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Abstract

Most countries have implemented some form of Emergency Medical Services (EMS)
in order to help people with urgent medical needs. Typically a number of ambu-
lances serve a specific geographic region by responding to emergency calls, treating
patients and transporting them to a hospital. Since the number of ambulances is
limited and emergency calls need to be responded to quickly by nature, EMSs have
to be thoroughly managed and coordinated, which is usually done by human op-
erators in special call centers. In this thesis we model that task and present and
compare different strategies which could be employed by an automatic ambulance
fleet management system. We show that continuous optimization of ambulance
distribution over the region and dynamic reassignment of ambulances to incoming
requests can benefit both the patients and, economically, the provider of the EMS.

Zusammenfassung

Die meisten Länder der Welt unterhalten einen medizinischen Rettungsdienst, um
Menschen in medizinischen Notsituationen zu helfen. Ein Rettungsdienst besteht
üblicherweise aus einer Gruppe von Rettungsfahrzeugen, die eine bestimmte Gegend
bedienen und dort zu Notfallpatienten fahren, diese behandeln und in eine medi-
zinische Einrichtung transportieren. Diese Rettungsfahrzeuge stellen eine limitierte
Ressource dar und müssen daher sorgfältig koordiniert und gesteuert werden, um
sicherzustellen, dass Notrufe schnell beantwortet werden können. Diese Aufgabe
wird überlicherweise von speziell dafür ausgebildeten Disponenten in Rettungsleit-
stellen übernommen. Diese Arbeit stellt anhand eines Modells verschiedene Man-
agementstrategien für den Rettungsdienst einer Region vor. Es wird gezeigt, wie
durch gleichmäßiges Verteilen der Rettungsfahrzeuge auf dem Straßengraph und
geschicktes Neuverteilen der Rettungsfahrzeuge bei neueintreffenden Notrufen, die
Leistung des Rettungsdienstes unter medizinischen und ökonomischen Gesichtspunk-
ten verbessert werden kann.
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1 Introduction

1.1 Motivation

Emergency Medical Services (EMS) are a key component of modern societies and
ensure that people with urgent medical needs quickly receive help. While the details
vary widely from one country to another, transporting the patient to a hospital or
medical center using ambulances is always a key part in the system.
The number of ambulances in a certain area (e.g. a city) is limited, but to respond
to an emergency call a free ambulance is needed. Thus the ambulance fleet needs
to be carefully managed. This is usually done by specially trained phone and radio
operators in emergency dispatch centers. These operators have to decide which
vehicle they want to send to a specific emergency, determine the destination hospital
and possibly re-distribute the remaining ambulances. The environment in which
they operate is characterized by a high degree of uncertainty, as little can be known
about future emergency requests at any given time.
The main goal of an EMS system is to provide help in medical emergencies and
save as many lives as possible. However the operation of an EMS system is also
very cost intensive and being a part of traditionally tightly budgeted healthcare
systems, economical aspects must also be taken into account when examining the
performance of an EMS system. Some cost factors such as salaries for paramedics or
purchase cost of medical equipment are subject to the location of the EMS system
and its economical environment. A big cost factor, which applies to all regions of the
world, is fuel, which can only be minimized if the ambulances drive optimal routes
at all times.
In this thesis we present different strategies to manage an ambulance fleet and
examine their performance in various scenarios. These strategies could eventually
be implemented in a supervised automated form or as assistance systems to human
operators. We model the EMS setting in a general way, such that it can be applied
to all kinds of geographic regions. We created an event based simulator to test the
strategies in different environments and under different settings. To visualize the
model and results and to observe the simulation we created a graphical user interface
(GUI) using a combination of traditional GUI programming and web tools.
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1.2 Problem

1.2 Problem

The problem we seek to solve with our contribution is the automated management
of an ambulance fleet. We are given a number of ambulances, ambulance bases and
hospitals on a road network. Furthermore there is a stream of requests by patients
that need to be brought to a hospital in as little time as possible, since they are in
urgent need of medical treatment. Ambulances move around on an underlying road
network graph on which we can perform shortest path queries to optimize routes
and find the closest hospitals or ambulances to any point on the graph.
One major goal is to maximize the number of saved patients. A patient counts as
saved if they reach a hospital alive. Other goals include the minimization of response
times, i.e. the time an ambulance needs to reach a patient, and the minimization
of overall distance the ambulances need to travel. We want to find a good online
algorithm to solve this problem. For a formal problem definition see section 2.1

1.3 Related Work

Research in the field of route planning, vehicle fleet routing and more specific am-
bulance allocation and management has a rich history that goes back to the 1950s.
The basis of most state-of-the art route planning algorithms is Dijkstra’s algorithm,
which was introduced in 1959 [Dij59]. The algorithm gives a path of minimal cost
between two nodes, given a graph with positive edge costs. Dijkstra’s algorithm was
later improved by a variety of techniques such as arc flags [Lau04] and contraction
hierarchies [GSSD08]. Both of those improvements add precomputation steps to
decrease the size of the search space.
When it comes to managing fleets of vehicles, one common problem is the dial a
ride problem (DARP). In the DARP a number of users request pick-up and drop-off
at two points on a graph to a vehicle or fleet of vehicles. The goal is to find good
schedules for the vehicles to satisfy as many users as possible [CL03]. In a DARP
setting there is not as much urgency as in the EMS setting: It is sometimes allowed
to have multiple passengers in one car and it is acceptable to drive detours if this can
maximize the total number of passengers. Furthermore the destinations in DARP
are more diverse, whereas there is only a small set of hospitals in the EMS setting.
Another related subject is the coordination of a fleet of delivery vehicles, which
transport goods from one point to another. In [AGP12] Azi et.al. describe a dy-
namic routing system for a fleet of delivery vehicles which makes decisions about
incorporating new requests into the schedules. In [FBG13] Ferrucci et.al. present a
management system for urgent delivery of goods. They derive a stochastic model
from past requests and try to anticipate future requests with vehicle redeployment.
In goods delivery past requests hold some information about future requests, for
example if one factory wants to send something urgently, there is a chance that
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1.3 Related Work

it might want to do it again in the future. This does not apply to an EMS sys-
tem where a request from one location holds little to no information about future
requests from the same venue.
Other research has been made working with EMS settings. One field of interest
is actual routing of ambulances on a road network. Panahl et. al. present an
approach on dynamic ambulance routing in a city which takes real time traffic
congestion data into account to adjust the routes and minimize the response times
[PD09]. This approach focuses on the optimization of single ambulances instead
of fleet management. Other work deals with scheduling of secondary ambulances,
i.e. less urgent inter-hospital transfer of patients. In [CHS+13] a system to plan
schedules for ambulance planes according to an existing set of request is presented
by Carnes et.al. Given a set of patients with destinations and medical needs, they
calculate optimal journeys for a minimal number of planes. In [Par09], Parragh
also deals with optimizing of secondary ambulance transports and allows multiple
patients to be transported in the same ambulance to save costs. These secondary
ambulance settings lack the emphasis on urgency we have in our model and focus
more on economic aspects.
Another often studied problem is optimization of ambulance base location within a
certain area. Here, the task is not to manage an ambulance fleet, but to distribute
bases on the map and allocate ambulances to them to be optimally prepared. Knight
et. al. derive ambulance base location from a detailed model, taking different classes
of patients into account [KHS12]. These different patient classes model different
medical conditions and corresponding needs. For example a patient with a broken
arm can be treated in a smaller hospital, while a patient with a failing heart probably
needs to be brought to a more specialized medical facility.
In [Hal72] Hall uses statistical analysis based on real world data from the Emergency
Services of Detroit. Not only EMS data, but also police emergency occurrences are
incorporated into the analysis and also different operation modes, such as dual
function ambulance police cars, are looked at.
Berlin et.al. divide the allocation problem into two sub-problems: Ambulance base
location and allocation of ambulances to those bases [BL74]. A set covering algo-
rithm is used to find a good distribution of ambulance bases which are then filled
with ambulances according to the results of a simulation based calculation. However,
no dynamic management is incorporated into the simulation.
The task of managing an ambulance fleet in operation has also been studied. Gong
et. al. examine disaster relief operations [GB07]. In their setting they assume a
disaster of some sort has struck a certain area. They divide the area into clusters
and allocate and assign ambulances to those clusters. This allocation is dynamically
adjusted as the situation changes.
A more general EMS setting is analyzed by Zhu et. al. in [ZM93]. They also
make heavy use of real world data from the city of Shanghai, based upon which
they develop a mathematical load balancing model. With this model they redeploy
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1.3 Related Work

ambulances to different stations as the demand changes. Their approach does not
directly manage ambulances, but merely observes request frequencies in the system
and makes recommendations on how many ambulances should be stationed at this
time in each station. It also focuses solely on the real time data and environment
in Shanghai and is not tested or benchmarked against other environments.
A combination of fleet allocation and dynamic management is presented by Yue
et.al. [YMK12]. This approach uses a simulation based strategy and historical data
to manage the fleet in a large city. The results show that it works well for the region
they have the data for, but no attempt to benchmark the system in a generalized
setting is made.
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2 Analysis

In this chapter we first formally define the set of problems which we deal with in this
thesis. We then demonstrate the relation between them and scheduling problems
and also give an NP-hardness proof for one of the ambulance allocation problems.
Finally we introduce the concept of duty zones, which we then use to find upper
bounds for the problems.

