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Abstract

Modern buildings are equipped with complex heating, cooling and ventilation sys-
tems. In the group "Building Performance Optimization" at Fraunhofer ISE, various
methods are investigated for detecting faulty or suboptimal operation of such systems
(e.g. simultaneous heating and cooling). These methods require data of a multitude
of sensors for input (like temperature, pressure, current etc.). For this, a manual
labelling of the sensor is required, which is excessively time consuming. The labelling
convention called data point naming convention marks the origin and type of the
sensor. Every sensor has recorded time series data as well as a small description text
describing the nature of the sensor. In this thesis, we create a supervised machine
learning system that utilizes the time series and description text data and automates
the labelling of the data point name of the sensor. The proposed system is able to
predict with an accuracy of 88% with 218 labels in the dataset, outperforming the
baseline score of 76% which only used 81 labels.
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1. Introduction

In today’s world, when it comes to building construction, it is simply no longer enough
for our homes and offices to just provide shelter and keep us warm. The evolution
of technology has enabled us to not only provide all the services that occupants
need but also make the buildings more efficient by minimizing the cost and reducing
the impact of buildings on the environment. To achieve this, buildings are now
equipped with high technology, complex equipment and sophisticated controls. The
human experience in these smart buildings has been improved by the incorporation of
automated systems for cooling, heating and ventilation. However, in order for these
systems to operate, the buildings need to have different kinds of sensors installed,
which could monitor different quantities like temperature, pressure, control signal,
solar radiation, volume, heating energy, cooling energy, etc.

Even for sophisticated system configurations only correct operation of the building
can ensure the demanded energy efficiency and hence, in order to optimize the per-
formance of the buildings, there is a constant need to monitor the sensors installed in
these buildings. The monitoring of the sensors does not only improve the performance
of the building but, in case of malfunctions, also helps in the detection of faults and
anomalies to keep the system running.

1.1. Motivation

In the group "Building Performance Optimization" at Fraunhofer ISE, various meth-
ods are investigated for detecting faulty or suboptimal states during operation of
building automation systems. The buildings, that are investigated by the group, are
equipped with a variety of sensors that measure different quantities of the build-
ings like temperature, pressure, current etc. However, the naming convention of
these sensors varies from one building to another and is usually not machine read-
able. Furthermore, the collaboration of the group at collaborates with different
partners also results in a non-uniform naming convention across the buildings. For
instance, two temperature sensors of the same behaviour are labelled differently
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across various buildings (Example: 033EFA8E-7AD1-4713-A0F1-178CAAE1C2ED
and VFZH.HZ01.M172000004). Having different naming schemes make it unfeasi-
ble to analyze the measurement values of the sensors in these different buildings.
Therefore, in order to make the measurement data usable for the analysis, a common
data point naming convention is applied to each sensor, which marks the origin and
type of it. The application of a common naming convention makes the analysis of
the sensors easier and comprehensible across all buildings. However, applying this
data point naming convention has to be performed manually, which is excessively
time-consuming.

1.2. Problem Statement

In the data point naming convention for the sensor, discussed in the previous section,
each label is comprised of a set of different metadata categories. These metadata
categories describe the characteristics and origin of the sensor. For example, under
the data point naming convention, an original point name label of a certain sensor
can be BuildingX ZoneY AHU MTR.EL MEA I. This label is comprised of a
set of individual class labels of different metadata categories described in Table 1.

Every sensor, like the one mentioned above, has a collection of readings, recorded
at different points in time which we call the Time Series Data. The time series
data is sensor specific and hence, the data of each type of sensor shows certain
patterns. Figure 1 shows an example of a time series data for a Temperature sensor.
Apart from this, each sensor is also described by a textual information, which we a
call the Description Text of the sensor. For example, the sensor, whose label is
shown in Table 1 has the description text “ELZ UV-ISP04 RLT 2 + RLT 4 Strom
L2” describing the type of sensor to be Current (I). The aim of this thesis is to
create a system that utilizes the Time Series Data and Description Text of the sensor
and automate the application of data point naming convention for the sensor using
different machine learning techniques. The concrete problem formulation would be:

Develop a methodology for automatically mapping data sources to a hierar-
chically structured point name label based on raw time series data together
with available texts in a supervised learning manner.

2



Metadata
Categories Labels

Building BuildingX
Zone ZoneY
System AHU
Subsystem1 -
Subsystem2 MTR.EL
Medium -
Position -
Kind MEA
Point I

Table 1.: Individual metadata categories for the original point name label
BuildingX ZoneY AHU MTR.EL MEA I

1.3. Contribution to the field of Building Performance
Optimization

In this work, we first generalize the original point name label of the sensor by removing
the building and zone part from the label. Later, instead of using this generalized
point name label as the target for classification, we train machine learning models to
classify the class labels of each metadata category that make up the final point name
label. To achieve this, we use various hand-crafted features, that were inspired from
the work of [5], to develop a model, that could classify time series signals, of sensors,
obtained from 13 different buildings across Germany, into their respective metadata
category class labels. We also review the performance of artificial neural networks
(ANN) like LSTM to classify time series signals using raw data points. Similarly, we
evaluate different Deep Learning Architectures to classify the same set of sensors
using their description texts, into their respective metadata category class labels
again.
The predictions of the two types of models, obtained on these two different types

of inputs, are combined using a Meta-Classification Scheme. Different schemes, like
Stacking and Voting are evaluated for this purpose. The final point name label
is then created using the prediction of individual meta-classification models. The
performance of the system is examined by conducting Intra-Building evaluation. The
results are compared with the results of previous thesis [5] performed at Fraunhofer
ISE, to tackle a similar problem.

Finally, we tested the proposed system for its usefulness by creating a scenario where

3



Figure 1.: Time series data of a single temperature sensor

sensors were categorized into different sets, each set containing sensors belonging to
one building, and the and the system was tested out on each set building while it
was trained on the rest of the sets. We called it the Inter-Building evaluation.

1.4. Structure of the thesis

The thesis is structured in the following way. The previous work by researchers on
time series classification for statistical models and neural networks and classification
of natural language is discussed in Chapter 2. The background of different machine
learning models and concepts that have been used in this thesis are mentioned in
Chapter 3. Chapter 4 and 5 discuss about the Data point naming convention, the
extraction of features on the dataset and the pre-processing steps that have been
taken to obtain quality data for the experiments. Chapter 6 discusses the approach
that we took to solve our problem. Chapter 7 discusses the results of different models
that were tried for different layers of the system architecture. Finally, the conclusion
is discussed along with future steps in Chapter 8.
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2. Related Work

Time series classification has always been a challenging problem in data mining. Time
series are encountered in many real-world applications such as signature verification,
person identification based on keystroke dynamics, detection of cardiovascular dis-
eases and brain disorders (e.g. early stage of Alzheimer disease or dementia). The
classification has been used in audio classification in the past and the performances
were evaluated on Support Vector Machines (SVMs) and K-Nearest Neighbor [6]. It
has also been used to classify the brain’s normal and epilepsy activity with intracra-
nial electroencephalogram (EEG) signals using Support Vector machines [7]. Deep
Learning methods have also been used with great success in the area of Time Series
Classification. H. Ismail Fawaz and G.Forestier [8] compared different deep learning
frameworks for Time Series Classification by training 8,730 deep learning models on
97 time series datasets. [9] shows the advantage of using Deep CNN and Long short
term memory(LSTM) recurrent networks in a single framework for carrying out the
activity recognition task using time series data.

Similarly, the huge success of Deep Neural Networks has motivated the researchers
to propose several Deep Neural Network (DNN) Architectures to solve tasks of Natural
Language Processing, such as machine translation, learning word embeddings and
document classification [10]. [11] proposes an architecture, that uses a combination
of Recurrent and Convolution Layers with a pre-trained word embedding, for text
classification. [12] describes the advantages of using very deep convolutional neural
networks for the text classification, using very small convolutions and pooling oper-
ations and observes that the architecture beats the state of the art on many text
classification tasks.

There is very few peer work related to this thesis with regard to building automation
and sensor classification based on time series as well as natural language features. The
thesis performed by Soundarya Palanisamy [5] uses time series data from different
sensors to predict the final point name label of the sensors but uses limited number
of labels. The proposed method in [13] was to deduce the metadata using trained
statistical models like Random forest, KNN, Decision Tree, Naive Bayes, Radial Basis
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Function kernels (RBF SVM), Logistic Regression, AdaBoost and Linear Discriminant
Analysis (LDA). This thesis work differentiates in many aspects with [13] since it did
not use the data from many buildings. This is significant because of the heterogeneity
in the building infrastructure. Furthermore, it performs the classification using only
Time Series Data of the sensors as the input. In 2015, Hong et al., [14] proposed a
classification method which classified the different kinds of sensors streams in two
buildings. They also described a method to find misclassified sensors. In [15], a similar
problem that we have to solve in this thesis is chosen, yet the described approach
uses a structured text source instead of the semi or unstructured text source. In this
thesis, we not only classify various sensors to their general types using a well-suited
architecture, which utilizes the information from the Time Series Data as well as the
Description Text of the sensor but also apply different levels of detailed point names
to the sensor.

6



3. Background

This chapter provides a brief background of the technologies and terminologies that
we have used in this thesis. These explanations will aid the reader of this report in
having a better understanding of the approach that we have adopted to solve our
problem.

3.1. Machine Learning

Machine learning is an application of Artificial Intelligence that offers systems with
the capacity to learn and enhance their performance automatically from experience.
Machine learning focuses on computer programs that can access information and use
it to learn on their own from a set of provided training data and make it generalized
when used with unseen data. Nowadays, machine learning methods have been widely
adapted to be used in various applications. Search engines like Google or Bing use
these algorithms to learn to rank their webpages [16]. Similarly, Facebook uses it to
personalize news feed of each of its members [17]. Machine learning algorithms are
often categorized as supervised, unsupervised and reinforced.

Supervised Learning In this method, algorithms use the knowledge from the past
and apply it to new data to predict the output. The input data provided to the
algorithm contains labelled outputs and the model has to learn the patterns in the
dataset by computing and adjusting its error for the expected output so that it can
apply its learned knowledge on an unseen dataset and correctly predict the target.
After a sufficient amount of training, the system is able to provide targets for any
new input. An example of this problem is to analyze the sentiments of the people
on the reviews of the movies. The model can be trained with a set of positive and
negative reviews and then can be tested on a completely new review to predict either
the sentiment is positive or negative.

Unsupervised Learning In this method, models are trained on the data that is
neither classified nor labelled. The learning is performed by the algorithm on its own
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by discovering and adopting, based on the patterns on the input dataset with the
goal of discovering groups of similar patterns categorize them. An example of this
method is the method used by Google News which groups new stories on the web
and puts them into collective news stories.

Reinforcement Learning In this method, the agent learns to take suitable action to
maximize reward in a particular situation. The agent tries to learn from its experience,
that is, the outcome of its actions and decide its move in future from the information
gained. The actions correspond to a reward or a punishment for the agent which
makes it possible to achieve its goal by discovering the actions that result in the
highest expected reward. A use of this method is to determine the best move to make
in a game where, rather than specifying a set of hard-coded rules, the agent plays
the game and learns from its experience to become better.
For the thesis, we use supervised machine learning methods only. We use some

feature-based models as well as deep learning models which will be discussed in
following sections.

3.2. Feature based models

3.2.1. Ensemble Learning

In machine learning, ensemble learning is a methodology in which multiple learners
are trained to solve the same problem. These learners are called Base Learners. The
ability, of ensemble learning methods, to generalize is much stronger when compared
to the base learners. The ensemble methods are able to boost the performance of
base learners by combining their predictions using different algorithms, thus reducing
the variance. The ensembles are created by first creating a number of base learners on
the input dataset and then combining their predictions using different combination
schemes. The idea is that a diverse group of models are likely to make better decisions
than a single one. There are many combination schemes that can be used in ensemble
learning, however, for the thesis point of view, we will only discuss, Bagging, Stacking
and Voting.

3.2.1.1. Bagging

Bagging is one of the famous ensemble learning techniques. It stands for Bootstrap
Aggregating. It was first introduced in [18] by Breiman. The first step of the
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Figure 2.: The bagging procedure where a separate model is trained for each subset
of Bootstrapped Data and final prediction is made by combining the
predictions of individual models [1]

process involves the creation of subsets of observations from the original dataset,
with replacement, also known as Bootstrapping. Once the subsets are obtained, an
algorithm (base classifier) is selected to train on each of these subsets, parallel and
independent of each other. The final predictions are determined by combining the
predictions from all these models. Figure 2 shows explains the procedure. The most
commonly used bagging algorithms are Bagging-Meta Classifier and Random Forest.

Bagging Meta Estimator Bagging meta-estimator can be used for both classification
and regression problems. It follows the typical bagging technique, described above.
However, the subsets of data include all the features. Also, the base learning algorithm
and the number of base estimators are specified by the user.

Random Forest Random Forest is the most popular machine learning algorithm
which uses the Bagging Technique and Decision Trees as its Base Classifier. Also
referred to as forest of trees, random forest model uses the prediction from a number
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of these trees to provide a single prediction.
Just like bagging, the algorithm starts by initially creating random subsets of the

data from the original dataset, also known as the Bootstrapped Data. A decision tree
model is fitted on each of these subsets, resulting in many decision trees. The tree
is a binary decision tree which is constructed on the randomly chosen features from
the Bootstrapped Data. The tree is split using a Top-Down Greedy approach called
Recursive Binary Splitting. The construction starts from the top and each node is
split recursively to obtain the next two branches in the tree. All input variables and
all possible split points are evaluated and chosen in a greedy manner based on the
cost function and at every split, a new feature is selected such that it has the lowest
cost for that split.

