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Problem statement

Design a model that automatically classifies and corrects tokenization
errors, which are one of four types:

1 Missing spaces (like ‘HelloWorld’)
2 Adding wrong spaces (like ‘Hello Wor ld’)
3 Line break hyphenation (like ‘Hello Wo-[newline]rld’)
4 Garbled characters (like ‘Hello Warld’)
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Motivation

A variety of systems process text corpora as individual words.
Text search

A variety of sources don’t store text in a fully recoverable format
PDF
Images

Corpora extracted with such errors will be harder to deal with,
hence the urge to automatically fix them in advance.

(Albert-Ludwig Universtät Freiburg) July 19, 2018 3 / 45



Outline

1 Preliminaries

2 Baseline approaches

3 Dynamic programming approach

4 Deep learning background

5 Deep learning approaches

6 Evaluation

(Albert-Ludwig Universtät Freiburg) July 19, 2018 4 / 45



Preliminaries

Outline

1 Preliminaries

2 Baseline approaches

3 Dynamic programming approach

4 Deep learning background

5 Deep learning approaches

6 Evaluation

(Albert-Ludwig Universtät Freiburg) July 19, 2018 5 / 45



Preliminaries

Edit Distance

Edit distance between T and S is the number of operations to be
changed from T to transform it into S.
Characters are changed by addition or deletion operations.
Edit distance can be traced to find edit operations from T to S.
EditOperations(‘abcx’, ‘acxy’) = {(DEL,2, ‘b’), (ADD,5, ‘y’)}
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Baseline approaches

Baseline approaches

1 Greedy approach: Keep matching as much words as possible
from beginning of text, according to a dictionary.

2 3-Gram Markov Model: Similar to the main (bicontext) approach;
replaces the language model by a simpler probabilistic model.
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Baseline approaches

Greedy approach

Correcting ‘The reis someonegoing.’

Use a stream of the non-delimiter characters.
The stream is ‘Thereissomeonegoing.’
Extract the words ‘There’, ‘is’, ‘someone’, ‘going’, ‘.’
Join them into ‘There is someone going.’
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Baseline approaches

Drawbacks with greedy approach

Correcting ‘The remainingfood isdelicious.’

The stream is ‘Theremainingfoodisdelicious.’
Extract the words ‘There’, ‘main’, ‘in’, ‘g’, ‘food’, ‘is’, ‘delicious’, ‘.’
Join them into ‘There main in g food is delicious.’

Which is a wrong correction, because matching ‘There’ greedily made
it hard to fix the remaining sentence.
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Dynamic programming approach

Proposed dynamic programming approach

The components of the dynamic programming approach:
Grouping consequent tokens
Retokenizing each group separately
Scoring tokens

The approach matches globally as many words as possible, according
to a dictionary.
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Dynamic programming approach

Example

’Thisis the mostbasic ex amp le f or the algorithm.”

would idealy be grouped as:

’(Thisis) (the) (mostbasic) (ex amp le) (f or) (the) (algorithm)(.)”

and then the characters are retokenized as:

’(This is) (the) (most basic) (example) (for) (the) (algorithm)(.)”

and finally, the acquired fixed text:

’This is the most basic example for the algorithm.”
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Dynamic programming approach

Drawbacks with dynamic programming approach

Correcting:

‘The rest are at theage oftwenty.’

Can be fixed into:

‘There stare at the age of twenty.’

A wrong correction, as the chosen English words don’t fit in context.
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Deep learning background

Deep learning background

1 Language models.
2 Recurrent neural networks.
3 Text generation.
4 Beam search.
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Deep learning background

Language model

A language model M is an estimator of how likely a string s to occur as
a string of a specific language.

Forward prediction: pf (y |X ) probability of the character y to come
after X , by feeding the last h characters from X as input.
Backward prediction: pb(y |X ) probability of the character y to
come before X , by feeding the first h characters from X as input.
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Deep learning background

Neural networks

x1

x2

...

xn ...
...

y1

y2

...

ym

Figure : Neural network example, x1, · · · , xn are the input neurons, y1, · · · , ym
are the output neurons. The remaining neurons are the hidden ones.
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Deep learning background

RNN language model

x<1> x<2> · · · x<t>

c<0> LSTM LSTM · · · LSTM c<t>

y<t>

Figure : Many-to-one LSTM recurrent neural network, x<t> is the t-th
element in the input sequence, c<t> is the t-th activation value. The output of
the network is y<t>.
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Deep learning background

