

Master Thesis

Comparative Study of Forecasting Algorithms for

Energy Data

by

Nishat Fariha Rimi

April 8, 2019

Albert-Ludwigs-Universität Freiburg

Faculty of Engineering

Chair of Algorithms and Data Structures

Professor Dr. Hannah Bast

Supervisor

Prof. Dr. Hannah Bast

First Reviewer

Prof. Dr. Hannah Bast

Second Reviewer

Prof. Dr. Eng. Christof Wittwer

Advisors
Dr. David Fischer, Fraunhofer ISE, Freiburg, Germany.

MSc. Eng. Arne Groß, Fraunhofer ISE, Freiburg, Germany.

iii

Table of Contents

Abstract ... v

Zusammenfassung... vi

Declaration.. vii

Acknowledgement ... viii

List of Figures .. ix

List of Abbreviations .. xi

1. Introduction .. 1

1.1. Motivation .. 1
1.2. Research gap .. 2
1.3. Goal .. 3
1.4. Outline of the thesis ... 4

2. Related work ... 5

3. Theoretical background ... 8

3.1. Forecasting energy load ... 8
3.2. Time series analysis ... 9
3.3. Statistical approaches ... 11

3.3.1. Autoregression (AR) model .. 11
3.3.2. Moving average (MA) model ... 12
3.3.3. Autoregressive moving average (ARMA) model ... 13
3.3.4. Autoregressive integrated moving average (ARIMA) model ... 13
3.3.5. Exponential smoothing model .. 15
3.3.6. Holt-Winters model .. 16

3.4. Machine learning approaches ... 17
3.4.1. Random forest model .. 17
3.4.2. The K-nearest neighbor model .. 19

3.5. Deep learning approaches .. 20
3.5.1. Artificial neural network (ANN) model .. 20
3.5.2. Recurrent neural network (RNN) model ... 22

4. Methodology .. 24

4.1. Forecasting toolbox .. 24
4.2. Exogenous and endogenous variables .. 25
4.3. Data-sets ... 25

4.3.1. Household data sets .. 26
4.3.2. Handling outliers... 27
4.3.3. Training and testing data for each method .. 27

4.4. Forecasting accuracy measurement .. 28
4.4.1. The root mean square error (RMSE) ... 28
4.4.2. The mean absolute error (MAE) ... 28
4.4.3. The mean absolute percentage error (MAPE) ... 29
4.4.4. The Pearson correlation coefficient .. 29

4.5. Coding language and important libraries ... 30
4.6. Implementation procedure of the forecasting toolbox .. 31

5. Performance analysis ... 37

iv

5.1. Parameter optimization .. 37
5.1.1. ARMA and ARIMA ... 37
5.1.2. Exponential smoothing ... 38
5.1.3. Holt-Winters ... 40
5.1.4. Artificial neural network ... 41
5.1.5. Recurrent neural network .. 42
5.1.6. Random forest model .. 43
5.1.7. K-nearest neighbor .. 45

5.2. Evaluation .. 47
5.2.1. Comparison of the computational performance .. 47
5.2.2. Result and discussion .. 50
5.2.3. Performance summary .. 66

6. Conclusion ... 69

6.1. Future Work ... 71

Bibliography ... 72

v

Abstract

Accurate forecasting data is an important requirement of energy management systems and

subsequent decision-making processes to ensure proper balance between supply and demand.

The energy industry commonly carries out planning and forecasting of energy consumption for

three types of prediction intervals: short-term, medium-term and long-term. The accuracy of a

forecast depends on different parameters. Influence of the forecast horizon and the dataset type

is significant among them. Often PV generation and electrical load profiles are subject to

forecasting. Furthermore, different forecasting methods yield different accuracy. This study

aims to identify the most appropriate method for accurately forecasting energy data based on

the desired prediction horizon and the type of predicted dataset.

The analysed methods include three categories of approaches– statistical, machine learning and

deep learning. Statistical approaches include: Autoregressive moving average (ARMA),

Autoregressive integrated moving average (ARIMA), Exponential smoothing (ES) and Holt-

Winters method (HW). Machine learning approaches are K-nearest neighbor (KNN) and

Random forest (RF). From the deep learning approaches, Artificial neural network (ANN) and

Recurrent neural network (RNN) have been focused. The forecasting quality for each method

was measured using mean absolute error, mean absolute percentage error, root mean squared

error, and the correlation coefficient R value. The results suggest that RF and KNN were the

most appropriate forecasting algorithms for short-term (daily), medium-term (monthly) and

long-term (3 monthly) forecasting horizon for both energy datasets. During the comparisons,

these two methods provided higher accuracy and required minimum computational time to

forecast among the compared methods. Additionally, ARIMA and ARMA methods performed

better for very short-term (hourly) forecasting.

vi

Zusammenfassung

Genaue Prognosedaten sind eine wichtige Voraussetzung für Energiemanagementsysteme und

nachfolgende Entscheidungsprozesse, um das Gleichgewicht zwischen Angebot und

Nachfrage zu gewährleisten. Die Energiewirtschaft plant und prognostiziert den

Energieverbrauch für drei Arten von Vorhersageintervallen: kurz-, mittel- und langfristig. Die

Genauigkeit einer Prognose hängt von verschiedenen Parametern ab. Dabei sind die Wahl des

Prognosehorizonts und die Art des Datensatzes von großer Bedeutung. Häufig werden PV-

Erzeugung und elektrische Lastprofile prognostiziert. Weiterhin ergeben verschiedene

Prognosemethoden unterschiedliche Genauigkeit. Ziel dieser Studie ist es, die an der besten

geeigneten Methode zur genauen Vorhersage von Energiedaten basierend auf dem

gewünschten Vorhersagehorizont und der Art des vorhergesagten Datensatzes zu

identifizieren.

Die analysierten Methoden umfassen drei Kategorien von Ansätzen - statistisches,

maschinelles und tiefgehendes Lernen (deep learning). Statistische Ansätze beinhalten:

Autoregressive moving average (ARMA), Autoregressive integrated moving average

(ARIMA), Exponential smoothing (ES) und Holt-Winters method (HW). Machine Learning

Ansätze sind die K-nearest neighbour (KNN) und Random forest (RF). Von den Deep-

Learning-Ansätzen wurden Artificial neural network (ANN) und Recurrent neural network

(RNN) fokussiert. Zusätzlich zum Faktor "Benutzerfreundlichkeit" wurde die

Vorhersagequalität für jede Methode mit dem mittleren absoluten Fehler, dem mittleren

absoluten Prozentfehler, dem mittleren quadratischen Fehler und dem

Korrelationskoeffizienten R-Wert gemessen. Die Ergebnisse deuten darauf hin, dass RF und

KNN die am besten geeigneten Prognoseverfahren für den kurzfristigen (täglich),

mittelfristigen (monatlich) und langfristigen (3 Monate) Prognosehorizont für beide

Energiedatensätze waren. Während der Vergleiche lieferten diese beiden Methoden eine

höhere Genauigkeit und eine minimale Rechenzeit für die Vorhersage im Vergleich zu anderen

Methoden. Bei sehr kurzfristigen (stündlichen) Prognosen schnitten die ARIMA und ARMA

Methoden besser ab.

vii

Declaration

I hereby declare that this Master Thesis has been composed by me based on my own work, that

I have not used any sources other than those specified, and that all passages those have been

taken literally or meaningfully from published writings have been specified as such.

Furthermore, I declare that this thesis has not been fully or partially presented for any other

test.

_____________________________ ______________________

 Place, Date Nishat Fariha Rimi

viii

Acknowledgement

I express my sincere gratitude to the almighty God.

I am grateful to Prof. Dr. Hannah Bast for agreeing to be my academic supervisor and first

reviewer of this thesis. Her supervision has been constructive. I also thank Professor Dr.

Christof Wittwer for being my second supervisor and for sharing his unique knowledge and

experience during the thesis.

I express my gratitude to Dr. David Fischer, senior scientist at the Group of Power Grids and

Energy Management of Fraunhofer ISE for offering me this master thesis opportunity. His

practical guidance, insights and valuable advices were very instrumental in carrying out this

work.

My special thanks go to Arne Groß for being a patient mentor and helping me with discussions

and clarifications. His audit and feedback on the drafts have been very useful in enhancing the

nature of the theory. I appreciate and thank my colleagues for their assistance and extension of

cooperation throughout my work at the Fraunhofer ISE.

Finally, my heartfelt appreciation and gratefulness go to my family and friends who

continuously encouraged and supported me in completing this thesis.

ix

List of Figures

Figure 2.1: Different approaches for energy demand forecasting. .. 7

Figure 3.1: The PACF plot of AR (1) model for PV generation. .. 10

Figure 3.2: The ACF plot of MA (4) model for PV generation. .. 11

Figure 3.3 Example of ANN with two hidden layers. ... 20

Figure 3.4: A Simple procedure of recurrent neural network. ... 22

Figure 3.5: An unrolled version of basic RNN .. 23

Figure 4.1: The workflow of the forecasting toolbox. ... 24

Figure 4.2: Mean day plot for the whole year for PV generation data. 26

Figure 4.3: Mean day plot for the whole year for electrical load data. 27

Figure 4.4: Working procedure of forecasting technique. ... 31

Figure 4.5: Illustration of a method implementation. .. 32

Figure 4.6: Step-1 of moving forecasting for training sample size 50 and daily prediction

horizon. .. 33

Figure 4.7: Step-2 of moving forecasting for training sample size 50 and daily prediction

horizon. .. 34

Figure 4.8: Diagram of the forecasting toolbox. .. 36

Figure 5.1: The optimal hyper parameter value of exponential smoothing for PV generation.

.. 39

Figure 5.2: The optimal hyper parameter value of KNN for PV generation. 45

Figure 5.3: Computational comparison criteria. .. 47

Figure 5.4: Key performance indicators (KPIs) for the evaluation of each method. 51

Figure 5.5: RMSE comparison of PV generation forecasting for all the methods depending on

different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction

for all training sample sizes. .. 53

Figure 5.6: RMSE comparison of electrical load forecasting for all the methods depending on

different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction

for all training sample sizes. .. 55

Figure 5.7: MAE comparison of PV generation forecasting for all the methods depending on

different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction

for all training sample sizes. .. 57

x

Figure 5.8 MAE comparison of electrical load forecasting for all the methods depending on

different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction

for all training sample sizes. .. 59

Figure 5.9: Correlation coefficient comparison of PV generation forecasting depending on

different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction

for all training sample sizes. .. 61

Figure 5.10: Correlation coefficient comparison of electrical load forecasting depending on

different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction

for all training sample sizes. .. 63

Figure 5.11: MAPE comparison of electrical load forecasting depending on different

horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction for all

training sample sizes .. 65

Figure 5.12: Hourly forecast and actual load comparison of PV generation for (a) ARIMA

and ARMA, (b) ES and HW, (c) KNN and RF, and (d) ANN and RNN 67

Figure 5.13: Hourly forecast and actual load comparison of electrical load data for (a)

ARIMA and ARMA, (b) ES and HW, (c) KNN and RF, and (d) ANN and RNN. 67

xi

List of Abbreviations

ACF Autocorrelation function

AIC Akaike information criterion

ANNs Artificial neural networks

AR Auto-regressive

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

CART Classification and regression tree

ES Exponential smoothing

HW Holt Winters method

ISE Institute for Solar Energy Systems

KNN K-nearest neighbor

LTF Long-term forecasting

MA Moving average

MAE Mean absolute error

MSE Mean squared error

MTF Medium-term forecasting

PACF Partial autocorrelation function

PV Photovoltaic

RF Random forest

RNN Recurrent neural network

STF Short-term forecasting

TSA Time series analysis

VSTF Very short-term forecasting

1

1. Introduction

In recent years, greenhouse gas emissions have become an alarming issue. To mitigate the

negative impacts and to cope with the increasing power demand, the diffusion of renewable-

based domestic power generation plants has led to the placement of several smart grids

throughout the world [1]. Renewable energy production in the EU has increased by two thirds

between 2006-2017 [2] and reached almost 40% by the end of 2018 in Germany [3]. Renewable

energy sources like wind and solar cannot be pre-scheduled, have their capacity constraints and

unable to absorb, store or dispatch energy in the classical sense [4]. Moreover, the generated

energy needs to be coordinated with the classical energy producers such as coal plants to avoid

an energy surplus [5]. Thus, with the growing industry of renewable energy, there is a particular

need for better forecasting of potential energy demands.

Energy load forecasting provides information about future demand and enables balancing

between demand and production which eventually ensures that the energy produced will not

be wasted (due to over-production) or insufficient (due to under-production). Forecasting

techniques involve the study of past usages within a specific period of certain areas and then

predict potential future consumptions as accurately as possible. In this research, the forecasting

of energy data has been studied as the prediction of time-dependent data in the form of electrical

load and photovoltaic load.

1.1. Motivation

It is vital to maintain a constant flawless supply of utilities. That is where forecasting can

provide the information about high or low peak occurrences in future. The shortage of storage

options and system losses of electricity could cause unnecessary expenses, while even a little

enhancement in energy forecasting could decrease production expenses and increase

exchanging benefits, specifically during the periods of peak electricity consumption [6].

According to Haida and Muto [7], the operation cost also raises due to the effect of forecasting

errors (positive or negative). Specifically, new technologies like intelligent Energy

Management Systems (EMS) [8], and model predictive control [9] have been explored to

handle these issues which require a precise forecasting of load profiles to guarantee the optimal

usage and safety. Load forecasting influences the operation and management of utility

companies to ensure proper balancing between supply and demand. Forecasting minimizes the

commercial operation, as the planned energy generation closely resemble future demand [5].

Appropriate forecasting also aids in planning for power systems to determine the required

assets. A practical example can be planning the amount of fuel required for the coming week

to operate power-generators. In the case of renewable sources, energy production should match

the required demand as it is difficult to process or store unwanted large scales of electricity in

2

the grid. The forecasting data feeds into the energy management system (smart or traditional

EMS) and helps the management to make appropriate decisions. Therefore, an optimal

forecasting result with reasonable accuracy is vital for operational, commercial as well as for

environmental reasons.

1.2. Research gap

The study on forecasting energy consumption can be dated back to 1966 [10]. A variety of

forecasting approaches have been developed to improve the quality of prediction for energy

data forecasting. The accuracy highly depends on the load forecasting methods as well as on

the forecasted scenarios [26]. Various studies have classified the forecasting approaches in

three main groups. For example, in their research Lahouar and Ben (2015) have grouped them

in statistical methods, artificial intelligence methods and hybrid methods [11]. Statistical

techniques such as Regression, Autoregressive moving average (ARMA), Autoregressive

integrated moving average (ARIMA), Exponential smoothing (ES), and Holt-Winters (HW)

have been used for short-term time series forecasting. Some other forecasting techniques are

devoted to the use of “similar day” approach [12]. Approaches based on machine learning

algorithms and deep neural network have received a lot of attention in recent years. This group

includes different methods like K-nearest neighbor (KNN), Random forest (RF), Artificial

neural networks (ANN), and Recurrent neural network (RNN).

A considerable amount of literature has focused on hybrid methods which combine the

formerly mentioned approaches to improve accuracy by increasing their complexity [13].

However, these methods may not always produce optimal results and are often prone to

‘overfitting’ [14], [15]. Moreover, many studies have investigated the forecasting accuracy

from different angles. It could be based on a specific prediction horizon (short-time/ long-time)

or based on a specific historical data type or application. The selection of a forecasting

algorithm depends on various aspects like the prediction time scale, input data type, and

training sample size. The accuracy of forecasting algorithms changes according to these

different forecasting aspects. Short-term forecasting of household electricity consumption has

used ARIMA, NNs, and ES where results specify that depending on the choice of forecasting

methods and parameter configuration, the accuracy of forecasting varies significantly [16].

Also, depending on the application area a different length of forecasting may be chosen; for

example, the prediction of weather data requires short-term forecasting, whereas the production

planning in a company needs a larger range. Another aspect of forecasting is that an appropriate

amount of historical data should be analysed for making a good prediction as the size of the

training data largely influences the accuracy of forecasting algorithms. As the prediction

horizon increases, the accuracy of load forecasting decreases and vice versa.

3

There is a lack of research on determining the appropriate algorithm to apply for forecasting

energy data of different time scales like short-term, medium-term or long-term. Theoretical

studies mainly investigated forecasting algorithms with some specific or simple assumptions

and provide a performance evaluation but do not serve practical and robust solutions quite as

frequently; they are limited to specific interest. For example, some studies have investigated

forecasting accuracy only for short-term forecasting of electricity consumption [17], or for

medium-term load forecasting [18], and some others are focused on long-term load consumption

[19]. In research on evaluating forecasting methods, J. S. Armstrong (2001) stated that the

principles for testing forecasting methods are mostly based on commonly accepted

methodological procedures, including pre-specified criteria. However, a comparison of

accuracy between several forecasting algorithms considering all these aspects is so far lacking.

In the vast area of forecasting, finding a proper solution to this question is a challenging task.

Analysing the effect of dataset types and the size of training data on different forecasting

approaches are essential, while the learning time and predicting time comparison is also

necessary. Therefore, the combination of all the above conditions together for a detailed

investigation will lead to a comparison of methods recognising the limitations of the individual

method.