2.1 Problem Definition

The ambulance fleet allocation problem is defined as follows:

Definition 1. We are given a street graph G(E, V ) with a set of edges E, a set of
vertices V and a cost function c : E → R+ assigning travel times to the edges, a set
of hospitals H ⊂ V (|H| = h) and a fleet of k ambulances. There is a stream of
requests r = (o, a, d), where o ∈ V is the origin of the request (i.e. the location of the
patient), a ∈ R+ is the starting time at which the request becomes visible and d ∈ R+

is the deadline at which point the patient has to be at one of the hospitals in order to
be saved. Given this definition, a patient is saved if an ambulance at position w ∈ V
is assigned to the patient at time t ∈ R+, with t ≥ a and t + c(w, o) + c(o,H ′) ≤ d
with H ′ ∈ H being the hospital the patient is brought to. It is also possible to move
idle ambulances freely around any time without sending them to patients. The goal
is to manage and dispatch the ambulances in such a way, that the number of saved
patients is as close to the number of total requests as possible.

We call this general form of the problem the Many Hospitals Many Ambulances or
MHMA problem. For formal analysis we look at the more restricted One Hospital
Many Ambulances (OHMA) and One Hospital One Ambulance (OHOA) problems.
There is also an offline version of the problem, where all requests are known in
advance and can be taken into account while generating a schedule. We use this
offline version when we try to come up with upper bounds.
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2.2 NP-Hardness Proof

2.2 NP-Hardness Proof

In this section we look at the OHOA problem where k = h = 1, which means there
is only a single ambulance and a single hospital. We furthermore define request
intervals for each request r = (o, a, d) as [a, d], l with l being the travel time of a
round trip from the hospital to the patient and back (l = c(H, o) + c(o,H)). We do
not allow requests with a request interval where l > d− a as those requests can not
be served. A request can be served, i.e., the patient can be saved, if an ambulance
is assigned to the request at time t : a < t < d− l.
With this definition two requests (o, a, d) and (o′, a′, d′) can be served in OHOA if
∃t : t ∈ [a, d − l],∃t′ : t′ ∈ [a′, d′ − l′] : [t, t + l] ∩ [t′, t′ + l′] = ∅, i.e. if there exist
two intervals of length l and l′ respectively within the request intervals that do not
overlap (see Figure 2.1). This interpretation of the problem resembles a scheduling
problem. Garey et.al. present a dynamic scheduling problem and prove that it is
NP-hard [GJ79]:

Definition 2. Given n jobs, each with a release time, a deadline and a processing
time, decide whether all jobs can be scheduled on a single machine respecting the
given time windows.

We can reduce this problem to our OHOA problem: For every instance of the
dynamic scheduling problem we define a star graph with the central node being the
hospital. For each job j we add a node and connect it to the center node using
and edge with travel time 1

2 · processing time of j. That way a round trip to the
patient and back takes the same time as the processing time of j. Then we add a

time

l
a b

l'
a' b'

time

l
a b

l'
a' b'

Figure 2.1: Visual representation of request intervals: To successfully handle a
request a start time ts can be selected, such that a <= ts <= d − l, which
corresponds to moving around the dark blue bar inside the light blue bar. Two
requests can be handled if the dark bars can be arranged such that they do not
overlap in the time axis. The left image shows an example of two requests which
can be handled by one ambulance and the right image two requests which can not
both be served by one ambulance.
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2.3 Upper Bounds

time
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Figure 2.2: The left image shows an instance of the dynamic scheduling problem as
described by Garey et.al. in [GJ79]. The light bars indicate the release time and
deadline of each job and the width of the dark bars corresponds to the processing
time. The right image shows the street graph of the reduction of the same problem
to an OHOA problem. The travel times of the arcs are half the processing time
of the corresponding job.

request from that node with a = release time of j and d = deadline of j. Clearly,
every solution for the constructed ambulance allocation problem corresponds to a
valid solution for the dynamic scheduling problem and the translation can be done in
polynomial time. Figure 2.2 shows a graphical illustration of the problem reduction.
Since we have shown that the OHOA problem can be reduced to the dynamic
scheduling problem in polynomial time, we can conclude that OHOA is NP-hard.
Furthermore, since OHOA is a simplification of the other ambulance management
problems, especially MHMA, we can deduce that they are NP-hard too.

2.3 Upper Bounds

When evaluating online algorithms it is helpful to have good upper bounds on the
performance of the algorithms. In our case it would, for example, be interesting
to know, if for a given set of requests, all patients can be saved or, if not, what
the maximum number of patients is that can be saved. It is a common approach
to compare online algorithms with their offline counterparts and then reason about
their competitiveness.
For the simplified case where there is no flexibility in requests, we can easily find
upper bounds. In this case for each request r = (o, a, d) the travel time from the
hospital to o is exactly d−a

2 and thus the request has to be served immediately. This
eliminates the dynamic aspect and it remains to find a maximum size independent
set among the intervals. This can be done with a greedy algorithm in O(n · log n)
as described in [SH05]. However, the fact that OHOA is NP-hard suggests that it
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2.3 Upper Bounds

time timet*

Figure 2.3: An illustration of duty zones: From regular request intervals (left) we
compute the duty zones (red), i.e. the overlapping area when we move the dark
bars all the way to the left and all the way to the right. Note that some requests
might not have duty zones. Since the topmost and bottommost requests have
overlapping duty zones, they can not be served by one ambulance. At time t∗ the
ambulance would have to be busy with both requests, which is impossible.

is much more difficult to find the optimal offline solution. So we instead try to find
good upper bounds which can be computed more easily.

Upper bound using Duty Zones

Since it is hard to compute an optimal solution for a given OHOA problem, we try
to look at the requests and prune some of them. For this we define the duty zone of
a request with the request interval [a, d], l as the time interval [a+ l, d− l], i.e. the
time interval in which an ambulance has to be occupied by this request if it is to
be served at all. In other words, if an ambulance is dispatched to the request right
away t = a, if it is dispatched in the last possible moment t = d − l, and if it is
dispatched any time in between it will be busy during the duty zone. See Figure 2.3
for a graphical illustration of duty zones.
We can use these duty zones to identify impossible combinations of requests. If two
requests r and r′ have overlapping duty zones, i.e. ∃t : t ∈ dz(r) ∧ t ∈ dz(r′), it is
impossible to serve both requests with only one ambulance, because at time t the
ambulance would have to be occupied with both requests. It is of course possible for
the duty zone to be empty in cases where the earliest and latests possible processing
times do not overlap.
Given a number of requests with their respective duty zones, we can compute an
upper bound for our ambulance allocation problems. We start with the upper bound
U = |R|, the number of requests, and continue to decrease it as we find conflicts in
the request stream and assume that we have k ambulances at our disposal. We look
through the requests until we find the first t where more than k duty zones overlap.
It is clear that at this point we can not be serving more than k requests and thus

9



2.3 Upper Bounds

we must decrease U by the number of conflicting duty zones minus k. This way
we sweep through all of the requests and decrease the upper bound every time we
encounter such conflicts. We disallow one request being in more than one of those
conflict sets and thus remove all requests from one conflict set after the set has been
processed.
A different approach to an upper bound is taking the set of duty zones as an instance
of regular interval scheduling and computing an optimal solution for it. This gives
us an upper bound for the number of jobs a single ambulance could serve while only
respecting requests with duty zones. We multiply this value with k and add the
number of requests without a duty zone to get the alternative upper bound U ′. We
then obtain the final upper bound U∗ = min(U,U ′).
This approach of finding an upper bound can also be applied to theMHMA problem,
with many ambulances and many hospitals. For this we simply use the travel time
to the closest hospital when calculating the interval length for each requests.
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3 Model

In this chapter we describe the model we designed for the problem at hand. An EMS
system and its ambulances operate on a road network and so we use a road network
graph as the basis of the model. Then we introduce and describe all the objects we
model on the graph and finally outline the capabilities of our EMS operator agents
and their abilities to interact with the modelled objects.

