amounts of diverse data.

Data distribution

In the First Impressions dataset, each video clip is labeled with five numbers corre-

sponding to each personality trait, these number range from 0.0 to 1.0, where one

represents the highest value a personality trait could have and zero represents the

lowest value. In this section, a simple analysis of each personality trait labels will be

discussed. Figure 30 shows the data distributions of the labels for each personality

58

Trait Mean Standard deviation
Openness 0.57 0.15

Conscientiousness 0.52 0.15
Extraversion 0.48 0.15
Agreeableness 0.55 0.13
Neuroticism 0.52 0.15

Table 2: Mean and standard deviation of the First Impressions dataset for each
personality trait.

trait using histograms, while Table 2 shows the mean and standard deviation for each

trait. The histograms show that all the personality traits labels have a distribution

resembling a normal distribution. This can be expected due to the BTL model that

outputs predictions with a logistic distribution that is close to normal distribution.

Table 2 shows that all of these distributions are centered approximately around the

middle point of the value spectrum 0.53 and with approximately a standard deviation

of 0.15.

5.1.2 PAN

Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection (PAN)

is a set of competitions that co-locate with the conference CLEF (Conference and

Labs of the Evaluation Forum), a conference that is helping the development of

multilingual data research [80]. In 2015, PAN hosted an author profiling competition

through which participants develop machine learning algorithms that given a piece

of text would predict the OCEAN personality traits of the author of the text. The

dataset used in the competition is multilingual, however in this thesis only the English

dataset was used. The dataset was extracted from the social media website Twitter.

The English dataset used data from 294 Twitter users, each user had approximately

100 tweets (a sequence of text less than 140 characters), with a total of 27,344 tweets.

The OCEAN personality traits labels where collected using surveys completed by the

twitter users [81]. The data was split such that 152 users data was used as training

59

Trait Mean Standard deviation
Openness 0.76 0.15

Conscientiousness 0.67 0.15
Extraversion 0.67 0.16
Agreeableness 0.63 0.16
Neuroticism 0.64 0.23

Table 3: Mean and standard deviation of the PAN dataset for each personality trait.

and 142 for testing. The values of the labels range from -0.5 to 0.5, but to make

comparisons with the First Impressions dataset easier, the labels where shifted to be

from 0 to 1.

Data distribution

The histograms in Figure 31 show the data distribution of each trait and Table 3

shows the mean and standard deviation of each trait. The figures show few essential

differences than those from the First Impressions dataset. First, all of the traits

appear to lack balance between the frequency of low values and high values as all the

traits do not have values below 0.2 and the openness trait does not have a value less

than 0.4. This is also verified in Figure 3 as the mean value for all traits is greater

than 0.6. Second, Figure 31a shows that the openness trait does not follow a normal

distribution.

5.2 Metrics

This section will describe the evaluation metrics used to evaluate the performances of

the models discussed in chapter 4.

60

5.2.1 Mean absolute accuracy

Mean Absolute Accuracy (MAA) is the metric used to evaluate the accuracy of a

model’s predictions for the test dataset. It is defined by the following equation:

MAA(y, ŷ) =
1

n

n∑
i=1

(1− |yi − ŷi|)

Since the output labels y have a range of [0.0, 1.0], the range of the MAA is also [0.0,

1.0], where 1.0 indicate that the predictions are identical to the labels.

5.2.2 Root Mean Square Error

Root Mean Square Error (RMSE) is the square root value of the MSE. It is defined

by the following equation:

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

5.2.3 Confusion matrix

A confusion matrix is a table used to evaluate the performance of binary classification

model based on a labelled dataset. A confusion matrix is shown in Table 4. The

content of the matrix shows accurately the number of correct and wrong predictions

for each class. The elements of the confusion matrix will be used to compute the

metric explained in subsection 5.2.4.

Actual
+ve -ve

P
red

+ve True Positive(TP) False Positive(FP)
-ve False Negative(FN) True Negative(TN)

Table 4: Confusion matrix

61

5.2.4 Area Under ROC Curve

The Area Under ROC Curve (AUC) is a classification metric used to evaluate binary

classification models that use a probabilistic score and a threshold to classify objects

as one of two classes. The value of this metric is calculated by drawing the Receiver

Operating Characteristic (ROC) curve for the classification model and measuring the

area under this curve, hence the name area under ROC curve. This curve is drawn

by plotting the model’s True Positive Rate (TPR) against False Positive Rate (FPR)

for every possible classification threshold. To define TPR and FPR we need to use

terms from the confusion matrix as follows :

TPR =
TP

TP + FN

FPR =
FP

FP + TN

TPR also known as recall, is the ratio between the number of correctly classified

positive examples to the total number of positive examples in the dataset. FPR is

the ratio of negative examples classified as positives to the total number of negative

examples.

These two variables are directly proportional to the number of examples the model

classifies as positive. In other words, for a classification model, when the classification

threshold is high both TPR and FPR will have low values because the model

classifies very few examples as positive, while if the same model has an extremely low

classification threshold, TPR and FPR will have high values as more examples are

classified as positive.

Figure 32 shows four ROC curves with different AUC values. All the plots start at

the point (0, 0), at this point the threshold value is set to the maximum value such

that all examples are classified as negative, therefore TPR and FPR are equal to 0.

For the remaining points in the curve, the threshold is gradually lowered to yield

62

different classification value for one example in the dataset. If the newly classified

point is a true positive then the curve moves vertically as only the TPR will change,

otherwise, it is a false positive and the curve will move horizontally. In the case

of a perfect classifier, the curve will only start to move horizontally when TPR is

already maximum, i.e. the lowest probability score assigned to a positive example is

higher than all probabilities assigned by the classifier to negative examples and in

that case the ROC curve will cover the whole area of the plot like in Figure 32a. For

a less accurate classifier, the ROC curve would start classifying negative examples

as positive while the threshold is still higher than the probability score of positive

examples, which will make the ROC curve move horizontally before it reaches the

maximum vertical point, leading to less area under the ROC curve, similar to Figure

32b. Figure 32c describes the performance of a classifier which can not distinguish

between positive and negative. The classifier shown in Figure 32d classifies every

positive example as negative and every negative example as positive the exact opposite

of the classifier in figure 32a. In summary, AUC represents the probability that a

random positive example will have a higher probability prediction than a random

negative example [82].