Gini Index is used as the cost function for the decision tree split. Often referred to
as ’gini impurity’, the metric is a measure of how often a randomly chosen element
from the set would be incorrectly labelled if it was randomly labelled according to
the distribution of labels in the subset [19]. The value ranges between 0 and 1 with 0
indicating that all cases in the node fall into a single target category. All the trees
grow until stopping criteria of a specific number of data points in a leaf node are met.
This helps to prevent overfitting the model.

All the trees are grown to the largest extent possible during which random forest
optimizes the parameters at every node of the respective trees. Every tree is then a
classifier where the vote of each tree is considered and the majority vote in the forest
is considered as the predicted label for the data point.

3.2.1.2. Stacking

Stacking is a way to ensemble multiple classification or regression model. The idea
of the technique is to improve the reliability of the overall prediction by exploring a
space of different models for the same problem [20]. Different models can be used
that are capable of learning some part but not the complete problem. Therefore
multiple models can be trained on the data to create an intermediate prediction and
then a new model is trained on these intermediate predictions which is referred to
as the Stacked Model. The procedure for creating the Stacked Model involves the
following steps:

1. Specify a base learning algorithm

2. Split the training data into k different folds. Perform k-fold cross-validation on
each of these folds and collect the cross-validated predicted values for the base
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learning algorithm. The idea is to obtain predictions by a version of the base
model that is not trained on those samples.

3. Concatenate the predictions obtained from each fold, as shown below, such
that the concatenation of all the prediction make up the whole training dataset.
The prediction p11 describes the prediction obtained on fold 1 of the training
dataset from base model 1. 

p11

p12

.

.

.

p1k


4. Repeat step 1 to step 4 for each base learning algorithm. Combine the predictions

from all the J base models as shown in the matrix below



p11 p21 ...... pJ1

p12 p22 ...... pJ2

. . ...... .

. . ...... .

. . ...... .

p1k p2k ...... pJk


5. Use the matrix shown in step 4 to train the Stacked Model algorithm.

6. To obtain the predictions on the test set, train each base learner on whole
training dataset. Use it to obtain predictions on the test set.

7. Feed the predictions obtained from the test set to the Stacked Model to obtain
final predictions

Stacked Model helps in combining predictions and improving the overall perfor-
mance. For the thesis point of view, Stacking is used to combine the predictions
obtained from models trained on the time data and description text data of the
sensors.
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3.2.1.3. Voting

In general, voting can be described as a way of expressing decisions from a classifier.
The decision, for classifying a sample in to a particular target can be expressed in
the form of a prediction by a classifier which indicates the preference of the machine
learning model. A voting method can then be used to integrate the votes of multiple
classifiers in to one final decision according to two different strategies.

Hard voting In this case, the class that gets predicted most number of times by the
classifiers Cj is chosen as the final label ŷ

ŷ = mode {C1(x), C2(x), . . . , Cm(x)} (3.1)

This approach works well when there are odd number of base classifiers. However,
it doesn’t take classifier’s certainty into account while making the prediction.

Soft Voting In soft voting, the class labels are predicted based on the predicted
probabilities p of the classifier. The probabilities for every class are averaged out and
the class with the highest probability is selected as the final class label ŷ

ỹ = argmax
1

NClassifiers

∑
Classifier

(p1, p2, . . . , pn) (3.2)

This approach works with any number of classifiers and uses classifier’s confidence
while making final prediction.

3.2.2. Logistic Regression

Logistic Regression can be defined as a special case of a generalized linear regression
model and is based on the concept of probability. The linear regression technique
uses a best fit straight line to set up a relationship between the dependent variable
(Y) and one or more independent variables (X). The dependent variables need to
be continuous while the independent variables can either be continuous or discrete.
However, since this linear model outputs a numerical value, is not appropriate to
quantify the qualitative response. The logistic regression uses a similar equation
as linear regression but outputs the probability for the input data point of being a
specific class. The equation below defines logistic regression.

y =
e(β0+β1X)

1 + e(β0+β1X)
(3.3)
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where y is the predicted output, β0 is the bias or intercept term and β1 is the
coefficient for the single input value x.

The input data β coefficients are learned from the training data using an algorithm
called Maximum Likelihood Estimation. In the end, the best coefficients would result
in a model that will predict a number close to 1 for the default class and a number
close to 0 for the other class. Hence, the values for the coefficients are searched in a
way that would minimize the error in the model predictions to those in the data.

3.3. Deep Learning Models

In the feature-based models, that we have seen in the previous sections, one of
the major issues is to select an appropriate feature space from the input data. In
classification tasks, if the classes are not separable by a hyperplane, one can map
the features into an intermediate feature space where the classes become linearly
separable. However, mapping the features is an expensive procedure since it requires
high computational time and expert knowledge [21]. This is where Deep Learning is
helpful.
Deep learning is part of a broader family of machine learning. Deep learning

networks are neural networks containing multiple layers and have the ability to learn
to extract adequate features for a specified problem [22]. Yoshua Bengio, one of the
pioneers of deep learning, describes in his paper [23], the ability of deep learning
models to efficiently learn good representations of data using feature learning.

"Deep learning algorithms seek to exploit the unknown structure in the
input distribution in order to discover good representations, often at multi-
ple levels, with higher-level learned features defined in terms of lower-level
features."

For large datasets, parallel computation on the GPU has enabled efficient training
of the deep learning networks. Although there are many types of deep learning
algorithms. However, for this thesis, we will limit our discussion to Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN).

3.3.1. Convolutional Neural Networks

A feedforward network, in general, is trained on labelled data until it minimizes
the error when guessing the category to make accurate classification. Convolutional
Neural Networks (ConvNets or CNNs) fall in the category of feedforward deep neural
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Figure 3.: LeNet-5 [2] architecture describing an example of Convolutional Neural
Network

networks and have been found to be very effective in the areas of image recognition
and classification. However, recently, ConvNets have been found to be very effective
in several Natural Language Processing tasks as well [24].

ConvNets are similar to the connectivity pattern of neurons in the human brain
and was inspired by the organization of Visual Cortex [25]. They treat each input as
images which provides them with an advantage of constraining the architecture in
a more sensible way. A typical ConvNet architecture usually comprises of multiple
convolution, pooling and fully connected layers stacked together. Figure 3 shows a
famous LeNet-5 convolutional neural network architecture proposed by LeCun et al.
[2]. All the components that make up a ConvNet are introduced below.

Convolution Layer The convolution layer extracts features from the input image.
An image is a matrix of pixel values. The layer divides the image into small squares
which helps to preserve the spatial relationships between pixels. Consider a 5 x 5
image whose pixel values are only 0 and 1 shown in Figure 4a. Normally, even for
grayscale images, pixel values range from 0 to 255. The figure is a special case which
is created to better understand the concept of convolution. Consider another image
shown in Figure 4b.
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(a) A 5x5 Image Matrix (b) A 3x3 filter

(c) Obtaining convolution feature through matrix multiplication and summing the toal

Figure 4.: The process of obtaining Feature Maps through Convolution Layer

The image matrix in Figure 4a is multiplied by the matrix in Figure 4b, also known
as filter, to obtain the matrix which we call Convolved feature. The procedure is
shown in Figure 4. The filter slides over the original image, 1 pixel at a time (also
called ’stride’) and for every position, an element-wise multiplication between the
matrices is performed. The final outputs are then added to obtain the final integer
output which forms a single element of the matrix shown in C. The value of the filter,
shown in Figure 4b, is learned by the network on its own during the training process
through Backpropagation. The size of the Convolved feature is controlled by the
following two parameters that are decided before the convolution step is performed.

1. Depth: Depth indicates the number of filters that are used. High depth would
correspond to a higher number of feature maps.

2. Stride: This can be defined as the number of pixels, a filter slides at each step,
over the original image to compute the feature map.
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Figure 5.: An example of max pooling [3]

Pooling Layer The feature maps obtained from the Convolution Layer are high in
dimension. Pooling layer reduces the dimensionality of each feature map retaining
the most important information. A pooling window is defined of a specific size, for
example, 2x2, which slides across the feature map with a fixed stride and uses a
computing method, such that, no information is lost from the feature map. The most
common methods are by computing the mean value, max value and L2-norm of a
specific size. Figure 5 shows an example of Max Pooling. The window of size 2x2
slides by 2 cells (also called ‘stride’) in every step and the maximum value in each
region is chosen to make up the reduced matrix.

Fully Connected Layer The output from the pooling layer can be provided to the
Fully Connected Layer. The fully connected layer is a Multi-Layer Perceptron in
which every neuron in the previous layer is connected to every neuron in the next layer.
It uses a Softmax Activation function in its output layer. The features extracted
from the convolution and pooling layer are utilized by the Fully Connected Layer to
make the final classification.

3.3.2. Recurrent Neural Networks

The feed-forward networks, like Convolutional Neural Networks, described in the
previous section, have a limitation of remembering the previous predictions and do

16



Figure 6.: RNN contain loop. The loop can be unrolled to go back to the states in
time [4].

not make future predictions considering the predictions they had already made. For
example, if CNN is trained to classify images of animals, the first photograph, it is
exposed to, will not affect how it classifies the second image. Seeing the image of
a dog would not lead the network to perceive a cat next. Therefore, while making
predictions, feedforward networks only consider the current example it is exposed to.
In reality, human brains do not work in the same way. Our future decisions involve
the knowledge of past events as well. Recurrent Networks (RNN) solve this problem.
While making prediction, they not only take the current input into account but also
what has been processed previously in time. The network structure includes a loop,
which allows the information to persist and pass from one step of the network to the
next. Figure 6 shows an example of such a network. As shown in the figure, the
network has a chain like structure and has two sources of input, the present and the
recent past. The decision which is made at time t will be affected by the decision
they have already made in the previous time step, t-1. This concept is also illustrated
in the equation 3.4 which defines that the current hidden state ht is a function f of
the previous hidden state ht−1 and the current input xt, having θ as the parameter
of the function f .

ht = f (ht−1, xt; θ) (3.4)

This makes them ideal to use for problems involving sequences and list. These
networks are successfully used in problems like language modelling and speech
recognition. The weights of the layers in RNN are learned through an extended
variant of Backpropagation algorithm called Backpropagation through time or BPTT.
The feedforward backpropagation algorithm cannot be directly used by RNNs because
the algorithm assumes the connection of units to be cycle free. Therefore, the BPTT
algorithm works by unfolding the RNN network in time through stacking different
identical copies of the RNN with redirecting connections within the network to create
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connections between the copies to create a network similar to feed forward [26]. The
backpropagation algorithm can now be applied to the network.
However, RNNs are not suitable to capture long term dependencies. This would

mean that the network would be unable to capture interactions between values, that
are several time steps apart. This is because of the Vanishing Gradient Problem.
In general, the weights of the neurons are updated proportionally to the partial
derivative of the error function with respect to the current weight. However, for very
large time steps, the gradient becomes very small (close to zero) and thus the value
of the weight does not change resulting in stoppage of the training process. This
problem was discovered in [27] by Yoshua Bengio in 1994. A solution to this problem
is using Long Short Term Memory (LSTM) Networks proposed in [28].

3.3.2.1. Long Short Term Memory

LSTMs belong to the category of Recurrent Neural Network that has the capability
of learning long term dependencies thus, they can remember information for long
periods of time. Figure 7 shows the basic difference between a standard RNN and
an LSTM network. All the RNNs form a chain like structure of repeating modules
of the network. The repeating module in the standard RNN has a very simple
structure, shown in Figure 7a. However, LSTMs, comprise of multiple neural network
layers in the repeating module, enhancing their capability of remembering long term
dependency.

LSTMs maintain the flow of information through a gated cell. Just like a computer’s
memory, information can be read from or written to a cell. The cell controls the
flow of information making decisions such as when to allow reads or when to allow
information to be erased or written, with the help of the gates which are analog. The
analog signal is differentiable and hence suitable for backpropagation. Equations
below describe how the memory cells are updated in an LSTM at every time step t.
Initially, the values for input gate, it and the candidate value C̃t for the state of

memory cell at time t are recorded.

it = σ (Wixt + Uiht−1 + bi) (3.5)

C̃t = tanh (Wcxt + Ucht−1 + bc) (3.6)

After computing it and C̃t, the value for ft is computed. ft represents the activation
of the memory cells forgotten at time t
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(a) The repeating module in a standard RNN contains a single layer

(b) The repeating module in an LSTM contains four interacting layers.

Figure 7.: Comparison between a stadnard RNN and LSTM [4]

ft = σ (Wfxt + Ufht−1 + bf ) (3.7)

Once the value of input gate activation it, forget gate activation ft and candidate
state value C̃t are obtained, we can compute the value of Ct, the new state of memory
cells at time t.

Ct = it ∗ C̃t + ft ∗ Ct−1 (3.8)

The output with the new state of the memory cell will then be as follows. ot

represents output gate’s activation vector while ht represents output vector of the
LSTM unit.

ot = σ (Woxt + Uoht−1 + VoCt + bo)

ht = o∗t tanh (Ct)
(3.9)

In all the equations described above, xt is the input to the memory cell layer at
time t, Wi, Wf , Wc, Wo, Ui, Uf , Uc, Uo and Vo are weight matrices while bi, bf , bc,
bo are the bias vectors.
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3.3.3. Bidirectional LSTM

The standard LSTM preserves information from the past since it only runs in one
direction, from past to future. Bidirectional LSTMs run on input in two directions,
one from past to future and the other from future to past. Therefore, at any point of
time, the information from both the past and future is preserved. This information
helps in many problems where information from the future is also necessary to consider
before making any decision. For example, in word classification tasks, they can see
the past and future context of the word resulting in much better classification of the
word then the unidirectional LSTM.