Text generation with language models

Language models can generate texts, by continuously applying the
function S ← S ◦WeightedSamplexpf (x |S). For example:

‘It is found that ’ generates ‘t’
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Deep learning background

Text generation with language models

Language models can generate texts, by continuously applying the
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Deep learning background

Generated text

‘It is found that the first album in the canton of the top of the part of the
main part of the most common and songs of the album and an
anadring and particles and in the process of the city of the most of the
planets in the south of the season of the main movie and ended in
1991. It is a species of started and the constitution of the name in the
contract of the police match of the principal that is a common of the
Army in the United States. It is also be a member of the Earth was an
area of the people of the political canton of the state of the book in the
and of the area of the simple of the song of the only became a hard
and an area of the area of the song and an ended of the books.’
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Deep learning background

Beam search

Beam search finds semi-optimal states in a gigantic state space, it · · ·
works like breadth-first-search, keeping top b states at each level.
can reach more globally optimal solutions than greedy search.
b is referred to as the beam size.
b = 1 will make beam search a greedy search.
b →∞ will make beam search a full search.
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Deep learning approaches

Deep learning approaches

DL approaches utilize RNN language models to solve the problem.
1 States of two contexts
2 Bicontext approach

Occurrence function
Fixing decisions scores
Tuner

3 End-to-end approach
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Deep learning approaches

States of two contexts

Fix op Before context Current After context Fixed text

original: B = R−h→ v = Ti A = Ti+1�i+h R

NOP: B v A1 A2→ Ti+h+1 R v

DEL: B A1 A2→ Ti+h+1 R

ADD s: B s v A R s

Figure : The effects of all fixing operations NOP, DEL and ADD, on the
updates of states.

By encapsulating (B, v ,A,R, i) into a state S (interpreted as
corrections of prefixes), finding the most probable fixed string is a
search problem.
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Deep learning approaches

Occurrence function

Expectancy occurrence function, how likely is the context X follows Y .

Po(X ,Y ) :=
b(X ,Y , s)

s
· f (X ,Y , s)

s
(1)

Where,

b(X ,Y , s) :=

min{|X |+1,s}∑
i=1

pb(X−1, · · · ,X−i |Y )

f (X ,Y , s) :=

min{|Y |+1,s}∑
i=1

pf (Y1, · · · ,Yi |X )

(2)

Expected number of b(X ,Y , s) characters from X to come before Y .
Expected number of f (X ,Y , s) characters from Y to come after X .
pf and pb are computed with the RNN language models.
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Deep learning approaches

Text

‘The 1976 Summer2 Paralympics1 took2 place2 in Toronto, Ontario,
Canada.

1,657 athletes from2 381 were1 at4 the2 Games. People2 with
these1 types of4 disabilities1 competed at the games2: spinal2 injury2,

amputee, blindness, and1 Les Autres.’

‘The 1976 Summe r Paraly mpicstook pla ce in Toronto, Ontario,
Canada.

1,657 athletes fro m 3awereat th e Games. Pe ople with
thesetypes f̂ disabilitiescompeted at the gam es: sp inal i njury,

amputee, blindness, andLes Autres.’
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Deep learning approaches

Fixed text

‘The 1976 Summer Paralympics took place in Toronto, Ontario,
Canada.

1,657 athletes from 38 were at the Games. People with
these types of disabilities competed at the games: spinal injury,

amputee, blindness, and Les Autres.’

(Albert-Ludwig Universtät Freiburg) July 19, 2018 28 / 45



Deep learning approaches

Example

Pe ople with thesetypes f̂ disabilitiescompete d at the gam es

Peop le with these types of disabilities competed at the games

B =‘le with these types ’, v =‘f’, A =‘ disabilitiescompete’, s =‘o’

op X Y f (X ,Y ,3) b(X ,Y ,3) 32 · Po(X ,Y ) log 9Po

DEL B A 10−6 6 · 10−6 10−10 −23.68
NOP Bv A 0.004 0.028 10−4 −9.09
NOP B vA 0.014 0.0033 4 · 10−6 −10.00
ADD Bs vA 1.98 2.06 4.08 1.41
ADD B svA 2.59 1.33 3.44 1.24
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Deep learning approaches