63

0.0 0.2 0.4 0.6 0.8 1.0
 Value

0

500

1000

1500

2000

2500

3000

 F
re

qu
en

cy

(a) Openness

0.0 0.2 0.4 0.6 0.8 1.0
 Value

0

500

1000

1500

2000

2500

3000

 F
re

qu
en

cy

(b) Conscientiousness

0.0 0.2 0.4 0.6 0.8 1.0
 Value

0

500

1000

1500

2000

2500

3000

 F
re

qu
en

cy

(c) Extraversion

0.0 0.2 0.4 0.6 0.8 1.0
 Value

0

500

1000

1500

2000

2500

3000

 F
re

qu
en

cy

(d) Agreeableness

0.0 0.2 0.4 0.6 0.8 1.0
 Value

0

500

1000

1500

2000

2500

3000

 F
re

qu
en

cy

(e) Neuroticism

Figure 30: Histograms that show the distribution of each OCEAN trait of the First
Impressions dataset. All the traits follow a normal distribution.

64

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fr
eq

ue
nc

y

(a) Openness

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fr
eq

ue
nc

y

(b) Conscientiousness

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fr
eq

ue
nc

y

(c) Extraversion

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Fr

eq
ue

nc
y

(d) Agreeableness

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fr
eq

ue
nc

y

(e) Neuroticism

Figure 31: Histograms that show the distribution of each OCEAN trait of the PAN
dataset. All of the traits do not have any examples with values bellow
0.2. Only the neuroticism trait follows a normal distribution.

65

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(a) AUC = 100%

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(b) AUC = 81%

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(c) AUC = 50%

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(d) AUC = 0%

Figure 32: Plots of ROC curve with different values. Plot (a) shows the ROC curve
of classifier that classifies all the examples correctly. Plot (b) shows a
classifier with an 81% AUC. Plot (c) represents a classifier that classifies
only of half the examples correctly, often resembles a random classifier.
Plot (d) is from a classifier that classifies all the examples incorrectly.

66

6 Results

In this chapter, the performance of the models described in chapter 4 will be evaluated

using the MAA and AUC metrics explained in section 5.2. The performance of the

models will also be compared to a baseline model. The baseline model used for

each dataset, is a model that predicts one value no matter the input. The value

predicted by the baseline model is the average of the output labels y of the test

dataset. The mean of the output labels is the value that yields the minimum MSE for

a constant predictor, this is further discussed in subsection 6.3.1. The baseline model

sets a performance threshold, where a model with predictions less accurate than that

threshold will imply that the model is not learning from the input features.

In section 6.1, the performance of the models trained using the PAN dataset will

be shown, while the performance of the models trained using the First Impressions

dataset will be shown in section 6.2. The discussion of the results will take place in

section 6.3 and interpretations about the features extracted by the models will be

discussed in section 6.4.

6.1 PAN evaluation

Due to the nature of the PAN dataset, it can only be used to train text models. It was

mainly used to ensure the validity of the implementation of the character-based model

introduced in 4.1.2. Table 5 shows the results of evaluating both implementations of

67

Model AVG E A C N O
Baseline model 0.1700 0.1599 0.1526 0.1502 0.2313 0.1558

C2W2S4P in Thesis 0.1700 0.1600 0.1543 0.1540 0.2268 0.1550
C2W2S4P in [72] 0.1655 0.1665 0.1647 0.1483 0.2059 0.1419

Table 5: A comparison of the RMSE scores between the implementation of C2W2S4P
in the thesis and in [72] and the baseline model of the PAN test dataset.

the C2W2S4P model (from [72] and this thesis) and the baseline model using the

RMSE metric and the PAN test dataset

6.2 First Impressions evaluation

In this section, a comparison between the performance of the top four competitors of

the First Impressions competition (NJU [83], evolgen [28], DCC [29], ucas [84]) and

the models implemented in this thesis will be shown. The team ucas is using random

forests to predict the OCEAN traits. Evlogen have used an external library called

pyAudioAnalysis to extract audio features [85] and they implemented a 3-dimensional

CNN to extract visual features. The audio and visual features are then joined and fed

to a fully-connected network to predict OCEAN traits. DCC has used deep CNNs

to extract visual and audio features from the input video to predict the OCEAN

personality traits, the networks that extract the features are trained jointly. The

NJU team has used several models:

• Image modality: They used VGG-16, ResNet and also their implementation

of the image-based DAN and DAN+ models to predict OCEAN traits from

a single image. All of these models’ weights were initialized with pre-trained

weights from the VGG-16 network or the ResNet network.

• Audio modality: NJU implemented a linear regression model that uses

audio features as input, which were extracted using an external library called

68

python_speech_features1. The library extracts MFCC and logfbank features

from the audio.

• Multimodal: A late fusion model of all the image models and the audio

model was implemented. This is the model that NJU used to compete in the

competition.

One year after the competition, NJU published a follow-up paper [27], where they

changed a few hyperparameters that improved the predictions of the image models

and they also implemented an end-to-end audio model, also based on the work in

[75]. NJU also implemented a late fusion model using the improved image models

and both audio models.

Also, the same competition was held one year later, but there was only one team

able to surpass the baseline performance [86]. The team name is heysky and they

have used CNNs to extract visual features from images and used an external tool

to extract audio features called openSMILE [87]. Finally, these features are fed to a

random forest to output the final personality predictions. This team did not report

the AUC values of this model.

Tables 6 and 7 show the MAA and AUC of: the models trained using the First

Impressions dataset, the top four competitors in the First impressions competition,

the model from the NJU follow-up paper [27] and the model from heysky. The results

from the paper that introduced the word-based model were not reported because

they did not use the First Impressions test dataset to evaluate their results, but

rather used the pre-defined validation set [1]. The tables are divided into several

sections, where each section lists the models that use the same modalities as inputs.

For the multimodal models, the name of the sub-models is written and next to it an

indication if it is an early or late fusion.