3.1 Road Network

The road network on which the ambulances operate is modelled as an undirected
graph G = (E, V ) with edges and vertices.
The edges E in the graph represent the roads or parts of them. We use the word
"road" to refer to any kind of surface capable of being travelled on by an ambulance.
We do not differentiate between different types of roads, which means a vehicle
moves with the same speed on all roads. Furthermore we assume vehicles can drive
on all roads in both directions. Each road in the model has a length in meters.
The vertices or nodes V represent junctions or turning points on roads. Each node
has a latitude and longitude representing its position on the earth’s surface. We use
these coordinates to calculate the length of the edges by calculating the distance
between the two nodes which are connected by the edge. The position of all objects
in the simulation is given by node id. This discretization of ambulances and the
implied fact that an ambulance can not be positioned part-way on an edge could
lead to problems on long edges, as an ambulance’s position when travelling on an
edge is the source vertex until the entire length of the edge has been travelled and
then changes to the destination vertex. However the data we use for our graphs is
very fine grained and so edges are usually very short (see subsection 6.2.2), which
minimizes this effect.
We make sure that all road network data that we use as input represents one con-
nected graph. To assume a connected road network, i.e., any node can be reached
from any other node, is reasonable, since ambulances could also not reach a sealed
off area in reality.
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3.2 Objects on the Graph

3.2 Objects on the Graph

The road network serves as an underlying reference system for all objects and entities
that are part of an EMS system. We modelled the following objects and entities:

• Ambulances: Ambulances are the resource managed by the different strate-
gies. They have a capacity of one, which means, they can carry only one
patient at a time. Each ambulance has a constant speed and a home base at
which it will start. Ambulances are always in one of the following states.
– Free.
– Free and at its base.
– En route to a patient.
– At a patient.
– En route to a hospital with a patient.
– At a hospital; dropping off a patient.

• Ambulance Bases B ⊆ V : The buildings where ambulances are stationed.
They do not have any additional function in this model.
• Hospitals H ⊆ V : Hospitals or comparable medical institutions, which pro-

vide medical care to injured and sick people. The only way to save a patient
is to transport them to one of the hospitals. We do not differentiate between
different classes of hospitals and assume any medical condition can be treated
by any hospital. This assumption is a simplification we make not to over-
complicate the model, but taking different hospital classes into account could
provide further interesting results. See subsection 7.1.3 for more details.
• Patients: The main goal of any EMS system is to transport patients to

hospitals. The simulation will generate EMS requests, each of which will
spawn a patient at a position represented by a node and a time to live (TTL).
The patient must be transported to a hospital before the TTL runs out.

3.3 Request Generation

From the EMS operators point of view the stream of incoming requests appears to
be very random, and unpredictable as little to nothing can be known about the
amount and nature of requests in the future. To simulate this we use a random
request generator which generates a stream of requests which we then use as the
basis of our simulation. The requests have two random components: time and
location.
To simulate the time of a request, we use the parameter expected time between
requests (etbr) to be able to simulate different workloads. Given this parameter
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3.4 Agents

request number time of request time since last request
0 01:43 01:43
1 05:39 03:56
2 16:30 10:51
3 20:13 03:43
4 28:42 08:29
5 34:58 06:16
6 36:29 01:31
7 36:54 00:25
8 43:11 06:17
9 50:08 06:57

Table 3.1: An example of a request stream with ten requests. The etbr is set to 300
seconds, i.e. five minutes. This example demonstrates that the used generation
method can produce very short intervals such as between requests six and seven,
but also rather long intervals such as between requests one and two. In this case
the average time between consecutive requests is exactly five minutes.

we generate n requests with the first requests occurring at t0 = X0 where X0 is a
random variable whose value is subject to exponential distribution with λ = 1

etbr
. All

other requests n occur at time tn = tn−1 +Xn where Xn are again random variables
following the same distribution as X0.
With those generation rules we end up with a series of requests where the average
time between requests n and n+ 1 goes to etbr as n goes to infinity.
The second random component of requests is the location or origin on the graph.
Since medical emergencies can occur anywhere in form of a road accident on a
motorway or a stroke in a residential area in a city, we treat all nodes of the graph
equally and select the origin of each request from the set V of all nodes using normal
distribution.

3.4 Agents

In the real world, ambulances are coordinated by operators or a team of operators
in a dispatch center. In our model, EMS operators are represented by agents. In our
simulation, agent objects define a set of methods which they can use to subscribe to
specific events (see section 4.1). They also have a persistent state so that they can
keep track of past events. In particular all agents have a request queue, a priority
queue in which they can store requests which they are currently unable to respond
to.
Once a subscribable event comes up, the respective method will be invoked. The
agent is then allowed to inspect the observable state of the world, e.g., the position
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of all ambulances, and must then decide if and how to react to the current event.
To make this decision, an agent has full access to the road network information and
can run arbitrary route planning or other algorithms to gain information, just as a
real operator could do with the help of a computer.
Agents will try to respond to as many requests as possible in a first-in-first-out
fashion, which means if requests r is registered before request r′, there will be an
ambulance assigned to r before one is assigned to r′.

Orders

As a reaction to all types of subscribable events, agents can issue a list of orders to
ambulances. An order consists of the ID of the ambulance and the ID of the target
node. This list of orders is then passed to the simulator, where it is validated to
ensure that no orders are given to, for example, an occupied ambulance which cannot
take new orders. After that, the ambulances are assigned to their new targets. For
the sake of simplicity we chose not to model the short delay that the propagation
of orders would create in the real world. Orders are assigned immediately and the
ambulances need no time to react to them. Ambulances automatically chose the
shortest path to their new target, therefore the path is not part of the order.
Ambulances do not keep any state about orders. They can only process one order
at a time and immediately forget about an order once a new one is given. An order
queue for each ambulance could however be emulated by the agent.
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In the previous chapter we described the model our simulations are based on and the
general way the agents work and interact with the world. In this chapter we present
the management strategies which can be employed by those agents in detail. We
first give some more information about the task of the agents, followed by further
defining the methods of interaction with the world. Finally, we present the three
main strategies we developed to manage an ambulance fleet in detail.
The main goal to all our strategies is to help as many patients as possible while
staying economically viable. Three distinct sub-problems can be described which
the agents need to address in order to achieve these goals:

Planning ahead

In a situation where no new EMS requests are created, for example, at the beginning
of the simulation the agents can try to prepare themselves and the ambulance fleet
in a way that might make it more easy for them to deal with future requests, for
instance, redistributing the fleet in a certain way.

Initial response to requests

Once a new emergency call comes in the agent must decide, based on the location
of the patient, which of the available free vehicles it wants to order to respond to
the emergency. If there is no free ambulance available, the agent needs to save the
request in a queue and try to answer it again once an ambulance becomes available.

Reassignment

During the time an ambulance needs to reach a patient, it is still a free ambulance
and can potentially be diverted to a different patient. As more requests come in, it
can be very beneficial to reassign the ambulance and send another one to the patient
it was on its way to previously. Reassignment is not part of the core strategies, but
can be added to any of the three. It is described in detail in section 4.5.
In our simulation we assume that all decisions are made instantly, i.e., the simulation
is halted while the simulator waits for the decisions by the agent. However, we make
sure that all decision making processes take negligible amounts of time.
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4.1 Reaction Slots

In our simulation we define a set of situations, where actions can be taken by the
agent. This set covers all situations in which the state of the simulation has changed
in a way that could possibly influence the actions taken by the agent, e.g., a new
EMS request or an ambulance that is available again after delivering a patient
to a hospital. An ambulance that has travelled another kilometer along its path
while nothing else has happened can not possibly change the decisions made by a
deterministic agent in a deterministic simulation and so this is not a situation where
agents can make decisions. Other non reactable situations include events that do
change the simulation but are assumed not observable by the agent, such as the
death of a patient before an ambulance has reached it.
To make it possible for the agent to react to those situations we define a reaction
slot for each of them. A reaction slot is a method for a specific situation which all
agents must implement. This method will be invoked by the simulator whenever
the respective situation occurs. The return value of all reaction slot methods is a
(possibly empty) list of orders that the agent gives to ambulances. If an agent does
not want to react to a certain class of event the respective method just needs to
return an empty list.
The list of reaction slots contains the following situations:

• Simulation Begins: This is a unique event that only occurs once at the
beginning of each simulations, to enable agents that want to do repositioning
of ambulances to do so.
• New Request: A new EMS request occurs. The agent learns the origin and

can dispatch an ambulance.
• Patient in Ambulance: The patient is aboard the ambulance and it can be

sent to a hospital.
• Ambulance Free: An ambulance has delivered a patient to a hospital and is

now available again

4.2 Greedy

The most straightforward approach to the ambulance management problem is a
greedy or lazy algorithm. A greedy approach is the base of what is currently used
by most real world EMS systems. Ambulances are stationed in hospitals, fire de-
partments or separate ambulance depots where supplies are kept and a repair and
maintenance infrastructure is present. This makes it a reasonable approach for an
operator to leave the ambulances in these depots when not needed and send them
back once an order has been processed.
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This widely used approach has been sudied before and found to perform well in
common EMS settings [YMK12].
The greedy approach does not employ any kind of precomputations and does not
do any redistribution of the initial fleet. Every ambulance has a fix assignment to
a home base. It can only be on its way to a patient, hospital or back to its base at
any time. There is no other event that will cause Greedy to move an ambulance.