3.4. Transfer Learning

Transfer Learning can be defined as a machine learning method where the knowledge
of the model, trained on one task, can be used as a starting point for the second
task. Usually, this is performed by first training a model on a base dataset and task,
and then transfer the learned features to a second target network to be trained on a
target dataset. Recently, this methodology has been used with great success on deep
learning tasks which have limited data to train the model. However, the approach
produces better results if the model features learned from the first task are general
[29]. In our system, we use transfer learning by using pre-trained Word Embedding
models for the classification of sensor’s description text.

3.5. Word Embeddings

Word Embedding is a method of language modelling and feature learning technique
where words from the vocabulary are mapped to vectors of real numbers. The reason
for it becoming successful in the area of Natural Language Processing is its ability
to capture the context of a word in a document, semantic and syntactic similarity,
relation with other words. Thus the vectors created, represent similar meaning words,
close to each other. The representation of words in the vector is learned through their
usage in the document. This can be compared with the bag of words model where
different words have different representations irrespective of how they are used.

The Word Embedding vectors are represented in a predefined vector space are
learned in a way that resembles neural networks, hence, making them suitable to be
used with deep learning architectures. There are different techniques that can be
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used to learn a word embedding from text data. However, we will review only two
techniques that are relevant, within the scope of this thesis.

3.5.1. Embedding Layer

An embedding layer has the ability to learn a word embedding jointly with a neural
network mode on a particular NLP task which requires the input to be tokenized.
The size of the vector space is specified manually and the vectors, which are the
weights of the embedding layer, can be initialized with random numbers. The vectors
are then learned in a supervised manner and are updated through Backpropagation
Algorithm. This approach of learning embedding requires a lot of data but the vectors
learned a specific to a certain task. However, if the weights of the embedding layer
are initialized using a pre-trained embedding model, this method produces very good
results.

3.5.2. GloVe

GloVe is a word embedding technique, designed by Pennington, et al. at Stanford [30].
The technique uses an unsupervised learning algorithm to obtain vector representation
of the words. It has a set of available pre-trained models of different dimensions,
trained on a very large corpus, that can be used either directly, or as a starting point
for any NLP task. For example, the weights of the pre-trained model can be used
to seed the weights of the Embedding Layer. GloVe constructs word context using
statistics across whole text corpus resulting in a better word embedding.

3.6. Evaluation Metrics

The measures used to evaluate the performance of models in this thesis are Accuracy
and F1-Score.

3.6.1. F-1 Score

F1-Score is a weighted average of both precision and recall. Precision is defined as
the number of true positives divided by the sum of true positives and false positives.
It defines the ratio of instances that are correctly classified over all the elements that
were classified for that particular class.

Recall is defined as the number of true positives divided by the sum of true
positives and false negatives. It defines the fraction of relevant instances that have
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been retrieved over the total amount of relevant instances
For example, a computer program for recognizing dogs in photographs identifies

8 dogs in a picture containing 12 dogs and some cats. Of the 8 identified as dogs,
5 actually are dogs (true positives), while the rest are cats (false positives). The
program’s precision will then be 5/8 while the recall will be 5/12.
The F1-Score can then be defined as follows

F1 Score = 2× precision × recall
precision+ recall

(3.10)

The F-1 score can be calculated individually for every class in the dataset. However,
in a multiclass setting, the average of these scores need to be taken. There are different
averaging methods that can be used. For the thesis, we used ’micro’ averaging method
since it takes into consideration the imbalance among the classes. In order to calculate
the average micro F-1 score, the average score of precision and recall need to be
calculated. They can be calculated as shown in Equation 3.11

Micro Average Precision =

∑
c TPc∑

c TPc +
∑

c FPc

Micro Average Recall =

∑
c TPc∑

c TPc +
∑

c FNc

(3.11)

where c is the class label, TP, TN, FP, FN stands for True Positive, True Negative,
False Positive, and False Negative respectively.

The Micro-F1 score can then be calculated with micro average values of precision
and recall using equation 3.10.

3.6.2. Accuracy

Accuracy describes the closeness of the predicted value and true value.

Accuracy =
TP + TN

P +N
(3.12)
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4. Dataset Description

The datasets, in Fraunhofer ISE, are analyzed using a tool called DataStorage [31].
The tool not only helps in the storage and visualization of the time series data from
different sensors but also helps in performing statistical analysis on it. This chapter
discusses the details about the Data Point Naming convention and the dataset that
we have used to analyze the system proposed in this thesis.

4.1. Data point naming convention

The input signals from different buildings, recorded at different points in time, are
saved as time series data. Similarly, every sensor is manually assigned a small
description text, which provides little information regarding its nature. In order to
effectively analyze the sensor’s data, the origin and type of sensor have to be marked.
Also, the group at Fraunhofer ISE works with various partners, therefore, the original
labelling of the sensor differs, for various buildings and systems.
Hence, in order to efficiently analyze a sensor’s data to help in fault detection

and use the DataStorage tool on the data of all buildings, the data point naming
convention was created, which marks the origin and type of sensor. Applying the
convention ensures that a unique name is assigned to each individual sensor.
The data point name for a single sensor, in a hierarchical order, starts with it’s

building name and ends with its sensor type. The meta-categories of data point
naming convention are shown in Table 2.

The categories are separated by an underscore ’_’. The specifications are appended
after a dot in-order to be more specific. If a category is not used, it’s left empty. For
example, the original data point name for a given supply temperature sensor of an
air handling unit in a building has the format, as shown in table 1.

4.2. Properties of the dataset

In the dataset used for this thesis, there are thirteen buildings from which data
of different sensors is collected. These buildings are located at different parts of
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Metadata Category Description

Building User defined
Name of the building or abbreviation of name

Zone
User defined
Name of Zone to which sensor corresponds
(e.g. supply air, temperature)

System main system to which the sensor belongs
Subsystem1 If appropriate: subsystem of system
Subsystem2 If appropriate: subsystem of subsystem1
Medium Medium in which the sensor is placed
Position Position of the sensor
Kind Kind of the data point

Point The physical quantity which is
measured by the sensor

Table 2.: Metadata Categories Labels with their descriptions

Germany. The details regarding the sensor information present in each building, is
shown in Table 3. All these buildings have the data of around 3300 sensors in total
with each sensor comprising of just single description text and time series data of
multiple days. The sensor names are referred to as original_point_name_label which
consists of all the categories of the data point naming convention as shown in Table
2. The time series data of all the sensors, obtained from these buildings, is recorded
at every minute of the day. This means that in a single day, a maximum of 1440 (60
minutes x 24 hours) raw sensor measure values, are recorded. Sometimes, there also
occur some faults in the system during which the values are not recorded, resulting
in missing values. From the thesis point of view, values recorded from 20.02.2015
to 01.08.2016 has been used, for the raw time series data.
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No. Building Names Description

1 01_BZR_Ddorf Office building of the district government
Düsseldorf

2 02_DKB_Berlin Office building of the Deutschen Kreditbank AG
(mainly offices and server rooms; 9873 m2 )

3 03_KuP_Zentrale_Berlin Headquaters of “Kieback & Peter” in Berlin
(offices, cantina; 3716 m2 )

4 04_Lanuv_Essen
Property of the State Agency for Nature,
Environment and Consumer Protection NRW
(offices, labs)

5 EADS_88 LMT Group production site in Schwarzenbek
near Hamburg (factory halls, offices, storage)

6 06_KPB_Mettmann Police Department in Mettmann (offices, control
center, lock-up, storage, shooting range; 5839 m2 )

7 07_Mendelsohn_Hamburg
Elementary school at Mendelsohn Street
Hamburg (Offices, laboratories, canteens and
class-rooms; 5839 m2 )

8 08_Sterntaler_Hamburg Elementary school at Sterntaler Street
(Offices, laboratories, canteens and class-rooms)

9 DVZ Service and administration center Barnim
(Offices; 8000 m2 )

10 Grosspoesna Headquarters of ennovatis GmbH in Großpösna
(Offices; 436 m 2 )

11 Kraft_Foods European RnD Center of Kraft Foods in Munich

12 VFG Building of the University of Stuttgart,
8,200 m2 office, laboratory

13 MWME
Ministry of Economic Affairs and Energy
of the State of North Rhine-Westphalia,
Düsseldorf (Offices; 30000 m 2 )

Table 3.: Building Names and Description

25





5. Data Preprocessing

This chapter discusses the steps involved in preprocessing the data before using it for
our supervised machine learning models. These steps are necessary to optimize the
performance of the models. We begin with generalizing the original point name labels
of the sensors, in order to avoid building specific classifications. We also discuss the
handling of missing time series data and how we improved the quality of the whole
dataset to improve the learning, during the training phase of the model.

5.1. Generalization of sensor names

The data is collected from various sensors in different buildings and the original point
name label is specific to each building. For example, the original point name label
consists of building and zone as it’s first two entries. Since the behaviour of all the
sensors is the same, we can obtain generalization by omitting these two categories
from the original point name label. We refer these generalized point name labels as
the final target classes for our classification task. Generalizing reduces the number
of classes from 3300 to around 900. For example, the point name label of a current
measuring sensor of an air handling unit AHU MTR.EL MEA I, is obtained
after generalization of the following original point name labels.

1. MWME Office AHU MTR.EL MEA I

2. MWME R.3.407 AHU MTR.EL MEA I

3. MWME LAB AHU MTR.EL MEA I

4. KPB SCHIESS AHU MTR.EL MEA I

In the above original point name labels the building specific information like
MWME, KPB and zone specific pieces of information like OFFICE, R.3.407, LAB,
SCHIESS are excluded to generalize the sensor names to the point name label,
AHU MTR.EL MEA I.
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5.2. Improvement of Data Quality

5.2.1. Time Series Data

As discussed in the above section, the generalization to the point name label helps to
ease the classification task. However, missing time series data in the dataset poses a
major challenge. Since the data from every sensor is recorded every minute, maximum
of 1440 raw values are gathered in a single day. In some cases, the measurement
procedure in the building is designed in a way that the sensor values are being
recorded only when the change is noticed in the behaviour of the sensor. In case the
values remain constant compared to a threshold then the data is not recorded in the
system and appears as missing values. The missing values may also occur due to
some faults in the system.

Also, sensors belonging to the same metadata category often show inconsistent
behaviour. Figure 8 shows the recorded values of 10 different sensors belonging to
the class T of metadata category Point. It can be observed that even the data
belonging to the same class T, not only have missing values but also behaves differently
depending upon the building it belongs to. The inconsistency is a result of multiple
factors. The way in which the buildings are operated often varies from one location
to another and it gets reflected in the measured values. Similarly, for some sensors,
values are not measured continuously, but rather, in steps, adding to the inconsistent
behaviour of the sensors.

In order to improve the quality of the time series data, we perform the following
two pre-processing steps:

1. There should exist at-least 30 raw measured values collected in a single day for
a single sensor. If not, then the values from that day are discarded

2. During the peak working hours in a day which is considered to be 6 am to 6
pm, there should not exist eight hours of continuous missing data.

After performing these pre-processing steps, we obtain minimum quality time series
data which can be used for classification purpose. However, still, the inconsistency of
the time series data makes it very unreliable to perform this classification, solely on
it.
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Figure 8.: Time series signals belong to the meta-data category of point for T. Y
axes represent the measured temperature in ◦C while X axes represent
the indices of the data points.

5.2.2. Description Data

Beside a unique identifier, each sensor also has a description text assigned which
is used to aid technical personnel at the building in understanding the nature of
the sensor and its type. For example, a sensor belonging to the Air Handling Unit
(AHU) system, measuring current can have a description text like ’ELZ UV-ISP03
Schaltschrank RLT 03 Strom L3’. It can be observed that the terms used in description
text are difficult to understand. However, they do exhibit some relation with the
metadata category specifying the type of the sensor to be current. All available
description texts associated with a sensor are written down manually making them
very different from one building to another. Therefore, solely using description text
to perform the classification task is also not a good idea. All the description texts are
in German and all the word processing APIs that we use, handle the data in English
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only. The first step involves the translation of the text to English. Once translated,
every description text is tokenized and the stopwords are filtered out before it can be
used further used for classification purpose.

5.3. Data Extraction

After performing the pre-processing steps, the raw time series data of sensors, from
all the building databases, is extracted, using the DataStorage tool’s API in python.
Once the raw data is obtained, various handcrafted features are extracted from the
data (discussed in section 6.1.1.1) and are saved in one large hdf5 file. Each
sensor has multiple days of handcrafted features, with each row, corresponding to
one day. The description texts of sensors, extracted from the same set of databases,
are stored in a csv file along with their raw names, point name labels and individual
metadata category labels (which make up the point name label). The description text
of the sensor can then be directly accessed from the csv file while the handcrafted
features for time series data can be looked up from the hdf5 file.
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6. Approach

As discussed earlier, the point name label of the sensor is the target, that we want to
predict. However, both the time series data and description text data are not good
enough to be used independently for this prediction task. This chapter discusses the
proposed architecture to solve the problem that we used and how and where it differs
from the approach of the previous thesis [5] that was done in Fraunhofer ISE to solve
a similar problem.