Decisions probabilities

Fixing edit operations are decided with scores:

logPDEL = log Po(B,A)

logPNOP =
1
2

log Po(Bv ,A) +
1
2

log Po(B, vA)

logPADD s =
1
2

log Po(Bs, vA) +
1
2

log Po(B, svA)

(3)
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Deep learning approaches

Decisions probabilities

With more tuning:

logPDEL = log Po(B,A)

logPNOP,s 6∈Γ =
1
2

log Po(Bv ,A) +
1
2

log Po(B, vA) + 2 log 0.005

logPNOP,s∈Γ =
1
2

log Po(Bv ,A) +
1
2

log Po(B, vA)

logPADD s,s 6∈Γ =
1
2

log Po(Bs, vA) +
1
2

log Po(B, svA) + 2 log 0.005

logPADD s,s∈Γ =
1
2

log Po(Bs, vA) + log Po(B, svA)

(4)

Where Γ is the set of delimiters.
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Deep learning approaches

Tuned decisions probabilities

The scores can be tuned with linear weights and biases:

logPDEL,v∈Γ = w1 log Po(B,A) + b1

logPDEL,v 6∈Γ = w2 log Po(B,A) + b2

logPNOP,v∈Γ = w3 log Po(Bv ,A) + w4 log Po(B, vA) + b3 + b4

logPNOP,v 6∈Γ = w5 log Po(Bv ,A) + w6 log Po(B, vA) + b5 + b6

logPADD,s∈Γ = w7 log Po(Bs, vA) + w8 log Po(B, svA) + b7 + b8

logPADD,s 6∈Γ = w9 log Po(Bs, vA) + w10 log Po(B, svA) + b9 + b10

(5)

An optimizer is used to find optimal values for w,b.
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Additional End-to-End Deep Learning Approach

In the bicontext approach:
Language models are trained with correct texts.
Tuner is trained with aligned pairs of correct and corrupt texts.
Output is a list of scored fixing actions.

In the end-to-end approach:
Input is aligned pairs of correct and corrupt texts.
Classify/Score possible fixing actions.
Everything else is learned by a neural network.
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Evaluation
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Evaluation

Evaluation Method

C := EditOperations(G,C) and F := EditOperations(G,F ),
The fixer is a classifier of corruptions, where:

Correctly identified corruptions, TP = |C ∩ F| = |C \ F|,
Wrongly identified corruptions, FP = |F ∩ C| = |F \ C|,
Undetected corruptions, FN = |F ∩ C|

The classification of corruptions is evaluated using F1-score.

precision =
TP

TP + FP
, recall =

TP
TP + FN

,F1 =
2PR

P + R
(6)
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Evaluation

Example

A12,! A2,a

D2

D10

CF

D6

Figure : Simple Venn diagram of the two sets F and C. Deletion and addition
operations have the symbols D and A, respectively. G = ‘Hello world’,
F = ‘Helloworld!’ and C = ‘Halloword’
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Evaluation

Datasets

Two datasets were used in evaluation.
Reuters-21578
Simple-Wikipedia

Corrupt texts were generated by an algorithm that corrupts nearly
half the tokens, by a random tokenization mistake.
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Evaluation

Datasets

Feature Reuters-21578 Simple-Wikipedia
# of articles 19,043 131,566
Avg. # of characters 800 800
Vocabulary 49,847 348,924
Vocabulary (freq ≥ 3) 24,986 130,191
Domain Economics Various

Table : Summary of the datasets
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Evaluation

Fixing Evaluations

Type Simple-Wikipedia Reuters-21578
Greedy baseline 0.420 0.478
3-Gram Markov baseline 0.468 0.331
DP approach 0.696 0.680
End-to-End 0.820 0.737
Bicontext approach (128) 0.886 0.854
Bicontext approach (256) - 0.873

Table : Fixing evaluations on both datasets, measured by the mean
F1-scores. The result are 3-fold cross validated.
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Evaluation

Fixing Evaluations

Type Simple-Wikipedia Reuters-21578
Using default tuner weights 0.819 0.814
Beam size 1 0.872 0.846
50 Epochs 0.876 0.840
100 Epochs, beam size 2 0.886 0.858
Beam size 4 0.887 0.856
More data (×2) 0.903 -
No typos 0.963 0.919

Table : Experiments with changing one setting per experiment, using the
bicontext model. The shown values are the 3-fold cross validated F1-scores .
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Evaluation