4.2.1 Event Handlers

Greedy subscribes to the following events and reacts as described:
• New Request: A list of all available ambulances and their positions is ob-

tained. This list includes ambulances idle in their bases and those on their
way to a base. Using multi-source-Dijkstra with the ambulance’s positions as
sources and the request origin as target, the closest ambulance is determined
and assigned to the request. No other orders are issued.
• Patient in Ambulance: Once an ambulance reports as ready to leave with a

patient, Greedy will run a multi-target-Dijkstra with the ambulances position
as source and all hospitals as targets to determine the closest hospital and
order the ambulance to go there.
• Ambulance Free: An ambulance that reports as free is immediately ordered

back to its home base.

4.2.2 Characteristics

The Greedy approach does not do any kind of redistribution of the initial ambulance
fleet, therefore we can assume that it is very sensitive to the initial distribution of the
ambulance fleet. The time it takes for an ambulance to reach a patient is dependent
on how close the nearest ambulance base is to the patient, which is something the
algorithm has no control over. We could confirm this in our experimental results
(see subsection 6.4.2).
Economically, Greedy can be expected to perform rather well, since it does no
moving around of ambulances other than to respond to requests and always uses
the shortest possible routes.
It is also the least computationally complex approach, as no precomputation has to
be done. While responding to requests, Greedy limits itself to two multi-source/target
Dijkstra runs: one to find the closest ambulance and one to find the closest hospi-
tal. All other strategies do this too in addition to their own precomputation and
redistribution, leaving Greedy as the approach with the lowest expected runtime.
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Figure 4.1: The initial distribution of K-Medoid with 5 Ambulances (blue). Each
group of colored dots represents one cluster. The ambulances are positioned at
the medoids of these clusters.

4.3 K-Medoid

The most significant drawback of Greedy is its dependence on the initial distribution
of ambulances. To overcome this we introduce K-Medoid. This strategy tries to
optimize the distribution of free ambulances at any time and therefore minimize the
response time to the next requests. This way we hope we can both minimize the
average response time and rescue more patients overall.
To accomplish this, we use what we call the K-Medoid distribution, where ambu-
lances are distributed according to the results of the K-Medoid clustering algorithm.

4.3.1 Modified K-Medoid Algorithm

The K-Medoid algorithm is a relative of the K-Means clustering algorithm, which
is a widely used algorithm in data analysis. K-Means is based on work by Lloyd
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who first introduced the basic principles in 1982 [Llo82]. Given a number of n
points in space, a distance metric and a set of k initial means, K-Means computes
a k-clustering seeking to minimize the average distance of a point to the mean
of its cluster. The result is not guaranteed to be globally optimal, but can be a
local optimum arbitrarily worse than the global optimum. While in practice the
runtime of the algorithm is often acceptable, it has been shown to be theoretically
superpolynomial [AV06].

Algorithm 1: The K-Means algorithm
Data: A set of points V , a distance metric and k initial means
Result: An assignment V → 1, ..., k

1 while Clusters have changed do
// Assignment step

2 for v ∈ V do
3 Assign v to the cluster with the closest mean;
4 end

// Update step
5 for i ∈ 1, ..., k do
6 Calculate mean m of cluster i;
7 end
8 end

In K-Medoids, the clusters are formed around medoids rather than means, i.e., the
cluster centers have to be part of the set of data points. K-Medoids is also know as
PAM (Partitioning around Medoids) and was introduced by Kaufman et.al. [KR90].
The algorithm is similar to K-Means, as it also has an update and assignment step
in each iteration (see algorithm 3). However, the update step is more costly in K-
Medoids since for every cluster, every member is tested as a new medoid. There are
techniques to improve the speed of the algorithm, for example, the CLARA method
which only considers a randomly selected subset of each cluster as medoid candidates
[HKP06]. This method sacrifices optimality for speed, as the found clustering can
never be optimal if any of the optimal medoids are not part of the randomly selected
subsets.
We use a different modification to K-Medoids to improve its running time. Instead
of evaluating every data point as new medoid during the update step, we calculate
the mean of the cluster and define the cluster member with the lowest distance to
the mean as the new medoid (see algorithm 2). This modification requires there to
be a meaningful distance measure from data points to arbitrary values instead of or
in addition to a distance matrix. We also require mean calculation to be possible
and meaningful. In the case of geocoordinates both these requirements are satisfied
as we can use Euclidean distance as a distance measure and define the mean of a
set of coordinates as the mean of the latitude values and the mean of the longitude
values.
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Algorithm 2: The K-Medoids algorithm
Data: A set of points V , a distance metric or matrix and k initial medoids

m1, ...mk ∈ V
Result: An assignment V → 1, ..., k

1 while Clusters have changed do
// Assignment step

2 for v ∈ V do
3 Assign v to the cluster Ci with the closest medoid mi;
4 end

// Update step
5 for i ∈ 1, ..., k do
6 for m′ ∈ Ci do
7 Calculate the cost c(m′) of the cluster with m′ as medoid;
8 if c(m′) > c(mi) then
9 mi = m′ // Define mi as new medoid of Ci

10 end
11 end
12 end
13 end

Algorithm 3: Modified version of K-Medoids
Data: A set of vertexes V with a disctance function dist : V × V → R+ and k

initial medoids
Result: An assignment V → 1, ..., k

1 while Cluster have changed do
2 for v ∈ V do
3 Assign v to the cluster with the closest medoid
4 end
5 for i ∈ 1, ..., k do
6 Calculate mean m of cluster i;
7 Define the vertex mnew with mnew = argmaxv dist(v,m)
8 end
9 end

10 Calculate the closest medoid of each vertex on the actual road network;
11 Reassign each vertex to the closest medoid;
12 Recalculate medoids;
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Figure 4.2: If run without the refinement step (left), some nodes on the right hand
side of the river are added to the red cluster, although, because of the lack of
bridges in this area, they are closer to the green medoid on the street graph.
With the refinement step (right) they are added to the green cluster.

Refinement Heuristic

To decrease the complexity of the algorithm, we use a straight line heuristic during
the iterative computation of the clusters. That is, we assume there is a direct straight
line road between two vertices, which allows us to use the Euclidean distance as
distance measure. Because our geographical data is so fine grained, and especially in
cities street graphs are highly connected, this is usually not simplifying the problem
too much. However, it can introduce unfortunate assignments, for example, at rivers
with no crossing in the area (see Figure 4.2).
To compensate for this, we do a refinement step after the clusters have settled, where
we calculate the closest medoid of each vertex on the actual road network using a
multi-source complete Dijkstra run. We then reassign the vertices accordingly and
do one last recalculation of the medoids.

Result

The result of this algorithm gives an approximation of the k medoids in a graph
that minimizes the average distance of a vertex to the closest medoid. In the EMS
setting this means that if we have x ambulances and place them on the calculated
medoids, we can hope to minimize the time an ambulance needs to respond to the
next request. To achieve this we need to precompute the medoids for each k ∈ 1, ..., x
in order to be able to work with any number of free ambulances. Since the resulting
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medoids only depend on the underlying graph and not on the position of ambulances,
hospitals or other objects, they can be cached on a per graph basis.

4.3.2 Event Handlers

To minimize the response time of ambulances, the K-Medoid strategy tries to place
the free ambulances on the k medoids of the graph, where k is the number of free
ambulances at the current time. Response handling is similar to Greedy.
• Simulation Begins: Once the simulation begins and before any requests

have occurred, all available k ambulances are spread across the graph, each
being ordered to one of the medoids, where they will remain until a request
comes in.
• New Request: A list of all available n ambulances and their positions is

obtained, including ambulances idle at medoids or en route to one. Using
multi-source-Dijkstra with the ambulance’s positions as sources and the re-
quest origin as target, the closest ambulance is determined and assigned to
the request. Since the number of free ambulances has now changed to n − 1,
the remaining free ambulances are repositioned to the n− 1 medoids.
• Patient in Ambulance: Just as in Greedy, ambulances with patients are

sent to the nearest hospital using a multi-target-Dijkstra.
• Ambulance Free: Once an ambulance reports as free again, the number of

free ambulances is increased and the ambulances are repositioned.

4.3.3 Characteristics

The main goal of this approach is to minimize the time it needs to respond to
requests while not depending on the placement of ambulance bases on the map.
Since nothing is known about the location of future patients, we compromise and
try to cover all nodes the best we can. The heavy redeployment involved in this
makes it rather uneconomic, as the total distance travelled by ambulances can be
expected to be significantly higher than in Greedy.
The approach is also not very practical as, in reality, ambulances do need to return
to their bases in order to be re-equipped and cleaned. Since medoids can be any
node in the graph the can also be on highways and other points where it is in practice
hard or impossible to station an ambulance.
Computationally, this approach is the most complex of the presented ones as it
involves rather costly precomputation (although it can be cached) and most event
handling involves redeployment of ambulances.
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Figure 4.3: The voronoi cells of a street graph. Each hospital and ambulance base
is the seed of one cell.