1.3. Goal

At the Fraunhofer Institute for Solar Energy Systems (also known as Fraunhofer ISE), different

predictive methods have been used for the regulation of their energy system models. However,

previous research has been limited to a specific aspect of forecasting. Therefore, it is not yet

known which method is efficient for what kind of energy data (such as electricity load or PV

generation) depending on the prediction horizons and training sample sizes. Hence, this thesis

aims to examine various forecasting methods and evaluate the prediction quality depending on

these forecasting aspects.

This work aims to analyse eight forecasting methods based on three different types of

approaches- statistical, machine learning, and deep learning approaches. Photovoltaic

generation and usage of electrical household load are chosen as the application areas for

forecasting. This study assesses each method for various prediction horizons using different

training sample size. Finally, this study attempts to comprehensively examine the predicted

data using various key performances indicators. It will provide guidance to select the best

suitable forecasting method for prediction in these application areas for a chosen forecasting

horizon for both industrial and scientific usage.

4

1.4. Outline of the thesis

This thesis report is divided into six chapters. Chapter 1 presents the introduction and

background of the thesis.

Chapter 2 contains the literature review of the relevant research publications of load forecasting

methods and distinguishes considerable arguments. A classification of the selected forecasting

methods is presented at the end of this chapter.

Chapter 3 begins with the foundation of forecasting energy usage and time series analysis.

Later, the theoretical background of selected methods is briefly presented, denoting the

working procedure of each method and their limitations.

Chapter 4 covers the methodology used. Here, the data collection and processes are explained

and justified respectively. Different forecasting aspects like an exogenous or endogenous

variable and the training process are also discussed. The overview of forecasting accuracy

measurements to evaluate the forecasting methods has been presented. At the end of this

chapter, the implementation procedure including the coding platform and significant

forecasting functions are also discussed.

Chapter 5 discusses the results that includes an analysis on the hyperparameter optimization

procedure and the performance of all methods according to the key performance indicators

(KPIs). Comparison of findings based on surveys and implementation is also justified in this

section.

Chapter 6 draws conclusions based on the goal and objectives of this research and suggests

future research topics and limitation of this research.

5

2. Related work

In general, the forecasting of energy data can be classified as a regression problem. A

regression problem provides the output based on input data supplied to the system. The task

here is to find the relationship between this input and output also known as regression analysis.

While forecasting different energy data sources, an additional difficulty is the nonlinearity of

this data [20]. Also, the seasonal component is included here which affects the load throughout

the day. A variety of mathematical ideas and methods have been developed for forecasting

which has led to more accurate energy data prediction.

The forecasting approaches can be classified into statistical, machine learning and deep

learning approaches. Statistical approaches are considered as the white box models [11], where

the internal processing is known along with the input and output relationships that are explicitly

linked through mathematical equations. These approaches describe the forecasting that relay

on past historic data. The simplest statistical method is based on a similar day approach [21].

The study of Zhang et al. (2015) presents a ‘similar day’ model which is used by data of three

different locations throughout the world [12]. Other statistical approaches can be classified into

autoregressive models and smoothing techniques. As per research work of Zheng in 2017 [22],

statistical autoregressive methods (ARMA, ARIMA) forecast works in assuming that the two

time series (observed and future) are linearly related. Autoregressive categories contain various

autoregressive models, such as autoregressive moving average (ARMA) [23], Autoregressive

integrated moving average (ARIMA) [24], [25] the well-known Box–Jenkins models and

smoothing techniques covered by the Exponential smoothing (ES) [26] and Holt-Winters (HW)

[27]. In time series analysis and forecasting, these smoothing methods are broadly used.

Among them, the most common Holt-Winters exponential smoothing method uses a

formulation to treat trend, seasonal patterns, and level separately. Another benefit of using

statistical models is that if the time series has single variable of interest (dependent variable)

available for different periods then unlike regression problem, statistical methods can forecast

this univariate time series. Although the implementation of these statistical approaches is

simple and adapted well for the short-term scale usage, autoregressive models are mainly used

where previous load values is a linear aggregate of current data [28]. Description of this

category has been presented in section 3.3.

 Deep learning methods can overcome these limitations by discovering nonlinear relationships

and can increase the forecast performance by a learning process using input-output

relationships in time series. Because of having a complex structure, these are considered more

like black-box models where the input and output (along with the relationship between them)

is known but the internal mechanism is not well understood or known. These approaches have

displayed advantages compared with statistical approaches in analysing a very short time frame

6

for large amounts of data [17]. Here, the input and output relationship is defined through using

the learning process of artificial neural networks (ANN) where the current data is aggregated

with the previous data. Various deep learning techniques such as Artificial neural networks

(ANN) [29], [30] and Recurrent Neural Network [22] are largely used in the literature

reviewed. The non-linear characteristics of electrical loads, which result according to

occupants’ behaviours and seasonal effects, have led many researches to focus on using

artificial neural networks [31] to forecast. Nevertheless, the selection and configuration of input

variables are difficult [32] and training phase has a high computational cost [33]. This forces a

limitation to the input data and can result in less accurate forecasting. Zheng in 2017 pointed

out that the non-stationary and non-seasonal nature in the time series of short-term load creates

these forecasting challenges. This can be overcome using recurrent neural networks (RNN). A

detailed description of this category has given in section 3.5.

Approaches based on machine learning algorithms have received much attention in recent

years. This family includes some non-linear machine learning techniques, like k nearest

neighbor [34], support vector machine (SVM) [35], [36] etc. Other than these methods, little

attention was paid to the ensemble machine learning methods, such as Random Forest (RF)

[37], [11]. Lahouar and Ben (2015) demonstrated that the RF method has the flexibility due to

having low sensitivity to parameter values and can handle a load profile with complex customer

behaviour. Dudek (2011) studied the effectiveness of RF in short-term forecasting for load data

in Poland, and the performance has been compared with CART, ARIMA, ES, NN where the

result highlighted that RF could be used for better forecasting accuracy. A brief description of

this category has been presented in section 3.4.

Although these methods are effective, they still have limitations regarding optimal architecture

or parameter tuning [11] which are exceeded by hybridisation. Lahouar (2015) reveals that the

majority of researchers have developed hybrid ANN for both medium-term and long-term

energy forecasting [11]. Therefore, research leads to hybrid methods [13] which combine the

other forecasting approaches for increasing accuracy. A review on photovoltaic power

forecasting has stated that varied machine learning approaches are studied broadly so far [38].

Therefore, based on these reviews, we have chosen some convincing methods to compare

different energy forecasting. The classification of the chosen methods can be graphically

represented according to the working mechanism in five groups as shown in Figure 2.1.

7

Figure 2.1: Different approaches for energy demand forecasting.

Forecasting Methods

ANN

RNN

Deep learning

ARMA

ARIMA

Exponential
smoothing

Holt Winters

Statistical

Autoregression Smoothing
Non linear

machine learning

KNN RF

Machine learning

Enssemble
machine learning

8

3. Theoretical background

This chapter provides the theoretical background of forecasting with various aspects. The basic

definitions of time series analysis are discussed. This chapter also provides the background of

different mathematical formulation of the selected methods, based on the literature overview.

A comparative study of the reviews and remarks of these statistical approaches, machine

learning approaches, and deep learning approaches are presented briefly.

3.1. Forecasting energy load

As discussed before, the requirement of energy differs from season to season, every day and

every minute. Forecasting of energy data is the prediction of the rquired demand in short-term,

medium-term and long-term prediction horizons. It is a guess of how much energy will be

needed by the residences, companies, or other institutions in the future.

Energy data

Energy data refers to the enormous amounts of data related to energy consumption. This

includes direct measures of energy usage (such as electricity load, PV generation, wind, gas,

steam, heating load etc.). Different sources of energy are generated at distinct time intervals

and units. This energy information is useful and used as historical data to train the forecasting

algorithms and to get the forecast that defines the time series for a future time. The key point

here is that a lot of information to make accurate results is required. To differentiate and

examine the forecasting efficiency over different energy data applications, the PV generation

and electrical load datasets of residential usage in this research work have been considered.

Forecasting horizons (Time scale)

Various types of approaches and models are covered in the literature for forecasting of energy

data both for industrial and residential usage. Although, there is no official categorization

defined for the type of forecasting horizons within the energy industries, it can be divided into

four categories based on the time period or forecasting interval: very short-term forecasting

(VSTF), short-term forecasting (STF), medium-term forecasting (MTF), and long-term

forecasting (LTF) [39]. VSTF is a comparatively new type of forecasting, which mainly refers

to forecasting that has time frame minute wise till 1 hour ahead [27]. The management system

of demand sight often uses STF that considers a time range from hours to a day length ahead

[17]. VSTF and STF are primarily applied to daily operation and scheduling of the power and

spot price calculation where the required accuracy is much higher than a long term prediction

[39]. This kind of forecasting is vital to ensure better efficiency of limited electricity in

developing countries [40]. MTF refers to a period up to a month ahead, and has been used for

scheduling maintenance and the development of the system of the grid for years [18]. Whereas,

9

LTF looks at a period exceeding from months to years ahead which apply to the scheduling of

power supplies and resource planning. Such type of forecasting is utilized to determine system

planning when power usage prediction over a longer period is of interest [39]. MTF and LTF

often suffer from the forecast errors over time [41], so they usually are used only to forecast

peak loads.

Table 3.1: Forecasting horizons

Forecasting horizons Time scale

Very short-term 5min-1h

Short-term 1h- 24h

Medium-term 24h- weeks

Long-term months-years

In research, Xia and Wang showed that the accuracy of STF is influenced by factors like

temperature, humidity and wind speed [42]. Therefore, the influencing factors for forecasting

can be the historical load data, weather variables (humidity, temperature), season/ time of the

year, the day of the week/ hour of the day, or even special holidays or festivals.

3.2. Time series analysis

Time series is a collection of observations recorded over a discrete or continuous period. This

dataset can be a list of numbers together with time information where numbers were collected

at regular time intervals [43]. Time series analyses explore and extract the set of information

from the dataset which is collected over a period. The period between observations is measured

at any standard interval like hourly, daily and weekly. A way to analyze these structures is the

decomposition of the time series. The time series can be decomposed into four components.

These components are named as the trend, cyclical, seasonal and irregular components.

• Trend: It is a tendency of increases, decreases variations of the time series over a long

time. When the trend is in a decreasing trend (downward trend) from an increasing trend

(upward trend), it can be referred to as “changing direction”.

• Seasonal: Time series data can be influenced by seasonal factors which are the variations

in pattern during the seasons through the year. The influence of these seasonal factors

generates a seasonal pattern or periodic fluctuations in the time series [43]. As an example,

weather condition, traditional habits can be the vital factors causing this seasonal variation.

• Cyclical: It refers that some fluctuations or patterns can be repeated throughout the time

series. It means the presence of non-periodic variations which are repeated in cycles. These

cycles generally exceed two years [43]. In practice, the above two components, trend and

cyclic are combined and referred together as the trend.

10

• Irregular components: The involvement of the random component in the time series is

considered as the residuals. It is also called the noise component that represents the random

fluctuations at each instant. Due to the presence of these irregular components in time

series, a perfect forecast is not possible.

Time series decomposition can be done using two models, namely additive and multiplicative

decomposition. Time series can be further categorized into stationary or non-stationary

according to the presence or absence of a trend in the dataset. In a stationary time series, the

mean and covariance among the observations remain constant over time [44]. If an upward or

downward trend is presented in the dataset, the time series is considered non-stationary. The

absence of a trend in the dataset makes the time series stationary. Before modelling with non-

stationary time series, it needs to be processed. Moreover, the inconsistencies in raw data need

to be removed by cleaning and be re-scaled by the transformation process. A way to obtain this

processing of time series data can be done by using differencing where it computes the

differences between successive observations and create a new time series.

The detection of non-stationarity in time series can be done using autocorrelation function. In

simple word, correlation measures the linear relationship between two variables. Two statistical

tools known as the autocorrelation function (ACF) and partial autocorrelation function (PACF)

can identify this pattern in time series. ACF and PACF can be graphically represented using

various statistical software packages. These correlograms are also used to identify the order of

parameter range of an autoregressive (AR) model by using the PACF plot, and the ACF plot

mostly identifies the parameter range of a moving average (MA) model. These models are

described briefly in section 3.3.1 and 3.3.2. Figure 3.1 and Figure 3.2 shows the ACF and

PACF plots for autoregressive models.

Figure 3.1: The PACF plot of AR (1) model for PV generation.

11

Figure 3.2: The ACF plot of MA (4) model for PV generation.

3.3. Statistical approaches

The forecasting field has been influenced, for a long time, by linear statistical methods such as

the autoregressive (AR) model, the moving average (MA) model and some models that derive

from them such as ARMA (autoregressive moving average), ARIMA (autoregressive

integrated moving average). The use of these models has earned much popularity among the

forecasting researchers. These models are sometimes denoted as Box-Jenkins models. Another

statistical category is the Exponential smoothing methods, including simple exponential

smoothing, Holt-Winters method. Altogether, these models are referred to as ETS model,

which is the explicit modelling of error, trend and seasonality. In this section, we will describe

these forecasting methods from the book Forecasting: Principle and practice [43] by Hyndman

and Athanasopoulos.

3.3.1. Autoregression (AR) model

Autoregression model is used to predict a value from a specific time series which is (auto)

regressed on previous values from that same time series. This method is mainly appropriate for

univariate time series (where a single observations measurement recorded over equal time

intervals) without having trend and seasonality in it. This model uses a linear combination

between the current observations and the predicted variable against the past 𝑝 observations of

that variable, with certain error [45].

In the autoregressive process, a predicted output 𝑦𝑡 variable linearly depends on its previous

values such as (𝑦𝑡−1, 𝑦𝑡−2, … 𝑦𝑡−𝑝) as well as on the white noise ℰ𝓉. This white noise states as

a set of identically distributed, uncorrelated random variables through a finite variance σ2 and

zero mean. It is symbolized by 𝑊𝑁(0, 𝜎2) [46].

12

The 𝐴𝑅(𝑝) model can be expressed as [43] follows:

 𝑦𝑡 = c + ϕ1𝑦𝑡−1 + ϕ2𝑦𝑡−2 +⋯+ ϕ𝑝𝑦𝑡−𝑝 + ℰ𝓉 (1)

where ℰ𝓉 is white noise 𝑊𝑁(0, σ2), C and {ϕ = 1,⋯ , p} are the parameters of the model

which are constants. Depending on the order 𝑝, the model decides the number of previous

observations to be taken to predict the present value. The simplest example of an AR process

is 𝐴𝑅(1) is a first order autoregression model, can be denoted by

 𝑦𝑡 = 𝜙1𝑦𝑡−1 + ℰ𝓉 (2)

AR process shows a smooth decay in autocorrelations coefficients. Therefore, identifying the

order of the model becomes difficult using ACF. PACF plot can be considered as a solution

here because after the lag 𝑝, it highlights a cut off [47]. Autoregressive models are normally

restricted to stationary data which means some constraints on parameters values are required

[43].

3.3.2. Moving average (MA) model

Moving average models are generally used to express single-variable time series [48]. A

stationary time series is said to be a moving average process which uses past forecast errors in

a regression-like model rather than using past values of the forecast variable. In other words,

In the 𝑀𝐴(𝑞) process, the component represents an error series of the model as a linear

combination in terms of current observation against previous (unobserved) 𝑞 innovations [45].

The 𝑀𝐴(𝑞) model, a moving average model of order 𝑞 can be written [43] as:

 𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 (3)

where ℰ𝓉 is white noise error term, 𝑐 and {𝜃 = 1,⋯ , 𝑞} are the constant parameters of the

model. According to [43], each 𝑦𝑡 value here represents a weighted moving average of the

previous few forecast errors. A first-order moving average 𝑀𝐴(1) can be expressed as:

 𝑦𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1. (4)

By using the ACF plot, the order of the 𝑀𝐴 model is usually spotted. The ACF plot shows a

sharp cut off usually after lag 𝑞 meaning that for the lags beyond 𝑞 the autocorrelation

coefficients are close to zero. On the contarary, PACF plot shows a gentle decay to zero for

moving average process [47].

13

3.3.3. Autoregressive moving average (ARMA) model

The ARMA is one of the most widely used models which combines the advantages of auto-

regressive AR(p) and moving average MA(q) models. That means the autoregressive moving

average model 𝐴𝑅𝑀𝐴(𝑝, 𝑞) is a combination of 𝐴𝑅(𝑝) and 𝑀𝐴(𝑞) models for stationary time

series. The model was originally proposed by Peter Whittle (in 1951) in his paper on

“Hypothesis testing in time series analysis” and later, was adapted by George E. [49]. An

ARMA (p, q) model of order (p, q) can be written by:

 𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 (5)

where 𝑦𝑡 is the original series and ℰ𝓉 is a series of random errors which follow the normal

probability distribution, {𝜙 = 1,⋯ , 𝑝} and {𝜃 = 1,⋯ , 𝑞} are respectively the coefficients of

the AR and MA terms.

From the ACF and PCF graphical plots, the order of the model (p,q) can be determined. It is

sometimes difficult to estimate the appropriate values for parameters 𝑝 and 𝑞 value of ARMA

model simply using the ACF and PACF plots. In contrast to this, we can rely on the Akaike

information criterion (AIC) which select a better fit model for the provided time series. AIC

provides the goodness of fit of the model and penalise the increasing of the number of

parameters in models. Hence this penalty discourages the overfitting of the model. Therefore,

the minimization of the AIC gives the best ARMA model [50]. AIC can be written as [43].