1https://github.com/jameslyons/pythonspeechfeatures

69

https://github.com/jameslyons/python speech features

Model AVG E A C N O
Baseline 0.8835 0.8806 0.8991 0.8739 0.8791 0.8847

Audio, images and text
DAN+V,EtEA,C2W2S4P(E.F.) 0.9131 0.9141 0.9106 0.9193 0.9103 0.9109
DAN+V,EtEA,C2W2S4P(L.F.) 0.9080 0.9067 0.9101 0.9072 0.9062 0.9096

Audio and images
NJU follow-up [27] 0.9212 − − − − −

heysky [86] 0.9173 − − − − −
DAN+V,EtEA(E.F.) 0.9146 0.9152 0.9127 0.9191 0.9129 0.9131
DAN+V,EtEA(L.F.) 0.9135 0.9137 0.9132 0.9145 0.9111 0.9151

NJU [83] 0.9130 0.9133 0.9126 0.9166 0.9100 0.9123
evolgen [28] 0.9121 0.9150 0.9119 0.9119 0.9099 0.9117
DCC [29] 0.9109 0.9107 0.9102 0.9138 0.9089 0.9111
ucas [84] 0.9098 0.9129 0.9091 0.9107 0.9064 0.9099

conv-3d,EtEA(E.F.) 0.9094 0.9081 0.9073 0.9120 0.9090 0.9109
conv-3d,EtEA(L.F.) 0.9065 0.9050 0.9080 0.9056 0.9054 0.9086

Text and Images
DAN+V,C2W2S4P(E.F.) 0.9116 0.9116 0.9080 0.9179 0.9089 0.9116
DAN+V,C2W2S4P(L.F.) 0.9094 0.9079 0.9110 0.9123 0.9068 0.9095

Audio and images
EtEA,C2W2S4P(E.F.) 0.8978 0.8957 0.9028 0.8921 0.8980 0.9003
EtEA,C2W2S4P(L.F.) 0.8956 0.8929 0.9027 0.8893 0.8947 0.8982

Images
DAN+V 0.9154 0.9169 0.9129 0.9219 0.9109 0.9146
conv-3d 0.9029 0.9009 0.9024 0.9081 0.9007 0.9025

Audio
EtEA 0.8974 0.8957 0.9034 0.8899 0.8975 0.9006

Text
C2W2S4P 0.8880 0.8827 0.8987 0.8844 0.8858 0.8882

Word-based model 0.8840 0.8803 0.8946 0.8778 0.8807 0.8866

Table 6: The table shows the MAA scores of models predictions on the First Impressions
test dataset. The value of MAA for each OCEAN trait and the average of the
MAA scores of all the traits is reported. The table shows the scores of the top
four teams in the First Impressions competition (NJU, evolgen, DCC, ucas) and
the models implemented in the thesis. In this table the end-to-end audio model
from subsection 4.2 is referred to as EtEA and the video-based model from 4.3.2
is referred to as conv-3d. E.F. and L.F. indicate if a multimodal model is built
using early or late fusion.

70

Model AVG E A C N O
Baseline 0.5096 0.4988 0.5129 0.5161 0.5010 0.5193

Audio, images and text
DAN+V,EtEA,C2W2S4P(E.F.) 0.8170 0.8260 0.7590 0.8703 0.8185 0.8110
DAN+V,EtEA,C2W2S4P(L.F.) 0.8354 0.8420 0.7900 0.8707 0.8407 0.8337

Audio and images
DAN+V,EtEA(E.F.) 0.8317 0.8408 0.7788 0.8744 0.8392 0.8254
DAN+V,EtEA(L.F.) 0.8407 0.8479 0.7912 0.8802 0.8448 0.8391

ucas [84] 0.8277 0.8421 0.7767 0.8569 0.8338 0.8290
NJU [83] 0.8227 0.8391 0.7634 0.8696 0.8199 0.8217

evolgen [28] 0.8207 0.8376 0.7771 0.8492 0.8260 0.8135
DCC [29] 0.8111 0.8178 0.7528 0.8579 0.8131 0.8138

conv-3d,EtEA(E.F.) 0.8034 0.7943 0.7451 0.8344 0.8233 0.8201
conv-3d,EtEA(L.F.) 0.8081 0.8024 0.7567 0.8384 0.8201 0.8230

Text and images
DAN+V,C2W2S4P(E.F.) 0.8154 0.8292 0.7460 0.8670 0.8130 0.8219
DAN+V,C2W2S4P(L.F.) 0.8323 0.8438 0.7803 0.8771 0.8338 0.8265

Audio and text
EtEA,C2W2S4P(E.F.) 0.7408 0.7470 0.7033 0.7427 0.7612 0.7501
EtEA,C2W2S4P(L.F.) 0.7404 0.7423 0.7128 0.7349 0.7600 0.7518

Images
DAN+V 0.8271 0.8424 0.7649 0.8795 0.8249 0.8239
conv-3d 0.7684 0.7621 0.7089 0.8169 0.7711 0.7831

Audio
EtEA 0.7418 0.7493 0.7126 0.7248 0.7638 0.7586

Text
C2W2S4P 0.6532 0.6301 0.6527 0.6748 0.6689 0.6400

Word-based model 0.5914 0.5823 0.5783 0.5981 0.6037 0.5947

Table 7: The table shows the AUC scores of models predictions on the First Im-
pressions test dataset. The value of AUC for each OCEAN trait and the
average of the AUC scores of all the traits is reported. The table shows the
scores of the top four teams in the First Impressions competition (NJU,
evolgen, DCC, ucas) and the models implemented in the thesis. In this
table the end-to-end audio model from subsection 4.2 is referred to as
EtEA and the video-based model from 4.3.2 is referred to as conv-3d. E.F.
and L.F. indicate if a multimodal model is built using early or late fusion.

71

Model MAA AUC
Images

DAN+V 0.9154 0.8239
DAN+(NJU) [83] 0.9111 −
DAN(NJU) [83] 0.9100 −
ResNet(NJU) [83] 0.9080 −

conv-3d 0.9029 0.7831
Audio

End-to-End (thesis) 0.8974 0.7586
End-to-End (NJU) [27] 0.8950 −
Linear Reg. (NJU) [83] 0.8900 −

Text
C2W2S4P 0.8880 0.6532

Word-based model 0.8840 0.5914

Table 8: A comparison between the MAA and AUC scores of the models that take
only one modality as input using the First Impressions test dataset. The
reported scores are the average over the five OCEAN traits.

Table 8 shows a comparison between all the models implemented in this thesis and

models from the NJU team that use one modality as input, using the MAA and

AUC metrics. For the models implemented by NJU, only the MAA is used in this

comparison as they did not mention the AUC values in their work [27].

