
Question Auto-Completion
using a Typed LSTM
Language Model
MASTER THESIS BY NATALIE PRANGE

Query Auto-Completion

Source: https://i.imgur.com/eObv3jI.jpg

Query Auto-Completion
Goals of Query Auto-Completion (QAC):

• Reduce typing effort

• Prevent spelling errors

• Assist in phrasing a query

A QAC system must therefore present completion predictions …

• … after a minimal amount of keystrokes

• … in real time

• … properly ranked

Motivation
Most QAC research focuses on QAC using query logs

Problems with query log approaches:

• Not available to search engines with a small user base or recently deployed search engines

• Publicly available query logs are outdated

• Queries that have never been asked before can not be predicted

→ Use a language-model-based approach

Tackling the Data Sparsity Problem
A common problem when working with language models:

Receiving an input that did not occur in the training data

Solution: Use a typed language model (LM)

Concrete entities are replaced by abstract types
E.g. “Who played Gandalf in The Lord of the Rings?”

→ “Who played [fictional character] in [film]?”

Entities are later inserted using
• an entity prominence score

• co-occurrence

• word vector similarity

Overview of the System

Building the Typed Language Model
Create an entity-to-type mapping using Wikidata
entities and classes

Challenge: Types must neither be too general nor
too specific

→ Use two types: a more specific type (primary type)
and a more general type (secondary type)
• E.g. Gandalf → fictional character (primary)

→ creative work (secondary)

→ Use a hand-crafted and sorted list of preferred
types

entity

Gandalf

Maiar

Ainur

character from
Tolkien‘s
legendarium

literary character

fictional character

item with given
name property

fictional entity

non-existent entity
creative work

intellectual work
work

Training Data for the Language Model
• Dataset with 11,290,367 questions

• 97% of questions stem from the WikiQuestions dataset:
• Wikipedia sentences with entity mentions transformed into questions

• The remaining 3% of questions stem from the ClueWeb12 corpus
• Questions from English web pages with entity mentions

• Entities are replaced by their types
• E.g. “Who is Gandalf?” → “Who is [fictional character/creative work]?”

Training the LSTM Language Model
LSTM network = Long Short Term Memory network

Architecture:
• Embedding layer of size 100

• Two stacked LSTM layers of size 512

• Softmax layer of size of the vocabulary

→ Given a question prefix, the network outputs a probability distribution over the vocabulary

Training:
• Batch size of 512

• 15 epochs

→ training time: ca. 9 days and 21 hours

Predicting Words and Types
The typed LM should predict the next word or type given a question prefix

E.g. “Who directed the Lord of t”

Standard LM:
• predict words for the current word prefix “t” given the context words C = (“who”, “directed”, “the”,

“Lord”, “of”)

Typed LM:
• predict words for all possible current word prefixes i.e. “t”, “of t”, “Lord of t” …

→ predict “Who directed [film]”

Inserting Entities for Predicted Types
Extract candidate entities that …

• … have the predicted primary type (as primary or secondary type)

• … start with the current word prefix

Define insertion context words 𝑰(𝑪) as set of entities contained in a question prefix and <type>
if question starts with “Which <type>”

• E.g. for the context words C = (“Which”, “country”, “did”, “J.R.R. Tolkien”)

→ I(C) = (“country”, “J.R.R. Tolkien”)

Inserting Entities for Predicted Types
If insertion context words 𝐼 𝐶 = ∅ :

→ Use an entity prominence score to score candidate entities
• Based on an entity’s Wikibase sitelink count

• Counts are normalized to a score between 0 and 1

Else:

→ Use the co-occurrence count between insertion context words and candidate entity
• Co-occurrence is computed over a Wikipedia dump with entity mentions

• Counts are normalized to a score between 0 and 1

Ranking Completion Predictions
Completion predictions are ranked according to a final score

Components of the final score:
• Language model probability

• Insertion score

• Penalty factors

Language model probability
• Incorporate probability to observe given context words

• For a completion prediction 𝑤 and context words 𝐶 = 𝑤1, 𝑤2, … , 𝑤𝑖

𝑝𝑙𝑚 𝑤|𝐶 = Ƹ𝑝 𝐶 ∗ 𝑝(𝑤|𝐶)

Ƹ𝑝 𝐶 : Discounted LM probability to observe the context words 𝐶

𝑝(𝑤|𝐶) : LM probability of the predicted word or type of 𝑤 given the context words 𝐶

Ranking Completion Predictions
Entity insertion score

• Normalized sitelink count or normalized co-occurrence count for entities

Normal word insertion score
• Balance prediction of normal words vs. entities

• If 𝐼 𝐶 = ∅ : Use constant score of 0.01

• Else: compute word vector similarity between non-stopwords in the question prefix and the predicted
normal word