 𝐴𝐼𝐶 = −2𝑙𝑜𝑔(ℒ) + 2(𝑝 + 𝑞 + 𝑘 + 1) (6)

Where ℒ is the likelihood of the data, 𝑘 = 1 if 𝑐 ≠ 0 and 𝑘 = 0 if 𝑐 = 0. Here the last term in

this parenthesis refers to the parameter number of the model.

3.3.4. Autoregressive integrated moving average (ARIMA) model

Autoregressive integrated moving average (ARIMA) model forecasts variable based on linear

dependency to the past values to it. The models we have discussed in previous sections, defined

as AR, MA, and ARMA are preferred for stationary time series analysis [51]. However, in real

life, time series are mostly non-stationary. To fit stationary models, it is essential to get rid of

the variation of non-stationary sources in time series [52]. One solution to this, Box and Jenkins

[53] introduced the ARIMA model which can effectively transform the non-stationary data into

stationary by introducing a differencing process and overcome the limitation [52] [44].

https://en.wikipedia.org/wiki/Overfitting

14

In ARIMA models, the initial step is to eliminate this non-stationarity using differencing. It is

done by subtracting a current observation from observation at the previous time step. As an

example, a first-order differencing can be done by replacing 𝑦𝑡 via 𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1. By this

procedure, the stationary model that is fitted to the differenced data must be summed or

integrated so that it can provide a model for original non-stationary data. Therefore, the

ARIMA model is called “Integrated” ARMA. The general form of the ARIMA(p, d, q) process

is described as [43]:

 𝑦𝑡
′ = c + ϕ1𝑦𝑡−1

′ +⋯+ ϕ𝑝𝑦𝑡−𝑝
′ + θ1ε𝑡−1 +⋯+ θ𝑞ε𝑡−𝑞 (7)

where 𝑦𝑡
′ is the differenced new series (after the subtractions) The right-hand side “predictors”

include both lagged errors and lagged values of 𝑦𝑡. ℰ𝓉 is 𝑊𝑁(0, σ2), {ϕ = 1,⋯ , p} and {𝜃 =

1,⋯ , 𝑞} are respectively the coefficients of the AR and MA.

Because of combining these components, we get many complicated models, but at the same

time, it becomes much easier to work with the backshift notation. For example, Equation (11)

can be expressed in backshift notation as [43] follows:

 (1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + 𝜃1𝐵 +⋯+ 𝜃𝑞𝐵

𝑞)ℰ𝓉 (8)

When the number differencing is recognized, then the procedure to estimate the value of model

parameters (p, q) is similar to Akaike’s Information Criterion (AIC) process that has described

in ARMA model [43].

In short ARIMA (p, d, q) model can be summed up as:

• AR: Autoregression model uses the dependent relationship between observation and

lagged observations. p: The number of lag observations.

• I: Integrated to make the time series stationary by differencing of raw observations. d: The

number of times that observations are differenced.

• MA: This model uses dependency between an observation and a residual error from a

lagged observation applied moving average. q: The size of the moving average window or

moving average order.

https://otexts.com/fpp2/non-seasonal-arima.html#eq:8-arima

15

3.3.5. Exponential smoothing model

Exponential smoothing (ES) method can be considered as weighted moving averages. It was

introduced by Brown’s (1959,1962) and Holt’s (1960) research work that was aimed at stock

control system forecasting. The weighted average from past observations are taken here. In this

method, the past observations are weighted with exponentially decreasing ratio, and in contrast,

the most recent observations are associated with the largest weights. Because of its suitable

adaptation in terms of short-time forecasting, this performs well in daily basis predictions.

Single exponential smoothing

This is the simplest exponential smoothing, also known as SES, is a forecasting method for

data with no clear trend or seasonality. SES exponentially decreasing weights are assigning to

past observations over time. In SES the estimation of future values is done using the forecast

built for the observation of the previous period and combining it with the forecast error. The

formation [43] of SES can be written as follows:

�̂�𝑇+1|𝑇 = 𝛼𝑦𝑇 + 𝛼(1 − 𝛼)𝑦𝑇−1 + 𝛼(1 − 𝛼)2𝑦𝑇−2 + ⋯

𝐹𝑡+𝑝 = 𝐿𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝐹𝑡−1
(9)

Where 𝑦𝑇+1|𝑇 is the new forecast, 0≤𝛼 ≤1 is the smoothing parameter,yT is the last actual value,

𝑦𝑇−1 is the last forecasted value and so on. The parameter 𝛼, also known as the smoothing

factor, controls the rate at which the weights decrease. For one step ahead time 𝑇 + 1, the

forecast is the weighted average of all observation in series 𝑦1, ⋯ , 𝑦𝑇. This series only contains

the information of level values. In time period t, 𝑦𝑡 is the new observation (or actual value) of

the series, 𝐹𝑡+𝑝 is the new forecast value (or smoothed value) for next period p step ahead and

𝐹𝑡 is the old forecast (or smoothed value) at t.

This level equation updates the level by integrating information from the most recent data point

(𝑦𝑡) and updating the previous level at time 𝑡 − 1 (can be expressed as 𝐿𝑡−1). In SES, the value

for 𝛼 needs to optimize so that it minimizes the error of forecasting. Large values for 𝛼 (i.e.,

close to 1) refers more weight is specified to most recent past observations which are paying

main attention to the model. On the other hand, smaller values for 𝛼 mean for making the new

forecast close to the old forecast where the main observation has a small impact on it.

16

3.3.6. Holt-Winters model

In contrast to most of ES method, the Holt-Winters smoothing method considers seasonality

or trend. This method was extended by Holt (1957) and Winters (1960) to capture seasonality

and trend by considering the smoothing factors, the trend (a slope) and seasonality (cyclical,

repeating pattern) into account. These three aspects of the time series (value, trend, and

seasonality) are referred to as triple exponential smoothing.

The Holt-Winters’ adaptive model allows the level, trend and seasonality patterns to change

corresponding on time. Two variations of this method are used in the time series data depending

on the seasonality components. One of them is the additive method which is used when the

series seasonal variations are roughly stable. The other one is the multiplicative method which

is chosen when seasonal variations are changing corresponding to the level in the series.

The equations below are for multiplicative methods, consisting smoothing constant for the data

𝛼 (0≤ 𝛼 ≤1) for new smoothed value ℓ𝑡, the trend smoothing constant 𝛽 (0≤ 𝛽 ≤1) for trend

estimate 𝑏𝑡, and seasonal soothing constant γ(0≤ 𝛾 ≤1) for the seasonality estimate 𝑠𝑡 [43].

ℓ𝑡 = 𝛼
𝑦𝑡
𝑠𝑡−s

+ (1 − 𝛼)(ℓ𝑡−1 + 𝑏𝑡−1)

𝑏𝑡 = 𝛽(ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛽)𝑏𝑡−1

𝑠𝑡 = 𝛾
yt

(ℓ𝑡 + b𝑡−1)
+ (1 − γ)𝑠𝑡−s

𝐹𝑡+𝑝 = ℓ𝑡 + 𝑏𝑡 + St+p−s

(10)

where at time t, ℓ𝑡 is the estimated level of the series, 𝑏𝑡 is the estimated trend (slope) of the

series, 𝑠𝑡 is the estimated seasonal component of the series, and 𝑦𝑡 is the new observation or

actual value at period t in the series. 𝐹𝑡+𝑝 is the forecast for p periods into future by updating

level, seasonality, the trend with previously observed ℓ𝑡, 𝑏𝑡 and 𝑠𝑡. The frequency of the

seasonality (the number of seasons) is denoted by 𝑠, as an example it may be 𝑠 =4, (for quarterly

data) or 𝑠 =12 (for monthly data). For time 𝑡, the level equation presents a weighted average

between the non-seasonal forecast (ℓ𝑡−1 + 𝑏𝑡−1) and the seasonally adjusted observation

(𝑦𝑡/(𝑠𝑡−s)). The trend equation that used here is the same as to Holt’s linear method.

https://otexts.com/fpp2/holt-winters.html#ref-Holt57
https://otexts.com/fpp2/holt-winters.html#ref-Winters60

17

The additive method is quite similar to the previous one; the only difference is in the seasonality

which is subtracted [54].

ℓ𝑡 = 𝛼
𝑦𝑡
𝑠𝑡−𝑚

+ (1 − 𝛼)(ℓ𝑡−1 + 𝑏𝑡−1)

𝑏𝑡 = 𝛽(ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛽)𝑏𝑡−1

𝑠𝑡 = γ(𝑦𝑡 − ℓt−1 − bt−1) + (1 − γ)𝑠𝑡−𝑚

(11)

This also has the same initialisation values calculation as a multiplicative method for 𝐿𝑠 and

𝑏𝑠, but for 𝑆𝑠 the initialization value is estimated as follows:

 𝑆1 = 𝑌1 − 𝐿1, 𝑆2 = 𝑌2 − 𝐿2, ⋯ , 𝑆𝑠 = 𝑌𝑠 − 𝐿𝑠 (12)

3.4. Machine learning approaches

While considering the machine learning approaches, we have considered the ensemble learning

method Random forest (RF) and the nonlinear approach K-nearest neighbor (KNN) into

account. This section describes the working procedure of these machine learning algorithms

for time series forecasting.

3.4.1. Random forest model

Random forest is an ensemble learning method which creates many decision trees and then

combines their predictions [11], whereas ensemble methods combine the results from a group

of weak models and improve the results to form a powerful model. The principle of this method

is to combine the set of binary decision trees referred to as CART (Breiman's classification and

regression tree [55]). Therefore, an individual tree in random forest model is constructed using

a bootstrap sample randomly chosen at each node, combined a subset of learning points and a

feature (predictors or input variables) subsets at each node [37].

Bootstrap is the method that performs a random sampling with replacement (resample). It is a

process of getting data from a big dataset with replacement. As every tree constructed by

bootstrap is randomly chosen different dataset, so it eliminates the bias and it can test the

stability of a solution [11].

In terms of binary decision tree, each internal node has exactly two outgoing edges (left child

and right child), and for applying to the incoming data, each split node contains a test function.

The final test result is stored in the final nodes of the tree, referred as leaves. Such a decision

tree CART is used in the RF method to resolve both the classification and regression problems

18

[55]. From randomise bootstrapped data the subset of data sets is built along with the decision

tree for each dataset. Then the final decision is obtained (bagging) by combining the ensemble,

which is done by averaging the output in regression case or classification case by voting.

In research, Breiman pointed out that by adding more trees RF model does not overfit and gives

a limiting value in RF generalisation errors which is calculated by an out-of-bag (OOB) error.

OOB score is the custom validation method of random forest which is basically out of bag

prediction. The out of bag samples are the training points that are not contained (about one-

third of points are left out) in each bootstrap training set. This one-third unexploited training

data (out of bag samples) can be used to testing. Thus, the accuracy of the random forest model

is estimated by the proportion of out of bag samples that are correctly classified by the model.

On the other hand, the proportion of out of bag samples which are classified incorrectly by the

random forest model is OOB error. The estimation of this error is as similar to acquire by N-

fold cross-validation [37]. When the OOB error is stabilised, the training can be ended. Two

important features describe the RF model that is the out-of-bag error and the measure of

variable importance. RF algorithm for regression [56] is shown below:

1. For k = 1 to K:

1.1. Draw a bootstrap L of size N from the training data.

1.2. Grow a random-forest tree Tk to the bootstrapped data, by recursively repeating

the following steps for each node of the tree, until the minimum node size m is

reached.

1.2.1. Select F variables at random from the n variables.

1.2.2. Pick the best variable/split-point among the F.

1.2.3. Split the node into two daughter nodes.

2. Output the ensemble of trees {𝑇𝑘}𝑘=1,2,… ,𝐾 .

To make a prediction at a new point x:

f(x) =
1

K
∑Tk(x)

K

k=1

Two main parameters are needed to implement a random forest model [57]: the number of trees

(ntree) in the forest K and the number of input variables (features) randomly chosen (mtry) at

each F. The successive trees are added during the training procedure until the OOB error is

stabilized [37]. Various studies have specified that satisfactory results could be gained with the

default parameter value [58] [59]. Mainly, the low sensitivity to parameter values, ability to

generalization, and built-in cross-validation are important advantages of the model [37]. This

method is not affected by outliers for the decision tree and bootstrapping construction.

19

3.4.2. The K-nearest neighbor model

The k-nearest neighbor (KNN) was invented by Fix and Hodges Jr [60], afterwards formalises

for classification tasks by Cover and Hart [61]. In general, the KNN is a developed version of

instance-based learning algorithm based on the difference between features in the labelled

dataset.

It searches for a group of k samples which are nearest to unknown samples based on distance

functions. A labelled dataset bunch are used here for finding the k most similar instances which

are nearest to the new data point. Thus, the algorithm gives the prediction based on how similar

the new incoming observations are to the training observation. During the learning process,

this algorithm retains the whole training set. From these k samples, the label (class) of unknown

samples (the new input data) are compared to each instance in training set and determine the

prediction of that unknown samples by calculating the average of the response variables [62].

Therefore, for a regression case, this can be the mean output variable, and for the classification

task, it can be the most common class value.

For a given instance X, to compute �̂�, KNN model uses the k closest instances in the training

set and the prediction is the average of the corresponding targets. The model can be written as

the simplest way:

 �̂�(𝑥) =
1

𝑘
∑ 𝑦𝑖

𝑥𝑖∈𝑁𝑘(𝑥)

 (13)

Where 𝑁𝑘(𝑥) is the set of the closest points in 𝑥𝑖 training sample. Determining the k value is

difficult as the parameter k goes to 1, at the same time the error on the training set goes to 0 but

the error on the test set starts increasing. This is due to the KNN model has low bias and high

variance. To identify the closeness and measure the distance d between two data points,

similarity metric (some distance functions) is used. A most common function here is Euclidean

distance that measures the distance between x and y points as follows:

 d(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1

 (14)

Some pros and cons of KNN are listed in the research work [63], in case of load profile

forecasting KNN is good for a day or longer time. It has highly adaptive behaviour because of

using local information. It also has some limitation due to large historical data storage required

to create a database for k-nearest neighbour search.

20

3.5. Deep learning approaches

A biological neural network has inspired to the Artificial neural networks (ANN) where the

outputs are found for the given data input using an approximation function. The idea behind

ANN is to reduce the involvement of human brain functionality for resolving different

problems. Just like the human neural network, the input information is linked to output

information via a network of neurons. In this section, Artificial neural network and Recurrent

neural network are discussed.

3.5.1. Artificial neural network (ANN) model

In simple words, ANN can be pictured as interconnected neurons which pass the information

between layers. ANN is constructed with three layers: the input layer, hidden layer, and output

layer. Input layer includes all the input variable known as input neurons. Similarly, the output

layer contains all output variables or neurons. The layers staying in between the input and

output layer are referred to as hidden layers containing hidden neurons.

Figure 3.3 Example of ANN with two hidden layers.

Depending on the complexity of the forecasting problem, the hidden layer can have one or

more layers. The more hidden layers and neurons, the network realise more complicated

relationship. In the ANN model, each neuron is connected to the neurons of the previous layer

and contains a nonlinear activation function. Every neuron processes the activation of previous

layer neurons with a certain weight to its activation. In the ANN model, neurons in hidden

layers process and adjust each input multiplying by the received signals with certain weights.

Thus, these weighted signals are summed up and passed the cumulative signal an argument to

an activation function [64]. Similarly, the activation process is done for all the layers

successively to process the output activation. Some numerical weights are set to the

connections by the learning from previous experience along with the current condition [65].

Thus, by adjusting the weights of the neurons (input variable), the desired output for given

inputs set can be obtained.

𝑥1

𝑥2

 11

 12

 1

 21

 22

𝑦

Input layer Hidden layer Output layer

21

ANN output can be computed through the mathematical expression given below [66]:

 𝑦𝑡 = 𝛼0 +∑𝛼𝑗

𝑞

𝑗=1

𝑔(𝛽0𝑗 +∑𝛽𝑖𝑗

𝑝

𝑖=1

𝑦𝑡−𝑖) + 𝜀𝑡 (15)

Where 𝑦𝑡 is the output and 𝑦𝑡−𝑖(𝑖 = 1,2,⋯ , 𝑝) are the 𝑝 inputs to the network, p and q are the

number of input nodes and hidden nodes respectively, 𝛼𝑗(𝑗 = 0,1,2,⋯ , 𝑞) and β𝑖𝑗(𝑖 =

0,1,2,⋯ , 𝑝;  𝑗 = 0,1,2,⋯ , 𝑞) are weights to the connection and 𝜀𝑡 is the random shock. 𝛼0 and

𝛽0𝑗 are the bias terms.

Varies activation functions are used in the activation procedure. The most common functions

are the linear, the threshold, and the sigmoid functions [67]. Generally, the logistic sigmoid

function is used which can be [68] written as:

 g(𝑥) =
1

1 + 𝑒−𝑥
 (16)

The parameter set for each neuron is adjusted through the learning algorithm. Training of ANN

contains two phases. First, the evaluation of the derivative for the error function concerning the

weights is done, and then the modification of the weights is done. However, different

architectures and training algorithms have been presented in previous researches. The

fundamental algorithm is called Error Backpropagation by Rumelhart et al. that uses gradient

descent for the second phase [73]. Backward propagation of errors or Back-propagation is the

algorithm used with an optimization method as gradient descent. Back-propagation has two

phases: in forward pass, through the network’s layers a set of input (a pattern) is processed and

for each time step computes the outputs. The final output vectors along with the partial

derivatives of it for weights are returned to the network. Moreover, in case of a backward pass,

concerning each weight, the gradient of the error function (an example: sum squared error) is

computed and to minimize the error weights are modified with the gradient in downhill

direction (negative gradient).