6.1. System Architecture

While performing classification tasks, it is important to make use of every available
information that can help in obtaining better results. The approach that was used in
the earlier thesis [5] utilized only time series data to classify the sensors. However, we
have already discussed that time series data is inconsistent and poses a problem of
missing values making it not comprehensive enough to be used independently. There-
fore, in this thesis, along with the time series data, we also use sensor’s description
text data, to assist the classification of the sensors to point name labels. However,
before the classification can be performed, there are two problems that need to be
resolved.

1. Although, we have generalized the point name labels, as discussed in Chapter
5, the target still has over 900 classes. The dataset consists of information
comprising from 3300 sensors only, not sufficient enough to train a model that
could classify around 900 labels.

2. Both the input data (time series data and description text) are different in
nature. Time series data is a sequence of recorded values taken at equally spaced
points in time while description data is just textual information. Therefore, it
would not be efficient to apply a single machine learning model on both data
inputs.
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Metadata Categories Classes
System 78
Subsystem1 74
Subsystem2 26
Medium 24
Position 39
Kind 13
Point 52

Table 4.: Number of classes in each meta data category

As discussed earlier, the point name label is just the concatenation of seven different
metadata categories. The first problem can be resolved by treating each metadata
category of the point name label as an independent target. If each category is
considered as an independent target and a separate model is trained to predict the
class of each metadata category, the problem of too many classes with too few training
data will be resolved. For example, let us assume that a sensor has a point name
label of AHU_PV_MTR.EL_SUPA_SUP_MEA_T and another sensor has a point
name label of AHU_PV_MTR.EL_SUPA_SUP_MEA_P. The only differentiating
entry between the two labels is the last, point, category, thus making them two
different classes. However, if we treat AHU, PV, MTR.EL, SUPA, SUP, MEA and
P as seven independent targets, we would only have to consider the classes in each
of these metadata categories. This would mean that a significantly low number of
classes have to be considered while training the machine learning model. Table 4
shows the number of classes present in each metadata category.

The second problem can be resolved if we train separate models for time series
data and description texts, independent of each other. Therefore, we create an
architecture, that not only treats each metadata category as an independent target
but also makes use of time series data and the description text as two independent
input data by training separate models for them, keeping in mind final prediction
target of point name label. Figure 9 shows the architecture that we created for this
thesis. The architecture comprises of three layers of models, named, Base Models,
Meta-Classification Models and Top Level Model, each providing the input to
the next layer. All these models are discussed in detail in the following subsections.
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Figure 9.: The High Level Architecture of the System

6.1.1. Base Models

Base model layer is the first layer of the architecture of our system. It receives
time series data and description text as input and trains two independent models on
these for each metadata category as the target to predict, that is, for each metadata
category, we obtain two models, one model is trained on the time series data, called
the Time Series Base Model and the other is trained on the sensor’s description text,
called Description Text Base Model. This process is repeated for all seven different
metadata categories. In the end, each base model predicts the class label of the
metadata category, it is trained on. Figure 9 explains the use of base models in our
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Figure 10.: Example of a data from a Sensor X, demonstrating the functioning of
the architecture. The sensor has the description "ELZ UV Current RLT
server room room voltage".

system. Figure 10 shows an example of the functioning of architecture for the system.
As shown in the example in figure 10, the base model for each respective metadata
category predicts its class label. The Time Series Base Model for system predicts AHU
as its output based on the features of raw time series data. Similarly, a description
text base model for the same metadata category predicts AHU as its output based on
the embedding features of the description text. Similarly, for the metadata category
point, the Time Series Base Model predicts T, while the Description Text Base Model
predicts P. Once the predictions are obtained from Time Series and Description Text
Base Models for all seven metadata categories class labels, they are forwarded to the
second layer of the architecture, called the Meta-Classification Models.
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6.1.1.1. Time Series Base Model

The raw time series data consist of the values recorded by sensors throughout the
day. Every sensor has time series data of multiple days. Our aim is to use the time
series data to train the Time Series Base Model which could predict the class labels
of all the metadata categories of the sensor. We have seen in Section 5.2 that the
sensors, even belonging to the same class, show inconsistency in their behaviours and
have missing values. The difference in behaviour and missing information poses a
major challenge for the prediction of each metadata category label using the input
of raw data points. Therefore, it is required to project the data into a meaningful
representation which makes it easy for the model, to classify the sensor.

Hence, in order to serve this purpose, various handcrafted features are extracted
from the raw time series data, which are inspired from the work of [5]. These features
handle the complexity of the data and help the classifiers to distinguish between
different classes. In [5], these features were directly used to classify sensors in to point
name labels. However, in this work, these handcrafted features are used by Time
Series Base Models which classify sensors based on the class labels of their respective
metadata category, which ultimately helps in the prediction of point name labels. All
these handcrafted features were originally inspired from the work of [32].

The extracted features have been measured for each single day of the sensor data.
This, not only helps to preserve the dynamics of the building in the extracted features,
since the building operations follow a daily pattern but also keeps the model more
robust. The daily operations in the building follow a specific pattern The features
also help in overcoming the problem of missing data. Following features are extracted
from the raw time series data of the sensors:

1. Mean of the Day The mean of all the raw time series values, recorded in a
single day for a particular sensor

µ =

N∑
t=1

(xt
N

)
, N ≤ 1440 (6.1)

where xt represents the sensor value at time t and N represents the number of data
points of a single day.

2. Standard Deviation of the day The standard deviation of all the raw time series
values of a particular day

35



σ =

√∑
(xt − µ)2

N
, N ≤ 1440 (6.2)

where xt represents the sensor value at time t, N represents the number of data
points of a single day and µ is the mean of the day

3. Minimum in a Day This is the minimum raw time series data value recorded in
a single day

4. Maximum in a Day This is the maximum raw time series data value recorded
in a single day.

5. Standard deviation of difference between consecutive elements in a day The
difference between consecutive elements in a day can be defined as the difference of two
consecutive elements together. For example, lets assume that
[x1, x2, x3, x4 . . . . . . , xn] is a time series data measured in a single day. The difference
between consecutive elements in a day (D) can then be defined as
[x2 − x1, x3 − x2, x4 − x3, . . . . . . , xn − xn−1]. The standard deviation of the differ-
ence can then be defined as:

σ(D) = σ ([x2 − x1, x3 − x2, x4 − x3, . . . . . . , xn − xn−1]) (6.3)

6. Minimum of difference between consecutive elements in a day The minimum
value of the difference of consecutive elements in the day. This can be defined as

Min(D) = min ([x2 − x1, x3 − x2, x4 − x3, . . . . . . , xn − xn−1]) (6.4)

7. Maximum of difference between consecutive elements in a day The maximum
value of the difference of consecutive elements in the day. This can be defined as

Max(D) = min ([x2 − x1, x3 − x2, x4 − x3, . . . . . . , xn − xn−1]) (6.5)

8. Mean of hourly Standard Deviation Hourly standard deviation (Y) can be
defined as the standard deviation computed on the raw time series data of every hour.

Y = σ (h1) , σ (h2) , σ (h3) , σ (h4) , σ (h5) , . . . . . . . . . , σ (hH) , H ≤ 24 (6.6)
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where H represents the number of hours and σ (h) represents standard deviation of
data recorded in an hour.
Using this equation, the mean of hourly standard deviation can be defined as

follows:

µ(Y ) =
H∑
h=1

(
σ(h)

H

)
, H ≤ 24 (6.7)

9. Standard Deviation of Hourly Standard Deviation From equations 6.6 and 6.7,
this can be defined as:

σ(Y ) =

√∑
(σ(h)− µ(Y ))2

H
(6.8)

10. Maximum of hourly standard deviation

Max(Y ) = max [σ (h1) , σ (h2) , σ (h3) , σ (h4) , σ (h5) , . . . . . . . . . , σ (hH)] (6.9)

11. Minimum of hourly standard deviation

Min(Y ) = min [σ (h1) , σ (h2) , σ (h3) , σ (h4) , σ (h5) , . . . . . . . . . , σ (hH)] (6.10)

12. Standard deviation of absolute/real values of Discrete Fourier Transform
(DFT) The time domain signal of a single day is transformed to frequency domain
using Discrete Fourier Transform (DFT). The standard deviation is then taken of the
real value coefficients of obtained frequency domain signal.

13. Max of absolute/real values of DFT From the obtained frequency choose the
maximum real value of computed fourier transform.

14. Min of absolute/real values of DFT From the obtained frequency choose the
minimum real value of computed fourier transform.

15. Min frequency obtained in DFT Compute the discrete fourier transform
sample frequencies and choose the minimum value.

16. Max frequency obtained in DFT Computed the discrete fourier transform
sample frequencies and choose the maximum value.
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17. Median frequency obtained in DFT Choose the median value from computed
the discrete fourier transform sample frequencies.

18. Spectral Entropy Spectral Entropy defines the complexity of the system. To
calculate the spectral entropy, following steps are taken:

1. Calculate spectrum S (xt) of the time series signal.

2. Calculate the the power spectral density of the signal

P (xt) =
1

N
|Y (xt)|2 (6.11)

3. Normalize the power spectral density

pt =
P (xt)∑
t P (xt)

(6.12)

4. Calculate the spectral entropy (SE) with the following equation:

SE = −
N∑
t=1

pt ln pt, N ≤ 1440 (6.13)

19. Number of peaks Find values of local maxima in a set of data containing
measured values from a sensor of a single day.

20. Power The power of raw data points is calculated as:

Power =

∑N
t=1 x

2
t

N
(6.14)

where xt is a raw data point in a single sensor, N is the total number of data of
points.

Figure 11 shows the representation data from sensors after the handcrafted features
are extracted from them. The features belong from the sensors of class label T for
metadata category Point.

Popular machine learning algorithms like Logistic Regression, Random Forest and
MLP have gained great interest on feature based prediction. For the Time Series
Base Model, initially, we start our experiments by training machine learning models
on these handcrafted features and evaluated the results. However, the performance of
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Figure 11.: The representation of handcrafted features for meta-data category Point
with class label T. Y axes represent the measured values while X axes
represent the feature index.

these models is highly dependent on these extracted features. Hence, we later analyse
whether the performance of a model would further improve when the features are
extracted automatically from the raw data using a feature learning technique like
deep learning. The results of both these experiments are discussed in Chapter 7.

6.1.1.2. Description Text Base Model

The description text of a sensor specifies information about the metadata category it
belongs to. Description Text Base Models train on the description text of sensors to
predict the class labels of different metadata categories. However, to train the model,
we need a way to represent text data, to effectively extract information out of it. For
example, consider the following sensor descriptions:

1. ELZ UV server room Room E033 Voltage L1

2. ELZ UV server room Room E033 Output L3om E033 Output L3
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elz uv server room e033 voltage output l1 l3
Description 1 1 1 1 2 1 1 0 1 0
Description 2 1 1 1 2 1 0 1 0 1

Table 5.: Count Vectors of each description

It is not possible for the computer to understand these descriptions directly. They
need to be represented into a numerical form for any machine learning model to
process them.

One of the ways to represent this is to learn the vocabulary from all the documents,
then represent each document by counting the number of times each word appears, also
known as Count Vectors. The two descriptions in our example have the vocabulary
as [ELZ, UV, server, room, E033, voltage, output, L1, L3]. The count vector matrix
for these descriptions is shown in Table 5.

However, these frequency based approaches have several drawbacks. First, there is a
problem related to the dimensions of the vector. The size of the vector increases with
the size of the vocabulary. Large document set will have a larger vocabulary which will
also increase the size of the vector. Secondly, since, the words are independent of each
other, the semantics and the relationship between the words cannot be established
by this approach. This would mean that phrase like ’ELZ UV server room’ would
not be treated as a continuous sentence but rather, four separate words. This would
also mean that sentences, where same words have a different context, would not be
reflected in the vector. For example, sentences like "Apple is a fruit" and "Apple’s
products are expensive" have different meaning of the word ’Apple’ here. In the first
sentence, Apple is used as the name of the fruit, while in the second, Apple is used
as the name of the brand.

In recent times, to tackle this problem, there has been an increasing trend in the
use of word embeddings. Word embeddings are versatile tools that help in solving
many basic problems in the areas of Information Retrieval and Natural Language
Processing [33]. Currently, they are state of the art in NLP [34]. In general, word
embedding maps the words of a text data, into a continuous low dimensional vector
space such that the internal semantic and syntactic information of the words can be
captured [35]. Each word is represented by a fixed size vector, no matter how large
the corpus is. Taking the example from above, using word embeddings, the word
’Current’ in description 1, can be represented as a vector [0.1, 0.3, . . . , 0.2]k. k here
defines the size of the pre-defined vector space. Unlike the frequency based approach,
not only do these vectors have fixed dimensions, but they also represent the semantic
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Figure 12.: The relationships among words obtained through word embeddings on
a general vocabulary. Similar meaning words are close to each other

relationship among words. Hence, the words, that have similar meanings, will have
vectors that will be close to each other. Figure 12 shows a general plot of the word
vectors obtained after embedding. Notice that the words with similar meanings are
closely plotted.