6.3 Discussion

In this section, the results presented in sections 6.1 and 6.2 will be discussed. Each

subsection will interpret a different part of the results.

6.3.1 Baseline model

The MAA for the baseline model in Table 6 is relatively high for a model predicting

a constant value. This leads to ambiguity because when a model has an MAA value

of 88 for example, it is not clear if the model is predicting accurately or is it just

72

predicting a constant value. The high MAA score of the baseline model could be

justified by the following facts:

• When using a constant predictor, the value that would minimize the MSE is

the mean of the output labels. This could be proved by the differentiating the

MSE function in terms of the constant prediction and solving for minimizing

the error. While the value that would minimize the mean absolute error (MAE)

and maximize the MAA, is the median of the output labels. The histograms

from Figure 30 show that the mean and the median of the data are very close.

• The histograms from Figure 30 show that almost half of the labels are centered

around the mean. Since MAA is a regression metric that punishes predictions

that are far from the output labels, then just predicting the mean value will

most of the cases be very close to the output label. For example, if a dataset

labels range is [0.4,0.6], a model that predicts 0.5 constantly will have an MAA

≥ 0.9.

These facts justify the high MAA value for the baseline model, but they also show

that, although the MAA is a regression metric, it is not enough to evaluate the

performance of regression models for this dataset.

On the other hand, the AUC score of the baseline model in Table 7 is very low. This

is due to the fact that AUC describes how good a model is at distinguishing between

labels that belong to different categories. So the baseline is equivalent to a model

that is doing random predictions.

Hence, using both metrics is a good evaluation of the model, as a high MAA will

indicate that a model can predict OCEAN traits accurately and a high AUC will

assure that the MAA value is high because the model can understand which examples

have high or low personality traits and not just predicting a value close to the mean.

73

6.3.2 Comparison between single modalities

In this subsection, the results of models that use the same modality will be discussed.

In addition to a discussion, that makes a comparison between the modalities and the

information they hold with respect to personality.

Text

In table 8, the average of the MAA and AUC metrics over the OCEAN traits for the

text-based and character-based models are shown. The table shows that the character-

based model has better scores for both metrics, this is explainable considering the

nature of the First Impressions dataset. The First Impressions dataset is collected

from a social media platform where people post videos. In the context of social media

it will be common for people to speak in an informal way or even mispronounce

few words. In both cases, a word-based model could not utilize these words. As

described in section 4.1.1, a word-based model represents words using pre-computed

word embeddings, which will not have a representation for these words. On the other

hand, the character-based model would represent words using an LSTM, which will

produce a vector representing a word by processing it’s characters as a sequence.

However, the predictive performance of the text models is not as good as the other

two modalities. Not only are the MAA scores close to the baseline, but also the AUC

scores of both models are less than the AUC scores of any other model. One way to

explain this is that these models were trained using 15 seconds videos and this is a

short time for a person to choose words that could reflect their personality.

For the PAN dataset, the implementation of the C2W2S4P model in this thesis has

a close RMSE to the original implementation in [72]. However, the RMSE of both

models is very close to the baseline, which indicates that both do not have good

predictive performance. When examining the results of the PAN competition [13], it

74

is found that the competition had 22 competitors and only 10 were able to achieve

better than the baseline. One of the justifications could be the unbalanced dataset

distribution. As the histograms in Figure 31 show, all the traits do not have a good

balance of examples below and above 0.5.

Audio

Concerning the audio modality, there are three models to compare: the end-to-end

audio model from section 4.2, the linear regression model and the end-to-end audio

model by NJU [27]. Table 8 shows the MAA scores of the three models. The table

shows that the end-to-end audio model implemented in this thesis has a higher MAA,

this could be justified for three reasons:

• Since the neural network’s parameters are used to extract features from input

audio, an end-to-end model can optimize it’s parameters to extract the features

that minimize the loss, opposed to a model that extracts a static set features

that might not be the best to model the problem.

• These models extract features from the audio input, either using a neural

network or an external library. Each one of the models extracts their set of

features from several parts of the audio, for example, the end-to-end audio

models use convolution filters to find features in various parts of the input.

However, after the feature extraction, the end-to-end audio models process

these features sequentially using LSTMs to map the temporal relation between

these features.

• One difference between the end-to-end audio models, is that the one implemented

in this thesis uses bi-directional LSTMs, so it can find more temporal relations

between the extracted features.

75

The AUC and MAA scores of the end-to-end audio model are relatively higher than

the scores of the text models, nevertheless lower than all of the image models. This

indicates that images have the most information that reflects a person’s personality.

Images

Table 8 shows the MAA scores of five models that use images as input: the three

image models implemented by NJU [83] and the models from subsections 4.3.1 and

4.3.2.

The table shows that the conv-3d video-based model has the least MAA, this shows

the effect of transfer learning because even though the conv-3d video-based model gets

six images as input and the other models (three using only one image) the manage to

have better accuracy because of transfer learning.

In Table 8, the implementation of the DAN+V model has the highest MAA across

all models that predict OCEAN traits from one modality. This can be justified by:

• It is an image model and the overall results show that images have more features

related to personality than text and audio.

• It combines two techniques that the rest of the image modality models used

only one of them: transfer learning and it takes as input several images instead

of one.

6.3.3 Comparison between multiple modalities

This section will discuss and compare the performances of multimodal models using

Tables 6 and 7 that show the MAA and AUC scores of the models.

76

Subsection 6.3.2 has shown that not only the text models have the least MAA and

AUC scores, but also that their scores are far from the audio and image models.

These conclusions align with the results from Tables 6 and 7, as all the models that

were trained jointly with the character-based model (which has better performance

than the word-based) had worse results compared to when they were trained alone;

with an exception for the end-to-end audio model that has a slightly better MAA.

Conversely, the end-to-end audio model has significantly improved the results of

the conv-3d video-based model on both MAA and AUC, when the models were

trained jointly. While slightly decreasing the MAA score of the DAN+V model, the

end-to-end audio model has increased the AUC of the DAN+V model. This shows

that the features from audio have information that could even help the DAN+V

model (the model with the third highest MAA) to improve at classifying the OCEAN

traits. An interpretation of this is, that jointly training audio and image models leads

to co-dependence between the features and each model can focus on extracting the

features that are more informative in it’s modality. Since the best two MAA score are

from models that are not end-to-end (the first uses ensemble of five models and the

second extract audio features using an external library), the early fusion of DAN+V

and the end-to-end audio model is the best end-to-end model with an MAA score of

0.9146.

