Dynamic Emergency Ambulance Fleet Allocation Master Thesis

Niklas Meinzer

University of Freiburg Faculty of Engineering

May 14, 2014

Motivation

Emergency Medical Services (EMS)

- Part of healthcare systems
- Ambulances respond to emergency calls
- Treat patients and transport them to a hospital

- What strategies can be used to manage a fleet of ambulances?
- How can we measure their performance?

Problem

Definition

Given a graph G = (E, V), a set of hospitals $H \in V$, a set of ambulance bases $B \in V$, a fleet of ambulances and a stream of requests, maximise the number of saved patients.

Secondary goals:

- Minimize the response time, i.e., the time between an emergency call and the arrival of an ambulance at the patient.
- Try to keep cost of operations low.
- \Rightarrow To develop strategies we need a model.

Model

We developed the following model for the EMS setting:

Graph
• A road network graph serves as base for the model.
 Edges/Roads are undirected
 All roads are of the same type

Model

We developed the following model for the EMS setting:

Graph			
• A road network graph serves as base for the model.			
 Edges/Roads are undirected 			
• All roads are of the same type			

Objects

- Hospitals
- Ambulance Bases
- Ambulances

Model

Requests

Requests represent emergency calls by a patient anywhere on the graph and consist of:

- The time of the call
- The location of the patient
- The time-to-live (TTL) of the patient.

Both time of call and location of patient are chosen at random.

Agents

Agents represent EMS operators and are able to give orders to ambulances.

Simulation

- Event driven simulation is used to test different strategies.
- Events are kept in a priority queue

Strategies - Overview

Agents are informed about the following events:

- EMS Request
- Ambulance at Patient
- Ambulance Free

When making decisions it can:

- See ambulances position and state
- See current and past requests
- Run (route planning) algorithms
- Give orders to ambulances

How can the strategies influence the outcome?

Strategies - Greedy

First let's try the easy way: Only move ambulances around if absolutely necessary

Actions		
New Requests Ambulance at patient Ambulance Free	$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	Send closest ambulance Send ambulance to closest hospital Send ambulance back to base

Strategies - Greedy

First let's try the easy way: Only move ambulances around if absolutely necessary

Actions

Characteristics

- Computationally cheap
- Low overall travel distances
- Very dependant on prior ambulance placement
- Used in practice

Strategies - K-Medoid

Now: Attempt to maintain an optimal distribution of ambulances throughout the graph.

K-Medoids

Similar to K-Means: Finds a clustering around k elements of the input set, that minimizes the average distance of a node to its medoid.

Strategies - K-Medoid

Now: Attempt to maintain an optimal distribution of ambulances throughout the graph.

K-Medoids

Similar to K-Means: Finds a clustering around k elements of the input set, that minimizes the average distance of a node to its medoid.

Idea: When we have k free ambulances, run $k\mbox{-Medoid}$ and position the ambulances at all the medoids.

Strategies - K-Medoid

Niklas Meinzer Dynamic Emergency Ambulance Fleet Allocation

Strategies - K-Medoid

Niklas Meinzer Dynamic Emergency Ambulance Fleet Allocation

Strategies - K-Medoid

Actions		
Start	\Rightarrow	Redistribute all ambulances according to K-Medoid
New Requests	\Rightarrow	Send closest ambulance to request and redistribute free ambulances
Ambulance at patient	\Rightarrow	Send ambulance to closest hospital
Ambulance Free	\Rightarrow	Redistribute free ambulances

Strategies - K-Medoid

Actions		
Start	\Rightarrow	Redistribute all ambulances according to K-Medoid
New Requests	\Rightarrow	Send closest ambulance to request and redistribute free ambulances
Ambulance at patient	\Rightarrow	Send ambulance to closest hospital
Ambulance Free	\Rightarrow	Redistribute free ambulances

Characteristics

- Computationally more complex, needs precomputation
- Probably very high overall distances, but we hope for good response times
- No dependency on prior ambulance placement
- Not very practical

Strategies - Voronoi

Greedy and K-Medoid both have downsides. Can we find a compromise?

Voronoi

Based on Voronoi diagrams (see next slide). Idle ambulances are only allowed to be positioned at ambulance bases or hospitals.

Strategies - Voronoi

Greedy and K-Medoid both have downsides. Can we find a compromise?

Voronoi

Based on Voronoi diagrams (see next slide). Idle ambulances are only allowed to be positioned at ambulance bases or hospitals.

Idea: Divide the graph into Voronoi-cells around the ambulance bases and hospitals and distribute ambulances according to the cluster size.

Strategies - Voronoi

Niklas Meinzer

Dynamic Emergency Ambulance Fleet Allocation

Strategies - Voronoi

Actions		
Start	\Rightarrow	Redistribute all ambulances according
New Requests	\Rightarrow	Send closest ambulance to request and redistribute free ambulances
Ambulance at patient Ambulance Free	$\Rightarrow \Rightarrow$	Send ambulance to closest hospital Redistribute free ambulances

Strategies - Voronoi

Actions		
Start	\Rightarrow	Redistribute all ambulances according to size of Voronoi cells
New Requests	\Rightarrow	Send closest ambulance to request and redistribute free ambulances
Ambulance at patient Ambulance Free	$\Rightarrow \Rightarrow$	Send ambulance to closest hospital Redistribute free ambulances

Characteristics

- Less complex precomputation and redistribution logic
- Travel distances lower, because not all ambulances move every time
- Somewhat dependant on object distribution
- More practical than K-Medoid

Dynamic Reassignment

Until now: Ambulances are assigned to requests in a *send and forget* manner: Once an ambulance is assigned to a request this assignment will not change.

- Is that bad?
- How can we fix it?

Dynamic Reassignment

To solve this we use the following reassignment strategy:

Once a new request comes in:

- Take the set of all free ambulances
- And all open requests
- Compute travel costs for each ambulance to all patients
- Compute optimal assignment using the Hungarian Algorithm
- \Rightarrow (Re-)Assign ambulances accordingly

Evaluation

Niklas Meinzer Dynamic Emergency Ambulance Fleet Allocation

- K-Medoids shows advantages over a regular Greedy approach, but is uneconomic
- Voronoi as a more realistic compromise
- Advantages over Greedy especially in unfavourable environments
- Reassignment improves performance of all approaches