In a feed-forward neural network, the signal flow has one direction only from input to output,

one layer at a time, where from the input the transmitted signals are passed via the hidden layers

and produce the output. This network can be used for forecasting taking the past observations

data of the time series as inputs to the network and the predictions of the future value as output

to the network.

22

The feedforward ANN model (Figure 3.3) can perform non-linear functional mapping to the

future value from the past observations of the time series which can be expressed as [68]:

 𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, ⋯ , 𝑦𝑡−𝑝, 𝒘) + ε𝑡 (17)

Where 𝑦𝑡 is the output series being forecasted, 𝑓 is a function formed by network structure and

connection weights, (𝑦𝑡−1, 𝑦𝑡−2, ⋯ , 𝑦𝑡−𝑝) are the past values to series, value 𝒘 is a vector of

all of weights and 𝜀𝑡 is the residual. The training of ANNs begins having random weights and

the goal here is to adjust them in a way so that for each time step it can minimize the forecasting

error. Learning Rules are the optimization techniques used for minimizing the error function.

In this context, Backpropagation or Generalized Delta Rule is the best-known learning rule

found in the literature [69] [68]. Shah and Trivedi (in 2012), points out the advantages and

challenges of ANN in their research work [29].

3.5.2. Recurrent neural network (RNN) model

Recurrent Neural Networks (RNNs) are designed to work with sequential problems. In RNNs,

the output layer is added to the next input and feedback into the same layer [70]. This ability

to operate with sequences leads this neural network model to a variety of applications. This

network is suited for time series forecasting where the output can be either only the next value

in a sequence or the next several values. Therefore, recurrent networks are preferred in several

studies to investigated short-term power forecasting, and such an example is demonstrated by

Kariniotakis [71].

A recurrent neural network has additional arrows forming loops backwards in the architecture

so that these connections become the inputs either to the same neuron or to other neurons. This

additional loop acquires the information of the previous period and joins to the current input.

By this technique, using this simple loop RNN networks remembers the information from

previous inputs which has been calculated so far.

Figure 3.4: A Simple procedure of recurrent neural network.

23

Figure 3.5: An unrolled version of basic RNN

As shown in Figure 3.4, this feedback connectivity permits neurons to transfer their signals

backward and forward during the learning process until a minimum error is achieved. The

output of the network can be used feedback as an input to the network with the next input vector

and so on. In this way, RNN networks can think of having a “memory” to the network and

allow it to realise broader concepts from input sequences.

Figure 3.5 presents a basic RNN structure. Where xt is the input and ht is the output to the

network at time step t. At first, this network takes the input 𝑥0 from the sequence and provide

the outputs h0 for time step t=0. This output along with the 𝑥1 is considered as the input for

next time step and so on. RNN keeps memorising the context with recursive function while

training the network. The equation of RNN can be expressed as follows [72],

 𝑡 = ϕ(𝑾𝑥𝑡 + 𝑈 𝑡−1) (18)

Where 𝑡 is the hidden state at 𝑡 timestamp, 𝑾 is the weight matrix for input to hidden layer

at time stamp 𝑡, 𝜙 is the activation function (either Sigmoid or Tanh), 𝑈 is the hidden layer

weight matrix at time 𝑡 − 1 to hidden layer at 𝑡, 𝑡−1 is the hidden state for time 𝑡 − 1.

The weights decide the importance of current input as well the importance of previous

timestamp hidden state. With the modification of values from the previously hidden state and

current state, it decides how much value should be taken for creating current output. This type

of network learns these weights (U, W) while training by using the backpropagation. Training

an RNN is very difficult. It has a major drawback, known as vanishing gradient problem, which

cannot ensure high accuracy sometimes.

24

4. Methodology

This chapter starts with a short description of a common framework which can be treated as a

forecasting toolbox to run and evaluate all the methods that have described in chapter 3.

Afterwards, we have presented the forecasting accuracy measurement criteria that are used in

this thesis work to evaluate the performance of individual methods. The implementation

procedure with a short description of the coding language, working platform and the important

library functions are described in the later section. The working process of the forecasting

toolbox is presented briefly step by step at the end of this chapter.

4.1. Forecasting toolbox

The primary purpose of the toolbox is to create all the method instances in the same pattern

and get the prediction through the same testing structure. This works as a method comparison

toolkit that provides forecasting of each method for a given dataset. The workflow of the

forecasting toolbox can be presented as follows:

Figure 4.1: The workflow of the forecasting toolbox.

Data

Input

Data

Processing

Moving Prediction

Split

Fit() model

Moving

Testing

Sample

Moving Training

Sample and

Parameter Selection

Model init()

Predict() model

Evaluation()

Save Prediction

Results Output

25

The input data files are read, and the processing of the data sets is carried out. Then, based on

exogenous and endogenous (section 4.2) input, each method will be initialised. After that,

through the moving prediction split mechanism, the dataset will be splitted in to training sample

and testing sample for several times. These training samples will be passed to the Fit() function

of each method along with the optimised hyperparameter value(s) to train the model. The test

sample will be provided to the Predict() function of the respective method to produce the

forecast. Finally, the prediction results are saved in the output file (for example, as CSV format)

and the prediction quality is evaluated using the Evaluation() function. This procedure of the

toolbox has described briefly in section 4.6.

4.2. Exogenous and endogenous variables

In a system, the exogenous variable is not affected by other variables. The term “Exogenous”

refers to the external variables of a system. On the contrary, an endogenous variable is directly

influenced by the system. For example, if we consider the PV generation, corresponding solar

radiation have influence and the PV production is dependent on absorbed radiation. So, the

solar radiation is the exogenous variable of PV generation forecasting and taken to be input

data as well. In this example the endogenous variable would be PV generation time series data.

In case of electrical load data forecasting, no exogenous variable is needed in principle. The

statistical approaches work only with an endogenous variable for time series forecasting. Here,

the relationship between the endogenous variable and exogenous variable is not needed for a

good prediction. However, different regression and machine learning algorithms count on this

relationship. Hence, we require both exogenous and endogenous variables for their prediction

algorithm structure. So, a dummy hour of the day column is added in the load profile dataset.

This dummy data was used as an exogenous variable together with the electrical load time

series as endogenous input for machine learning and deep learning approaches.

4.3. Data-sets

For the evaluation of different forecasting methods, each method uses the same time series data

sets. The datasets are used in this research can be grouped into two categories based on

application areas; the electrical load profiles and the PV generation for households. In the end,

we compare the performances of different methods according to the type of datasets. So, all

data sets are resampled to have equidistant (1h interval) time steps to compare correctly.

Therefore, if some data set is provided with less or more time interval, then it was downsampled

or unsampled to get the time interval of 1h to achieve the consistency of the evaluation result.

From the dataset, we have taken the input of related exogenous and endogenous variable, and

through the toolbox, for different methods get the prediction for the endogenous ones.

26

4.3.1. Household data sets

The dataset we have used for estimating household PV load has a measured photovoltaic

generation (PV) profiles for Rieselfield Freiburg which is scaled to 10kWp and annual sum

2219 kWh for the year 2012. This dataset contains the hourly sum of diffuse solar radiation for

the same year measured in 𝑗/𝑐𝑚2which is influenced the generation of PV. The other dataset

includes a very economical 4 persons (two workers and two kids) household load from 2012

Load Profile (kW) with annual sum 2219 kWh. This dataset has a measured electric load profile

for a four-person household having annual sum 4647 kWh. From the annual sum’s comparison

of different households, we can observe that the number of inhabitants and their behaviour

highly influence the load.

Table 4.1: Overview of household energy load dataset.

Energy
data

Minimal load
(KW)

Mean load
(KW)

Maximal load
(KW)

PV generation 0.00 1.50 10.33

Household load 0.034 0.25 2.65

The mean curves of all day for 365 days are presented below. We have shown the plotting of

the average hourly load of individual time series for different days of the year 2012.

Figure 4.2: Mean day plot for the whole year for PV generation data.

27

Figure 4.3: Mean day plot for the whole year for electrical load data.

4.3.2. Handling outliers

Outliers are the observation points that are faulty in the data. Usually, these outliers can be

detected most of the time easily as they do not make sense in the data. There are several ways

to label the outliers in the data by using box plot, scatter plot, z score and IQR score. In this

study, we have checked for an interquartile range (IQR score), an outliers detection methods

improved by John Tukey (the pioneer of data analysis). By keeping only valid values, outliers

are left out, and these missing values can be treated by interpolation of data. Also, the NAN or

undefined value from the dataset can be treated by replacing with zero. We have cross-checked

with the provided datasets for outliers, NAN or missing values and observed that the data sets

were clean. So, we trained our model with these data sets to learn the behaviour of measured

data and provide the prediction. Also, from the duration curves of these datasets, we can see

no significant effect of outliers for endogenous input.

4.3.3. Training and testing data for each method

According to the statistical literature, the input dataset is usually divided into two sets (training

and testing sets). The training set is used for estimating and building the model, also known as

“in-sample data”. The testing set is used for the estimation of forecasting using the parameters

which is contained the unseen data by the model while it trained. Therefore, the test sets also

known as "out-of-sample data”, that is a way to measure its performance of prediction for other

data by comparing the predicted outcome with the real outcome of this test data. Typically, the

size of the test set is 20% of the last part from the total sample dataset [43]. Sometimes, a

validation set is needed to tune the model. As the model perceives this data set so it cannot be

a test set. Having a validation set is better for a larger number of datasets.

28

We have used a moving training technique for “train set” split and moving prediction technique

for “test set” split. The whole time series is divided over the different sample sizes several

times (discussed in section 4.6).

4.4. Forecasting accuracy measurement

Accuracy is the measuring criteria which determine the quality evaluation for forecasting

method. The basic behind a good forecast is to minimize the forecasting error as it maximises

the efficiency of the forecast. This error is the difference measurement between an actual value

and forecasted value. The commonly used error calculating metrices are the root mean squared

error (RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE)

and the Pearson correlation coefficient (R value). In this thesis work, these accuracy metrices

are used to evaluate the forecasting depending on different forecasting aspects so that we can

have a clear view of the efficient method.

4.4.1. The root mean square error (RMSE)

The mean square error (MSE) uses the square sum of the difference between observed and

forecasted values and is divided by the number of data periods. The root mean squared error

(RMSE) is the square root of this MSE. RMSE is the popular evaluation criterion for regression

analysis [73] and can be calculated by:

 RMSE = √
∑ (𝑦′ − 𝑦)2𝑛
𝑖=1

𝑛
 (19)

where 𝑦 is the observed or actual value, 𝑦′ is the forecasted value and the total length of

instances is n. RMSE is measured on the same data scale. This kind of scale dependent measure

is not suitable while comparing different data sets. Which implies, the calculated RMSE can

be compared only between models that measured from the same data set or in the same units.

[74]. Another limitation of RMSE is that it is also prone to forecasting outliers [75].

4.4.2. The mean absolute error (MAE)

The mean absolute error (MAE) is used in the early forecasting literature to evaluate the

performance of forecasting models as a primary measurement [76]. The MAE can be calculated

by:

 MA𝐸 =
1

𝑛
∑|(𝑦 − 𝑦′)|

𝑛

𝑖=1

 (20)

29

MAE is also a scaled-dependent measure and has the same data unit as the original. Hence,

calculated MAE can be compared between models whose measured errors are in the same units.

However, MAE is also prone to extremly large outliers in data sets but has a slightly smaller

magnitude compared to RMSE.

4.4.3. The mean absolute percentage error (MAPE)

Mean absolute percentage error is the scaled independent measure where the accuracy measure

scale does not depend on the data scale. MAPE is the average or means of all percentage errors.

It is preferable while comparing different data sets [75]. This error (MAPE) can be calculated

as follows:

 MAP𝐸 =
1

𝑛
∑

|(𝑦 − 𝑦′)|

𝑦

𝑛

𝑖=1

× 100 (21)

However, the limitation of percentage errors is that when data has values equal to zero or close

to zero in the target time series, then MAPE can be extremely large or undefined. Moreover,

from the research [76] it is noted that MAPE has a bias favouring estimation for the values

below the actual values.

4.4.4. The Pearson correlation coefficient

Pearson’s correlation coefficient is a statistical measurement which measures the linear

relationship strength between paired data of interest. It is presented by Karl Pearson and

denoted by r that can take a value range from +1 to -1. Here, a positive value greater than zero

means a positive correlation coefficient. Meaning that increasing the value of one variable will

increases the value of other variable or vice versa. On the other hand, a negative value of r

reflects a negative correlation coefficient between those two variables. In this case, increasing

the value of one variable will decrease the value for other variable and vice-versa. This

Pearson’s correlation coefficient r between two variables, in our case, the actual value (x) and

the forecasted value (y) can be designed as follows,

 𝑟 =
∑ ((𝑥 − �̅�)(𝑦 − �̅�))𝑛
𝑖=1

√∑ (𝑥 − �̅�)2𝑛
𝑖=1 ∑ (𝑥 − �̅�)2𝑛

𝑖=1

 (22)

where, �̅�, �̅� are the mean of x and y variable, the value of r, closer to +1(a perfect positive

relationship) or -1(a perfect negative relationship), indeed determine how close two variables

are correlated. If r is equal or close to zero, then it reflects there is no association (relationship)

between the variables x and y.

30

4.5. Coding language and important libraries

For the implementation of this toolbox, we have used Python 3.6 as a coding language.

Integrated development environment (IDE) Eclipse has been used as a development platform.

Here, The PyDev extension is aggregated with the default Eclipse to run and execute Python

code. Pydev is basically a plugin which enables this IDE to use as a Python IDE. Advanced

type inference techniques are used here which provide flexibility such as code analysis and

code completion, refactoring, interactive console. Along with other popular Python libraries,

we have used Pandas and matplotlib for plotting. To implement all the chosen categories of

forecasting algorithm, we have used three main library functions. They are Statsmodel, Scikit

learn, and Tensorflow.

Statsmodel Library: Statsmodels is a Python library that built specifically to solve statistical

problems. This python library is built on top of NumPy, SciPy, and matplotlib. Statsmodel

provides functions and classes for different statistical models including statistical tests,

modelling, and data exploration. For the implementation of the statistical algorithms ARMA,

ARIMA, ES, and HW these built-in library functions have been used.

Scikit Learn library: Scikit-learn library has a vast range of built-in algorithms for machine

learning algorithms through a Python consistent interface. This library is built over the

Scientific Python (SciPy) and NumPy. It features various classification and regression

algorithms. We have used this library to implement machine learning algorithms such as RF

and KNN.

Tensor flow library: TensorFlow is a foundation library created by Google team for numerical

computation and deep learning. This is used to create deep Learning models using wrapper

libraries or directly. Therefore, it combines machine learning and deep learning (neural

network) models. TensorFlow has APIs available in languages (such as Python API) for

executing and constructing TensorFlow graph. For the implementation of neural networks

ANN and RNN, we have used this library.

https://mode.com/python-tutorial/libraries/numpy/
https://mode.com/python-tutorial/libraries/scipy/
https://mode.com/python-tutorial/libraries/matplotlib/
https://en.wikipedia.org/wiki/SciPy
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis

31

4.6. Implementation procedure of the forecasting toolbox

The working mechanism of the forecasting toolbox has several layers. We start with the

selection of forecasting method by providing input dataset and finish once we get the output

prediction values associated with errors. The working procedure of the forecasting toolbox can

be illustrated as following figure:

Figure 4.4: Working procedure of forecasting technique.

Read the input file

read_timeseries() function reads the time series data, and it is further stored in variable ts as

shown below. After that, the prediction variable (endogenous) is set to values to predict, and

the corresponding exogenous variable is set to exogenous variable from dataset. Later, these

will be passed to the forecasting toolbox as an argument.

ts= read _timeseries(input_filename)

values to predict= (the endogenous variable)

exogenous variable = (the exogenous variable)

Creating the method instance

A list containing all the forecasting method names are created, from where we can select either

one single method or all methods together and run the methods for given input dataset. A simple

method implementation having endogenous and exogenous input data along with parameter

setup to produce the prediction is shown in Figure 4.5 below:

Evaluation of forecast error

Saving the output prediction

Predict the models

Initialize and train the models

Split data into

Training sets Testing sets

Pre-processing of input data

Selection of forecasting model

32

Figure 4.5: Illustration of a method implementation.

After the selection of the method, the instance of forecasting class object is created by the init()

function from forecasting toolbox. This function takes all the specified values that is discussed

before as argument to the forecast wrapper class, which is the master class for forecasting. It is

shown below:

PF = Forecast(values to predict, exogen values, method name).

Time scale

Time scale analysis is one of the most important aspects for all kinds of energy forecasting.

For our experiment, we have considered five different timescales. They have been categorised

as very short-term hourly (1H), short-term daily (1D), weekly (1W), medium-term monthly

(1M) and long-term (3M). We will observe that the result accuracy of prediction highly differs

corresponding different time scales in the following chapter. We took a list of evaluation

horizon which is looped over the method training and prediction.

evaluation_horizon= [‘1H’,’1D’,’1W’,’1M’,’3M’]

Sample size

Training set is split over the sample size by moving training technique. We have set the list of

the sample sizes (given below) using a “for loop” over the whole dataset. As an example, the

first time the training will be done with having 50 data points and each time the same amount

of successive data points from the time series are passed through the moving technique to fit a

method. The procedure has described briefly in the below section “Moving prediction”

samples_sizes= [50, 100, 200, 400, 800, 1600,2200]

ExogenousEndogenous
Setting

Input
Data

Parameter

Model

Output

33

Moving training and prediction

We have split the provided time series dataset over the sample sizes and prediction horizons.