Deep learning models, combined with Word Embedding Vectors have been found
to be increasingly effective in the field of Natural Language Processing. [36] showed
in his work that a simple deep learning framework outperforms most state-of-the-art
approaches in several NLP tasks. In general, the process of learning these vectors
is either joint with the neural network model on some task, such as document
classification, or is an unsupervised process, using document statistics. For each
process, there are multiple methods, which can be used to learn these embeddings. Two
of the most popular methods are the GloVe (Global Vectors for Word Representation)
[30] and Word2Vec [34]. GloVe is an algorithm developed by Jeffrey Pennington,
Richard Socher and Christopher D. Manning at Stanford, that uses unsupervised
learning to obtain vector representations for words. Similarly, word2Vec, developed
at Google, is an embedding creation algorithm that uses two-layer neural networks
that are trained to reconstruct linguistic contexts of words.
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However, learning useful embeddings, in either of these algorithms, require a large
amount of text data, such as millions or billions of words to capture the semantics.
In our dataset, unlike raw time series data, where each sensor has several days of
measured values, description texts are limited in numbers. There are only 3300 sensor
descriptions in total, each corresponding to one sensor, not sufficient to train the
word embedding from scratch.

Transfer learning with pre-trained word embeddings has been used with great
success in text classification [37] to tackle the problem of small training datasets. The
idea is to obtain word embedding vectors from a model, that has already been trained
on a large-scale dataset and then use those vectors to conduct learning for another
target task. Since the model is usually trained on a diverse dataset, the resulting
word vectors are high in quality.

Because of huge success in the field of NLP, we use deep learning architecture to
train different Description Text Base models in our system combined with pre-trained
vectors from Glove [38] that have been trained on the vocabulary of Common Crawl
data [39]. These deep learning models are trained for each metadata category. All
the vectors for sensor description text vocabulary are extracted from the pre-trained
vectors which are then used as weights to seed the embedding layer of the deep
learning architecture of Description Text Base Model. Figure 13 shows the result
of using pre-trained Glove Embedding on the vocabulary of description texts of
sensors. The words similar to ’temperature’ for the vocabulary of description texts
are highlighted in the figure.

Figure 14 shows the use of embedding features in the model. Initially, all descriptions
are tokenized and a word index of the vocabulary is created such that each unique
word of the corpus is assigned a unique number. Consider the example of descriptions
from above. In order to extract the embedding vectors, these descriptions are first
encoded by assigning each word a unique integer number. Table 6 shows the word
index obtained from the vocabulary of the two descriptions mentioned above. The
two descriptions could then be encoded as [1, 2, 3, 4, 4, 5, 9, 6] and [1, 2, 3, 4, 4, 5,
8, 7] respectively, based on their created index. These description vectors are then
passed on to the embedding layer whose weights had already been initialized using
the pre-trained Glove embedding. The weights of the embedding layer is a table
of embedding vectors with each row representing the index of the word from word
index. Table 7 shows an example of these vectors that are relevant for our example.
The embedding layer looks up the table and maps the integers in the description to
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Figure 13.: Demonstration of word embeddings using pre-trained vectors on the
vocabulary of description texts for the training Description Text Base
Models

embedding vectors. Therefore, the first description will be represented as follows:

[[1.2, 3.1], [0.1, 4.5], [1.4, 2.1], [2.0, 1.0], [2.0, 1.0], [4.7, 1.5], [1.7, 2.6], [3.2, 1.9]]

These embedding vectors are passed on to the next layers like CNN or LSTM for
training.

The Embedding layer has the ability to either freeze its pre-initialized weights, or
update the weights based on Backpropagation. There are some special words in the
vocabulary whose vectors are not found in the pre-trained embedding, for example,
words like ’ELZ’ and ’L1’ depict characteristics of metadata categories, and thus these
words cannot be discarded. The vectors of words like these are initialized by zero
and since the weights of the embedding layer are the pre-trained vector of words in
the vocabulary, the model would produce better quality results if the weights further
get adjusted with respect to the training target. Hence, as the model is trained, the
weights also get updated and are adjusted to minimize the loss of the model.

Once the training is completed, the Description Text Base Models, for each metadata
category, can be used to get the prediction of the class label.
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Words Index
elz 1
uv 2
server 3
room 4
E033 5
l1 6
l3 7
output 8
voltage 9

Table 6.: Word Index for descriptions mentioned above

index embeddings
0 [1.2, 3.1]
1 [0.1, 4.5]
2 [1.4, 2.1]
3 [2.0, 1.0]
4 [4.7, 1.5]
5 [3.2, 1.9]
6 [0.1, 1.5]
7 [1.0, 2.0]
8 [1.7, 2.6]

Table 7.: An example of word embeddings for descriptions
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Figure 14.: The description is tokenized and embedding vectors are extracted before
feeding it to the Deep Learning Base Model

6.1.2. Meta-Classification Models

Meta-Classification scheme can be defined as an ensemble technique which, based on
the characteristics of dataset or other simpler learning algorithms, can be used to
predict the right algorithm for a particular problem [40]. In our architecture, meta-
classifiers are used on the predictions of base models. For each metadata category, we
obtain class label predictions from two base classifiers, the Time Series Base Model
and the Description Text Base model. The aim is to select the correct metadata
category class label obtained from these two base models. The output from this
layer of models is a single metadata category class label prediction. Combinations of
multiple base classifiers decrease variance and produce reliable classification. Taking
the example from Figure 10 for the metadata category point where the Time Series and
Description Text Base Model, both predicted their output to be T and P respectively,
the Meta-Classification Model for the category point would use a meta-classification
scheme to determine which output is correct and chose the correct class label based
on it. In the example, it chose T to be the correct output.

There are multiple meta-classification schemes that can be used. For the thesis
point of view, we performed our experiments using Stacking and Voting.
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6.1.2.1. Stacking

Stacking can be defined as an ensemble technique which determines the reliability
of the classifiers using a meta-learner. In stacking, a number of base classifiers are
combined using one meta-classifier which learns their outputs and determines which
base classifier prediction is more reliable on the type of input [41]. The technique
uses predictions from multiple models to build a new model. This model is used
for making predictions on the test set. A more detailed explanation of the Stacking
Algorithm can be found in section 3.2.1.2.

In our system, the stacked model is trained on the predictions of base models.
The idea is to make the Stacked Model learn which classifier is more reliable on
the type of data it receives. There are multiple machine learning algorithms like
Bagging, Random Forest or Logistic Regression that can be used as Stacked Classifier
Algorithms. The process starts by obtaining the predictions from base models on
the training and testing sets of raw time series data and description text, for each
metadata category. It is important that the Stacked Algorithm is trained on a separate
dataset to the examples used to train the base level models to avoid overfitting. One
way of achieving this is to divide the training dataset into two parts, that is training
and validation set and train the base models on training dataset while train the
stacked model on the predictions obtained from validation dataset. However, the
problem with this approach is that the Stacked Model is not trained on the whole
training dataset. A more concrete approach is to use k fold cross validation to create
training dataset for the Stacked Model. We adopted a similar approach where we
divided our training dataset into 2 folds. Both base models are first trained on the
first fold while the predictions are obtained on the second fold. These predictions are
saved and the process is repeated again where the base models are trained on the
second fold and predictions are obtained from the first fold. Therefore, the predictions
are made on the unseen data which provides a better generality for the Stacked
Model to be trained on. Table 8 shows an example of a training dataset for training
a Stacked Classifier for the metadata category Point. The features for training the
Stacked classifier are the predictions from the Time Series and Description Text Base
Model while the target is the original metadata category class label of the sensor.

6.1.2.2. Voting

Voting is a meta-classifier for combining the results of different base classifiers for
classification via majority voting. There are two types of voting methods named
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Time Series Base
Model Prediction

Description Text
Base Model Prediction Original Label

U U U
I T T
P.EL P P.EL
VOL VOL VOL

Table 8.: Example of Stacked Classifier Training Dataset for Point

The Time Series Base Model Prediction and Description Text Base Model Predictions are
used as features for the Stacked Classifier with Original Label of the sensor for a particular

meta-data category as the target

"hard" and "soft" voting. Hard voting predicts the final class label as the label
which has been most frequently predicted by the base classifiers. On the other hand,
soft voting predicts the final class label based on averaging out the prediction class
probabilities of the base classifiers. Table 9 shows a general example of the difference
between Soft and Hard Voting. Hard Voting predicted the class label as A while soft
voting, based on the confidence of the classifiers, predicted the final class label as B.

Since, we have even number of base classifiers, using hard voting would result in
conflicts. For example, for any metadata category, if the output of one base classifier
is different then the other, then it is impossible to determine the final class label.
Hence, soft voting works best for our system. The prediction class probabilities
from the time series models and the description text base models are combined and
then averaged out. The class label with the highest probability is then taken as the
predicted output. This method ensures that the confidence of base classifiers, with
which they predicted the class label for the metadata category, is taken into account
while making the final prediction and hence, the final output doesn’t have to rely on
any external classifier.

6.1.3. Top Level Model

Once the predictions from Meta-Classifier Models are obtained, they can be used in
the following two ways:

1. The predictions from the meta classifier model of each metadata category can
be concatenated with an underscore ’_’ to form a point name label

2. The predictions from the meta classifier model of each metadata category can
be used to train another machine learning model, which we call the Top Level
Model.
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Classifiers Prediction
Classifier 1 A
Classifier 2 A
Classifier 3 B
Voting Classifier A

(a) Hard Voting Predicting A as the pre-
dicted class

Classifiers Class A
Prediction Probability

Class B
Prediction Probability

Classifier 1 0.6 0.4
Classifier 2 0.5 0.5
Classifier 3 0.1 0.9
Soft Voting
(Mean Probabilities) 0.4 0.6

(b) Soft Voting predicting Class B to be the predicted class

Table 9.: Comparison between Soft and Hard voting

Meta-Classifier Model Predicted Class Label
System AHU
Subsystem1 -
Subsystem2 -
Medium SUPA
Position -
Kind MEA
Point T

Table 10.: Combining predictions result in point name label of
AHU SUPA MEA T

The output of both these methods will result in a point name label for the sensor.

6.1.3.1. Combining Meta Classifier Predictions

We obtain a class output from each meta-classifier of the metadata category. We
already know that the point name label is a concatenation of class labels of single
metadata categories, separated by an underscore ’_’. Therefore, combining the output
of meta-classifiers provides us the final point name label of the sensor as the output.
Table 10 shows how the meta-classification predictions of example shown in Figure
10 can be concatenated to form the final point name label.
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Meta-classifier for System Meta-classifier
for Subsystem1

Meta-classifier
for Subsystem2

Meta-classifier
for Medium

Meta-classifier
for Position

Meta-classifier
for Kind

Meta-classifier
for Point Original Point Name Label

- MTR.EL MEA - - - U AHU_MTR.EL_MEA___U
EGEN.C CCH MTR.EL MEA - - U EGEN.C_CCH_MTR.EL___MEA_U
AHU - MTR.EL MEA - - U AHU__MTR.EL___MEA_T

Table 11.: The training set for the Top level Model
All the predictions from Meta-Classifier are used as features for the model while the

original point name label is used as target

6.1.3.2. Training Top Level Model

Although combining predictions from meta-classifiers provides us the point name label
that we want but there are still few things which it doesn’t take into consideration.
The point name label marks the type of the sensor which describes its characteristics.
This means that all the metadata categories are correlated with one another, hence,
complementing one another. For example, a sensor with the system entry water
circuit will usually not have a sensor with the system entry water circuit will usually
not have a point category of pressure. This pattern can only be recognized if a
machine learning model like Random Forest or SVM is trained on the outputs of
meta-level classifier. Hence, in order to train the top level model, we create a new
dataset, in which class outputs from all the meta-classification models are used as
features for the model and the original point name label of the sensor is used as the
target. Table 11 shows an example of such a training set. It can be seen from the
table that there are some instances where the original point name label differs from
the point name label which could have been obtained by combining the predictions of
meta-classifiers. This is where Top Level Classifier can help in reducing the error in
the overall model. Even if any meta-classifier model, somehow predicts an incorrect
class label for any metadata, the Top Level Model will ensure that this error is not
reflected in the final predicted point name label.
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7. Experiments and Results

In this chapter, we present an empirical evaluation of the architecture described in
Chapter 6, along with variations of some components. In summary, we have a model
with three different layers, and in each layer, there are different machine and deep
learning models. Popular algorithms like Logistic Regression, SVM, KNN, Random
Forest and MLP have gained great interest on feature based prediction. Similarly,
deep learning algorithms like Convolution Neural Network and Recurrent Neural
Networks for text classification have been widely used with great success in the field
of Natural Language Processing. Initially, we examine different machine learning
algorithms, using K fold cross validation, for each layer of the architecture, and
chose the best performing set of algorithms. Later, we evaluate the performance of
this architecture on Inter-Building cross validated dataset and test the impact of
user-simulated feedback on the results.

7.1. Experiments Specifications

7.1.1. Implementation

The implementation of this thesis is performed using Python 3 [42]. All the imple-
mentation of statistical machine learning algorithms are imported from scikit-learn
[43]. For deep learning models, we use keras [44] with tensorflow [45] as its back-end.
For data preprocessing and mathematical computations, libraries like Numpy [46]
and Pandas [47] are also used.

7.2. Preliminary Experiments

7.2.1. K Fold Cross Validation

To cross validate, we need to divide the data into k-folds. However, there are two
problems which need to be solved in order to properly distribute the data. First,
in order to preserve the relative class frequencies in each fold, the data should be
proportionately distributed among all folds. However, the dataset is highly imbalanced.
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Table 12 shows the distribution of sensors in top 15 point name labels. Since there
are over 900 point name labels with around 3300 sensors, there exist many classes
which contain data of just a single sensor under them. This problem is resolved by
using a variant of k-fold called Stratified k-fold. Stratified k-fold ensures that each
fold is a good representative of the whole dataset.

