Comparative Study of Forecasting Algorithms for Energy Data

Master Thesis Presentation by Nishat Fariha Rimi

20th May, 2019

Albert-Ludwigs-Universität Freiburg

Motivation

Wind and solar energy varies
 What is produced must be used

Benefits of energy demand forecasting-

- Balances supply and demand
- Prevents energy waste
- Reduces operation cost

Comparative analysis of forecasting methods depending on

- Time scale
- Dataset type and sample size

Source: Science direct. smart grid and solar energy

Source: <u>https://www.iass-potsdam.de</u>

UNI FREIBURG

Outline

Overview

- Implemented forecasting methods
- Considered forecasting scenarios

Methodology

- Methods
- Forecasting toolbox

Performance analysis

- Performance comparison

Conclusion and Future Work

 \mathbf{m}

Create: Structure of a forecasting toolbox

Compare: Methods performance according to datasets and forecasting scenarios

Lahouar and J. Ben Hadj Slama Energy Conversion and Management, vol. 103, pp. 1040–1051, 2015. R. J. Hyndman and G. Athanasopoulos, Forecasting : Principles and Practice. OTexts, 2018.

Considered Scenarios

Performance comparison according to different forecasting aspects.

	Forecasting horizon	Time scale	Considered time scale	Forecasting sample size	
	Very short-term	5 min- 1 h	1 h	1	
	Short-term	1 h- 24 h	1 d	24	
	Medium-term	24 h- weeks	1 w	24*7	
	Long-term	month-years	1 m 3 m	24*7*4 24*7*4*3	
T ar	raining nple Size 50	100 200	400	800 1600 2	22

P. Kuo, Energies, vol. 11, January, pp. 1–13, 2018

J. W. Taylor, International Journal of Forecasting, vol. 24, no. 4, pp. 645–658, 2008

Statistical Approaches

Depend on the past values of endogenous variable for forecasting

ARMA (*p,q*):

Combination of AR(p) and MA(q) models for stationary time series

ARIMA (*p*,*d*,*q*):

Transform the non-stationary data into stationary by differencing

ES (*α***)**:

Assign exponentially decreasing weights for past observations

HW (α, β, γ):

Design to capture trend and seasonality

C.-M. Lee *et al. Expert Systems with Applications*, vol. 38, pp. 5902–5911, 2011. R. Weron, Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach. 2006

Machine Learning & Deep Learning Approaches

Exogenous information and endogenous variables used together

RF (n_tree, max_depth):

Constructs multiple decision trees during training

KNN (*k*):

Searches for a group of k samples nearest based on distance function

ANN (hidden_node, hidden layer, epoch):

Allows data signals to process the output in one way

RNN (hidden_node, hidden layer, epoch):

Use internal state (memory) to process sequences of inputs

C. Xia *et al.* International Journal of Electrical Power & Energy Systems, vol. 32, pp. 743–750, 2010. M. Thanh Noi *et al.* Sensors, vol. 18, no. 1, 2018.

Methodology Parameter Optimization

Optimization of hyperparameter:

20.05.2019

2

Methodology Forecasting Toolbox

Performance Analysis Statistical Approaches

- Days Plot PV Generation
- Forecasting sample size- 1
- Training sample size- 2200

Performance Analysis Machine Learning Approaches

- Days Plot PV Generation
- Forecasting sample size- 1
- Training sample size- 2200

IBUR

Z

Performance Analysis All methods

- 1 Day Plot PV Generation
- Statistical methods and Machine learning methods
- Forecasting sample size-1
- Training sample size- 2200

B

Learning Time Comparison

Mean training time in seconds

PV generation: (daily forecasting for 100 training sample size)

Electrical load: (daily forecasting and 100 training sample size)

Training time increases gradually with the increase of training sample sizes

PC configuration: Windows 10 computer, with 4 Cores, 8GB of ram, and with 3.4 GHz clock speed.

Predicting Time Comparison

Mean predicting time in seconds

ARIMA

0.018

ARMA

0.004

PV generation: (monthly forecasting with 2200 training sample size)

ES

0.011

Electrical load : (monthly forecasting with 2200 training sample size)

HW

0.027

KNN

0.038

RF

0.048

RNN

0.05

ANN

0.06

predicting time has increased gradually with the increase of prediction horizons

PC configuration: Windows 10 computer, with 4 Cores, 8GB of ram, and with 3.4 GHz clock speed.

Performance Analysis Indicators

JRG

M

RMSE Comparison for PV Generation

MAE Comparison for PV Generation

RMSE Comparison Summary

	Photovoltaic Dataset	Electrical Load Dataset
Hourly	✓ ARIMA, ARMA — ES	✓ ARIMA, ARMA ─ HW
Daily	 RF, KNN HW, RNN (1600, 2200) ARMA, RNN (small sample) 	 ✓ RF, KNN, ✓ RNN, HW (>400) ─ ARMA, ES
Weekly	 RF, KNN, HW (1600,2200),RNN (2200) RNN (small sample) 	 Similar to Daily Similar to Daily
Monthly	 ✓ RF, KNN, ✓ RNN (1600,2200) ─ HW 	 ✓ RF, KNN,RNN ✓ HW (>200) ─ ARMA, ES

MAE Comparison Summary

Conclusion

Comparative analysis of eight forecasting methods –

- Prediction horizon
- □ Training sample size
- PV generation and electrical load

Hourly

- □ ARMA and ARIMA optimum choice
- Computation time of ARMA < Computation time of ARIMA</p>

Daily, weekly and monthly

- RF and KNN
- □ Computation time of KNN < Computation time of RF

HW and RNN - large dependency on sample size

Future Work

Adding other forecasting approaches e.g.

- Support vector regression
- Gaussian process regression etc.

Optimizing parameter with dynamic optimization function

Genetic algorithm

Training with –

- Datasets of shorter time interval like 15 or 30 minutes
- More datasets / applications

Thank You