This is done using a loop over the sample sizes using a training window and a prediction

window. Here, the prediction window is equal to the size of evaluation horizons that is chosen

according to the prediction horizon list. For example, if we choose 50 data points for the first

run, then from the whole time series the first 50 data points will be chosen as a training set. If

we chose the prediction horizon as one day for the same iteration, then the index for this

prediction interval will be taken from the time series. According to this prediction horizon, the

forecast length prediction window is assigned. This will run over the whole time series till the

end by splitting the dataset as ts_train_moving and ts_test_moving just like a moving window.

training window = sample size

prediction window= pred_sample_num

This moving training and moving prediction are illustrated in the below figure

Figure 4.6: Step-1 of moving forecasting for training sample size 50 and daily

prediction horizon.

Figure 4.6 shows a moving prediction technique for the measured data (coloured green) and

the prediction data (coloured orange). Step-1 shows the first training set (ts_train_moving) with

the chosen training sample size 50 and the first testing set (ts_test_moving) for one day ahead

prediction horizon. The second step follows the same technique but moving the training set and

testing set by 24 (prediction window length for 1D) data points ahead (Figure 4.7).

1st prediction1st training

Sample size = 50h Prediction horizon = 1D

Time (h)

Energy

Measured data

Prediction

2 · · ·1 3 48 49 1 2 22 233 24

Daily prediction

34

Figure 4.7: Step-2 of moving forecasting for training sample size 50 and daily

prediction horizon.

Train the method

Each moving training set in sent to fit () function of the forecasting toolbox. This function will

generate the fit function of the specified method. As we have already discussed in the previous

section, each method has some parameter of its own. A proper training of the method and a

good prediction result is highly dependent on these methods parameter value. We have set this

parameter value using some optimization procedures (in section 5.1). Along with these optimal

parameter values, the endogenous and exogenous input from the toolbox train the method with

its own fit() function (the training function).

PF.fit(ts_train_moving)

Here we have calculated the computational learning time needed for each method for training

by using the date-time differences between the function call and training the model.

Predict the method output

The forecasting of each method is achieved by using the prediction function from the

forecasting toolbox. This function will generate the prediction of the specified method with the

provided moving test dataset from the toolbox. Here the computational prediction time is

calculated using date-time differences between the function call and the result generation.

Predicted_result= PF.predicts(ts _test_ moving)

After getting the Predicted_result, we have stored this prediction data in the old time series

using a new prediction column. Hence, the time series now have both the real value and the

prediction value. Later, using the function plot_all_time_series(), the timeseries is plotted with

real data and the predicted data together.

2nd training

Sample size = 50h Prediction horizon = 1D

Time (h)

Energy

Measured data

Prediction

2 241 3 25 7574 1

Daily prediction

1st prediction

2nd prediction

2422

1st training

. 2

35

Evaluation of the forecasting method

The comparison between the true value and Predicted_result is done through an evaluation

function. All the parameters like method name, dataset type, training sample size, learning

time, prediction time, prediction horizon are passed to the evaluation function for each method.

All these are passed as an argument to the function and calculate the error metrics (RMSE,

MAE, MAPE and R value). The output of the function is saved in another data frame named

“store” and save as .csv file.

 Store= PF.forecasting_evaluation()

Result plots

Depending on the goodness of fit criteria of each method, result comparison plots are presented

in section 5.2.

The working flowchart of the forecasting toolbox is illustrated in Figure 4.8. The workflow

starts by processing the input files and normalizing the inputs. Next, online training is done by

moving training and moving prediction. Each method is trained several times. We also applied

the offline training by splitting the train set and test set once and trained each method for one

time to get the prediction. To fit the methods, we have tuned the parameter of each method

according to the provided dataset. Then from the list of the methods, each method is initialized

with the optimal parameter values. Then via testing the methods we get the prediction result.

These results are stored in the data frame and evaluated using accuracy metrices and plot for

each method.

36

Figure 4.8: Diagram of the forecasting toolbox.

Files

T
ra

in
in

g

Online

Offline

P
a

ra
m

e
te

r
tu

n
n
in

g
o

f
e

a
ch

 m
e

th
o

d

Data

pre-processing

normalization

Methods

Run

Predict
Evaluate Output.

training

PF

ARIMA

ANN

KNN

RNN

ARMA

te
st

in
g

. .
 .

Accuracy

metrics,

Plots

Save prediction

info

37

5. Performance analysis

It is necessary to compare all the methods to find an efficient method covering the reasonable

forecasting aspects (section 1.3). This chapter presents a detailed analysis of the

hyperparameter selection and optimization procedure for each method. Afterwards, a

computational and error measurements comparison have been described for each method

according to the size of the training sample and prediction horizon. Later, based on the finding,

a comparison of the methods including the pros and cons is discussed.

5.1. Parameter optimization

In this section, different settings for the critical parameters for each method is highlighted and

the optimization procedure of these parameters are discussed.

5.1.1. ARMA and ARIMA

The steps in Box Jekins approach is followed here to choose the optimal value of the parameter

for the ARMA and ARIMA method. The identification of the parameter (p, d, and q) range is

done from ACF and PACF plots. Next, the best fit parameter value is estimated by fitting the

ARIMA model over the identification range and by using maximum likelihood information

AIC criteria. From the set of these candidates of ARIMA models, the best fit model is the one

having minimum AIC value. This provided combination with minimum AIC of hyper-

parameter will not over-fit the model. The formula of AIC is described in section 3.3.3. We

further checked the diagnostic of the model to see if the selected parameter values based on

AIC criterion is fitted in properly or not. Then the optimal parameter value is used to predict

the time series data using the model.

The range of the p, d and q for PV generation is found at (0,3). Then we checked for the best

fit of the model over this range based on minimum AIC. Depending on the normality

assumption, AIC will give several minimum values for (p, q and d) where the least number of

AIC is the best fit of the parameter for the model. Alternatively, we can apply the stepwise

algorithm auto.arima() library function that is implemented in the forecast library to identify

the optimal model parameters. This automated tool stepwise auto.arima is used to identify the

subset of predictors where the minimum of AIC estimates the best fit model. This function can

identify optimal p and q parameters and seasonal differencing d, but it is computationally

slower than the loop search. We compared the optimal value of the hyperparameters generated

using auto.arima function and for-loop function over the same range. From this, the most fitted

model ARIMA (2,1,2) is found based on minimum AIC=10213.75 for PV data. Some results

are listed in Table 5.1 below:

38

Table 5.1: Hyperparameter optimization of ARIMA model for PV generation.

ARIMA (2, 1, 1) AIC=19561.83
ARIMA (2, 1, 2) AIC=10213.75

ARIMA (2, 0, 2) AIC=12231.33
ARIMA (1, 1, 2) AIC=10258.19

Further, we have looked for the diagnostic plot of the ARIMA model to recheck our selection

of p,d and q order. From the autocorrelation plot, we observe that the residuals of the time

series have low correlation with itself lagged version. So, we have used ARIMA (2,1,2) and

ARMA (2,0,2) model for the prediction of PV generation data.

In the same way, we have checked the optimal value of p, d and q within the same range for

electrical load dataset and got ARIMA (2,1,2) with minimum AIC = 552.90 is the most fitted

model parameter value. Finally, we have used ARIMA (2,1,2) and ARMA (2,0,2) model for

electrical load forecasting.

5.1.2. Exponential smoothing

As discussed in section 3.3.5, the accuracy of the simple exponential smoothing algorithm

depends on the smoothing factor 𝛼. Several algorithms exist to calculate the best α. However,

by comparing a number of values between zero and one, a good value for α can be identified

[54]. The traditional optimization method has used to figure out the optimal value for alpha

which is based on the lowest mean squared error (MSE).

We separated the dataset into the train and test set to train the model with the train set and to

check the model evaluation over the test set. The fractional range of 𝛼 (0,1) is taken and

selected the best 𝛼 that fits the simple exponential smoothing model based on MSE between

the prediction and the true value. The value which gives minimum mean squared error is

selected. Training of this algorithm is done using the Statsmodel library function. Then the

resulting comparison plot of MSE according to different 𝛼 value is presented below. The

minimum MSE of 5.28 is found for 𝛼 = 0.038.

Some significant results are listed below:

Table 5.2: Optimal value of 𝛼 found from loop search.

𝜶 MSE in (𝐊𝐖)𝟐

0.0010 5.86

0.0027 6.08
0.0378 5.28

0.9970 7.07

39

Figure 5.1: The optimal hyper parameter value of exponential smoothing for PV

generation.

An alternative time series split procedure from sklearn library is used to make the train set and

test set split to find the optimal 𝛼. In this splitting procedure, the successive training sets

maintain sequence order in splitting so that they are the supersets of those order that come

before them. We have used the time series cross validation split with 3 folds for the PV

generation dataset and fit the model with forecast library function over this train set and test

split through these folds. Similar to the first procedure, this train and test sets were looped over

the 𝛼 range.

Table 5.3: Hyperparameter optimization of ES for PV generation.

𝜶 MSE in (𝐊𝐖)𝟐

0.0028 4.50

0.0663 2.10
0.9998 5.55

As the second result evaluation has less MSE error, so we have chosen the smoothing value as

0.0663 to train the model for PV generation and forecast finally.

Similarly, we have checked the optimal 𝛼 value for electrical load dataset for the range of alpha

and got the optimal value 𝛼 =0.0001 with minimum MSE 0.077. Using the time series cross-

validation split, we have got optimal value for 𝛼 = 0.6367 with minimum MSE= 0.045. So, 𝛼

= 0.6367 is used to train and forecast the electrical load.

40

5.1.3. Holt-Winters

The Holt-Winters smoothing method mainly depends on three smoothing factors α, β, γ for the

appropriate fit model (in section 3.3.6). The range of these parameters are 0< 𝛼 <1, 0< 𝛽 <1,

0< 𝛾 <1. We have used similar time series cross-validation split with 3 folds for PV generation

dataset. The optimal parameter values were found and fitted the model with forecast library

function over this train set and test split through these folds. A detailed procedure of this cross

validation has presented in the random forest parameter optimization section. The Holt-Winters

model is fitted with the train set and the evaluation of the model is done in the test set. The

training of the model is looped over the range α, β, γ ((0,1), (0,1), (0,1)) using scipy

minimization library function and select the best parameter for the Holt-Winters smoothing

model. Training of this algorithm is carried out using the Statsmodel library function. The

model evaluation is done using MSE between the prediction and the true value for different 𝛼,

𝛽 and 𝛾 value. Based on the MSE of each model, the function returns the score for optimal α,

β, γ and the value that results the minimum MSE is selected.

Some significant results in a range 0< 𝛼 <1, 0< 𝛽 <1, 0< 𝛾 <1 is listed below:

Table 5.4: Hyperparameter optimization of Holt-Winters for PV generation.

𝜶 𝛃 𝛄 MSE in (𝐊𝐖)𝟐

0.0027 0.0038 0.2274 1.74

0.0026 0.0037 0.2274 1.90

0.0026 0.0037 0.2275 2.25
0.0018 0.0045 0.2137 2.36

0.0042 0.0036 0.0034 5.08

We got the optimal value for alpha is 0.0027, beta is 0.0038 and gamma is 0.2274 with

minimum MSE 1.74 for the model. Further, we used the optimal value for these parameters as

smoothing level, smoothing trend and smoothing seasonality respectively to train the model

and get the final forecast for PV generation dataset.

The same trend is followed to find the optimal value for electrical load data and we have got

the optimal alpha is 0.0028, beta is 0.0021 and gamma is 0.0291 with minimum MSE 0.057.

Further, we have used these optimal values to exponential smoothing function to train the

model and get the final electrical load forecasting.

41

5.1.4. Artificial neural network

ANN requires a special pre-processing of the input data. The input vector of continuous

variables is normalized using MinMaxScaler() in a range (0,1). This results the feature to scale

down within the given range. Then, using fit_transform() function, each feature is scaled and

translated individually in the given range (0,1) over the training set. For processing the output,

an inverse transformation of the dependent variable is applied to scale back the data to the

original demonstration. The tensor flow library function is used to train the neural network

model and forecast the result.

Corresponding to the data shape, the input and output layer shape is set to 1. The optimal

weights W_1 and W_2 variables are learnt through iterations. For batch optimization, the ANN

is trained by gradient descent optimiser and the performance are calculated within the testing

part by MSE. Therefore, it calculates the error between prediction and the true value. To

activate the neurons in the artificial network sigmoid function is used. The size of the training

dataset and the testing dataset is controlled by the forecasting framework. For hyperparameter

optimization, we can look at some other important parameters: “epochs”, is the maximal

number of training round in the network and “hidden number of nodes”, is the maximal number

of nodes (or neurons) in the hidden layer.

We have compared MSE error in the test part using both one-and two-hidden layers.

Interestingly, adding more hidden layers did not improve the forecast quality. After that,

different number of nodes in the hidden layer was tested, in a range of (5, 100). We have also

checked over the range of epochs (100, 600). The choice for epochs that provided the minimum

MSE in the prediction was at 200 and 300. It seemed that it is enough to have 20 hidden neurons

in the hidden layer. As adding more nodes to the layer also did not improve the forecast. Some

significant result of epochs, hidden layers and hidden numbers of nodes based on minimum

MSE is given below:

Table 5.5: Hyperparameter optimization of ANN for PV generation.

Hidden
nodes

Number of
epochs

Hidden
layers

MSE
 (𝐊𝐖)𝟐

10 300 2 0.895

40 500 2 2.011

30 400 2 2.026

50 700 2 5.394

20 300 1 0.863

50 600 1 5.480

20 200 1 0.896

42

For the PV generation forecast, we finally used epochs = 300 with a hidden number of nodes

20 for one hidden layer in the ANN network. In a similar trend, for electrical load forecasting,

we have got minimum of MSE of 0.140 for a hidden number of nodes 20 and epochs 1000.

Here the forecasting window and size of the history data are chosen by prediction horizon and

training sample size respectively. This parameter values are used to train ANN and get the

forecast of PV generation and electrical load forecasting respectively.

5.1.5. Recurrent neural network

Other than ANN, RNN requires special processing of the input data in terms of the number of

batch sizes. To make sure that the same number of observations are passed for each batch of

input data, we have set the N_smaple size equal to the forecast window. The time series training

data is divided into subsets according to this shape, which is split into x_batches and y_ batches

chunk of training data where we have reshaped each batch accordingly. From example, if we

pass prediction horizon = ‘1D’, then N_smaple size= 24 (having 24 data points for hourly

interval time series) so that the forecast window will be for next 1D prediction. Therefore, each

batch of training data have 24 data points, and the number of batches depending on the provided

size of the training sample, where the batch number will be equal to ((training sample size-

N_smaple size) +1). So, we do not have to optimise the number of samples in training bathes

as it will change according to our provided prediction horizon.

For simplification of the model, we have used input neuron as 1(that is the feature) and output

as one so that the output to be the same format as input. This ensures easy comparisons of loss

functions. Here mean square error (MSE) is used to calculate the loss function. For activation

of the neuron, Rectified Linear Unit (Relu) is used. Adom optimiser, which is a general-purpose

optimiser, is used to optimise network input and output for training pattern in the tensor flow.

Similar to ANN training data set size, prediction window size and N_smaple size is controlled

by the forecasting framework, so for hyperparameter optimization is applicable for “epochs”,

hidden number of nodes, hidden number layers and the learning rate.

We have chosen the number of hidden node range (10, 100) and check with one hidden layer

and two hidden layers. Also, we have checked over the epochs range (100, 1000) with learning

rate= (.01,.001, .0001). After the completion of learning iteration, for each network

combination, the MSE error measure was checked. The choice for epochs that provided the

least MSE in the train part was at 600 and with one hidden layer having 70 hidden number of

nodes the network showed seemed sufficient as it provided less MSE in the testing part. Adding

more hidden layers does not change the forecast quality in the network. Learning rate 0.001

was satisfactory to provide a good forecast for all except weekly prediction horizons. For a

weekly prediction, RNN needed a different parameter setting. A good prediction for training

sample size 200 and 800 was achieved having a higher learning rate of 0.02, 0.1 with epochs

43

150 and 200 respectively with hidden nodes=50. For the other prediction horizons, some

evaluation over the range of epochs, hidden layers and hidden node numbers based on

minimum MSE is presented below.

Table 5.6: Hyperparameter optimization of RNN for PV generation.

Hidden
nodes

Number of
epochs

Hidden
layers

MSE (𝐊𝐖)𝟐

70 500 2 1.07

50 400 2 1.24

80 600 2 1.15

30 400 1 1.11

70 600 1 1.06

50 400 1 1.09

In case of electrical load dataset in a similar way, we have got the minimum MSE = 1.130 with

learning rate= .001 and epochs= 400. Finally, we set the optimal parameter values to train the

RNN and get the forecast of PV generation and electrical load forecasting.

5.1.6. Random forest model

An ensemble approach random forest algorithm was described briefly in section 3.4.1. The

procedure of this model is not overly sensitive for the parameter variable. Breiman [57] stated

it might be unnecessary to use more than the required number of trees, but this will not damage

the model. In addition to it, Feng [77] stated that RF could achieve accurate results with ntree

= 200. According to many research, m = 5 is recommended as smaller m value gives deeper

tree. However, to find the optimal RF model for regression, a range of values were tested and

evaluated. The algorithm was trained with RandomForestRegressor() function which is

implemented in Scikit learn library. The main parameters for the good fit of this model are:

• ntree: the decision tree numbers in the forest, and max_depth is the maximum leaves

number in each decision tree.