4.4 Voronoi

To overcome the practicability problems of K-Medoid and make the approach more
economical, we introduce a third strategy, which we call Voronoi, named after
Voronoi diagrams which represent the underlying concept [Aur91].
In general, a Voronoi diagram is a way of partitioning a space into n cells, given n
fixed points in space that will each become the center of a cell. Each point in space
is assigned to the cell of the center which is closest to it according to a distance
measure, for example, Euclidean distance.
Voronoi is a variant of K-Medoid with a restriction on the medoids: Only hospitals
and ambulance bases are allowed as points where idle ambulances are stationed. In
a precomputation step, we define each hospital or ambulance base as the center of a
Voronoi cell. Each vertex is then assigned to the cell belonging to the closest hospital
or base. Instead of using Euclidean distance when determining the closest center,
we use the actual distance on the street graph. We do this by using the result of one
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complete Dijkstra run with all hospitals and ambulance bases as seeds. This way we
obtain for each node the closest seed and can add this node to the Voronoi cell of
that hospital or ambulance base. In other words, each node belongs to the Voronoi
cell of the center from which an ambulance would have the shortest distance to that
node, if all centers had at least one free ambulance available. Figure 4.3 shows a
visualization of Voronoi cells for a graph.
Each time the number of free ambulances changes, they are redistributed according
to algorithm 4, where the number of ambulances stationed in a Voronoi cell is pro-
portional to its size. Since it is possible that there are more cells than ambulances,
the smallest cells might be assigned no ambulances.

Algorithm 4: Assignment of free ambulances to Voronoi cells
Data: A number of free ambulances, a graph g and a set C of Voronoi cells
Result: An assignment of the ambulances to the cells

1 for c ∈ C do
2 x = bnumNodes(c)

numNodes(g)c ;
3 assign x ambulances to c;
4 end
5 while ambulances remain do
6 assign one ambulance to the cluster with the fewest ambulances;
7 end

4.4.1 Event Handlers

The event handlers of Voronoi are similar to those in K-Medoid:
• Simulation Begins: As in K-Medoid, ambulances are repositioned directly

after the beginning. The repositioning is done according to algorithm 4.
• New Request: A list of all available ambulances and their positions is ob-

tained. This list includes ambulances idle in bases and those on their way to
a base. With a multi-source-Dijkstra the closest ambulance to the request is
determined and assigned to the request. The remaining free ambulances are
repositioned according to algorithm 4.
• Patient in Ambulance: As in the other strategies, patients are sent to the

nearest hospital using a multi-target-Dijkstra.
• Ambulance Free: After an ambulance becomes free all free ambulances are

repositioned using algorithm 4.
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4.4.2 Characteristics

Voronoi represents a compromise between Greedy and K-Medoid. It is more practi-
cal since ambulances are only idle in hospitals or ambulance bases, where they can
be re-equipped and ready-rooms for the crews can be maintained.
Voronoi involves less driving around than K-Medoid, since if an ambulance stays in
the same cell, it does not have to move at all. In K-Medoid every redistribution
step means all free ambulances have to move, since the set of medoids is different
for every k.
Like Greedy, Voronoi’s performance is not completely independent from the set-
ting, as positions of hospitals and ambulance bases are predefined. It is, however,
more flexible, since hospitals can be used as bases and the initial distribution of
ambulances can be changed.
Although it is computationally more complex than Greedy, the precomputation and
computation during redeployment is less expensive than in K-Medoid.

4.5 Reassignment

In all of the previously described strategies, only ambulances which are not assigned
to a request are considered available when a new request comes in. This means
that once an ambulance has been assigned to a request, this assignment cannot be
changed. This behaviour can lead to bad assignments for unfavourable sequences of
requests (see Figure 4.4).
We also did not re-evaluate the situation once a new ambulance becomes free, al-
though it might be much closer to a patient than the ambulance currently responding
to them. This, too, can lead to unnecessarily bad response times.
To overcome these weaknesses, we designed a reassignment mechanism which can
be incorporated in all previously described strategies in order to boost their perfor-
mance.

4.5.1 Assignment Problem

To be able to effectively reassign ambulances to open requests, we need to find an as-
signment of ambulances to requests, such that the sum of the distances between each
ambulance and its assigned request is minimized. This is a fundamental problem
of combinatorial optimization and known as the Assignment Problem. The problem
can be visualized with a complete bipartite graph where each vertex from the left
side needs to be assigned to one vertex on the right, such that the cost of the used
edges is minimized.
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Figure 4.4: This situation demonstrates the benefits of reassignment. In the start-
ing position I, two ambulances (blue and orange) are positioned at C and D, when
two requests come in, first from B and then from A. Without reassignment (II)
the blue ambulance is sent to B when the request comes in, as it is the closest,
then, when the request from A comes in, only the orange ambulance remains free
and is assigned to A. This results in a maximum response time of 8. When reas-
signment is enabled (III), the blue ambulance is reassigned to A and the orange
ambulance is sent to B. This results in a maximum response time of 5.
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The algorithm we use to solve this problem in polynomial time is known as the
Hungarian Algorithm, Kuhn-Munkres algorithm or just Munkres algorithm. It was
initially developed by Kuhn [Kuh55] and later studied and improved by Munkres
[Mun57]. This algorithm allows us to find an optimal assignment of ambulances to
patients in O(n3) time, given a cost matrix. To obtain this cost matrix we use a
complete mulit-target-Dijkstra for each ambulance, which gives us the distance to
each patient. This way the final assignment will be the one which minimizes the
sum of the distances which all ambulances need to travel.
Munkres algorithm only works with square matrices. If there are more free ambu-
lances than patients, we add dummy patients with longer distances to all ambulances
than the maximum distance in the matrix and disregard the assignments of ambu-
lances to them. There will never be more patients than free ambulances, because
requests are served in a first-in-first-out manner and we only take as many requests
from the queue as there are ambulances available.
All our strategies did not differ in the way they responded to requests, but only
in management of idle ambulances. That means that we can apply the Munkres
reassignment strategy to all of them (see algorithm 5).

Algorithm 5: Ambulance reassignment
Data: All ambulances and the request queue
Result: An assignment of ambulances to requests with minimal overall travel time

1 Let A∗ be the set of free ambulances and those currently en route to a patient;
2 Let R∗ be the set of requests ambulances are responding to plus x more from the
queue, such that |A∗| = |R∗|;

3 for a ∈ A∗ do
4 Calculate the travel time to all r ∈ R∗;
5 end
6 Calculate the optimal assignment using Munkres’ algorithm;

Munkres algorithm style assignment is also used in K-Medoid and Voronoi when
free ambulances need to be assigned to medoids or bases/hospitals. Instead of
patients the free ambulances are then assigned to the respective points on the map
or hospitals/ambulance bases.

27



5 Implementation

In this chapter we focus on the implementation of our strategies, the simulator
and the graphical user interface. We list the technologies we use and schematically
describe the way the simulation works.
When selecting the development stack, the most important requirements were:
• Performance: To be able to easily run a large number of simulations with

different scenarios, a highly performant system is required.
• Flexibility/Ease of development: We want to be able to easily adapt the

implementation to new ideas during the development and to minimize the
development time in general.
• GUI capabilities: The selected development stack needs to provide an easy

way to create a graphical user interface.
With these requirements in mind we opted for Python as the main programming
language, as it provides both the ability to rapidly develop and adapt code, and
also the tools to quickly develop a GUI. At the time of writing, Python usually falls
short in performance of compiled languages such as C++. It is however possible to
implement computation intensive parts in C++ and use them within the Python
code. There are different means of achieving that. We chose the Boost.Python1

library, which is part of the well known Boost library collection for C++ [AGK03].
With C/C++ extensions it is possible to expose single functions or a whole object
written in C or C++ to Python and use them in Python code, i.e., after the code is
compiled the Python interpreter can directly access the binary code and run it like
a pure C/C++ program would. Furthermore, in the C/C++ code the programmer
can use and return Python’s basic data structures like lists or dictionaries.
We first created a pure Python implementation and then gradually re-implemented
those parts in C++, which a profiler showed to be the most time consuming during
a simulation run. First we wrote Dijkstras algorithm and its variations, like multi-
source and multi-target-Dijkstra, as a C++ extension and later ported the whole
graph data structure to C++. With these optimizations we were able to improve
the running time by about a factor of ten.

1http://www.boost.org/doc/libs/1_55_0/libs/python/doc/

28

http://www.boost.org/doc/libs/1_55_0/libs/python/doc/


5.1 Simulation

5.1 Simulation

There are some simulation libraries for Python available. The most prominent
among which is SimPy [Mat08], a feature rich framework for various types of sim-
ulation. We decided against using a framework, since the simulation we want to
implement is rather simple and we want to avoid introducing computational over-
head.
We designed the model in such a way that it is suitable for discrete event based
simulation (DES) and we can save computational complexity compared to time
discrete approaches. The simulator we designed consists of an event queue, which is
a priority queue where events are ordered by time, and a main loop which iteratively
handles the events until no more events are registered (see algorithm 6).