Conclusions

Two dictionary-based approaches and three learning-based
approaches.
Dynamic programming approach is the best dictionary-based.
Deep learning-based bicontext model is the best model.
Deep learning-based bicontext model maintains two contexts and
search the best result.
The results of detecting and fixing corruptions have F1 score 90%
up to 96%.
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Evaluation

Questions

Thanks for listening :) Any questions?
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Evaluation

Demo
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Evaluation
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Appendix A: Trie data-structure

Trie data-structure

ε

a

ab

abc

ax

axc axy

b

bx

bxy

a b

b x

c c y

x

y

Figure : Trie datastructure sample, with five inserted strings: ‘a’, ‘abc’, ‘axc’,
‘axy’, ‘bxy’
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Appendix B: Full Dynamic Programming approach

Tokens scoring

All tokens will be scored according to this function:

score(w) =


ζ if w is a special string
0 if e(w ,D) > 1
ϕe(w ,D)(α|ŵ |2 + β|ŵ |+ γ) otherwise

(7)

Where,
ŵ is the nearest matching word in the given dictionary
e(w ,D) is the edit distance to the nearest matching word
α = 1.15, β = 0.1, γ = 1, ζ = 2, ϕ = 0.5 are hyperparameters
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Appendix B: Full Dynamic Programming approach

Tokens scoring example

Query q matched w length |w | e(w ,D) Score(q) Score(q)
|w |

Hello Hello 5 0 30.25 6.05
world world 5 0 30.25 6.05
warld world 5 1 15.125 3.025
war war 3 0 11.65 3.88
to to 2 0 5.8 2.9
td to 2 1 2.9 1.45
today today 5 0 30.25 6.05
tday today 5 1 15.125 6.05
the the 3 0 11.65 3.88
query - 0 > 1 0 0
ad - 0 > 1 0 0

Table : Tokens’ scores, q is a given query word, w is the nearest match for it
from the dictionary D. The dictionary contains the words ‘Hello’, ‘world’, ‘war’,
‘to’, ‘today’ and ‘the’.
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Appendix B: Full Dynamic Programming approach

Retokenization

Retokenization of tokens T1, · · · ,Tn, which are joined into a big word
w , is done by retokenizing any suffix of w according to:

Bw [i] = max
i<j≤|w |+1

{Bw [j] · θi,j + (1− θi,j) · Score(wi→j)} (8)

Where θi,j = |w |−j+1
|w |−i+1 is a normalizing term.

Bw [i] solves the suffix wi→

Choose the first token ending at position j , using Score(wi→j)

Solve the remaining shorter suffix recursively, using Bw [j]
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Appendix B: Full Dynamic Programming approach

Retokenization example

H e l l o w a r l d
i 1 2 3 4 5 6 7 8 9 10
B 22.7 12.8 10.2 11.6 12.8 15.1 1.5 0.0 0.0 0.0
nxt 6 6 4 6 6 11 9 9 10 11

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’. The grey
cells mark the beginning of the new tokens according to nxt .
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Appendix B: Full Dynamic Programming approach

Grouping

Grouping T1, · · · ,Tn is done by grouping any suffix of tokens
Ti , · · · ,Tn according to:

F [i] := max
1≤d≤ω,n+1−i

{F [i + d ] + G(i ,d)} (9)

Where G retokenizes the group of chosen tokens Ti , · · · ,Ti+d−1:

G(i ,d) = max

{
Score(Ti ◦ Ti+1 ◦ · · · ◦ Ti+d−1) if not 0
Retokenize(Ti ◦ Ti+1 ◦ · · · ◦ Ti+d−1) otherwise

(10)
The remaining suffix of tokens is solved recursively by F [i + d ].
The group size is restricted up to ω ≤ 8 tokens.
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Appendix B: Full Dynamic Programming approach

Grouping in action

i d Tokens group Retokenization Joined Score G(i ,d)

1 1 He He - 0.0
1 2 He, llowarl Hello, war - 21.21
1 3 He, llowarl, d Hello, world - 22.69
2 1 llowarl l, to, war - 6.49
2 2 llowarl, d l, to, world - 10.19
2 3 llowarl, d, td l, to, world, to - 8.72
3 1 d d - 0.0
3 2 d, td d, to - 1.93
3 3 d, td, ay d, today - 7.92
4 1 td - to 2.90
4 2 td, ay - today 9.90
5 1 ay ay - 0.0