Secondly, for using stratified K-fold, we need to choose a target so that the data is
proportionally divided based on it. However, in our architecture, Base Models and
Meta-Classification Models classify the sensors into their metadata category and the
Top Level Model classifies the output of Meta-Classification models into the point
name label. Hence, for the first two layers, metadata categories are the target classes
while for the last layer, the point name label is the target to predict. This problem is
resolved by choosing point name label as the target class for creating different folds.
As discussed earlier, the point name label is just a concatenation of all metadata
categories. Therefore, if the point name label is chosen as the target class for creating
all the stratified k folds, then all the metadata categories are also proportionately
distributed in every fold.

The creation of the folds results in the reduction of classes in the test set. This is
because all the point name labels, which had just single sensors under them are put
into the training set. This ensures that the classifier sees the data of sensors from all
the classes, even if it is not tested on it. Table 13 shows the number of classes for
each metadata category in the test set that are obtained after the stratification has
been performed. The classes have been reduced from their original number previously
shown in Table 4. The total number of point name labels are now 218. Chapter B in
the appendix shows the classes that are used in the testing set for each metadata
category. The training set includes all the classes of the dataset.

Throughout all experiments, the value of k is chosen to be 3.

7.2.2. Architecture Evaluation

We tested out different machine learning and deep learning models for each layer of
the architecture. As discussed earlier, our dataset is highly imbalanced, therefore,
evaluating models based only on their accuracy wouldn’t be optimal. Therefore, along
with accuracy, we use the micro-F1 score as the evaluation metric for the models.
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point_name_label Total number of sensors
RA MEA T 212

MTR.EL MEA P.EL 107
RA SEV T 101

RAD CTRV HW SIG STAT 95
MTR.EL MEA I 88
MTR.EL MEA U 87

WIN SIG STAT 80
SIG STAT 61
AHU SUPA MEA T 47

MTR.EL MEA E.EL 38
AHU EXHA MEA T 36
WC.H PU HW SEC SIG STAT 34
WC.H HW SUP.SEC MEA T 32
WC.H HW RET MEA T 31
WC.H HW RET.SEC MEA T 30

Table 12.: Top 15 point_name_labels based on the number of sensors

Metadata Categories Classes
System 38
Subsystem1 24
Subsystem2 13
Medium 13
Position 11
Kind 7
Point 27

Table 13.: Number of classes in each meta data category in the test set after
performing k-fold cross validation
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7.2.2.1. Base Models

We already discussed in Section 6.1 that the purpose of Base Models is to predict the
class label for each metadata category of the sensor. Here, we discuss the experiments
that were carried out on base models with different statistical machine learning and
deep learning algorithms for each base model.

Time Series Base Model
The thesis of Soundarya Palanisamy [5] evaluated different machine learning models
for the hand-crafted features extracted from Time Series Data and found Random
Forest to be the best performing model. In general, Random Forest is a flexible,
easy to use machine learning algorithm that produces, even without hyper-parameter
tuning, good results most of the time. It is also one of the most used algorithms,
because of its simplicity. Similarly, deep learning methods have been widely adopted
in the Time Series Data classification tasks. Unlike feature based models, deep
learning methods learn and extract the features from the raw data automatically.
Recurrent Neural Networks and Convolutional Neural Networks (CNN) have been
observed to perform Time Series Data classification with good results. However,
not only do these models require a huge amount of training data and time, a lot of
hyper-parameters need to be tuned as well.

In this thesis, we perform the following two experiments for the Time Series Base
Models:

1. Train Random Forest Classifiers on the hand-crafted features of raw-time series
data with each metadata category as the target.

2. Train Deep Learning Algorithms like LSTM on the raw-time series data of every
sensor with each metadata category as the target.

Training Random Forest Classifier The Random Forest Classifier is trained on
the handcrafted features extracted from the raw time series data. Since each sensor
has multiple days of measured data and the handcrafted features are extracted on
the data of one single day, there are multiple days of handcrafted features that are
available for a single sensor. Therefore, in order to predict the final metadata category
class label for the sensor, the model is analyzed on the features of all the days and
the most frequent predicted label is chosen as the final label for the sensor. For
example, let us consider that SensorA had data of 5 days and we are analyzing a Time
Series Base Model for the metadata category system. All the extracted handcrafted
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features for all 5 days would be provided to the model as input and the prediction of
the class label for every day would be recorded. Let us say that the model predicted
the class label ’AHU’ 4 times and ’RAD’ 1 time based on the data of 4 days and 1
day respectively. The final class label for sensor_A would then be ’AHU’ since it
was predicted with majority among all days. The number of estimators that we use
for the model are 60, and the criterion is set to ’gini.’ The model is trained directly
on the hand-crafted features of the sensors with the number of classes mentioned
in Table 13 for each metadata category. Figure 15 shows the mean accuracy and
micro-F1 score of all the three folds for all metadata categories.

(a) Accuracy Results with RF model for each
meta data category

(b) Micro F1-Score Results with RF model for
each meta-data category

Figure 15.: Time Series Base Model results with Random Forest Classifier

The Random Forest classifier works well with most of the categories with good
accuracy and F1 score. The classifier for the metadata category system classifies the
classes in that metadata category with an average F-1 score of 0.75. Similarly, the
classifier for the category kind predicts with an average F-1 score of 0.96. However,
for all metadata categories, some classes which are highly correlated with each other
get wrongly classified sometimes. Figure 16 depicts the heatmap of the classification
results for the category point. It can be seen that sensors with a point entry of
AF are often wrongly classified to belong to the STAT class. This can be easily
understood, since in both cases sensors belonging to the class mainly show discrete
values of 0,1. For entries of PR (pressure), RH (relative humidity) and AQ (air
quality) the reasons for falling in the T (temperature) class are not so clear. While
the patterns over time might look similar for this kind of sensors, the magnitude is
very different. An explanation maybe is a preference towards magnitude independent
features in the handcrafted features. Also, the class T contains most sensors which
can be very different in nature resulting in a dominance of this class. The wrong
classification of DEL and VP.min entries will most likely stem from their relatively
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low numbers in the data set. Here the application of the method can also give hints
to an improvement of the used data labelling.

(a) Heatmap from Time Series Base Model (b) Heatmap from Description Text Base Model

(c) Heatmap from Voting Meta-Classifier Model

Figure 16.: The heatmap comparison for the predictions obtained from Random
Forest Classifier in Time Series Base Model, CNN-BLSTM architecture
in Description Text Base Model and the combination of these predictions
using Voting as the Meta-Classification technique for the meta-data
category Point

Training Deep Learning Model The Deep Learning Model is trained directly on
the raw-time series data of the sensors. However, there lies a problem of missing
values in the raw-time series data. A lot of missing values in the dataset would make
it difficult for the model to distinguish between the classes due to low variance. As
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No. Classes
1 T
2 STAT
3 P.EL
4 I
5 VOL
6 E.EL
7 E.H
8 SOL
9 DEL
10 T.OFF
11 NROT
12 T.ON
13 STAT.H

Table 14.: Classes used for Training Deep Learning Model for Time Series Base
Model for the metadata category Point

discussed earlier, a maximum of 1440 possible values can be recorded of any sensor
in a day. In order to solve the problem of missing values, we append timestamps
with the recorded values in the second dimension and add masking of -999 to the
missing value. This means that the missing values are represented by a number -999
in the dataset created for this experiment. For this experiment, we started with
training the model on only Top 13 labels of metadata category point and evaluated
the results on it. The data for all 13 classes in the category is balanced out to avoid
biased results. For each class, the down-sampling is performed such that there are
equal number of sensors with an equal number of days in every class. Table 14
shows the classes that are used for training this deep learning model. Once the data
is preprocessed, an LSTM model is trained. The architecture of the model is as follows:

Input Layer → LSTM-256 → Dropout-0.4 → Dense-500 → Tanh → Dropout-0.3 →
Softmax

The input layer is followed by an LSTM layer of 256 units. This layer is then
followed by a Dropout layer with a rate of 0.4, to prevent overfitting of the model,
and then a Fully-Connected dense layer of 500 units. The final layer is the softmax
layer. The model is trained for 100 epochs. In every epoch, we use batches of size 64
data points and the training data is shuffled after every epoch. The hyper-parameters
used for training the model are shown in Table 16. As depicted in Figure 17, the
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(a) Loss plot (b) Accuracy plot

Figure 17.: Time Series Base LSTM model accuracy and loss comparison, trained
on raw data for the meta-data category point on Top 10 Labels Point

Activation Function Tanh
Optimizer Adam
Loss Function Categorical Cross Entropy
Learning rate 10−3

Dropout 0.3
Batch Size 64
Shuffle Batch

Table 15.: Hyper-Parameter Settings for LSTM when used for Time Series Base
Model

high inconsistency among the classes in the dataset prevents the loss and accuracy
of the model from attaining convergence. The model is unable to extract patterns
from the raw-time series data and hence is unable to classify the classes correctly. In
the thesis of Soundarya [5], it is also reported that the amount and quality of the
available data hinder an application of deep networks on the time series data. Since
the focus of this thesis is the overall architecture to combine multiple data sources
and a statistical model for classification of time series already exists and work better,
further investigations on deep models for time series classification are left for future
work.

Description Text Base Model
Description Text Base Model uses deep learning algorithms on the embedding features
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of description text as input and predicts the class label of the metadata category, on
which it is trained, as the output. We conducted experiments for the description text
base models with different deep learning algorithms. Convolutional Neural Networks
have achieved great performances on NLP tasks. However, the architectures required
to achieve these performances require many layers to capture long term dependencies
and need experts to set up network parameters. Recurrent Neural Networks solve
this problem because they are able to capture long-term dependencies in just a single
layer but they make predictions based on the past words for a specific task. Therefore,
these type of network perform really well in predicting the next word in the context.
However, for sentence classification tasks, it’s more efficient if the sequence of future
words is also known, that is, the words from past and future are already known.
Bidirectional Recurrent Neural Networks do this by running two Long Short Term
Memory (LSTM), one from left to right and the second one in other direction and
then concatenating both the sequences in the end.

For description text base models, initially, we carry out the experiment using
Convolutional Neural Networks. Later we use an architecture proposed by [11]. This
architecture uses a combination of Convolutional Neural Networks and Bi-directional
LSTMs. Both the architectures are described in Figure 18.

The first architecture consists of convolution and pooling layers. All the convolution
and pooling layers are 1 dimensional. The embedding layer is followed by a 1-D
convolution layer of filter size 2. This layer is followed by a max pooling layer which
is followed by another convolution layer of filter size 3. A Global Max pooling layer
is applied after this to reduce the dimensions of the output which is then followed
by two Fully Connected Dense Layers, a Dropout layer and then a Softmax Output
layer in the end.

In the second architecture, the embedding layer is followed by a convolution layer, a
dropout layer with the rate of 0.5 and then a Bi-Directional LSTM layer. The ability
of both CNN and RNN to capture long term dependencies make them ideal to use
together for text classification. The output of Bi-Directional LSTM is concatenated
and a further dropout of 0.5 is applied to avoid overfitting. This output is then passed
on to softmax output layer. The hyperparameter settings for both the architectures
are described in Table 16. The settings were obtained after performing a simple
manual hyperparameter search.

The input to both the architectures of the Description Text Base Model are the word
vectors described in Section 6.1.1.2 obtained from the word index. Since description
texts vary in their lengths, the length of the vector is padded to a maximum length of
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(a) CNN Architecture for Description Text Classification - Architecture 1

(b) Combination of Convolution Layer and Bidirectional LSTM - Architecture 2

Figure 18.: Deep Learning Architectures for Description Text Base Models

70 with zeroes appended to the vectors which are shorter than the maximum length.
The input is passed on to the Embedding Layer of the architecture whose weights, as
discussed earlier, are initialized by the pre-trained GloVe embedding vectors. The
trainable parameter of the embedding layer is set to True which optimizes the weights
of the embedding layer in a supervised way using the Backpropagation algorithm.
The output from the embedding layer is passed on to the Deep Learning Algorithm
layers of the architecture which then predict the metadata category class label.

The number of epochs for training the model of each metadata category, for both
the architectures, are determined by the Early Stopping Callback method in Keras
[44]. This method allows us to specify an arbitrary large number of training epochs
and stop training once the model performance stops improving on the test dataset.
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Activation Function ReLu
Optimizer Adam
Loss Function Categorical Cross Entropy
Learning rate 10^-3
Dropout 0.5
Batch Size 16
Shuffle Batch

Table 16.: Hyper-Parameter Settings for both architectures of Description Text
Base Model

We monitor the loss on test dataset for each metadata category. The patience level
is set to 8 epochs with the mode set to "min". This means that once the loss stops
improving, the model will be trained for 8 more epochs to see if there is any further
improvement in the testing loss and will stop training the model if not found any. We
also use a Model Checkpoint Method which monitors and saves the best model only.
Therefore, all the predictions obtained are from the best trained model. In every
epoch, we use batches of size 16 data points and the training data is shuffled after
every epoch. Figure 19 shows the comparison of loss on training and testing dataset
of both the architectures for the metadata category Position. The loss of testing
data for Architecture 1 gradually decreases until 10th epoch after which it starts to
increase specifying signs of overfitting. The same happens for Architecture 2 after
15th epoch. It can also be observed that the testing accuracy of both the architectures
has already converged until the 10th and 15th epoch respectively. Therefore, the
training is stopped and the model obtained after the specified number of epochs is
the best performing model for both the architectures which is chosen to examine the
test data.