• max_features: the number of variables should be chosen from available variable in the

dataset when looking for the best splitting at each node, the ‘auto’ selection of

'max_features' means taking all the features for regression analysis and the selection of

sqrt(n_features) for 'max_features' is basically used for classification problems.

• min_smaple_leaf: the minimum sample number or data point are required in newly created

leaves.

44

• min_sample_split: the number of minimum data points must be placed in a node before

the split of that node. The split point of any depth will expand the nodes until all leaves

have less sample than min_samples_split.

param_grid = {

 'bootstrap': [True],
 'max_depth': [80, 90, 100, 110],
 'max_features': ['auto', 'sqrt']
 'min_samples_leaf': [3, 4, 5],
 'min_samples_split': [8, 10, 12],
 'n_estimators': [100, 200, 300, 1000]

 }

The optimization function GridSearchCV is used to find out the best model using parameter

grid dictionary defined above. Also, time series cross-validation function from Scikit learn is

used to compute the cross-validation over the trainset. Cross-validation is an approach to

estimate the performance automatically for a model. It works by splitting the dataset into

subsets with the provided k number of folds, in our case k = 3. This 3-folds split the training

set into n (here 3) parts. Then training is done for (n-1) folds and the testing is done on the left-

out fold. For each fold, the accuracy of cross-validation is measured, and the parameters are

estimated in-sample.

We passed the train set to fit the Randomforestregressor() and tuned the parameters using grid-

search over the param grid and recorded the accuracy for each combination based on the

determination of coefficient R2. The hyper parameter having the highest average accuracy

through the n-folds is selected which minimizes the risk of overfitting the model. The optimal

parameter value is chosen based on the maximum accuracy of the model. We use grid search

over random search for parameter optimization of a random forest as the run time of

randomised search is drastically lower but both produce same space of parameters.

RandomForestRegressor(bootstrap=True,
 criterion='mse',
 max_depth=80,

 max_features='sqrt',
max_leaf_nodes=5,

 min_samples_split =10,
 n_estimators=100)
With best_score 0.7770855240573122

The optimal parameter value found from the Grid search for PV generation is listed above. We

used these values of the hyperparameter for the RandomForestRegressor() model and forecast

the PV generation.

In case of electrical consumption data using the same param_grid and the above-mentioned

procedure we have got the optimal parameter value as below:

45

RandomForestRegressor(bootstrap=True,
 criterion='mse',
 max_depth=80,

 max_features='sqrt',
max_leaf_nodes=5,

 min_samples_split =10,
 n_estimators=100)
With best_score 0.379626843183269672

Finally, we have used these optimal hyperparameter values for the RandomForestRegressor()

model and forecast the electrical load.

5.1.7. K-nearest neighbor

The working procedure and the basis of the k-nearest neighbor algorithm have presented briefly

in section 3.4.2. This algorithm searches the k-closest training samples in the feature space

based on the calculated distance. As a result, the parameter k plays an important role in the

evaluation of the KNN which implies k as the key tuning parameter. So, the goal here is to find

the optimal k value for the model based on the dataset. For training the KNN model we have

used the KNeighborRegressor() implemented in Scikit learn library. We have used two

procedures to find the optimal parameter, first we provided 3-fold cross-validation with the

80% train test split, and 20% test set to split from the whole year of PV generation data. Then

we looped through the reasonable number of k in a range (0,50) and used the 3-fold cross-

validation to estimate the optimal value of k and to record the output accuracy based on R2

between the feature test set and the response test set. For each iteration of the loop, the KNR is

instantiated with n_neighbor= k and for each fold, the accuracy is measured.

Within the range from 1 to 50, we have found the optimal k value = 40 with the highest score

of 0.692 applying k-fold cross validation.

Figure 5.2: The optimal hyper parameter value of KNN for PV generation.

46

The other procedure is using the GridSearchCV() to find the optimal value of k for the model.

We split the whole year dataset by traintestsplit () as discussed in the random forest parameter

optimization and passed the train set to GridSearchCV() with fold number = 3 and parameter

grid of k = [1, 2, …, 50]. The KNN regressor is fitted and tuned using grid search over each

value of k value in the grid. For each iteration, this will estimate the performance score and the

optimal value for the k which has the best model accuracy. From the grid search, we get the

optimal k = 41. The grid search result is presented below:

KNeighborsRegressor(algorithm='auto',
 leaf_size=30,

 n_jobs=1,
 n_neighbors=41,
 weights='uniform')
With best_score_ 0.707

The forecasting accuracy is also recorded for the k values by calculating the MSE between the

true value and the forecasted value. Some significant result is presented below:

Table 5.7: Hyperparameter optimization of KNN for PV generation.

k MSE in (𝐊𝐖)𝟐

28 0.932

31 0.361

35 0.358

40 0.355

41 0.353

From this table, we see that the grid search provides a similar result as the loop performance

just slightly better. However, the computational time is slower than the loop search. In KNN,

the higher k value produces lower complexity of the model and choosing the odd k is better to

avoid the class problem. So, we choose k = 41 and set as the n_neighbor value to train the KNN

regressor model and forecast the output for PV generation.

Similarly, we checked for the optimal k value for the electrical load data. We have got the k=46

from the cross-validation split, but the most optimised value we have got from grid search for

the same range of k values as mentioned above.

KNeighborsRegressor(algorithm='auto',
 leaf_size=30,

 n_jobs=1,
 n_neighbors= 49,
 weights='uniform')
With best_score_ 0.292

So, we have chosen k = 49 and set as the n_neighbor value for training the KNN regressor

model and forecast the output for the electrical load.

47

5.2. Evaluation

Several common accuracy measures such as RMSE, MAE, MAPE, and R-value have been

used to compare the performance of the predictions of each forecasting method against the

different forecasting aspects described in section 1.3.

5.2.1. Comparison of the computational performance

In this section, we present the comparison of model-dependent parameters, the learning time

and the predicting time that is needed to train and forecast a new PV or electrical load profile

from the model. These calculations have been carried out on a Windows 10 computer, with 4

Cores, 8GB of ram, and with 3.4 GHz clock speed.

Figure 5.3: Computational comparison criteria.

For simplicity of discussions, we have presented the mean learning time used by each method

to train with the optimized hyperparameter values and to predict daily PV generation with a

different sample size over the year (in Table 5.8)

Table 5.8: Required learning time for each method with different training sizes for

daily PV generation.

 Learning time (in seconds)

 Sample size

 50 100 200 400 800 1600 2200

ARMA 0.008 0.009 0.009 0.01 0.01 0.01 0.01

ARIMA 0.10 0.11 0.16 0.25 0.38 0.70 0.86

ES 0.006 0.006 0.01 0.02 0.04 0.06 0.07

HW 0.003 0.004 0.006 0.009 0.01 0.02 0.03

KNN 0.005 0.005 0.006 0.008 0.006 0.009 0.01

RF 0.31 0.29 0.30 0.35 0.36 0.47 0.49

ANN 8.79 8.33 8.65 9.08 10.09 12.39 12.24

RNN 30.29 32.98 36.46 41.37 57.34 80.23 101.12

Run-time

Learning
time

Predicting
time

48

Table 5.8 shows that for all methods the learning time increases gradually with the increase of

training size. It can be noted that KNN method has minimal learning time (~0.005 s) over all

sizes of training samples for daily forecast. Although, HW has slightly lower learning time

over small training size (50,100,200) than KNN, for lager training size the computational time

have increased more than KNN. So, the 2nd best choice could be the HW and ES respectively.

ARIMA model needs larger training time compared to the smoothing methods and ARMA.

The training time of RF is relatively higher than the smoothing methods. But the longest

learning time is required for neural networks, where the learning time is highly dependent on

training size. Whereas, RNN requires the longest time for training. The same trend is observed

for different prediction horizons such as hourly, weekly and monthly. So, we can conclude that

KNN showed better performance according to the learning time comparison.

We compared the mean learning time required by each method for forecasting daily electrical

load. The learning time is measured for different training sample sizes. The comparison is

shown in Table 5.9. From the comparison of mean learning time for electrical load forecasting,

we spotted a similar trend as PV dataset. KNN has minimal learning time compared to all other

methods over all sample sizes. ES and ARMA could be the second-best choice in this case.

However, the largest learning time is needed for deep learning approaches, whereas RNN has

the significantly highest learning time compared to all other methods.

49

Table 5.9: Required learning time for each method with different training sizes for

daily electrical load forecasting

 Learning time (in seconds)

 Sample size

 50 100 200 400 800 1600 2200

ARMA 0.029 0.034 0.034 0.034 0.036 0.038 0.042

ARIMA 0.09 0.11 0.15 0.27 0.47 0.75 0.95

ES 0.007 0.008 0.01 0.013 0.013 0.02 0.03

HW 0.14 0.25 0.48 0.93 1.50 1.89 2.25

KNN 0.008 0.008 0.009 0.007 0.007 0.008 0.01

RF 0.28 0.35 0.38 0.32 0.40 0.42 0.34
ANN 8.36 8.41 9.22 7.20 7.55 7.45 9.34
RNN 26.97 48.27 70.92 12.13 43.53 55.06 147.3

The forecast phase begins after the training, where depending on the size of the prediction

horizon, the forecast has to be repeated until the end of the year. As an example, we have

presented the mean predicting time for all prediction horizons for training sample 2200

covering all the methods in Table 5.10.

Table 5.10: Required predicting time for each method with different

forecasting horizons for PV generation forecasting.

 Predicting time (in seconds)

 Prediction horizons

 1H 1D 1W 1M 3M

ARMA 0.003 0.003 0.004 0.004 0.006

ARIMA 0.008 0.01 0.011 0.018 0.036

ES 0.018 0.012 0.011 0.011 0.013

HW 0.105 0.027 0.027 0.027 0.03

KNN 0.008 0.011 0.021 0.038 0.04

RF 0.037 0.035 0.044 0.048 0.042

ANN - 0.05 0.056 0.057 0.059

RNN - 5.12 0.44 0.055 0.044

The Table 5.10 shows that, with 2200 training size, predicting time has increased gradually

according to the prediction horizons for all the methods. In this context, the monthly prediction

has a large predicting time for all the methods. The predicting time is low for the statistical

methods whereas ARMA has minimal predicting time (~0.006s) for all the prediction horizons.

KNN has lower predicting time compared to the ARIMA and other methods.

In case of smoothing methods, ES has relatively lower predicting time than HW. RF has shown

slightly high predicting rate than all methods, but longest predicting time is required for the

neural networks, ANN and RNN respectively. Similarly, for other training sample sizes such

as (50, 100, 200, ….), same observations have repeated. From the comparison of the predicting

time, we conclude that ARMA has a better performance according to the predicting time

50

comparison. We further compared the mean predicting time for all prediction horizons for

training sample size 2200. The result comparison is shown in Table 5.11.

Table 5.11: Required predicting time for each method with different forecasting

horizons and training sample size 2200 for electrical load forecasting.

 Predicting time (in seconds)

 Prediction horizons

 1H 1D 1W 1M 3M

ARMA 0.01 0.012 0.011 0.013 0.047

ARIMA 0.011 0.012 0.012 0.02 0.04

ES 0.013 0.026 0.025 0.023 0.017

HW 0.03 0.031 0.031 0.031 0.031

KNN 0.009 0.01 0.008 0.021 0.008

RF 0.03 0.032 0.04 0.048 0.041

ANN - 0.104 0.056 0.057 0.06

RNN - 2.24 1.62 0.98 1.21

The same trend is followed in the electrical load dataset as well. Whereas, KNN and ARMA

have the minimal predicting time for all the prediction horizons respectively. Same as the PV

dataset we observed the highest predicting time for deep learning approaches, especially for

the RNN.

5.2.2. Result and discussion

We have presented an overview of eight forecasting algorithms: ARMA, ARIMA, ES, HW,

KNN, RF, ANN, and RNN. The methods are individually tested for several training sample

sizes illustrated as “size of samples” in Figure 5.4. As discussed in section 4.6, a common

framework is used to train and test all the methods using the same pattern. Then, the forecast

is done over different prediction horizons using various training sample sizes for PV generation

and electrical load usage. Also, the prediction quality of each method is evaluated using the

RMSE, MAE, MAPE and R-value for each combination (Figure 5.4).

51

Figure 5.4: Key performance indicators (KPIs) for the evaluation of each method.

Comparing both datasets together and showing total error performances is difficult. In this

section, we have presented the result evaluation based on each error measurement separately

for each dataset to make it more understandable. So, we have presented the error metrices

results separately including all training sample sizes and prediction horizons for each dataset.

The relation between prediction horizon and training sample size for different methods

according to different performance indicators (RMSE, MAE, MAPE and R value) are

presented in this section. To simulate the results visually, we have used some error plots to

compare the performances of selected methods.

We have checked two training procedures for the methods; online training where whole data

set is splitted into train and test set over the moving training sample for several times and the

offline training where the models are trained once with the whole training data by train and

test split(). The result shows that with online training the prediction gets better. So finally, we

compare the result for this online moving prediction.

ARMA

ARIMA

ES

HW

KNN

RF

ANN

RNN

Quality of fit

R value

RMSE

MAE

MAPE

Size of
Samples

50

100

200

400

800

1600

2200

Prediction
horizon

Hour

Day

Week

Month

3 Months

PV
generation

Electrical
demand

52

RMSE comparison:

The first set of analyses examined the impact of RMSE between the forecasted and the actual

data for all the methods depending on training sample sizes and four forecasting categories:

very short-term: hourly, short-term: daily, medium-term: weekly, monthly and for long-term:

three-month duration forecasting of both PV consumption and electrical load separately.

Surprisingly, with the increase of the training sample size, no significant improvement is

observed in the quality of prediction for some methods.

Closer inspection to RMSE performance metrics of PV generation forecasting showed that (in

Figure 5.5 (a)) for very short-term (hourly) forecasting, the ARIMA and ARMA methods

exhibit lower error compared to other methods. For this specific case of hourly forecasting, the

ARIMA method has the lowest RMSE 0.84, and it decreases gradually with the increase of the

training sample size. The ES method displays the worst RMSE for this hourly forecasting

scenario which is greater than 2.0 for all training sizes. The HW method shows the 2nd highest

error in this case and the error decreases significantly with the increase of training sample sizes.

Though RF and KNN did not show a comparatively good performance for hourly forecasting,

for longer forecasting horizons the error rate is lower than all methods. The RF method showed

consistently better performance (low RMSE value around 1.5 to less than 2.0) for short-term,

medium-term and long-term forecasting horizon (Figure 5.5(b) – (e)). For daily and weekly

forecasting, (Figure 5.5(b), (c)) the HW method also presented a relatively good performance,

just behind the RF and KNN methods. However, the performance of HW method became

worse with the increasing of prediction horizons. As seen in Figure 5.5(e), for three-monthly

prediction, the highest error rate is produced by HW whereas the error is relatively low for

other methods.

53

Figure 5.5: RMSE comparison of PV generation forecasting for all the methods

depending on different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and

(e) 3 monthly prediction for all training sample sizes.

a) b)

c) d)

e)

54

Additionally, the deep learning-based approaches performed better than the statistical

approaches. In this case, the decrement of RMSE value is quite sharp with the increment of

sample sizes. As a longer training time is required for deep learning approaches, so we only

observed the performance for daily, weekly and monthly forecasting in this case. However,

RNN has an implementation limitation regarding sample size for different prediction horizons.

As a result, we could only achieve the prediction using some specific training sizes for specific

horizons. For example, in Figure 5.5(c), for weekly forecasting we could not achieve any

forecast for RNN with sample size lower than 200. This is due to the fact that the sample size

must be equal or greater than the forecast window size which is 168h for weekly horizon.

Although RNN showed better performance compared to ANN with a higher training sample

size for all prediction horizons, ANN achieves a reasonable performance with smaller training

samples, and this is consistent for all prediction horizons.

Figure 5.6 shows the comparison of RMSE performance metrices for electrical load forecasting

for five different prediction timelines. RF, KNN, ARIMA, ANN, and RNN presented

persistently lower error value for all five different prediction horizons. The prediction of

ARMA and ES methods show a higher error for daily and weekly forecasting range (Figure

5.6 (b, c)). For long-term prediction horizon, HW displays a very high error value when the

training sample size is smaller than 200 (Figure 5.6 (e)).

The RNN and ANN exhibit a good prediction for electrical load forecasting compared to PV

forecasting (Figure 5.5). For electrical load forecasting, the RMSE is consistently lower for all

prediction horizons and similar to the machine learning approaches. It can be noted that the

performance is slightly better for RNN and the increment of training sample sizes gradually

increases the accuracy. Therefore, it is obvious that the forecasting quality highly depends on

the historical data. The data sets of the PV generation have some flaws due to exogenous

variable (radiation diffusion) outliers; this behavior can also be seen in error measurement and

forecasting plots (Figure 5.5). This can be contributed to the fact that RMSE is prone to

outliers. On the other hand, electrical load forecasting is influenced by the dummy exogenous

variable as well which is the hours of the day. For both the datasets (PV and electrical load),

again, the RF and KNN persistently achieve good prediction results. But for electrical load

forecasting a good accuracy is also achieved by ARIMA, ANN, RNN and with HW for higher

training sample size.