When comparing between multimodal models that use early and late fusion techniques,

a visible pattern is found. All of the early fusion models have better MAA, while the

late fusion models have better AUC, making the late fusion between the DAN+V

model and the end-to-end audio model, the model with the highest AUC of 0.8407.

This shows that models that use late fusion may not be the most accurate at predicting

the exact OCEAN traits values, but they are the best at distinguishing different

personalities.

77

6.4 Interpretations

In this section, techniques that were used to interpret the features extracted by the

neural networks will be shown. The techniques used to interpret features extracted

from images are discussed in subsection 6.4.1 and those used to interpret audio

features are in subsection 6.4.2.

6.4.1 Image features

Saliency heat maps are one of the techniques used to interpret the trained parameters

of a CNN [88]. A saliency heat map is a heat map of an image that is input to a CNN,

where the pixels that contribute more to the output of the CNN are highlighted. In

the work by Yang et al. [88], a ResNet network is trained using the First Impressions

dataset to predict OCEAN traits from images. They have also visualized saliency

heat maps for their trained ResNet, which are shown in Figure 33.

The figure shows that for input images, the pixels with the most relevance for the

network are around the face of the subject person in the image. This assures that

the CNN uses facial features to compute the OCEAN traits of a person.

6.4.2 Audio features

PyAudioAnalysis is an open-source python library that can be used for various

applications related to audio processing [85]. One application that is of interest to

this thesis is audio features extraction, as this library could get as input an audio

file and output interpretative audio features and representations. Table 9 shows the

features that the library extracts. The library could also be used to extract these

features from several parts of the audio input and then would output the mean and

standard deviation of the extracted features in a 68-dimensional vector.

78

Figure 33: Saliency heat maps of a ResNet network that predicts OCEAN traits
from images. Reprinted from [88].

In order to interpret the features extracted by the end-to-end audio model, pearson

correlation coefficient is computed between every feature extracted by the end-to-end

audio model and pyAudioAnalysis, from the First Impressions training dataset. These

values has shown that out of the 256-dimensional vector extracted by the deep neural

network there are four features that have a pearson correlation higher than 0.5 with

the MFCC features, while five other features have a pearson correlation less than

-0.5 with the MFCC features. According to [89], a pearson correlation coefficient

more than 0.5 shows a moderate positive correlation and less than -0.5 is a moderate

negative correlation.

79

Trait ID Trait name Description

1 Zero Crossing Rate The rate of sign-changes of the signal during
the duration of a particular frame.

2 Energy The sum of squares of the signal values, normalized
by the respective frame length.

3 Entropy of Energy The entropy of sub-frames’ normalized energies.
It can be interpreted as a measure of abrupt changes.

4 Spectral Centroid The center of gravity of the spectrum.
5 Spectral Spread The second central moment of the spectrum.

6 Spectral Entropy Entropy of the normalized spectral energies
for a set of sub-frames.

7 Spectral Flux The squared difference between the normalized
magnitudes of the spectra of the two successive frames.

8 Spectral Rollof The frequency below which 90% of the magnitude
distribution of the spectrum is concentrated.

9-21 MFCCs
Mel Frequency Cepstral Coefficients form a cepstral
representation where the frequency bands are not linear
but distributed according to the mel-scale.

22-33 Chroma Vector
A 12-element representation of the spectral energy
where the bins represent the 12 equal-tempered pitch
classes of western-type music (semitone spacing).

34 Chroma Deviation The standard deviation of the 12 chroma coefficients.

Table 9: Audio features extracted by the pyAudioAnalysis library.

80

7 Conclusion

In this thesis, an attempt at modeling the Automatic Personality Perception problem

has been made. The personality model used as the underlying basis of this work mod-

eled personalities as five apparent traits: Openness, Conscientiousness, Extraversion,

Agreeableness, Neuroticism (and is thus referred to as OCEAN). In this work, deep

neural networks were used to predict personality from three modalities: text, audio,

and images.

Chapter 2 has shown other works that modeled the APP problem. These works

used either only one modality to predict personality or a combination of multiple

modalities. Chapter 2 also introduced two competitions wherein participants were

asked to predict personality from text or video data.

The technical background of the algorithms used in this thesis was explained in

chapter 3. The steps of the pipeline used have been illustrated and neural networks

and their special variations that were used to model the APP problem have been

demonstrated.

Chapter 4 is where the neural network models implemented in this thesis were

explained. There were two models implemented to predict personality using text as

input: a character-based and a word-based model. Regarding the audio modality, an

end-to-end audio model was used to predict the OCEAN traits. To utilize images for

modeling the APP problem, two CNNs were implemented, one of them uses transfer

learning.

81

There were also models that used more than one modality to predict OCEAN traits.

These models were implemented by fusing the models that use one modality either

by jointly training them together or by doing an average of their predictions. The

architecture of each model implemented in this thesis is shown and intuition of why

each one is suitable to extract useful features based on the input modality is discussed

in chapter 4.

The experimental setup for this thesis is shown in chapter 5. The specifications of the

datasets used and their underlying distributions were discussed. Two datasets were

used, namely PAN and First Impressions, most of the results were reported on the

First Impressions dataset and they were evaluated using two metrics Mean Absolute

Accuracy (MAA) and Area Under ROC curve (AUC).

Finally, chapter 6 shows the results of evaluating the trained models from chapter

4, using the metrics and datasets introduced in chapter 5. The results have shown

that, regarding the models that use one modality to predict personalities, the models

implemented in this thesis have the highest scores. For multimodal models, one of

the models implemented in this thesis has the third best MAA score while surpassing

all results of the models that participated in the first round of the First Impressions

competition. Furthermore, this model has the best MAA score of the models that

could be trained using only one neural network without using any other external

libraries. This is beneficial from an industrial point of view, as it is easier to deploy

and has fewer hyperparameters to tune.

The team that got the best AUC score in the First Impressions competition was the

team ucas with a score of 0.8277. In this thesis, three of the implemented models have

reached higher scores with a maximum of 0.8407, making this model the best AUC

score that the author knows of for predicting the First Impressions test dataset.