All the seven different models, for each metadata category, are used to obtain the
mean micro F-1 score and mean accuracy score on all the folds of the dataset. Table
17 and Table 18 show the comparison of both the architectures on Mean Micro F-1
Score and Mean Accuracy Score of each metadata category. It can be observed that
both architectures perform really well on the dataset. However, Architecture 2 works
slightly better than Architecture 1 on all the metadata categories. Therefore, we
use the results of this architecture for the Description Text Base Model to conduct
further experiments.
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Meta-data Categories CNN
(Architecture 1)

CNN-BLSTM
(Architecture 2)

System 0.92 0.94
Subsystem1 0.96 0.96
Subsystem2 0.97 0.98
Medium 0.94 0.95
Position 0.98 0.98
Kind 0.97 0.97
Point 0.93 0.95

Table 17.: Mean Micro F-1 Score comparison of Architecture 1 and Architecture 2
of Description Text Base Model

Meta-data Categories CNN_Architecture
(Architecture 1)

CNN-BLSTM
(Architecture 2)

System 93.16% 94.02%
Subsystem1 95.67% 96.33%
Subsystem2 98.22% 98.48%
Medium 95.08% 95.28%
Position 98.08% 98.18%
Kind 96.96% 97.42%
Point 94.15% 94.78%

Table 18.: Mean Accuracy comparison of Architecture 1 and Architecture 2 of
Description Text Base Model
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(a) Loss plot for Architecture 1 (b) Loss plot for Architecture 2

Figure 19.: Description Text Base Model Loss on Training and Testing Data for Ar-
chitecture 1 and Architecture 2 respectively for the meta-data category
Position

7.2.2.2. Comparison between the results of Time Series and Description Text
Base Model

Figure 16a and Figure 16b depict comparison of predictions of metadata category
Point obtained from two base models. It can be seen from the figure that some
classes which get wrongly classified by one model, get correctly classified by the
other. For example, as mentioned before, class AF gets wrongly classified STAT by
the time series model 80% of the time. However, the description text base model
classifies it correctly every time. Similarly, for class V, the description text base
model classifies it incorrectly as P.EL 30% of the time while the Time Series Base
Model classifies it correctly every time. Hence, both the models complement each
other well and obtaining final predictions by utilizing the output of both models
would produce more reliable and accurate results. The combination of the results is
performed by Meta-Classification Models, discussed in the following section.

7.2.2.3. Meta-Classification Models

The meta-classification model, for each metadata category, uses the input of class
labels it receives from Time Series and Description Text Base Model and selects
the correct metadata class label as the output. As discussed in Section 6.1.2, we
use Stacking and Voting as two types of meta-classification schemes for our system.
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(a) Accuracy plot for Architecture 1 (b) Accuracy plot for Architecture 2

Figure 20.: Description Text Base Model Accuracy Plots on Training and Testing
Data for Architecture 1 and Architecture 2 respectively for the meta-
data category Position

For Stacking, any feature based machine learning algorithm can be used as the
meta-classifier. However, we perform experiments using Logistic Regression, Bagging
meta-estimator with Decision Trees as base classifier and Random Forest Classifier
for our system. Similarly, for voting, we use soft voting method which combines the
prediction probabilities of two Base Models, averages them out and chooses the class
with the highest predicted probability as the output. The parameter settings of each
model in the experiments are given below:

• Logistic Regression : random_state=0, solver=’lbfgs’, multi_class=’multinomial’

• Bagging Meta-Estimator: n_estimators=100, base estimator = DecisionTreeClas-
sifier

• Random Forest Classifier: n_estimators=80, criterion=’gini’

• Voting: method=’soft’

Since the aim of meta-classification models is to produce more reliable classification,
the classifier should outperform the performance of best performing individual base
classifier. Table 19 shows the performance of both base classifiers, for all the metadata
categories. The Description Text Base Model performs better for each metadata cate-
gory and hence, is chosen as the baseline to evaluate the results of meta-classification
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Meta-data
Categories

Time Series
Base Model

Description Text
Base Model

System 0.75 0.94
Subsystem1 0.87 0.96
Subsystem2 0.93 0.98
Medium 0.81 0.95
Position 0.94 0.98
Kind 0.95 0.97
Point 0.88 0.95

Table 19.: Mean Micro F-1 Score comparison of Time Series Base Model and
Description Text Base Model. Description Text Base Model provides
better results and is chosen as baseline for Meta-Classification Model
Comparison

schemes. This means, that the chosen meta-classification algorithm has to outperform
the mean Micro-F1 score and mean accuracy score of Description Text Base Model,
for all seven metadata categories.

Figure 21 compares the mean micro-F1 score of different algorithms tried in the
meta-classification schemes. As seen in the figure, the logistic regression fails to
learn the reliability of the classifiers and works poorly for all the categories. Bagging
Meta Estimator and Random Forest Model, to some extent learn the pattern and
perform well for the category Subsystem2 but fail to beat the baseline score for
other metadata categories. Finally, voting is observed to outperform all the other
algorithms by improving upon the baseline score for every metadata category. It
correctly utilizes the confidence of both the base predictors hence providing even more
accurate results than the base predictors. Figure 16c shows the results of combining
the predictions from the Time Series Description Model, shown in Figure 16a and
Description Text Base Model, shown in Figure 16b through voting for metadata
category Point. It can be observed that using voting as the meta-classification
scheme enhances the prediction accuracies of labels which get wrongly classified,
initially. For example, the class label IP.EL gets wrongly classified every time by
the Time Series Base Model and gets correctly classified with the accuracy of 70%
with the Description Text Base Model. However, when we combine the predictions
of both the models using voting meta-classifier the prediction accuracy of the label
increases to 100%.

Since voting is the best performing algorithm, all further experiments are performed
using Voting as our meta-classification model.
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Figure 21.: The Average Micro F-1 Score comparison of different Meta-Classification
Algorithms. Random Forest Classifier, Logistic Regression and Bag-
ging Meta-Estimator are used as Stacked Algorithms. Voting Method
outperforms every other method.

7.2.2.4. Top Level Model

As discussed in Section 6.1.3, the point name label of the sensor can be obtained
by either concatenating the class labels predicted by the meta-classification model
of each metadata category, or by training another machine learning model on these
predictions. We tried to evaluate the results of both the experiments. Table 20 shows
the mean micro F-1 score comparison of both these methods for 218 labels. We tried
Random Forest Classification algorithm for the Top Level Model. It can be seen that
training a Top Level Model on the outputs of meta-classification models produces
slightly better results than just concatenating the outputs. The classifier is able to
observe the patterns of the correlated features and hence predicts the point name label
with good accuracy. However, concatenating metadata category predicted outputs is
a more practical approach since there is a possibility that some new combinations of
concatenating metadata categories are created to form new point name labels and
since they were not in the training set, it would not be able to predict them correctly.

The thesis [5] performed the classification initially with only 10 point name labels
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Metadata Categories
concatenated Top Level Model

F1-Score 0.88 0.88
Accuracy 87.64% 88.37%

Table 20.: The mean Micro F-1 score and Accuracy comparison of two methodologies
for obtaining point name label prediction for 218 labels after obtaining
the meta-classifier predictions through voting

and later with 81 labels. However, we perform our experiments using 218 labels.
To create even comparison, we compare the results obtained from our architecture
for the 10 labels used in [5] with results of [5] as the baseline. Since training a Top
Level Model on the meta-classifier predictions produces slightly better results for our
architecture than combining the predictions, we use this approach to perform the
comparison with the baseline score. As shown in Figure 22, the proposed architecture
produces better results than the baseline on all except 3 labels.

Figure 22.: The Average Micro F-1 Score comparison of 10 labels obtained by two
proposed methods of point name label prediction in Section 6.1.3. The
baseline score is obtained from previously conducted thesis in Frauhofer
ISE [5]

The architecture is unable to beat the baseline score for labels MTR.EL MEA E.EL,
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Architecture Layer Algorithms
Time Series Base Model Random Forest Classifier
Description Text Base Model CNN with BLSTM
Meta-Classification Model Voting (Soft)
Top Level Model Random Forest Classifier

Table 21.: The final chosen algorithms for each layer of models in the architecture

WC.H MTR.H HW MEA VP andWTH OA MEA T. The recorded
sensor labels are highly correlated with each other. Since the model in the previous
thesis was trained on only 10 labels, it had limited amount of labels to classify
compared to our model, and hence for some labels, it was able to classify with better
accuracy than our architecture. However, the overall accuracy score depicted in Figure
23 shows that even with an increased number of labels, our proposed architecture
outperforms the baseline score with an accuracy of 88%.

Figure 23.: The accuracy comparison of the proposed architecture with the baseline
score

The final list of algorithms and technique that we finalize at each level of the
architecture, is depicted in Table 21.
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7.3. Inter-Building Cross Validation

The experiments that we discussed in the previous section used the data from a set of
selective buildings and the performance of the architecture was also evaluated on the
data of the same buildings. In reality, the geographical location of a building as well
as the usage characteristics and the detailed control strategies (like time schedules)
play a vital role in the measured value of the sensor of that building. Besides of
different system combinations and controls, the data logging mechanisms and quality
may be different. Each building shows some unique characteristics and hence the
performance of the architecture might be greatly affected with the inclusion of an
unseen building in the testing set because the behaviour and type of sensor data
might be different compared to the data on which the model is already trained. In
order to evaluate the performance of the architecture on the unseen data, we create a
new methodology to train our architecture. There are 13 buildings in the dataset. We
create 13 different sets of sensors, each set corresponding to one building and use one
set for testing while using all other 12 sets for training the architecture. The process is
repeated until every set is used for testing. We call this process Inter-Building Cross
Validation. Figure 24 shows the accuracy score of final point name label prediction,
obtained from our architecture when tested on different buildings.

Figure 24.: The accuracy score obtained from the architecture when tested on
different buildings
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As depicted in the figure, the model performs poorly on the unseen data and is
unable to predict point name label correctly in most of the buildings. The highest
accuracy obtained is just 52%, obtained on building 02_DKB_Berlin. We have
already seen in Section 7.2.2 that the architecture works well with k-fold cross
validation experiment. Therefore, if improved quality data is provided to the model,
it will produce good results.

7.4. Simulation of User Feedback

In order to solve the problem of the trained model encountering unseen data, discussed
in the previous section, we propose a similar approach proposed in the work [5] to
improve the prediction results for the architecture. The approach assumes that the
knowledge about the ground truth would be provided by a human user in the real
world application. In general, the architecture predicts a point name label with a
certain probability. We call this probability the confidence of the model. Confidence
value describes how much the algorithm is confident while predicting a particular
class. Therefore, if a predicted class has high probability then the model has higher
confidence in the prediction of that class. The idea is that once the predictions for
point name labels have been obtained, the sensors would be sorted, based on their
confidence score. The user can then select any specified threshold, for example, top 20
sensors with lowest confidence scores, and then screen the list of sensors at least once
to check for the correct classification by the method, by comparing the label with any
human comprehensible description. In case a sensor is incorrectly labelled, the user
would interact with a hypothetical user interface to correct the metadata category of
the sensors. These corrected sensors could then be placed into the training set and
the model would then be re-trained. Although, in this procedure a user still has to
perform manual work for labeling the data, the amount of work should be decreased
since only parts of the sensors would have to be labeled to improve the quality of the
classification. Also the system would provide the user with a list of sensors which
should impact the results most. This approach differs from the existing approach as
it utilizes the confidence of the model to sort the sensors whereas existing approach
sorted sensors based on their performance.

To evaluate the performance of the proposed approach, metrics like accuracy,
precision or recall do not reflect the problem domain well. The point name label is a
concatenation of seven different metadata categories. These evaluation metrics do
not incorporate the significance of each specific category, but rather consider all the
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categories of the point name label as a single class. Therefore, even if one category
of the point name label is incorrectly classified, the whole label will be considered
incorrect. Therefore, in order to measure correctly, the number of metadata categories
between the predictions and the actual labels, that have been correctly classified, we
introduce a new measure called "Usefulness". As the name implies, this provides a
measure of the usefulness of a prediction to the user, as classifications that are only
slightly off will still give a user useful insight on the sensor and reduce the number
of changes needed to get to the correct label. The measure can be defined as the
accuracy of individual predicted metadata category class labelled [5].