55

Figure 5.6: RMSE comparison of electrical load forecasting for all the methods

depending on different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and

(e) 3 monthly prediction for all training sample sizes.

a) b)

c) d)

e)

56

MAE comparison:

The second comparative analysis is presented based on the error measurement of MAE value

between the forecast of the methods and the actual data. This comparison is also performed for

all the methods depending on all training sample sizes for all prediction horizons. Firstly, in

Figure 5.7 the comparison for PV forecasting is presented.

MAE comparison in Figure 5.7 shows that, for very short-term hourly prediction horizon, the

ARIMA and ARMA methods showed low error value close to 0.5. Though, with the increase

in prediction timeline, the error increases significantly for both methods (Figure 5.7(b-d)). For

daily prediction, the error value is the highest for the ARMA method which rises even more

with the larger sample size (Figure 5.7(b)). For this forecasting horizon, the HW presents

relatively better performance than ES. The HW method operates better forecasting for short-

term (daily), medium-term (weekly) but for a long-term forecasting (monthly, 3 monthly) the

performance declines. Although a sharp decrease in the error trend is observed for HW with

the increase of sample sizes, it produced the highest error for long-term prediction for all

sample sizes (Figure 5.7(e). RF and KNN regularly performed well for daily, weekly and

monthly prediction and were not largely affected by the sample sizes, which is an advantage.

It is noticeable that RNN has a high-performance dependency on the training sample size. It is

better evident in Figure 5.7 (b) and (c) that for a daily and weekly prediction for some smaller

training sample sizes, the RNN method produced a high error value. However, with the higher

sample size of more than 800, MAE is relatively low and close to the RF and KNN. The RNN

method achieves more accuracy than ANN for daily, weekly and monthly prediction horizons.

57

Figure 5.7: MAE comparison of PV generation forecasting for all the methods

depending on different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and

(e) 3 monthly prediction for all training sample sizes.

a) b)

c) d)

e)

58

Figure 5.8 presents the electrical load forecasting performance for various methods by

comparing the MAE value. For very short-term (hourly) forecasting in (a), the ARMA method

exhibits lower error (MAE 0.27) compared to all other methods. The error value decreases

gradually with the increase of the training sample size. In case of smoothing methods, the ES

achieves good performance, whereas the HW method attains the highest error for this hourly

forecasting scenario with some specific training sample sizes.

Like, RMSE comparison, RF and KNN did not show a comparatively good performance for

hourly prediction. From daily and weekly prediction (in Figure 5.8 (b), (c)), it is observed that

ARMA and ES methods predicted with higher error compared to the other methods over all

sample sizes. Here, we noticed a gradual decrease of error with the increase of sample sizes for

the HW and the accuracy is higher with the larger training sample sizes for all horizons.

While other approaches struggle to keep the error rate low, the RF and KNN exhibits steady

error for all forecasting horizons with all different sample sizes. RF and KNN methods show a

steady low error performance for short-term, medium-term and long-term forecasting horizon

(in Figure 5.8 (b) – (e)). On the other hand, the deep learning approaches perform better than

the statistical approaches. RNN had performed slightly better than ANN for all prediction

horizons and keep the error value close to machine learning approaches

In the overall performance comparison, it is apparent that the mean absolute error for RF and

KNN has the lowest value for the PV generation and electrical load datasets for short-term,

medium-term and long-term forecasting. For both datasets, the statistical approach (ARIMA,

ARMA) delivers lower errors for very short-term (hourly) forecasting than the machine

learning approaches. The deep learning approaches could not beat the machine learning

approaches but have a close error comparison with some specific training sample sizes, where

RNN showed a high error dependency according to training sample size.

59

Figure 5.8 MAE comparison of electrical load forecasting for all the methods

depending on different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and

(e) 3 monthly prediction for all training sample sizes.

a) b)

c) d)

e)

60

Correlation coefficient comparison:

In Figure 5.9, the correlation coefficient R value for PV generation forecasting is presented.

The R-value is also calculated for five different forecasting horizons from hourly to three

monthly (Figure 5.9(a-e)) for various training sample sizes. A high value of R signifies a better

correlation between the prediction and real data. For very short-term of hourly prediction, the

ARIMA and ARMA methods show noticeably higher correlation value compared to others

(Figure 5.9 a). The smallest correlation is produced by the ES method. Other methods like

HW, KNN, RF generates R-value just below ARIMA and ARMA.

In case of daily prediction (Figure 5.9 b), the performance of the ES method is somewhat

similar as in the hourly prediction with R-value around 0.3. In this scenario, the HW, KNN and

RF methods repeat their better performance as before in hourly forecasting. However, the

ARMA method showed very less correlation (low R) for training sample larger than 1600h.

For weekly prediction (Figure 5.9 c), better correlation (large R) from KNN and RF is again

repeated. The ARMA exhibits lowest R-value in this case. The better forecasting from the

KNN, RF, and RNN is persisting also for the longer-term prediction of monthly and three-

monthly (long-term) duration. Interestingly, we can see negative value of R (Figure 5.9 e) for

ARIMA in terms of long-term (3 months) prediction while the sample size is 100. This follows

very less negative correlation for ARMA and ES with the increase of sample size (Figure 5.9

e). This negative R-value implies that the prediction result is negatively correlated with the

actual value.

61

Figure 5.9: Correlation coefficient comparison of PV generation forecasting

depending on different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and

(e) 3 monthly prediction for all training sample sizes.

a) b)

c) d)

e)

62

The correlation coefficient comparison for electrical load forecasting and real value is

presented in Figure 5.10. The results of the hourly forecast (Figure 5.10(a)) reveal that ARMA

and ES have the highest correlation in hourly forecasting, whereas RF and KNN have relatively

low correlation than these methods. HW gives minimum correlation compared to other

methods for some training sample sizes (Figure 5.10(a)).

For daily prediction (Figure 5.10 (b)), ES seems to have a low R-value, whereas ARMA

exhibits a negative correlation for some training sample sizes. In this context HW, KNN, RF

and RNN showed comparetively high correlation for daily prediction. The same trend is

followed for weekly forecasting (in Figure 5.10 (c)), whereas ARMA has a relatively low and

negative correlation and ES has the smallest R-value.

For monthly prediction, R-value for ES varies significantly with the sample size changes

whereas HW seems to perform steadily for medium range sample sizes (Figure 5.10(d)). Here,

RF and KNN showed a better correlation. For other prediction horizons (Figure 5.10(b-e)), we

observe a sharp fluctuation especially in case of ARMA. Comparing to PV generation

forecasting, we get significantly more negative R values for electrical load data which can be

occurred due to the sparsity of data. Like the PV data, we get more of these negative R when

we predict for long-term (Figure 5.10(e)). Following, in monthly prediction KNN provides

slightly larger R-value compared to other methods. RF and KNN has performed consistently

higher correlation for medium-term (monthly) and long-term (3 monthly) forecasting.

63

Figure 5.10: Correlation coefficient comparison of electrical load forecasting

depending on different horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and

(e) 3 monthly prediction for all training sample sizes.

a) b)

c) d)

e)

64

MAPE Comparison

The MAPE is not a perfect way while comparing the forecast with actual value close to zero

as the computation becomes unstable. In case of PV generation, as we have some actual value

close to zero, so MAPE becomes infinity. However, the algorithm performs more accurately

for the electrical load forecasting.

The performance comparison of MAPE for electrical load forecasting is presented in Figure

5.11. It shows that for hourly prediction horizon (Figure 5.11 a) ARIMA and HW has the

highest MAPE value, whereas for daily forecasting horizon (Figure 5.11 b) ANN and ARIMA,

HW has the higher value respectively. The lowest error is achieved by RF, KNN and ARMA

respectively for all prediction horizon (a-e). ES has relatively low MAPE than HW for weekly

(Figure 5.11 c) and monthly (Figure 5.11 d) prediction horizons. In the overall performance

comparison, it becomes apparent that the mean absolute percentage error for RNN has a lower

value than ANN for the electrical load datasets. Like, previous error measurements, machine

learning approaches delivers lower errors than other approaches in this scenario.

65

Figure 5.11: MAPE comparison of electrical load forecasting depending on different

horizons- (a) hourly, (b) daily, (c) weekly, (d) monthly and (e) 3 monthly prediction

for all training sample sizes

a) b)

c) d)

e)

66

5.2.3. Performance summary

The diversity of these forecasting methods in the case of PV generation forecasting is observed

in Figure 5.12. This shows a ten-day time series comparison of all the methods highlighting

the variety of the hourly forecasts.

The RMSE comparison of PV generation discussed in section 5.2.2 (RMSE comparison) shows

that for very short-term (hourly) forecasting, ARIMA and ARMA methods perform best while

for the other prediction horizons, RF and KNN present consistently low error value for other

prediction horizons as expected. The performance for ARIMA is better than for ARMA due to

the advantage of working with a non-stationary dataset (Figure 5.12 (a)). For hourly prediction,

ARIMA method exhibits the lowest error as per our expectation. Contrary to the HW method,

ES does not consider trend or seasonality in the time series. As a result, the prediction by the

ES method has higher error values (Figure 5.12 (b)) than the HW. In case of daily forecasting,

the results of ARIMA, HW and RNN comes after RF and KNN. Both the HW and RNN show

a large dependency on the training sample size. The RMSE for electrical load also shows that

RF and KNN provide better forecasting for a prediction range of daily or longer.

As we have discussed before (in section 3.3), statistical approaches relay only on the past value

of endogenous variables for forecasting. But machine learning and deep learning approaches

consider both the exogenous information and the endogenous variables together. Due to the

availability of this additional information unlike statistical approaches, machine learning and

deep learning approaches showed better performance for short-term, medium-term, long-term

prediction. Moreover, the RF has built-in cross validation and bootstrap sampling methods to

balance the errors in data sets. The RF method also has low parameter sensitivity and thus it

achieves good performance with only a few training sample sizes (Figure 5.12 (c)). On the

other hand, KNN uses local information yielding a largely adaptive behavior of the dataset.

Also, from our experiment we have seen better consistency in the performance (in section

5.2.2). In the case of electrical load forecasting (presented as hourly prediction for seven days

in Figure 5.13), the performances of all methods are similar to the PV generation.

67

Figure 5.12: Hourly forecast and actual load comparison of PV generation for (a)

ARIMA and ARMA, (b) ES and HW, (c) KNN and RF, and (d) ANN and RNN

Figure 5.13: Hourly forecast and actual load comparison of electrical load data for (a)

ARIMA and ARMA, (b) ES and HW, (c) KNN and RF, and (d) ANN and RNN.

a) b)

c) d)

a) b)

c) d)

68

The deep learning approaches can discover nonlinear relationships between the input variables

and output variables, this self-learning ability produces a better performance. Although, the

accuracy of the forecasts generated with artificial neural networks depends on the chosen

hyperparameters. Thus, the optimization of those parameters was important to avoid both

under- and overfitting. RNN has shown better performance compared to ANN in case of

electrical load forecasting due to having a memory like property and the opportunity to realize

broader concepts from input sequences (Figure 5.12 (d)). But for PV generation forecasting,

RNN performed well only with larger training sample size.

The evaluation of MAE for both PV and electrical loads in section 5.2.2 (MAE comparison)

showed that the RF and KNN methods performed best for forecasting from short-term to long

-term horizon ranges. For hourly prediction in case of PV generation, the ARIMA and ARMA

achieved the best performance respectively, while for the electric load it was achieved by

ARMA and ES method. RNN showed better performance with large training samples in case

of PV generation. For electrical load the accuracy from RNN was consistently better than ANN

for all training sizes and forecasting horizons as expected.

From the correlation coefficient R comparison for PV generation in section 5.2.2 (correlation

coefficient comparison), for prediction horizons larger than hourly, the KNN and RF performed

better respectively. In case of weekly forecasting, RF comes first while for daily prediction the

HW method achieved the best correlation. The ARMA and ARIMA exhibit the best correlation

for hourly prediction. It was also observed that RNN showed relatively better correlation than

ANN and with higher training sample size it was comparable to RF and KNN. The correlation

for electrical load indicates somewhat a similar rank for prediction ranges from one week to

three months, where the RF and KNN rank first and second respectively. For daily forecasting,

HW comes first and in case of hourly forecasting, ARMA and ES achieved the best correlation.

The performance of these machine learning and deep learning approaches are expected to

gradually degrade with the increase of forecasting horizon (for example: long-term

forecasting). This can happen due to having uncertainty in the future exogenous information.

But in this experiment, a consistent better performance was observed for longer forecasting

horizons for these two types of approaches. Possible reasons might be that the forecast was

generated using real energy data and the given exogenous values. This reduced the uncertainty

of external forecast of exogenous variables.

69

6. Conclusion

Managing the best possible balance between the supply and the demand to ensure proper load

management is always challenging for the traditional energy generation industry. Besides, the

renewable energy industry is also growing because of the increased demand for fossil fuels and

to minimize the negative impacts of climate change. Better forecasting of demand is essential

for renewable power plants since the availability of energy from natural resources, like wind

and solar are intermittent and often the system has limited capacity to store the energy.

Previous research studied specific forecasting methods separately to predict different datasets

and analyzed their performances and limitations. This thesis was undertaken to evaluate

different forecasting methods under the same system configurations and datasets, in order to

determine the most accurate method for forecasting energy data. Three different categories of

forecasting methods namely statistical approaches (ARMA, ARIMA, ES, HW), machine

learning approaches (KNN, RF) and deep learning approaches (ANN, RNN) were tested.

Therefore, the study establishes a generic research framework (the forecasting toolbox) for

determining the comparison of these eight forecasting algorithms over same training and

testing datasets to forecast for different timescales. Application areas such as electrical load

and PV generation have been analyzed based on very short-term (hourly), short-term (daily),

medium-term (weekly and monthly) and long-term (three monthly) basis prediction horizons

using each of these methods. Seven different training sample sizes (50, 100, 200, 400, 800,

1600, and 2200) were employed to capture the effect of historical data size on each model. The

hyperparameter optimization for each method is carried out according to each dataset. All these

dependencies of forecasting aspects based on datasets are constructed, and the corresponding

model was evaluated in the result discussion (section 5.2.2).

Statistical approaches: the ARMA or ARIMA are simple to implement and well adapted for

very short-term prediction horizons. But, these two methods are unable to handle the non-

linearity in the time series properly as they assume the time series as a stationary process. When

fitting the ARMA model on both the data sets for short-, medium- and long-term forecasting,

the results contained large errors as expected. Among the tested smoothing methods, the HW

provided reasonably good forecasting for very short-time (hourly) and short-time (daily)

prediction compared to the ES according to RMSE value. However, the forecasting accuracy

for the HW method highly depends on the prediction horizon and the training sample sizes. All

the KPIs from forecasted PV generation indicated that the HW performed better for medium-

term and long-term forecasting horizons when the training sample size was larger than 800. In

case of electrical load forecasting, the HW achieved good accuracy with sample sizes lager

than 100. The ES method showed no dependencies like this.

70

As per results, both RF and KNN showed high accuracy over the short-term, medium-term and

long-term forecasting horizons. The KNN performed better than the RF in most cases except

for training sample smaller than 100. These two methods showed good accuracy with less

computational time (as discussed in section 5.2.2). Therefore, while working with a large

number of datasets these methods can be convenient. Both of these methods repeated good

accuracy for small training samples also.

Deep learning-based approaches ANN and RNN can produce approximate complex nonlinear

mappings via hidden layers from the input samples by identifying the trends in data. In this

case, we observed that the forecasting result highly depends on the size of training datasets.

However, the forecasts of the deep learning approaches showed good performance indicated

by low errors obtained on both datasets. Whereas, RNN has shown a better performance than

ANN with higher training sample sizes for PV generation forecasting, but for electrical load it

provided good accuracy with smaller sample size than ANN (section 5.2.2 RMSE comparison).

In summary, statistical approaches: ARMA and ARIMA was the best choice for hourly and

daily forecasting according to the RMSE, MAE and R-value. As discussed in section 5.2.2,

machine learning approaches (RF, KNN) repeatedly achieved higher accuracy for short-,

medium- and long-term forecasting. It can be concluded that for daily, weekly, monthly or

longer forecasting timescale RF and KNN is the best option for both PV generation and

electrical load usage. For electrical load forecasting, ARIMA, ANN, RNN and HW (only for

higher training sample sizes) achieved accuracy closer to that of RF and KNN for similar

forecasting timescales. While KNN offers such accurate predictions with minimal

computational time for all cases, the RF method needs slightly higher computation time

compared to KNN. The most computationally expensive methods from the experiment are the

RNN and ANN (in section 5.2.1).

71

6.1. Future Work

In this study, we have used eight promising methods from three different approaches to forecast

energy data (PV generation and electrical load). There are other methods such as linear

regression, support vector regression or gaussian process regression etc. which can additionally

be included as alternate techniques in the investigation. If time and resources permit, more

methods and approaches could be further investigated.

Forecasting for a very short-time horizon is another intriguing possibility. The minimum time

interval in dataset was 60 minutes. Therfore, this study is limited to 1h interval for very short-

term prediction. Datasets of shorter time interval like 15 or 30 minutes will present the

opportunity to predict for 15 or 30 minutes ahead also. This seems to be interesting future work.

Additionally, the possibility of forecasting the peak loads can be achieved by changing the

current procedure.