A discussion also of the results has been made, which concluded that the best

modality that could be used to predict personality is the image modality and the

82

best combination of modalities is image and audio, as the fusing of the audio model

with the best image model has yielded better AUC score. Additionally, the results

showed that early fusion techniques have better MAA scores, while late fusions yield

better AUC scores. Furthermore, an interpretation of the audio and image features

extracted by the models was made, concluding that the visual features are mainly

facial features of the subject person and that some of the audio features have a good

correlation with MFCC.

Future work

The future work for this thesis can be summarized in the following points:

• The MAA and AUC scores of the text models implemented in this thesis were not

high. However, when examining the winners of the PAN competition, it is found

that they did not use deep neural networks, but they used classical machine

learning algorithms like SVMs and random forests. One way to interpret this is

that the features extracted from short term text should be less complex than

the ones extracted by neural networks, therefore using classic machine learning

algorithms might be beneficial for predicting personality from text, as complex

features are more vulnerable to overfitting

• Watson Personality Insights is a tool developed by IBM, that predicts peoples’

personality from the text they wrote1. On the demo webpage of the tool, it is

written that the input text to the tool "should contain words about every day

experiences, thoughts, and responses" in order to predict the personality of the

author 2, also the bigger the amount of text, the more accurate the results are.

The examples from the demo pages are blocks of text that consist of at least

1https://www.ibm.com/watson/services/personality-insights/
2https://personality-insights-demo.ng.bluemix.net/

83

https://www.ibm.com/watson/services/personality-insights/
https://personality-insights-demo.ng.bluemix.net/

6,000 words. This shows that implementing text models that get longer and

more personal input could yield better predictions.

• The NJU team has implemented the model with the best MAA score using

an ensemble of five models. Although ensembling experiments were applied

in this thesis, these experiments have used a maximum of three models due

to the fact that for each modality, there was one model that has much better

performance than the others. However, NJU implemented several models with

good performance and applied ensemble. Applying ensemble this way with more

diverse models could yield better results. Additionally, this can be investigated

in early fusions

• The team that implemented the model with the 2nd best MAA has used deep

neural networks to extract visual and acoustic features and fed these features

to a random forest to do the final prediction. This technique of using classical

machine learning and deep learning together for the same task needs to be more

explored.

• The correlation technique used in section 6.4.1 has shown that only a few of the

features extracted by the deep end-to-end audio mode have similarities with

MFCC. The same technique could be used with other audio features to get an

idea about what are the rest of the features. For example pitch, loudness, or

spectrograms.

84

Bibliography

[1] O. Kampman, E. J. Barezi, D. Bertero, and P. Fung, “Investigating audio, visual,

and text fusion methods for end-to-end automatic personality prediction,” arXiv

preprint arXiv:1805.00705, 2018.

[2] S. Kedar and D. S. Bormane, “Automatic personality assessment: A system-

atic review,” 2015 International Conference on Information Processing (ICIP),

pp. 326–331, 2015.

[3] D. Zumstein and S. Hundertmark, “Chatbots–an interactive technology for

personalized communication, transactions and services.,” IADIS International

Journal on WWW/Internet, vol. 15, no. 1, 2017.

[4] G. Mohammadi and A. Vinciarelli, “Automatic personality perception: Prediction

of trait attribution based on prosodic features,” IEEE Transactions on Affective

Computing, vol. 3, no. 3, pp. 273–284, 2012.

[5] O. P. John, S. Srivastava, et al., “The big five trait taxonomy: History, mea-

surement, and theoretical perspectives,” Handbook of personality: Theory and

research, vol. 2, no. 1999, pp. 102–138, 1999.

[6] A. Vinciarelli and G. Mohammadi, “A survey of personality computing,” IEEE

Transactions on Affective Computing, vol. 5, no. 3, pp. 273–291, 2014.

85

[7] V. Ponce-López, B. Chen, M. Oliu, C. Corneanu, A. Clapés, I. Guyon, X. Baró,

H. J. Escalante, and S. Escalera, “Chalearn lap 2016: First round challenge

on first impressions-dataset and results,” in European Conference on Computer

Vision, pp. 400–418, Springer, 2016.

[8] M. R. Minar and J. Naher, “Recent advances in deep learning: An overview,”

arXiv preprint arXiv:1807.08169, 2018.

[9] T. Yarkoni, “Personality in 100,000 words: A large-scale analysis of personality

and word use among bloggers,” Journal of research in personality, vol. 44, no. 3,

pp. 363–373, 2010.

[10] P. Dandannavar, S. Mangalwede, and P. Kulkarni, “Social media text-a source

for personality prediction,” in 2018 International Conference on Computational

Techniques, Electronics and Mechanical Systems (CTEMS), pp. 62–65, IEEE,

2018.

[11] F. Alam, E. A. Stepanov, and G. Riccardi, “Personality traits recognition on

social network-facebook,” in Seventh International AAAI Conference on Weblogs

and Social Media, 2013.

[12] T. Tandera, D. Suhartono, R. Wongso, Y. L. Prasetio, et al., “Personality

prediction system from facebook users,” Procedia computer science, vol. 116,

pp. 604–611, 2017.

[13] F. M. Rangel Pardo, F. Celli, P. Rosso, M. Potthast, B. Stein, and W. Daelemans,

“Overview of the 3rd author profiling task at pan 2015,” in CLEF 2015 Evaluation

Labs and Workshop Working Notes Papers, pp. 1–8, 2015.

[14] M. A. Alvarez-Carmona, A. P. López-Monroy, M. Montes-y Gómez, L. Villasenor-

Pineda, and H. Jair-Escalante, “Inaoe’s participation at pan’15: Author profiling

task,” Working Notes Papers of the CLEF, 2015.

86

[15] L. M. Werlen, “Statistical learning methods for profiling analysis,” in Proceedings

of CLEF, 2015.

[16] O.-M. Sulea and D. Dichiu, “Automatic profiling of twitter users based on their

tweets: Notebook for pan at clef 2015.,” in CLEF (Working Notes), 2015.

[17] G. Farnadi, G. Sitaraman, S. Sushmita, F. Celli, M. Kosinski, D. Stillwell,

S. Davalos, M.-F. Moens, and M. De Cock, “Computational personality recog-

nition in social media,” User modeling and user-adapted interaction, vol. 26,

no. 2-3, pp. 109–142, 2016.

