Question Auto-Completion
using a Typed LSTM
Language Model

MASTER THESIS BY NATALIE PRANGE

Query Auto-Completion

P
’,“./ ¥ \.
o ”4" tx] e
,l.‘.. i) ;

Deutschland

wo kdnnen m

wo kdnnen mutationen auftreten

wo kdnnen medizinische fachangestellte arbeiten

wo kénnen moéwen in krefeld kostenlos karussell fahren
wo kdénnen motten herkommen

Google-Suche Auf gut Gliick!
Weitere Informationen

Unangemessene Vervolistidndigungen melden

Source: https://i.imgur.com/eObv3jl.jpg

Query Auto-Completion

Goals of Query Auto-Completion (QAC):

* Reduce typing effort
* Prevent spelling errors

* Assist in phrasing a query

A QAC system must therefore present completion predictions ...
* ... after a minimal amount of keystrokes
* ...inreal time

* ... properly ranked

Motivation

Most QAC research focuses on QAC using query logs

Problems with query log approaches:
* Not available to search engines with a small user base or recently deployed search engines
* Publicly available query logs are outdated

* Queries that have never been asked before can not be predicted

— Use a language-model-based approach

Tackling the Data Sparsity Problem

A common problem when working with language models:

Receiving an input that did not occur in the training data
Solution: Use a typed language model (LM)

Concrete entities are replaced by abstract types
E.g. “Who played Gandalf in The Lord of the Rings?”

- “Who played [fictional character] in [film]?”

Entities are later inserted using
* an entity prominence score
* co-occurrence
* word vector similarity

Overview of the System

Pre-Computed Components

Typed Language Entity Co-Occurrence Word2Vec
Model Prominence Score Counts Model

Question Pre-Process Predict Words Add & Remove Completion
Prefix User Input &Types Entities Predictions

Question Auto-Completion

Building the Typed Language Model

Create an entity-to-type mapping using Wikidata
entities and classes intellectual work

work

Challenge: Types must neither be too general nor

.ge entity
too specific

creative work

non-existent entit

.
““
.

— Use two types: a more specific type (primary type)
and a more general type (secondary type) fictional entity

* E.g. Gandalf => fictional character (primary)

item with given
name property
character from

Tolkien’s
egendarium

. fictional character
—> creative work (secondary)

—> Use a hand-crafted and sorted list of preferred literary character
types

Ainur

Maiar

Gandalf

Training Data for the Language Model

* Dataset with 11,290,367 questions

* 97% of questions stem from the WikiQuestions dataset:
* Wikipedia sentences with entity mentions transformed into questions

* The remaining 3% of questions stem from the ClueWeb12 corpus
* Questions from English web pages with entity mentions

* Entities are replaced by their types
* E.g. “Who is Gandalf?” = “Who is [fictional character/creative work]?”

Training the LSTM Language Model

LSTM network = Long Short Term Memory network

Architecture:
* Embedding layer of size 100
* Two stacked LSTM layers of size 512
* Softmax layer of size of the vocabulary
— Given a question prefix, the network outputs a probability distribution over the vocabulary

Training:
* Batch size of 512
* 15 epochs
- training time: ca. 9 days and 21 hours

Predicting Words and Types

The typed LM should predict the next word or type given a question prefix

E.g. “Who directed the Lord of t”

Standard LM:

 predict words for the current word prefix “t” given the context words C = (“who”, “directed”, “the”,
IILO’.dII’ Ilofl)

Typed LM:
* predict words for all possible current word prefixes i.e. “t”, “of t”, “Lord of t” ...

— predict “Who directed [film]”

Inserting Entities for Predicted Types

Extract candidate entities that ...
* ... have the predicted primary type (as primary or secondary type)

* ... start with the current word prefix

Define insertion context words I(C) as set of entities contained in a question prefix and <type>
if question starts with “Which <type>”

* E.g. for the context words C = (“Which”, “country”, “did”, “J.R.R. Tolkien”)

= 1(C) = (“country”, “J.R.R. Tolkien”)

Inserting Entities for Predicted Types

If insertion context words I(C) = @ :

— Use an entity prominence score to score candidate entities
* Based on an entity’s Wikibase sitelink count

* Counts are normalized to a score between 0 and 1
Else:

— Use the co-occurrence count between insertion context words and candidate entity
* Co-occurrence is computed over a Wikipedia dump with entity mentions
* Counts are normalized to a score between O and 1

Ranking Completion Predictions

Completion predictions are ranked according to a final score

Components of the final score:
* Language model probability

* |Insertion score
* Penalty factors

Language model probability
* Incorporate probability to observe given context words

* For a completion prediction w and context words C = (w;, Wy, ..., W;)