Modifying the parameters by using some dynamic optimization function, such as using a

genetic algorithm for determining the hyperparameter, could be interesting to get a better

optimization of the hyperparameter. Also, it was noticed that a reasonably good forecasting

accuracy has been achieved by the smallest training size (50). Furthermore, the impact with

even smaller training sample sizes can be investigated as a future research.

For implementation purposes and time limitation, two different datasets - PV generation data

and electrical load of household consumptions for a year have been used. It would have been

better if more of these datasets could be used because it is often the case that more data will

significantly improve the performance of any forecasting methods. Initially it was planned to

investigate space heating dataset as well in this study. But as mentioned in the performance

section, due to long computation time, we excluded space heating data out of the timeframe of

this research. If multiple case study objects could have applied, then the external validity of the

findings of this research work might have increased. Apart from that, the prediction of electric

prices of different energy markets is interesting for both the producers and consumers around

the world [21]. Therefore, making a comparative analysis of the mentioned forecasting

methods for electrical energy pricing with the historical data could be another interesting

forecasting application to investigate [78]. Other applications to investigate with time series

forecasting approaches could be the forecasting of stock exchanges.

72

Bibliography

[1] R. Bonetto and M. Rossi, “Machine Learning Approaches to Energy Consumption
Forecasting in Households,” CoRR, vol. abs/1706.0, pp. 6–9, 2017.

[2] Eurostat, The EU in the world. 2721 Luxembourg, 2018.

[3] F. ISE, “ENERGY CHARTS - Stromproduktion in Deutschland.” .

[4] A. Laouafi and M. Mordjaoui, “One-Hour Ahead Electric Load and Wind-Solar Power
Generation Forecasting using Artificial Neural Network,” IREC2015 The Sixth
International Renewable Energy Congress, pp. 1–6, 2015.

[5] D. W. Bunn, “Short-Term Forecasting: A Review of Procedures in the Electricity Supply
Industry,” Journal of the Operational Research Society, vol. 33, no. 6, pp. 533–545, Jun.
1982.

[6] H. Cho, Y. Goude, X. Brossat, and Q. Yao, “Modeling and Forecasting Daily Electricity
Load Curves: A Hybrid Approach,” Journal of the American Statistical Association, vol.
108, no. 501, pp. 7–21, 2013.

[7] T. Haida and S. Muto, “Regression based peak load forecasting using a transformation
technique,” IEEE Transactions on Power Systems, vol. 9, no. 4, pp. 1788–1794, Nov.
1994.

[8] X. Sun, X. Wang, J. Wu, and Y. Liu, “Hierarchical sparse learning for load forecasting
in cyber-physical energy systems,” in 2013 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), 2013, pp. 533–538.

[9] G. Bruni, S. Cordiner, V. Mulone, V. Rocco, and F. Spagnolo, “A study on the energy
management in domestic micro-grids based on Model Predictive Control strategies,”
Energy Conversion and Management, vol. 102, pp. 50–58, 2015.

[10] G. T. Heinemann, D. A. Nordmian, and E. C. Plant, “The Relationship Between Summer
Weather and Summer Loads - A Regression Analysis,” IEEE Transactions on Power
Apparatus and Systems, vol. PAS-85, no. 11, pp. 1144–1154, Nov. 1966.

[11] A. Lahouar and J. Ben Hadj Slama, “Day-ahead load forecast using random forest and
expert input selection,” Energy Conversion and Management, vol. 103, pp. 1040–1051,
2015.

[12] S. S. Photovoltaic et al., “Day-Ahead Power Output Forecasting for Electricity
Generators,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2253–2262, 2015.

[13] C. S. Ioakimidis and S. Lopez, “Solar Production Forecasting Based on Irradiance
Forecasting Using Artificial Neural Networks,” IECON 2013 - 39th Annual Conference
of the IEEE Industrial Electronics Society, pp. 8121–8126, 2013.

[14] J. W. Taylor, L. M. De Menezes, and P. E. Mcsharry, “A comparison of univariate
methods for forecasting electricity demand up to a day ahead,” vol. 22, pp. 1–16, 2006.

[15] J. S. Armstrong and F. Collopy, “Error measures for generalizing about forecasting
methods: Empirical comparisons,” International Journal of Forecasting, vol. 8, no. 1,
pp. 69–80, 1992.

[16] A. Veit, C. Goebel, R. Tidke, C. Doblander, and H.-A. Jacobsen, “Household Electricity
Demand Forecasting - Benchmarking State-of-the-Art Methods,” CoRR, vol.
abs/1404.0200, 2014.

[17] K. Metaxiotis, A. Kagiannas, D. Askounis, and J. Psarras, “Artificial intelligence in

73

short term electric load forecasting: A state-of-the-art survey for the researcher,” Energy
Conversion and Management, vol. 44, pp. 1525–1534, 2003.

[18] M. Ghiassi, D. K. Zimbra, and H. Saidane, “Medium term system load forecasting with
a dynamic artificial neural network model,” Electric Power Systems Research, vol. 76,
no. 5, pp. 302–316, 2006.

[19] F. Kaytez, M. C. Taplamacioglu, E. Cam, and F. Hardalac, “Forecasting electricity
consumption: A comparison of regression analysis, neural networks and least squares
support vector machines,” Elsevier Ltd, 2015.

[20] H. zhou Liu, “Load forecasting based on weighted kernel partial least squares algorithm
in smart grid,” IET Conference Proceedings, p. 2.47-2.47(1), Jan. 2012.

[21] R. Weron, Modeling and Forecasting Electricity Loads and Prices: A Statistical
Approach. Hugo Steinhaus Center, Wroclaw University of Technology, 2006.

[22] J. Zheng, C. Xu, Z. Zhang, and X. Li, “Electric Load Forecasting in Smart Grid Using
Long-Short-Term-Memory based Recurrent Neural Network Electric Load Forecasting
in Smart Grid Using Long-Short-Term-Memory based Recurrent Neural Network,”
2017 51st Annual Conference on Information Sciences and Systems (CISS), no. January,
pp. 1–6, 2017.

[23] Y. Jiang, X. Chen, K. Yu, and Y. Liao, “Short-term wind power forecasting using hybrid
method based on enhanced boosting algorithm,” Journal of Modern Power Systems and
Clean Energy, vol. 5, no. 1, pp. 126–133, 2017.

[24] L. Gelažanskas and K. Gamage, “Forecasting HotWater Consumption in Residential
Houses,” Energies, vol. 8, no. 11, pp. 12702–12717, 2015.

[25] C.-M. Lee and C.-N. Ko, “Short-term load forecasting using lifting scheme and ARIMA
models,” Expert Systems with Applications, vol. 38, pp. 5902–5911, 2011.

[26] V. Mayrink and H. S. Hippert, “A hybrid method using Exponential Smoothing and
Gradient Boosting for electrical short-term load forecasting,” in 2016 IEEE Latin
American Conference on Computational Intelligence (LA-CCI), 2016, pp. 1–6.

[27] J. W. Taylor, “An evaluation of methods for very short-term load forecasting using
minute-by-minute British data,” International Journal of Forecasting, vol. 24, no. 4, pp.
645–658, 2008.

[28] G. A. N. Mbamalu and M. E. El-Hawary, “Load forecasting via suboptimal seasonal
autoregressive models and iteratively reweighted least squares estimation,” IEEE
Transactions on Power Systems, vol. 8, no. 1, pp. 343–348, Feb. 1993.

[29] B. Shah and B. H. Trivedi, “Artificial Neural Network based Intrusion Detection
System : A Survey,” International Journal of Computer Applications, vol. 39, no. 6, pp.
13–18, 2012.

[30] C. Deb, L. S. Eang, J. Yang, and M. Santamouris, “Forecasting diurnal cooling energy
load for institutional buildings using Artificial Neural Networks,” Energy and Buildings,
vol. 121, pp. 284–297, 2016.

[31] D. C. Park, R. J. Marks, L. E. Atlas, and M. J. Damborg, “Electric Load Forecasting
Using An Artificial Neural Network,” IEEE Transactions on Power Systems, vol. 6, no.
2, pp. 442–449, 1991.

[32] H. S. Hippert and J. W. Taylor, “An Evaluation of Bayesian Techniques for Controlling
Model Complexity and Selecting Inputs in a Neural Network for Short-term Load
Forecasting,” Neural Networks, vol. 23, no. 3, pp. 386–395, Apr. 2010.

[33] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

74

[34] F. H. Al-Qahtani and S. F. Crone, “Multivariate k-nearest neighbour regression for time
series data - A novel algorithm for forecasting UK electricity demand,” Proceedings of
the International Joint Conference on Neural Networks, 2013.

[35] R. C. Deo, X. Wen, and F. Qi, “A wavelet-coupled support vector machine model for
forecasting global incident solar radiation using limited meteorological dataset,” Applied
Energy, vol. 168, pp. 568–593, 2016.

[36] A. Setiawan, I. Koprinska, and V. G. Agelidis, “Very short-term electricity load demand
forecasting using support vector regression,” 2009 International Joint Conference on
Neural Networks, pp. 2888–2894, 2009.

[37] G. Dudek, “Short-Term Load Forecasting using Random Forests,” 2011.

[38] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Ascacibar, and F. Antonanzas,
“Review of photovoltaic power forecasting,” Solar Energy, vol. 136, 2016.

[39] P. Kuo, “A High Precision Artificial Neural Networks Model for Short-Term Energy
Load Forecasting,” Energies, vol. 11, no. January, pp. 1–13, 2018.

[40] T. Hong, M. Gui, M. E. Baran, S. Member, and H. L. Willis, “Modeling and Forecasting
Hourly Electric Load by Multiple Linear Regression with Interactions,” IEEE PES
General Meeting, pp. 1–8, 2010.

[41] B. Chen, M. Chang, and C. Lin, “Load Forecasting Using Support Vector Machines : A
Study on EUNITE Competition 2001,” IEEE Transactions on Power Systems, vol. 19,
no. 4, pp. 1821–1830, 2004.

[42] C. Xia, J. Wang, and K. Rafferty, “Short, medium and long term load forecasting model
and virtual load forecaster based on radial basis function neural networks,” International
Journal of Electrical Power & Energy Systems, vol. 32, pp. 743–750, 2010.

[43] R. J. Hyndman and G. Athanasopoulos, Forecasting : Principles and Practice. OTexts,
2018.

[44] I. Moghram and S. Rahman, “Analysis and evaluation of five short-term load forecasting
techniques,” IEEE Transactions on Power Systems, vol. 4, no. 4, pp. 1484–1491, Nov.
1989.

[45] J. D. Hamilton, Time series analysis. Princeton, N.J. and Chichester: Princeton
University Press, 1994.

[46] P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting. New York:
Springer, 2002.

[47] R. H. Shumway and D. S. Stoffer, Time series analysis and its applications: With R
examples, 3rd ed. New York: Springer, 2011.

[48] NIST/SEMATECH, “e-Handbook of Statistical Methods.” 2013.

[49] G. E. P. Box and G. Jenkins, Time Series Analysis, Forecasting and Control. San
Francisco, CA, USA: Holden-Day, Inc., 1990.

[50] S. Bisgaard and M. Kulahci, Time series analysis and forecasting by example. John
Wiley & Sons, 2011.

[51] X. Zhang, Y. Liu, M. Yang, T. Zhang, A. A. Young, and X. Li, “Comparative Study of
Four Time Series Methods in Forecasting Typhoid Fever Incidence in China,” vol. 8,
no. 5, 2013.

[52] C. Chatfield, The analysis of time series: an introduction, 6th ed. Florida, US: CRC
Press, 2004.

[53] G. E. P. Box and G. M. Jenkins, “Times series Analysis Forecasting and Control.

75

Holden-Day San Francisco,” 1970.

[54] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting : methods and
applications. John wiley & sons, 2008.

[55] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression
Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[56] T. Hastie, R. Tibshirani, and J. J. H. Friedman, “The Elements of Statistical Learning,”
2009.

[57] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001.

[58] M. Immitzer, C. Atzberger, and T. Koukal, “Tree Species Classification with Random
Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data,”
Remote Sensing, vol. 4, no. 9, pp. 2661–2693, 2012.

[59] A. Liaw and M. Wiener, “Classification and Regression by RandomForest,” Forest, vol.
23, 2001.

[60] E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination:
Consistency Properties,” International Statistical Review / Revue Internationale de
Statistique, vol. 57, no. 3, pp. 238–247, 1989.

[61] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on
Information Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967.

[62] M. Thanh Noi, Phan and Kappas, “Comparison of Random Forest, k-Nearest Neighbor,
and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-
2 Imagery,” Sensors, vol. 18, no. 1, 2018.

[63] V. K. Pathirana, “Nearest Neighbor Foreign Exchange Rate Forecasting with
Mahalanobis Distance,” 2015.

[64] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, Dec. 1943.

[65] A. Terminal and S. Cell, “CHAPTER – 3 Back Propagation Neural Network (BPNN
),” pp. 18–23.

[66] G. P. Zhang, “A Neural Network Ensemble Method with Jittered Training Data for Time
Series Forecasting,” Information Sciences, vol. 177, no. 23, pp. 5329–5346, Dec. 2007.

[67] J. Kamruzzaman, R. K. Begg, and R. A. Sarker, Artificial Neural Networks in Finance
and Manufacturing. Hershey, PA, USA: IGI Global, 2006.

[68] R. Adhikari and R. K. Agrawal, “An Introductory Study on Time Series Modeling and
Forecasting,” 2013.

[69] J. Kihoro and C. Wafula, “Seasonal time series forecasting: A comparative study of
ARIMA and ANN models,” African Journal of Science and Technology, vol. 5, 2006.

[70] J. Bi, T. Xiong, S. Yu, M. Dundar, and R. Rao, “Machine Learning and Knowledge
Discovery in Databases,” Machine Learning and Knowledge Discovery in Databases,
vol. 5211, pp. 117–132, 2014.

[71] G. Kariniotakis, G. Stavrakakis, and E. F. Nogaret, “Wind power forecasting using
advanced neural networks models,” Energy Conversion, IEEE Transactions on, vol. 11,
pp. 762–767, 1996.

[72] A. Pradhan, “Recurrent Neural Networks.” [Online]. Available:
https://medium.com/lingvo-masino/introduction-to-recurrent-neural-network-
d77a3fe2c56c. [Accessed: 24-Feb-2019].

76

[73] C. E. Rasmussen, C. K. I. Williams, G. Processes, M. I. T. Press, and M. I. Jordan,
Gaussian Processes for Machine Learning. 2006.

[74] J. S. S. Armstrong and F. Collopy, “Error measures for generalizing about forecasting
methods: Empirical comparisons,” International Journal of Forecasting, vol. 8, no. 1,
pp. 69–80, 1992.

[75] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” vol.
22, pp. 679–688, 2006.

[76] C. Chen, J. Twycross, and J. M. Garibaldi, “A new accuracy measure based on bounded
relative error for time series forecasting,” PLOS ONE, vol. 12, no. 3, pp. 1–23, 2017.

[77] Q. Feng, J. Liu, and J. Gong, “UAV Remote Sensing for Urban Vegetation Mapping
Using Random Forest and Texture Analysis,” Remote Sensing, vol. 7, no. 1, pp. 1074–
1094, 2015.

[78] A. Daraeepour and N. Amjady, “Mixed price and load forecasting of electricity markets
by a new iterative prediction method,” Electric Power Systems Research, vol. 79, pp.
1329–1336, 2009.

	Abstract
	Zusammenfassung
	Declaration
	Acknowledgement
	List of Figures
	List of Abbreviations
	1. Introduction
	1.1. Motivation
	1.2. Research gap
	1.3. Goal
	1.4. Outline of the thesis

	2. Related work
	3. Theoretical background
	3.1. Forecasting energy load
	3.2. Time series analysis
	3.3. Statistical approaches
	3.3.1. Autoregression (AR) model
	3.3.2. Moving average (MA) model
	3.3.3. Autoregressive moving average (ARMA) model
	3.3.4. Autoregressive integrated moving average (ARIMA) model
	3.3.5. Exponential smoothing model
	3.3.6. Holt-Winters model

	3.4. Machine learning approaches
	3.4.1. Random forest model
	3.4.2. The K-nearest neighbor model

	3.5. Deep learning approaches
	3.5.1. Artificial neural network (ANN) model
	3.5.2. Recurrent neural network (RNN) model

	4. Methodology
	4.1. Forecasting toolbox
	4.2. Exogenous and endogenous variables
	4.3. Data-sets
	4.3.1. Household data sets
	4.3.2. Handling outliers
	4.3.3. Training and testing data for each method

	4.4. Forecasting accuracy measurement
	4.4.1. The root mean square error (RMSE)
	4.4.2. The mean absolute error (MAE)
	4.4.3. The mean absolute percentage error (MAPE)
	4.4.4. The Pearson correlation coefficient

	4.5. Coding language and important libraries
	4.6. Implementation procedure of the forecasting toolbox

	5. Performance analysis
	5.1. Parameter optimization
	5.1.1. ARMA and ARIMA
	5.1.2. Exponential smoothing
	5.1.3. Holt-Winters
	5.1.4. Artificial neural network
	5.1.5. Recurrent neural network
	5.1.6. Random forest model
	5.1.7. K-nearest neighbor

	5.2. Evaluation
	5.2.1. Comparison of the computational performance
	5.2.2. Result and discussion
	RMSE comparison:
	MAE comparison:
	Correlation coefficient comparison:
	MAPE Comparison

	5.2.3. Performance summary

	6. Conclusion
	6.1. Future Work

	Bibliography