[18] G. Cucurull, P. Rodríguez, V. O. Yazici, J. M. Gonfaus, F. X. Roca, and

J. Gonzàlez, “Deep inference of personality traits by integrating image and word

use in social networks,” arXiv preprint arXiv:1802.06757, 2018.

[19] T. Polzehl, S. Moller, and F. Metze, “Automatically assessing personality from

speech,” in 2010 IEEE Fourth International Conference on Semantic Computing,

pp. 134–140, IEEE, 2010.

[20] M.-A. Carbonneau, E. Granger, Y. Attabi, and G. Gagnon, “Feature learning

from spectrograms for assessment of personality traits,” IEEE Transactions on

Affective Computing, 2017.

[21] N. Al Moubayed, Y. Vazquez-Alvarez, A. McKay, and A. Vinciarelli, “Face-based

automatic personality perception,” in Proceedings of the 22nd ACM international

conference on Multimedia, pp. 1153–1156, ACM, 2014.

[22] T. Fernando et al., “Persons’ personality traits recognition using machine learning

algorithms and image processing techniques,” Advances in Computer Science:

an International Journal, vol. 5, no. 1, pp. 40–44, 2016.

87

[23] F. Celli, E. Bruni, and B. Lepri, “Automatic personality and interaction style

recognition from facebook profile pictures,” in Proceedings of the 22nd ACM

international conference on Multimedia, pp. 1101–1104, ACM, 2014.

[24] J. Joshi, H. Gunes, and R. Goecke, “Automatic prediction of perceived traits

using visual cues under varied situational context,” in 2014 22nd International

Conference on Pattern Recognition, pp. 2855–2860, IEEE, 2014.

[25] F. Alam and G. Riccardi, “Predicting personality traits using multimodal informa-

tion,” in Proceedings of the 2014 ACM multi media on workshop on computational

personality recognition, pp. 15–18, ACM, 2014.

[26] G. An and R. Levitan, “Lexical and acoustic deep learning model for personality

recognition.,” in Interspeech, pp. 1761–1765, 2018.

[27] X.-S. Wei, C.-L. Zhang, H. Zhang, and J. Wu, “Deep bimodal regression of

apparent personality traits from short video sequences,” IEEE Transactions on

Affective Computing, vol. 9, no. 3, pp. 303–315, 2017.

[28] A. Subramaniam, V. Patel, A. Mishra, P. Balasubramanian, and A. Mittal,

“Bi-modal first impressions recognition using temporally ordered deep audio

and stochastic visual features,” in European Conference on Computer Vision,

pp. 337–348, Springer, 2016.

[29] Y. Güçlütürk, U. Güçlü, M. A. van Gerven, and R. van Lier, “Deep impression:

Audiovisual deep residual networks for multimodal apparent personality trait

recognition,” in European Conference on Computer Vision, pp. 349–358, Springer,

2016.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

88

http://www.deeplearningbook.org

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[32] Y. M. Ngoma, Analysis of Control Attainment in Endogenous Electroencephalo-

gram Based Brain Computer Interfaces. PhD thesis, Tshwane University of

Technology, 2017.

[33] V. Kecman, Support Vector Machines – An Introduction, vol. 177, pp. 605–605.

Springer, 05 2005.

[34] N. Horning, “Introduction to decision trees and random forests,” Am. Mus. Nat.

Hist, vol. 2, pp. 1–27, 2013.

[35] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[36] J. Hoffman, “Cramnet: Layer-wise deep neural network compression with knowl-

edge transfer from a teacher network,” arXiv preprint arXiv:1904.05982, 2019.

[37] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[38] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[39] L. Prechelt, “Early stopping-but when?,” in Neural Networks: Tricks of the trade,

pp. 55–69, Springer, 1998.

[40] D. E. Rumelhart, “Hinton, ge and williams, r,” Learning representations by

backpropagation error. nature, vol. 323, pp. 533–536, 1986.

[41] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathe-

matics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[42] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

89

[43] H. Ide and T. Kurita, “Improvement of learning for cnn with relu activation

by sparse regularization,” in 2017 International Joint Conference on Neural

Networks (IJCNN), pp. 2684–2691, IEEE, 2017.

[44] G. Roffo, “Ranking to learn and learning to rank: On the role of ranking in

pattern recognition applications,” arXiv preprint arXiv:1706.05933, 2017.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[46] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks

for lvcsr using rectified linear units and dropout,” in 2013 IEEE international

conference on acoustics, speech and signal processing, pp. 8609–8613, IEEE, 2013.

[47] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropaga-

tion learning: The rprop algorithm,” in Proceedings of the IEEE international

conference on neural networks, vol. 1993, pp. 586–591, San Francisco, 1993.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[49] A. Gupta, P. J. Harrison, H. Wieslander, N. Pielawski, K. Kartasalo, G. Partel,

L. Solorzano, A. Suveer, A. H. Klemm, O. Spjuth, et al., “Deep learning in image

cytometry: a review,” Cytometry Part A, vol. 95, no. 4, pp. 366–380, 2019.

[50] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

p. 436, 2015.

[51] M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press

San Francisco, CA, USA:, 2015.

90

[52] S. Wang, C. Tang, J. Sun, J. Yang, C. Huang, P. Phillips, and Y.-D. Zhang,

“Multiple sclerosis identification by 14-layer convolutional neural network with

batch normalization, dropout, and stochastic pooling,” Frontiers in Neuroscience,

vol. 12, p. 818, 11 2018.

[53] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge,” International Journal of Computer

Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, pp. 1097–1105, 2012.

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pp. 1–9,

2015.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770–778, 2016.

[57] A. Laxman Katole, K. Prasad Yellapragada, A. Kumar Bedi, S. Singh Kalra,

and S. C. Mynepalli, “Hierarchical deep learning architecture for 10k objects

classification,” Computer Science Information Technology, vol. 5, 09 2015.

[58] M. Cherti, Deep generative neural networks for novelty generation: a foundational

framework, metrics and experiments. PhD thesis, 2018.

[59] D. E. Rumelhart, G. E. Hinton, J. L. McClelland, et al., “A general framework

for parallel distributed processing,” Parallel distributed processing: Explorations

in the microstructure of cognition, vol. 1, no. 45-76, p. 26, 1986.