Algorithm 6: Main Simulation Loop
1 Initialize event queue;
2 Generate events and add to queue;
3 Initialize Objects;
4 while queue not empty do
5 e = next event;
6 update ambulance positions to e.time;
7 handle event specific logic;
8 inform agent and retrieve orders;
9 relay orders to ambulances;

10 end

We designed the simulator and underlying data structures in such a way that they
can easily be parallelized. This means we can run multiple simulations simultane-
ously which operate on the same graph, but with different settings in a way that
there is only one copy of the graph in memory. While Python in general has dif-
ficulties with traditional threading due to the global interpreter lock (GIL) which
prohibits more than one thread to execute a section of code, similar behaviour can
be achieved by using the multiprocessing module from the standard library which
offers the same interface as threading, but internally works with multiple processes.

5.2 Dijkstra’s Algorithm

When computing shortest paths on our road network, we rely on Dijkstra’s algo-
rithm. We implemented the algorithm as a C++ extension to our Python code.
Although the unoptimized version of Dijkstra’s algorithm is not the most effective
choice for larger graphs, it proved sufficient for our simulations, since a distinct EMS
system usually only operates within a smaller geographic region such as a city. It
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is worth noting however that the available optimization techniques for Dijkstra’s
algorithm, such as contraction hierarchies [GSSD08], could be used to improve the
performance of our simulations.

5.3 Caching

We use many costly calculations in our programs. To reduce the burden of those,
we make heavy use of caching, both run-locally and globally. During a run we cache
all Dijkstra calls. For example, during a simulation there might be multiple requests
for the shortest path between two points. To avoid calculating it multiple times, we
employ a key/value store which uses node ID pairs as keys and store the results of
all Dijkstra runs in there. Furthermore, we have a persistent file level cache which
caches the results of K-Medoid calculations. Here we must carefully chose the key
for the cache. If we only use the graph name or file name, changes in the graph,
or using two graphs with the same name, would lead to illegal cache hits. For this
reason we generate a JSON representation of the graph, which consists of a list of
all the nodes with their latitude and longitude values and all the arcs with to and
from nodes. We then calculate the SHA1 hash of this string and use it as the cache
key. That way, if the graph is altered in some way, the SHA-1 digest will change
and the K-Medoids calculation will have to be repeated.

5.4 Graphical User Interface (GUI)

When we run many simulations in a batch for benchmarking, we run the simulator
in headless mode without any user interaction. However, we also provide a GUI to
debug and visualize the simulations. The GUI is also written in Python using Qt2

as a GUI framework and PyQt3 as a binding library, since Qt is written in C++. Qt
is an open source library published under the GNU General Public License (GPL)
or GNU Lesser General Public License (LGPL) for versions > 4.5 respectively.
The main reason to use Qt is the WebView object which is a complete Webkit
rendering engine for web content, which can be embedded into the application.
Webkit4 is an open source rendering engine for HTML content. It is used by a
number of web browsers including Safari, Midori and until recently Google Chrome5.
To properly display the location of objects on a street graph, we require a framework
for map applications. We opted to use Google Maps API6, because it is easy to use

2http://blog.qt.digia.com/
3http://www.riverbankcomputing.co.uk/software/pyqt/intro
4http://www.webkit.org/
5In 2013 Google announced that they would fork Webkit and continue development under the

name Blink
6https://developers.google.com/maps/
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5.4 Graphical User Interface (GUI)

and the API is well documented. There is also a similar API for OpenStreetMap,
which we use as data source for geographical data. Being a Web based tool, Google
Maps API is a JavaScript library. Therefore we wrote the code for our map area
in JavaScript and are able to call JavaScript functions from Python code via Qt
Webkit.
The GUI Application consists of the following components (see Figure 5.1 and
Figure 5.2):

• Map View: The Map View displays the position and routes of ambulances
as well as all other relevant objects, like patients and hospitals. We also use
the map area to visualize results of K-Medoid and Voronoi cells. The map is
interactive, users can zoom and pan around and tool tips provide additional
information such as the ambulance’s IDs.
• Text log: The text log is used to output all relevant information about current

events, such as the time and type of event. Any new orders to the ambulances
are also displayed here.
• Control Area: The user interacts with the application via the control area.

The simulation can be stepped through event by event. The parameters of the
simulation can also be adjusted here.
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Figure 5.1: The map and control section of the GUI: The map shows the current
position and routes of the ambulances. Red markers represent hospitals, green
markers represent ambulance bases and blue markers represent ambulances. Am-
bulances on red paths are responding to a request by the patient represented by
a yellow marker. Ambulances on a blue path are taking a patient to a hospital
and ambulances on a black path are currently redeploying. The control area un-
derneath the map is used to step trough the simulation, change parameters and
restart the simulation.
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5.4 Graphical User Interface (GUI)

Figure 5.2: The statistics and log section of the GUI: The statistics field gives
an overview of current patients and response times. The log underneath gives a
detailed description of all events that happened and orders that were issued.
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Figure 5.3: The GUI can also be used to display the results of a K-Medoids run.
In this case k = 6.
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6 Experimental Results

In this chapter we present and discuss the results of the simulations we ran. We
first list the criteria we used when evaluating our strategies, then briefly discuss the
running time of the simulations and finally present the benchmark results of our
strategies in different environments.

6.1 Criteria

The question, what measures to use when evaluating the quality of an EMS system
is not easy to answer, as – at least in the western world – EMSs are taken for granted
and are expected to work perfectly. If a person calls an ambulance, it is expected,
in Germany even required by law, that the ambulance be there promptly and if that
person does not live to see the hospital, it is usually not due to the tardiness of the
ambulance, but the medical condition of the patient.
Nevertheless we need to come up with measures to examine the quality of our
strategies. Each of these measures corresponds to the result of one simulation, i.e.,
the strategy has processed one stream of n requests.
• Number of patients saved: The total number of patients that were saved

by the EMS system, i.e., they were transported to a hospital before their
"deadline". The deadline is not known to the EMS agent.
• Average Response Time: The average time an ambulance needed to re-

spond to a request. All requests are counted, even if the patient is already
dead when the ambulance arrives.
• Average Time to Hospital: The average time it took for a patient to arrive

at a hospital after the request was made. This only takes saved patients into
account.
• Total distance travelled: The sum of the distances all ambulances travelled

during the simulation. This measure is introduced to acknowledge the fact
that EMS providers often operate with tight budgets and want to operate in
a money and energy saving way.
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Time

In this section we present some timing information about our simulation runs for
the sake of completeness. It is of no real relevance to the quality of the proposed
strategies, as any one request handling operation takes less than 0.1 seconds and is
thus faster than any human operator could be.
On a laptop with a 2.4 GHz Intel i5 processor and 8 GByte of RAM we ran sim-
ulations with 10 ambulances and 500 requests. As a Python interpreter we use
CPython 2.7.

Medium Graph

On a medium sized graph with 26,000 nodes and 55,000 arcs:

without reassignment with reassignment
Greedy 5s 54s

K-Medoid 1m 6s 1m 43s
Voronoi 47s 1m 28s

Larger Graph

On a larger graph with 250,000 nodes and 500,000 arcs:

without reassignment with reassignment
Greedy 50s 7m0 s

K-Medoid 2m 45s 11m 45s
Voronoi 3m 30s 12m 0s

As described in section 5.2, the significantly longer running times on the larger
graph are due to the unoptimized version of Dijkstra’s algorithm. The reassignment
system adds a lot of additional multi-source-Dijkstra calls and thus increases the
running time.
It can be observed that Voronoi is faster thank K-Medoid on the smaller graph,
but slower on the larger graph. This may be due to the fact that the number of
hospitals and ambulance bases is larger, on average, than the number of medoids or
that they are less favourably placed, which has a negative effect on the number of
Dijkstra calls during the assignment of free ambulances. So in this case the running
time does not only depend on the size of the graph.
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6.2 Setup

In each simulation we compare different agents to one another in the exact same
scenario. Since our requests are randomly generated, we create several distinct
request streams for each scenario, run each agent with all of them and take the
average of the results.
Apart from the random requests the scenarios are subject to the following parame-
ters:
• Street graph: The nature of the underlying street graph has great influence

on the scenario.
• Ambulance Bases and Hospitals: The number and distribution of ambu-

lance bases and hospitals within the graph can be adjusted to demonstrate for
example, the influence the hospital distribution has on a specific strategy.
• Ambulances: The number and placement of the ambulances.
• Requests: The randomly generated request stream. As described in section 3.3

we can adjust the expected time between requests and thus simulate more and
less busy environments.
• Time-to-live (TTL): A patients time-to-live is the time after the request, at

which they die and cannot be saved any more. Since we do not differentiate
between different medical conditions, we use the same TTL for every patient
during one simulation. If not otherwise stated we use twice the time an am-
bulance needs from the most remote node to the nearest hospital. That way
we avoid impossible requests and get a number of more flexible requests from
nodes that are close to a hospital and some more time critical ones from nodes
farther away.