Usefulness Measure = 1− ( Number of categories changed / Total Number of Cate-
gories)

(7.1)
The measure has the highest value of 1.0 when no category needs to be changed

and the lowest value of 0.0 when every category needs to be changed. Therefore,
the higher value corresponds to more accurate predictions. Consider the sensor with
original point name label AHU SEV STAT. Let us consider that the classifier
predicts it as RAD SEV T. It can be seen that the first category system ’RAD’
and the last category point ’T’ of the label has been incorrectly predicted. Therefore
2 categories need to be changed in the label to make it match with the original label
and hence the usefulness score would then be calculated as (1 - 2/7 = 0.72)

7.4.1. Feedback Experiment

The feedback simulation experiment involves the following steps:

1. Test the sensor data of the building on the model, already trained on the data
of other buildings and obtain predictions of the point name label

2. Compute the usefulness score of all the predictions

3. Sort the list of predictions based on the confidence score of the predicted class
by the model, in the ascending order

4. Select top 20 sensors from the sorted list, verify the correctness of the prediction
and mark correct label for the sensors

5. Transfer the correctly labelled sensor data back to the training set while
discarding it from the test set
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6. Retrain the model and test it on the remaining sensors of the building in the
test set

7. Perform step 2 to step 6 in an iterative manner until all the sensors from the
building have been added back to the training set

For example, let us consider that BuildingX was chosen for the experiment which
contained data from 60 sensors in it. Step 1 will be performed to obtain the predictions
of the point name label from the model that would be followed by the computation
of the usefulness score and obtaining the model’s confidence on the predicted labels.
Step 3 would be performed where the list would be sorted and the top 20 sensors
with the lowest confidence score would be selected. The user would then mark correct
labels for the wrongly classified sensors and put them back into the training set to
retrain the model. In order to compare the impact of retraining the model, we create
a baseline score where we perform steps 1 to 4, and rather than retraining the model,
we discard the sensors from the test set and obtain the predictions on the remaining
sensors. This process is also performed in an iterative manner.
Figure 25a shows the trend of usefulness on the top 20 sensors that are selected

every time to put back into the training set for building 03_KuP_Zentrale_Berlin. It
can be observed that the average usefulness score on these selected sensors improves
faster and to a higher score when the model is re-trained compared to the case where
no re-training takes place and the sensors are discarded from the test set. This means
that the addition of sensors into the training set improves the overall precision of the
classifier and even the predictions made with very low confidence are very accurate.
Similarly, Figure 25b shows the impact of retraining the classifier on the usefulness
of all the predicted labels excluding the 20 sensors chosen for retraining the model.
Since the number of correctly classified sensors is comparatively high in the retraining
phase, the average usefulness score of retrained predictions is much higher than the
predictions obtained from the non-retrained model. This is also because the measured
values of sensors are highly co-related withing a building, therefore, one sensor of a
particular building gets highly influenced by the measured value of another sensor
of the same class and building. For example, the temperature sensor, when added
back to the training set, will have an influence on the other temperature sensors of
the same building and therefore repeated retraining of the model on new sensors
helps in improving the prediction results. It can also be observed from the graph that
removing low sensors predicted with low confidence scores result in an steep rise in
the average usefulness of the remaining sensors, thus, justifying the selection of the
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sensors chosen to be discarded or added back.
The proposed process serves as a proof of concept which can be implemented to

further improve the prediction results.
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(a) Average Usefulness on selected 20 labels of building at every iteration

(b) Average Usefulness on all the sensor labels except the 20 selected for retraining the model

Figure 25.: Comparison of usefulness on the selected top 20 labels based on
the confidence score versus the rest of the labels for building
03_KuP_Zentrale_Berlin
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8. Conclusion and Future Work

8.1. Conclusion

In this work, we developed a system which automates the labelling of various time
series and description text data of various sensors, obtained from different kind
of buildings like police department, elementary school, housing industries, offices
of the district government, etc., in a supervised learning manner. The number of
sensors that were used from these buildings were over 3300 in total and included the
measured values from distinct air handling units, outdoor air temperature sensor,
room air temperature, energy meters, pressure sensors, supply air temperature etc.
The labelling convention used in the thesis is called data point naming convention
and each sensor’s label is called point name label which marks its type and origin.
The point name label is a concatenation of seven different meta-data category entries
of the sensor, separated by an underscore ’_’. The system, that is proposed in this
thesis, uses 20 handcrafted-features from the raw time series data of the sensors [5],
to provide it with a meaningful representation. Pre-trained Word Embedding vectors
are used as features for the description text of the sensors. The aim of the system is
to first predict respective meta-data category class labels of the sensor and then use
these labels to predict the final point name label. Therefore, a layered architecture is
used which takes, both Time Series Data and Description Text of sensors, as input
and then predicts a class label for all seven meta-data categories. The output labels
are then used to train a Top Level model which predicts the final point name label of
the sensor.

For each layer of the architecture, we tested out different machine learning and
deep learning models and selected the best performing algorithms. The proposed
architecture outperformed the results of previously conducted thesis at Fraunhofer
ISE [5]. Our system successfully classifies 218 point name labels with an accuracy of
87% beating the baseline score of [5] which only classified 81 labels with an accuracy
of 76%.

In the end, we tested our system towards a more practical simulated real world
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scenario where we evaluated the performance of our model on the data of new
buildings using a new performance measure, which we called the ’Usefulness Measure’.
The results showed that retraining a model in an iterative fashion makes the model
more biased but better adapted to the building and thus assist in classifying most of
the sensor data of a new building to their corresponding labels.

8.2. Future Work

As we have seen already, the time series data show high inconsistency. The need for
restructuring of the meta data system and thus the unified point name labels has
to be done by domain experts and is out of scope for this thesis. Nonetheless, the
work in the thesis can help the design choices for experts in such an attempt. Also
the experiments exposed possibles flaws in the labeling. In future, this thing can
be improved by further reviewing the data and dividing already existing classes to
further sub-classes. This can also help in improving the performance of deep learning
model when applied to raw time series data. Furthermore, the system, proposed in
this thesis, can also be tested on the data of more buildings to further evaluate the
performance of it which would again raise the need for a review of these buildings
data. Also, the system right now uses a combination of deep and machine learning
models. Deep Learning models work fast with GPU and training machine learning
models with a large amount of data require high RAM. These hardware constraints
do not fully automate the operations of the system as both types of models have to
be trained on different machines, satisfying the requirement. This constraint can be
resolved if the system is operated on machines having GPU and large capacity of
RAM.

Additionally, to the task of classifying the sensors, the final use of the sensors
data also requires information on the systems or zones a sensor belongs to. This
information is always specific to the building at hand. The first three entries of the
metadata example shown in Table 1 belong to such a type of information. The name
or id of a zone or system could not be inferred from the raw time series data. Yet
sensors belonging to the same system might show similar behaviour on a certain time
scale. For instance, a system might start its operation at certain times of day or
on certain environment events (such as increasing room temperatures with sunrise).
All sensors belonging to this system will in some way show this change of operation
in their readings. On the other hand systems of the same type might start their
operation at the same time and thus their sensors will show different time dependent
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behaviour. This effect on the time series data can be one source for the grouping of
sensors. An unsupervised machine learning method like ’clustering’ might be able to
detect such grouping. Another source would be identifiers used in the description
text data sources. These would have to be separated from the text fragments that
are of general nature and will for instance just denote the type of a related system
and not its unique id.

Finally, the system needs to be integrated with a user interface which can also help
in aiding the technical personnel with the feedback process.
Parts of the developments performed in this work have been done in the context

of the EFRE project SmartBadenMonitor [48]. To get comparable results with
previous work, up to now no measurement data from that project could be used. The
inclusion of new data sets will also respect data of SmartBadenMonitor.
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A. Abbreviations of Classes

Tables below describe the abbreviations of some class labels for each meta-data
category which make up the final point name label.

No. Category Classes Abbreviation

1 System DH District heat
DC District cold
ESUP Energy supply
WSUP Water supply
WTH Weather Station
WC.H heating circuit (water circuit for heating)
WC.C cooling circuit (water circuit for cooling)
WC.HC heating / cooling circuit (water circuit for heating / cooling)
AHU Air handling unit

2 Subsystem_1 MTR.H heat meter
MTR.C cold meter
MTR.EL electricity meter
MTR.W water meter
GLOBSENS Pyranometer
PU Pump
FAN Fan
HC heating coil
CC cooling coil
PREHC pre-heating coil
PREHCC pre-heating/cooling coil

Table 22.: Table Describing abbreviations of some classes of System and Subsys-
tem_1
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No. Category Classes Description

3 Subsystem_2 PU Pump
CTRV Control valve

4 Medium HW hot water
CHW chilled water
HCW hot / chilled waterr
DCW domestic cold water
FUEL any kind of fuel (gas, oil, wood, etc.)
OA outdoor air
RA room air
SUPA supply air
EXHA exhaust air

5 Position SUP.(PRIM, SEC) supply (on primary or secondary side of system)
RET.(PRIM, SEC) return (on primary or secondary side of system)
PRIM, SEC primary or secondary side of system

6 Kind MEA measured value
SEV set value
SIG signal (feedback from component)

7 Point E energy
E.H heating energy
E.C cooling energy
E.EL electric energy
VOL Volume
T temperature
RH relative humidity
SOL solar radiation
CTRLSIG control signal
STAT status (1/0)

Table 23.: Table Describing abbreviations of some classes of Subsystem_2, Medium,
Position, Kind and Point
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B. Classes in the test set

No. Meta-data Category Class Labels Number of Sensors

1 System ” 362
AHU 239
WC.H 127
RAD 53
WIN 37
WC.H.RAD 30
WC.HC.ACS 23
BL 13
EGEN.C 13
WTH 10
EGEN.H 8
HP 8
WC.H.AHU.HC 7
BHX 7
OSP 7
LIFT 7
WC.H.AHU 6
WSUP 5
WC.H.AHU.PREHC 4
WC.C.Feeder 4
EGEN 4
EH 4
ESUP 3
SPRS 3
SUBDIS.TG 3
SUBDIS.U 3
WC.C.RCA.C 3
HX.dc 2
WIN.AHU 2
EGEN.C.ADV 2
DHWP 2
HSTO 2
WSUP.CTO 1
WIN.O 1
TH 1
CTO 1
WIN.W 1
WC.H.Feeder 1

Table 24.: Classes used for meta-data category System
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No. Meta-data Category Class Labels Number of Sensors

2 Subsystem_1 ” 735
CTRV 52
VFC 40
PU 27
FAN 25
HC 21
SHD 16
PRE 13
PREHC 12
HCC 11
CC 9
SHV 9
BOI 8
CCH.AHU 7
CCH 5
MTR.W 4
CTO 3
PV 3
FROS 2
PREV 2
GLOBSENS 2
CHOV 1
HRC 1
HUM 1

3 Subsystem_2 ” 672
MTR.EL 216
MTR.H 84
PU 13
CTRV 7
MTR.HC 5
MTR.C 5
MTR.W 2
FC 1
EVAP.HT.el 1
CTRV.H 1
CTRV.C 1
CHOV 1

Table 25.: Classes used for meta-data category Subsystem_1 and Subsystem_2
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No. Meta-data Category Class Labels Number of Sensors

4 Medium ” 330
HW 266
RA 201
SUPA 66
EXHA 55
HCW 26
OA 19
CHW 19
SUPA.EXHA 11
COW 6
DCW 5
EXHAO 4
RCA 1

5 Position ” 865
RET 42
SUP 37
RET.SEC 20
SEC 19
SUP.SEC 18
PRIM 3
SUP.PRIM 2
TOP 1
RET.PRIM 1
BOT 1

6 Kind MEA 626
SIG 234
SEV 114
SEV.Nacht 14
SEV.Tag 12
CALC 6
SEV.MAN 3

Table 26.: Classes used for meta-data category Medium, Position and Kind
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No. Meta-data Category Class Labels Number of Sensors

7 Point T 370
STAT 214
P.EL 72
U 59
I 58
VP 30
E.EL 27
VOL 24
CTRLSIG 23
RH 23
E.H 18
P.H 16
DEL 13
AF 11
CO 10
VP.max 8
VP.min 7
NROT 5
PR 5
E.C 5
OPH 3
SOL 2
AQ 2
IP.EL 1
E.HC 1
T.vz 1
V 1

Table 27.: Classes used for meta-data category Point

All the tables above describe the classes used in the test set for each meta-data
category to perform K-Fold Cross Validation Experiment. The training set included
instances of every class in the dataset.
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C. Comparison of Heatmaps

(a) Heatmap from Time Series Base Model (b) Heatmap from Description Text Base Model

(c) Heatmap from Voting Meta-Classifier Model

Figure 26.: Comparison for meta-data category System

The heatmap comparison for the predictions obtained from Random Forest Classifier
in Time Series Base Model, CNN-BLSTM architecture in Description Text Base Model
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(a) Heatmap from Time Series Base Model (b) Heatmap from Description Text Base Model

(c) Heatmap from Voting Meta-Classifier Model

Figure 27.: Comparison for meta-data category Subsystem_1

and the combination of these predictions using Voting as the Meta-Classification
technique for all meta-data categories.
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(a) Heatmap from Time Series Base Model (b) Heatmap from Description Text Base Model

(c) Heatmap from Voting Meta-Classifier Model

Figure 28.: Comparison for meta-data category Subsystem_2
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(a) Heatmap from Time Series Base Model (b) Heatmap from Description Text Base Model

(c) Heatmap from Voting Meta-Classifier Model

Figure 29.: Comparison for meta-data category Medium
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(a) Heatmap from Time Series Base Model (b) Heatmap from Description Text Base Model

(c) Heatmap from Voting Meta-Classifier Model

Figure 30.: Comparison for meta-data category Position
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(a) Heatmap from Time Series Base Model (b) Heatmap from Description Text Base Model

(c) Heatmap from Voting Meta-Classifier Model

Figure 31.: Comparison for meta-data category Kind
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D. Usefulness of other buildings

(a) Average Usefulness on selected 20 labels of building at every iteration

(b) Average Usefulness on all the sensor labels except the 20 selected for retraining the model

Figure 32.: Comparison of usefulness on the selected top 20 labels based on the
confidence score versus the rest of the labels for building MWME
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(a) Average Usefulness on selected 20 labels of building at every iteration

(b) Average Usefulness on all the sensor labels except the 20 selected for retraining the model

Figure 33.: Comparison of usefulness on the selected top 20 labels based on the con-
fidence score versus the rest of the labels for building 02_DKB_Berlin
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