91

[60] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image

caption generator,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 3156–3164, 2015.

[61] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, “Semi-

supervised recursive autoencoders for predicting sentiment distributions,” in

Proceedings of the conference on empirical methods in natural language processing,

pp. 151–161, Association for Computational Linguistics, 2011.

[62] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[63] D. Zhang, H. Maei, X. Wang, and Y.-F. Wang, “Deep reinforcement learning for

visual object tracking in videos,” arXiv preprint arXiv:1701.08936, 2017.

[64] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[65] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[66] M. Fayyaz, M. H. Saffar, M. Sabokrou, M. Fathy, F. Huang, and R. Klette, “Stfcn:

spatio-temporal fully convolutional neural network for semantic segmentation of

street scenes,” in Asian Conference on Computer Vision, pp. 493–509, Springer,

2016.

[67] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,

2014.

[68] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

92

[69] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word

representation,” in Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pp. 1532–1543, 2014.

[70] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continuous

space word representations,” in Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pp. 746–751, 2013.

[71] E. Haddi, X. Liu, and Y. Shi, “The role of text pre-processing in sentiment

analysis,” Procedia Computer Science, vol. 17, pp. 26–32, 2013.

[72] F. Liu, J. Perez, and S. Nowson, “A language-independent and composi-

tional model for personality trait recognition from short texts,” arXiv preprint

arXiv:1610.04345, 2016.

[73] R. A. Serway and C. Vuille, College physics. Cengage Learning, 2014.

[74] J. Burg, J. Romney, and E. Schwartz, Digital Sound & Music: Concepts, Appli-

cations, and Science. Franklin, Beedle & Associates, 2017.

[75] P. Tzirakis, J. Zhang, and B. W. Schuller, “End-to-end speech emotion recognition

using deep neural networks,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 5089–5093, IEEE, 2018.

[76] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[77] K. Liu, Y. Li, N. Xu, and P. Natarajan, “Learn to combine modalities in

multimodal deep learning,” arXiv preprint arXiv:1805.11730, 2018.

[78] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions

on Pattern Analysis & Machine Intelligence, no. 10, pp. 993–1001, 1990.

93

[79] B. Chen, S. Escalera, I. Guyon, V. Ponce-López, N. Shah, and M. O. Simón,

“Overcoming calibration problems in pattern labeling with pairwise ratings:

application to personality traits,” in European Conference on Computer Vision,

pp. 419–432, Springer, 2016.

[80] F. M. Rangel Pardo, F. Celli, P. Rosso, M. Potthast, B. Stein, and W. Daelemans,

“Pan workshop 2015.” https://pan.webis.de/clef15/pan15-web/index.html.

[81] B. Rammstedt and O. P. John, “Measuring personality in one minute or less: A

10-item short version of the big five inventory in english and german,” Journal

of research in Personality, vol. 41, no. 1, pp. 203–212, 2007.

[82] A. P. Bradley, “The use of the area under the roc curve in the evaluation of

machine learning algorithms,” Pattern recognition, vol. 30, no. 7, pp. 1145–1159,

1997.

[83] C.-L. Zhang, H. Zhang, X.-S. Wei, and J. Wu, “Deep bimodal regression for

apparent personality analysis,” in European Conference on Computer Vision,

pp. 311–324, Springer, 2016.

[84] B. Aydin, A. A. Kindiroglu, O. Aran, and L. Akarun, “Automatic personality

prediction from audiovisual data using random forest regression,” in 2016 23rd

International Conference on Pattern Recognition (ICPR), pp. 37–42, IEEE, 2016.

[85] T. Giannakopoulos, “pyaudioanalysis: An open-source python library for audio

signal analysis,” PloS one, vol. 10, no. 12, 2015.

[86] H. Kaya, F. Gurpinar, and A. Ali Salah, “Multi-modal score fusion and decision

trees for explainable automatic job candidate screening from video cvs,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pp. 1–9, 2017.

94

https://pan.webis.de/clef15/pan15-web/index.html

[87] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: the munich versatile

and fast open-source audio feature extractor,” in Proceedings of the 18th ACM

international conference on Multimedia, pp. 1459–1462, ACM, 2010.

[88] K. Yang and N. Glaser, “Prediction of personality first impressions with deep

bimodal lstm,” 2017.

[89] M. M. Mukaka, “A guide to appropriate use of correlation coefficient in medical

research,” Malawi Medical Journal, vol. 24, no. 3, pp. 69–71, 2012.

95

	Acknowledgments
	1 Introduction
	2 Related Work
	3 Background
	3.1 Machine learning pipeline
	3.2 Neural networks
	3.2.1 Single layer perceptron
	3.2.2 Multilayer perceptron
	3.2.3 Loss functions
	3.2.4 Parameter optimization
	3.2.5 Activation functions
	3.2.6 Dropout
	3.2.7 Hyperparameters

	3.3 Convolutional neural networks
	3.3.1 Convolutional layer
	3.3.2 Pooling layers
	3.3.3 Explaining CNNs performance
	3.3.4 Transfer learning

	3.4 Recurrent Neural Networks
	3.4.1 Bidirectional RNNs
	3.4.2 Drawbacks of RNNs
	3.4.3 Gated RNNs

	3.5 Word embeddings

	4 Approach
	4.1 Text modality
	4.1.1 Word model
	4.1.2 Character model

	4.2 Audio modality
	4.3 Image modality
	4.3.1 Image based model
	4.3.2 Video-based model

	4.4 Multimodality
	4.4.1 Early fusion
	4.4.2 Late fusion

	5 Experimental Setup
	5.1 Datasets
	5.1.1 First Impressions
	5.1.2 PAN

	5.2 Metrics
	5.2.1 Mean absolute accuracy
	5.2.2 Root Mean Square Error
	5.2.3 Confusion matrix
	5.2.4 Area Under ROC Curve

	6 Results
	6.1 PAN evaluation
	6.2 First Impressions evaluation
	6.3 Discussion
	6.3.1 Baseline model
	6.3.2 Comparison between single modalities
	6.3.3 Comparison between multiple modalities

	6.4 Interpretations
	6.4.1 Image features
	6.4.2 Audio features

	7 Conclusion
	Bibliography