6.2.1 Centrality

In chapter 4 we made the claim, that K-Medoid is less sensitive to the locations of
hospitals on the graph. To support this we need to measure the influence that the
hospital location has on the different strategies. Before we can do this, we need to
have a measure by which to quantify this position. The defining factor for the quality
of a hospital position is its closeness to all other nodes. If the average distance to
any other node is low, the hospital is in a good position, since it can be reached
reasonably fast by all nodes. If it is high, the hospital is not optimally placed.
We introduce the two measures centrality and decentrality. Centrality is a concept
stemming from sociology and social network graphs and is used for example to
measure how central the role of a certain person within a social group is. There
are a multitude of different definitions for centrality all applicable to different fields
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Figure 6.1: The color of the markers indicates the decentrality value of the marked
node. Dark green: 1 − 1.25, light green: 1.25 − 1.5, yellow: 1.5 − 1.75, orange:
1.75− 2, red > 2

of research. The one that comes closest to ours is closeness centrality described by
Sabidussi in [Sab66].
With d(v, u) being the length of the shortest path from v to u, we define the centrality
of a node v as:

C(v) =
∑

u∈V d(u,v)

|V |
This gives us an absolute value that allows us to compare the centrality of two nodes.
However, what we really want to measure is how bad a hospital is placed, i.e., how
its position differs from an optimally placed hospital. To be able to do this, we
define the decentrality dc(v) of a node v as:

dc(v) = c(v)
c(vopt)

where vopt is the optimal placement for a hospital on the graph, i.e. the node with
the lowest centrality.
Calculation of the centrality of a node is rather expensive. It requires knowledge of
the shortest path to every other node, i.e., a complete Dijkstra run. For this reason
we estimate vopt using the medoid of a K-Medoids run with k = 1.
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6.2.2 Data Source

We obtain the used geographical information from OpenStreetMap (OSM) [HW08].
Their servers allow for custom areas to be selected and downloaded as an XML-file
with extensive information about the region. Besides the road network there are
also rivers, buildings and even trees present. We strip the downloaded data from
all information except for nodes and ways (the OSM term for all different kinds of
roads) and use it to construct our street graph. The length of arcs connecting two
nodes is calculated using the geographic coordinates of the nodes and obtaining the
straight line heuristic for the two nodes. Since the nodes are typically very close
to each other this suffices for the purposes of our experiments and we do not need
to take the earth’s great circle into account. Since OpenStreetMap data contains
closed off roads such as private parks we reduce the graph to its largest connected
component to make sure each node in the network can be reached from any other
node. To save time when loading the graph file, we save it, represented as JSON,
and make use of the JSON parser from the Python standard library.

6.3 Evaluation of Upper Bounds

In section 2.3 we introduced two different techniques to calculate an upper bound for
a given set of requests, i.e., an approximation of the number of patients an optimal
offline algorithm could save. Both of these bounds are based on the concept of duty
zones and the number of ambulances. The duty zone of a request is the (possibly
empty) time period in which an ambulance has to be busy with this request in order
to save the patient. Requests with a lot of flexibility and thus no duty zone do not
influence the upper bounds. For the evaluation of the upper bounds we used half
the TTL as described in section 6.2 to get less requests with no duty zones.
Figure 6.2 compares both upper bound techniques and shows that they are mainly
influenced by the number of ambulances available. For smaller ambulance fleets we
get a better bound using the method based on independent sets of duty zones and
for bigger fleets the duty zone conflict based approach yields better results. For the
remainder of this section "upper bound" will refer to the combination of both, i.e.,
the lower value for each set of requests.
To see how good our strategies perform compared to the upper bound, we evaluated
K-Medoid with reassignment, the strategy that generally performed the best, against
the upper bound. We used the street graph of Freiburg and simulated request
intervals ranging from 60 to 260 seconds. We repeated this benchmark with two,
four and six ambulances (see Figure 6.3). The evaluation confirms that the upper
bound calculation depends more on the number of ambulances than on the request
density: Although the bound does increase with growing request intervals, it does
so slowly. However, it increases significantly when more ambulances are added.
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Figure 6.2: A comparison of the two upper bound approaches: For this evaluation,
we used a synthetic dataset of 1000 requests with an expected time between
requests of 5 seconds. For lower numbers of ambulances the independent set
approach gives a better upper bound and for higher numbers of ambulances while
the conflict based approach gives a better upper bound.

In conclusion, the K-Medoid with reassignment comes close to the upper bound for
higher request intervals and higher numbers of ambulances, but falls short when the
request stream is very dense and fewer ambulances are available. For the remainder
of the evaluation we focused on comparing the different approaches against one
another, for which we use TTLs as described in section 6.2 and bigger ambulance
fleets. This gives us upper bounds equal to the total number of request, for which
reason we do not list them explicitly.
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Figure 6.3: This figure shows a comparison between the upper bound and the
actual performance of K-Medoid with reassignment. This strategy was chosen,
since it generally performed best. The evaluation was repeated for two ambulances
(top left), four ambulances (top right) and six ambulances (bottom).
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6.4 Strategy Benchmark Results

In this section we present the actual results of the benchmark runs we did. We
used two different modes: One with a fixed set of hospitals and variable expected
time between requests, which we use to observe the change in performances as the
busyness of the system changes. The other mode has a fixed expected time between
requests and a variable decentrality. In this mode we add one hospital with a
certain decentrality for each run and track the influence of hospital centrality on the
strategies.

6.4.1 Fixed set of hospitals and variable time between
requests

In this variant of our benchmarking method, we have a fixed set of hospitals, am-
bulance bases and ambulances for each run and change the expected time between
requests variable.

Scenario 1: Medium sized city

First we benchmarked our strategies in a real world example. We used the street
graph of Freiburg, a city with about 200,000 inhabitants. The hospitals, ambulance
bases and ambulances used in the simulation correspond to those actually present
in Freiburg (see Figure 6.4).

Nodes 25447
Arcs 54944

Hospitals 4
Ambulance Bases 2

Ambulances 5
Requests per run 100

Time between requests range 60s - 180s

Table 6.1: Parameters of scenario 1

We simulated a time between requests (etbr) range from 60s to 180s with 100 patients
per run.
The results (Figure 6.5) of this benchmark show the following:
• Total patients saved: With low etbr values all strategies perform equally bad

and are only able to save 50% or less of the patients. With increasing intervals
K-Medoid has a slight advantage over the other two other approaches, saving
about two to three patients more on average.
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Figure 6.4: This figure shows the graph we use in scenario one: Every 100th node
is represented as a blue dot to give an idea about the graphs area. The red markers
represent the 4 hospitals actually present in Freiburg and the green markers the
two ambulance bases.

• Response time and time to hospital: K-Medoid is also slightly better in
those categories: With increasing request intervals it responds about 30 to 40
seconds faster to requests than the other two approaches.
• Total distance driven: This measure shows the costs involved in the K-

Medoid strategy. The constant redeployment of ambulances results is almost
double the total distance of Greedy with higher request intervals. With lower
etbr values the difference is less significant, because here ambulances have to
abort redistribution moves more often and go to the next patient. Voronoi is
only slightly worse than Greedy, since often only a few ambulances have to
move during a redeployment.

In conclusion, scenario one shows that although K-Medoid is slightly better, Greedy
performs reasonably well, provided a more or less favourable distribution of hospitals
and ambulances. Voronoi does not provide any improvement over Greedy in this
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Figure 6.5: In a medium sized city with many and well distributed hospitals and
ambulances all algorithms perform similarly. K-Medoid has a slight advantage in
response/to-hospital times and patients saved, while performing poorer in total
distance travelled.

scenario.

Scenario 2: A metropolitan area with unbalanced ambulance
distribution

For the second scenario we use the street graph of the Rhine-Neckar metropolitan
region. A dense city cluster with approximately 2.5 million inhabitants. The region
consist of the three cities Ludwigshafen, Mannheim and Heidelberg and surrounding
municipalities.
We again distributed hospitals relatively evenly on the map, but restricted the am-
bulance bases to one half of the map. This is to simulate a scenario where half of
the ambulance fleet is not operational due to fire or flood in a base or not reachable
due to communications outage (see Figure 6.6).
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Nodes 133,416
Arcs 292,338

Hospitals 5
Ambulance Bases 5

Ambulances 10
Requests per run 100

Time between requests range 100s - 220s

Table 6.2: Parameters of scenario 2

The results (Figure 6.7) of this benchmark show the following:
• Total patients saved: This measure shows a clear advantage of the two

redeployment strategies over Greedy. For all tested etbr values K-Medoid is
able to save about five to ten patients more than Greedy. Voronoi ranks in
the middle with two to five patients more than Greedy.
• Response time and time to hospital: The ranking from the first measure

is confirmed in response time and to hospital time. Here K-Medoid performes
best, followed by Voronoi and with a greater gap Greedy. With large request
intervals K-Medoid responds about 2.5 minutes and Voronoi about two minutes
faster than Greedy.
• Total distance driven: As in scenario one, ambulances managed by K-

Medoid travel by far the greatest overall distance. However while the total
distance driven by K-Medoid was almost double the total distance of Greedy
in scenario one, it is only 1.4 times Greedy’s distance in scenario 2. Since
Greedy always sends the ambulances back to the western part of the map
when they are idle, they have to travel very long distances and thus Greedy is
even outperformed by Voronoi.