Ranking Completion Predictions
Penalty factors

• Penalize prediction of consecutive entities with penalty factor 𝑔𝑐𝑒

𝑔𝑐𝑒 = ቊ
0.04 𝑖𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑡𝑖𝑡𝑦 𝑎𝑛𝑑 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑤𝑜𝑟𝑑 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑡𝑖𝑡𝑦
1 𝑒𝑙𝑠𝑒

• Penalize prediction of the entity type [human] with penalty factor 𝑔ℎ

𝑔ℎ = ቊ
0.02 𝑖𝑓 𝐿𝑀 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠 𝑡𝑦𝑝𝑒 [ℎ𝑢𝑚𝑎𝑛]
1 𝑒𝑙𝑠𝑒

• Penalize alias-based completion predictions with penalty factor 𝑔𝑎

𝑔𝑎 = ቊ
0.6 𝑖𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑒𝑛𝑡𝑖𝑡𝑦 𝑎𝑙𝑖𝑎𝑠 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑒𝑛𝑡𝑖𝑡𝑦 𝑙𝑎𝑏𝑒𝑙
1 𝑒𝑙𝑠𝑒

Final score:
𝑠 = 𝑝𝑙𝑚 ∗ (𝑠𝑖𝑛𝑠𝑒𝑟𝑡 ∗ 𝑔𝑎)

0.3 ∗ 𝑔𝑐𝑒 ∗ 𝑔ℎ

Adding and Removing Entities
• Append entities when not enough completion predictions were generated using co-occurrence

• Use product of word vector similarity and sitelink count to score candidate entities

• Append completely typed entities

• Remove double completion predictions

Evaluation
Multiple-True-Completions Evaluation

• Evaluate over set of 100 question prefixes along with reasonable completion predictions

• Measure precision at k = 5 (P@5)

𝑃@𝑘 =
|𝑄𝑡𝑟𝑢𝑒 ∩𝑄𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑘 |

𝑘

𝑄𝑡𝑟𝑢𝑒 : set of true completions

𝑄𝑟𝑒𝑠𝑢𝑙𝑡𝑠
𝑘 : set of top k completions predicted by the system

• Measure average precision (AP)

𝐴𝑃 =
σ𝑖=1
𝑛 𝑃@𝑟𝑖

𝑛

𝑟1, … , 𝑟𝑛 : list of positions at which predictions from 𝑄𝑡𝑟𝑢𝑒 appear in 𝑄𝑟𝑒𝑠𝑢𝑙𝑡𝑠

Evaluation
• Measure normalized discounted cumulative gain at k = 5 (nDCG@5)

Discounted cumulative gain at k:

DCG@k = 𝑟𝑒𝑙1 + σ𝑖=2
𝑘 𝑟𝑒𝑙𝑖

𝑙𝑜𝑔2(𝑖+1)

𝑟𝑒𝑙𝑖: relevance score for the completion predicted at rank 𝑖

Normalized discounted cumulative gain at k:

nDCG@k =
𝐷𝐶𝐺@𝑘

𝐼𝐷𝐶𝐺@𝑘

𝐼𝐷𝐶𝐺@𝑘 : ideal discounted cumulative gain

Evaluation
Single-True-Completion Evaluation

• Base test set: 10,000 random questions
• 1ICW test set: 10,000 questions with one insertion context word
• >1ICW test set: 10,000 questions with more than one insertion context word

• Measure mean reciprocal rank (MRR)

𝑅𝑅 =
1

𝑟
𝑟: rank of the correct completion prediction
Compute RR for each word in each question after its 1st letter has been typed
Report the mean over all computed RR scores

• Measure required user interaction (RUI)

𝑅𝑈𝐼 =
𝑢𝑠𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑔𝑖𝑣𝑒𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑢𝑠𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Typing a letter and selecting a completion prediction each count as one interaction

Evaluated Versions
Three main versions that differ in the entity insertion method for 𝐼 𝐶 ≠ ∅

• sitelinks: Entity insertion based on sitelink count (Baseline)

• sitelinks + w2v: Entity insertion based on product of sitelink count and word vector similarity

• co-occurrence: Entity insertion based on co-occurrence

Additional versions:
• co-occurrence w/o 𝑔𝑐𝑒: no penalty for consecutive entities

• co-occurrence w/o 𝑔ℎ: no penalty for prediction of type [human]

• co-occurrence w/o w2v fill-up: no filling up of entities using word vector similarity

Multiple-True-Completions Evaluation
Results

Single-True-Completion Evaluation
Results

Single-True-Completion Evaluation
Results

On the >1ICW test set after typing the first letter of the entity label

Future Work
• Experiment with different methods for language modeling

• Make system robust against spelling errors

• Create a larger ground truth for the evaluation

• Enhance completion predictions with contextual information