Pimn(W[C) = p(C) * p(W|C)
p(C) : Discounted LM probability to observe the context words C
p(w|C) : LM probability of the predicted word or type of w given the context words C

Ranking Completion Predictions

Entity insertion score
* Normalized sitelink count or normalized co-occurrence count for entities

Normal word insertion score
* Balance prediction of normal words vs. entities
* If I(C) = @ : Use constant score of 0.01

* Else: compute word vector similarity between non-stopwords in the question prefix and the predicted
normal word

Ranking Completion Predictions

Penalty factors

* Penalize prediction of consecutive entities with penalty factor g,

_)0.04 if completion prediction is an entity and previous word is an entity
“ |1 else
* Penalize prediction of the entity type [human] with penalty factor g,

_)0.02 if LM predicts type [human]
n 1 else

* Penalize alias-based completion predictions with penalty factor g,

gy = {0.6 If completion prediction is based on entity alias instead of entity label
“ 1 else

Final score:
S = k (S- *k)0'3 k X
Pim insert * Ja ece * In

Adding and Removing Entities

* Append entities when not enough completion predictions were generated using co-occurrence
* Use product of word vector similarity and sitelink count to score candidate entities

* Append completely typed entities

* Remove double completion predictions

Evaluation

Multiple-True-Completions Evaluation
* Evaluate over set of 100 question prefixes along with reasonable completion predictions

* Measure precisionatk =5 (P@5)

_ |Qtrue r\Q;fesultsl
P@k = .

Q¢rye - set of true completions

Q,’fesults : set of top k completions predicted by the system

* Measure average precision (AP)
?:1 P@Tl
n
7, ..., Iy ¢ list of positions at which predictions from Q¢ appear in Qesuits

AP =

Evaluation

* Measure normalized discounted cumulative gainatk =5 (nDCG@5)

Discounted cumulative gain at k:
DCG@k = rel, +).

k rel;
1=2 10g,(i+1)

rel;: relevance score for the completion predicted at rank i

Normalized discounted cumulative gain at k:

_ DCG@k
nDCG@k = IDCG@k

IDCG@k : ideal discounted cumulative gain

Evaluation

Single-True-Completion Evaluation
* Base test set: 10,000 random questions

* 1ICW test set: 10,000 guestions with one insertion context word
* >1ICW test set: 10,000 questions with more than one insertion context word

* Measure mean reciprocal rank (MRR)
1
RR - ;
r: rank of the correct completion prediction

Compute RR for each word in each question after its 15t letter has been typed
Report the mean over all computed RR scores

* Measure required user interaction (RUI)
RUI = # user interactions needed given completion predictions
" #user interactions needed without completion predictions

Typing a letter and selecting a completion prediction each count as one interaction

Evaluated Versions

Three main versions that differ in the entity insertion method for 1(C) # @
* sitelinks: Entity insertion based on sitelink count (Baseline)

* sitelinks + w2v: Entity insertion based on product of sitelink count and word vector similarity
* co-occurrence: Entity insertion based on co-occurrence

Additional versions:
* co-occurrence w/o g..: no penalty for consecutive entities
* co-occurrence w/o gp: no penalty for prediction of type [human]
 co-occurrence w/o w2y fill-up: no filling up of entities using word vector similarity

Multiple-True-Completions Evaluation

Results

P@5 AP | nDCG@5 | Time
sitelinks 0.286 | 0.375 0.422 | 0.64 s
sitelinks + w2v 0.322 | 0.464 0.524 | 0.77 s
CO-OCCUITENCEe W/0 Jee 0.338 | 0.481 0.551 | 0.70 s
co-occurrence w/o gp 0.316 | 0.473 0.543 | 0.70 s
co-occurrence w/o w2v fill-up || 0.340 | 0.489 0.564 | 0.65 s
CO-occurrence 0.344 | 0.500 0.572 | 0.69 s

Single-True-Completion Evaluation

Results
Base Test Set | 1ICW Test Set | >1ICW Test Set
MRR RUI | MRR RUI | MRR RUI
sitelinks 0.532 | 0.542 | 0.537 0.538 | 0.529 0.525

sitelinks + w2v | 0.533 | 0.541 | 0.540 0.535 | 0.533 0.523
co-occurrence 0.531 | 0.538 | 0.537 | 0.529 | 0.531 0.510

Single-True-Completion Evaluation

Results
Correctly predicted entities for I(C') # ()
entity € 1(C) | <type>€ I(C)
sitelinks 468 200
sitelinks + w2v 718 195
cOo-occurrence 1062 280

On the >1/CW test set after typing the first letter of the entity label

Future Work

Experiment with different methods for language modeling

Make system robust against spelling errors

Create a larger ground truth for the evaluation

Enhance completion predictions with contextual information