Scenario two shows the advantages of strategies using redeployment over Greedy
in less optimal environments. While Greedy suffers from the bad distribution of
ambulances the other two approaches are not influenced as much. Especially the
value of Voronoi is demonstrated: It almost reaches the performance of K-Medoid
and is very economical even compared to Greedy.
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Figure 6.6: In this scenario all ambulance bases in the eastern part of the service
area have become non-operational, which has to be compensated by the rest of
the fleet. The blue dots is a subset of the nodes in the graph to demonstrate its
dimensions. Each of the green ambulance bases holds two ambulances.
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Figure 6.7: The results of scenario 2: The least infrastructure dependant strategy,
K-Medoid, performs best except for the economic measure. This also shows how
Voronoi, making use of the hospitals in the eastern area as ambulance positions
is a good compromise between Greedy and K-Medoid.
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Figure 6.8: When provided with 12 ambulances K-Medoid is able to compensate
the increasing decentrality very well. The averages response time does not change
very much until the hospital is really far on the outside of the graph.

Figure 6.9: With fewer ambulances (in this case 6) the compensation K-Medoid
provides is less significant.

6.4.2 Decentrality Based Evaluation

In this section we evaluate the performance of our strategies in relation to centrality
of the objects on the graph. We argued before that the position of objects, i.e.
hospitals and ambulance bases, influences EMS operations.
In this benchmark mode we chose a fix etbr value and for each run add only one
hospital to the graph with a certain decentrality value and position all ambulances
there. We increase the decentrality and observe how it affects the outcome of our
strategies. We use the street graph of Freiburg and chose a request interval of 100s,
as this proved to provide a moderatly busy stream in the previous benchmarks.
As figure Figure 6.8 shows, when given many ambulances, K-Medoid can compen-
sate non optimally placed hospitals rather well. Greedy however is sensitive to
hospital placement and has increasing response times proportional to the hospitals
decentrality. The reason for this is the redistribution K-Medoid does. We did not
benchmark Voronoi, since for one hospital it is equivalent to Greedy.
When the number of Ambulances is decreased, K-Medoid ability to compensate for
hospital decentrality becomes less effective, as Figure 6.9 shows. The compensation
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can only be successful if idle ambulances are available to cover the medoids. With
fewer ambulances the average number of idle ambulances at each point in time
becomes so low that the requests queue grows. In that case ambulances will start to
the next patient, when they just dropped another patient off at the hospital. This
means the behaviour is not different from Greedy’s, and thus the performance is
similar.

6.5 Adding Reassignment

When we added the reassignment strategy described in section 4.5 to all three strate-
gies, we could significantly increase their performance. Especially with high request
frequencies all four measures improve for all three strategies. High request frequen-
cies lead to a lower chance of having a close free ambulance available once a new
request comes in. This forces bad assignments if reassignment is not allowed. These
bad assignments can never be corrected, as without reassignment an ambulance has
to respond to a request once it is assigned to one.
We repeated the simulation of both scenarios from subsection 6.4.1, this time with
additional runs for the reassignment version of the three strategies.

Scenario 1

The results (Figure 6.10 for scenario one show a decrease of average response time
for request intervals of 60s by about one minute and 40 seconds between the non
reassingment version and the reassignment version of the same strategy. This leads
to about 10 to 15 saved patients more for the same interval.

Scenario 2

For the second scenario, the one with the unbeneficial ambulance base positions, the
benefits of reassignment are even higher (see Figure 6.11). Here the reassignment
versions of the strategies are able to save about 30 patients more than the regular
versions, while decreasing the average response time by over 50%.
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Figure 6.10: Scenario 1: The performance of all three strategies improves when
we add reassignment. Especially with high requests frequencies reassignment
increases the number of saved patients, lowers response and to hospital times and
also decreases the total distance driven.
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Figure 6.11: Scenario 2: The results for scenario two with reassignments also show
a performance gain for all three strategies.
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7 Conclusion

In this thesis we described and examined the Ambulance Fleet Management prob-
lem. We gave a definition of the problem and derived a general model as a basis for
the development of solution strategies.
We then presented a formal analysis of the problem, introducing the concept of duty
zones to find upper bounds and proved the One-Hospital-One-Ambulance problem
to be NP-hard.
We designed three distinct strategies to approach the problem. The naive Greedy
approach, the economically costly K-Medoid approach and the Voronoi approach
as a compromise between economical and medical performance. To improve those
strategies, we introduce the concept of reassignment, which allows already assigned
ambulances to be reassigned to different patient, once new requests come in.
We implemented an event-based simulator, which we use to benchmark our approach
in different scenarios. To visualize results and to observe the behaviour of our
strategies we added a graphical user interface (GUI). The implementation of the
simulator and GUI is done in Python, C++ and Javascript. This combination is
used to make use of the flexibility and ease of development of Python and Javascript
and the efficiency of C++.
Our evaluation shows that Greedy performs reasonably well in a well structured EMS
setting, but is unable to efficiently adapt to less favourable environments. K-Medoid
on the other hand is very resistant to bad distributions of ambulances and bases,
but lets ambulances travel much longer distances than Greedy. Voronoi, which was
developed as a compromise approach could be shown to perform equally as good
as Greedy in environments with good infrastructure and better than Greedy in
environments with worse infrastructure while also staying very economical. We also
examined the running time of our implementations and although the simulation does
not scale very well due to the underlying unoptimized shortest path algorithms, all
decision making processes which the strategies use to react to events are fast enough
to be deployed as a real time assistance system for EMS operators.

7.1 Future Work

The main scope of this thesis was to develop and study different approaches to the
ambulance fleet management problem in a general way. Many of the processed sub-
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tasks gave opportunities for further research. In this section we present some of the
ideas we have for optimizations or future work on related topics.

7.1.1 Improving the Performance

The EMS coverage of a country is usually partitioned into small autonomous sections
operating in a defined area, for example a city. Our implementation has been shown
to be fit to simulate an EMS system of such a size. Some special special settings
might need the ability to simulate bigger areas. For example, in Germany the
network for intensive care inter hospital transfer vehicles is coordinated on federal
state level and some medical helicopters even on a national level. To simulate such
large systems, we suggest a reimplementation of the main simulator loop in C++ or
a similarly fast compiled language. Furthermore the Dijkstra implementation could
be replace with one of the available optimizations, such as contraction hierarchies
or arc flags.
To make further improvements to the simulation performance it is possible to make
more use of parallel computing on a machine with more cores or even a computer
cluster.

7.1.2 Incorporation of Secondary Ambulances

Many EMS implementations around the world differentiate between primary or
emergency patients and secondary patients. Requests by secondary patients are
less urgent as they are for example to be transported from one hospital to another
or waiting at a hospital after treatment to be brought back home. In developed
countries, especially in urban areas, these secondary patients are the majority of
patients and EMS providers have adapted to this situation by providing special
secondary ambulances which carry less equipment and are thus cheaper to main-
tain. For this reason most EMS dispatch centers have to coordinate two different
and almost disjunct services. An idea for further research would be to incorporate
secondary ambulances and patients into the strategies we presented to make better
use of the possible synergy effects of these two related services. In times of low
emergency request frequency primary ambulances could be used to help out in inter
hospital transfer and in buys times secondary ambulances could be used as first
responders to emergency patients.

7.1.3 More Detailed Patient and Hospital Modelling

In our model we made the assumption, that any patient can be treated in any
hospital. In reality this is not true. Many medical conditions like strokes, heart
attacks or amputations require special medical equipment and/or specially trained
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personnel to be treated successfully. Most hospitals do not provide the capacity to
treat all medical emergencies. A more detailed model could provide multiple classes
of patients and hospitals and give the opportunity to examine an EMS system in a
more detailed way.

7.1.4 Examine more Special Cases

We aimed to model an EMS environment in a very general way such that it can be
applied to many different geographical areas and EMS infrastructures. This leaves
aside special cases of emergency care such as disaster relief or medical assistance in
large events such as marathons or music festivals. While the general EMS setting
does not allow many predictions about future requests, such special events may offer
more basis for planning ahead. For example at a marathon it could be reasonable
to assume a higher number of patients at the finish area once the main group of
runners is expected to finish. In a disaster case, depending on the type, it is also
reasonable to expect many patients at the site of the disaster.
Such special scenarios provide opportunity to develop a more specialized request
generation and strategies which are capable of incorporating planning ahead based
on scenario specific information.
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