Table : G(i ,d) for the corrupt text: ‘He llowarl d td ay’

(Albert-Ludwig Universtät Freiburg) July 19, 2018 54 / 45



Appendix B: Full Dynamic Programming approach

Grouping in action

He llowarl d td ay
G 1 2 3 4 5

He 1 0.0 21.21 22.69 - -
2 - 6.49 10.19 8.72 -
3 - - 0.0 1.93 7.92

td 4 - - - 2.90 9.90
5 - - - - 0.0

He llowarl d td ay
i 1 2 3 4 5
F 32.6 20.1 9.9 9.9 0.0
nxts 4 4 4 6 6

Table : Functions F [i] and G(i ,d) for the tokens. Grey cells mark the
beginnings of the groups. The text is grouped into ‘(He llowarl d) (td ay)’
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Appendix C: Backpropagation
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Appendix C: Backpropagation

Backpropagation

Weights on the connections can be adapted to adjust the output
The network’s ability to approximate a function is measured by a
loss function
The network trains to approximate a function by iteratively
adapting the weights to minimize the loss function, using
backpropagation
For classification tasks, the loss used is categorical cross-entropy

J (ŷ,y) =
1
m

m∑
i=1

−yi log ŷi (11)
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Appendix D: 3-Gram Markov model

3-Gram Markov model

The second baseline approach uses the bicontext approach
It replaces the RNN language model by 3-Gram Markov model,
where the probabilities are given by:

p(v |C) =
count(C ◦ v)

count(C) + ε
(12)

This could be enhanced by smoothing techniques.
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Appendix E: Beam search

Beam search example

ε

a

ax ay

b

bx by

c

cx cy

a,1 b,2 c,3

x ,100

y ,200

x ,50

y ,100

x ,1

y ,2

Figure : Beam search, beam size = 1. Traversed nodes are marked in grey.
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Appendix E: Beam search

Beam search example

ε

a

ax ay

b

bx by

c

cx cy

a,1 b,2 c,3

x ,100

y ,200

x ,50

y ,100

x ,1

y ,2

Figure : Beam search, beam size = 2. Traversed nodes are marked in grey.
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Appendix E: Beam search

Beam search example

ε

a

ax ay

b

bx by

c

cx cy

a,1 b,2 c,3

x ,100

y ,200

x ,50

y ,100

x ,1

y ,2

Figure : Beam search, beam size = 4. Traversed nodes are marked in grey.
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Appendix F: Bicontext approach another example

Example

at the gam es: sp inal i njury, amputee blindness, andLes Autres.

at the games: spinal i njury, amputee blin dness, and Les Autres.

B =‘ gam es: sp inal i’, v =‘ ’, A =‘ njury, amputee blin’, s =‘s’

op X Y f (X ,Y ,3) b(X ,Y ,3) 32 · Po(X ,Y ) log 9Po
DEL B A 0.53 1.55 0.82 -0.19
NOP Bv A 0.06 0.0007 4 · 10−5 −10.11
NOP B vA 0.001 0.058 8 · 10−5 −9.43
ADD Bs vA 0.87 0.26 0.22 −1.49
ADD B svA 0.63 0.60 0.38 −0.97
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Appendix G: Language models training results

Training Results

Dir Model Loss Acc Top 5-Acc
back BiLSTM128H20L1R 1.503 0.565 0.838
back GRU128H20L2R 1.469 0.576 0.844
back LSTM128H20L2N 1.555 0.554 0.831
back LSTM128H20L2R 1.454 0.577 0.844
forw BiLSTM128H20L1R 1.504 0.566 0.840
forw GRU128H20L2R 1.574 0.553 0.832
forw LSTM128H20L2N 1.450 0.579 0.847
forw LSTM128H20L2R 1.565 0.551 0.832

Table : Simple-Wikipedia test set loss and accuracies. The loss is categorical
cross-entropy. The shown results are the 3-fold cross validated.
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Appendix G: Language models training results

Training Results

Dir Model Loss Acc Top 5-Acc
back BiLSTM64H20L1N 1.670 0.519 0.822
back BiLSTM128H20L1N 1.414 0.585 0.858
back BiLSTM128H40L1N 1.429 0.579 0.853
back BiLSTM256H20L1N 1.282 0.620 0.875
back BiLSTM256H40L1N 1.368 0.602 0.862
forw BiLSTM64H20L1N 1.649 0.534 0.828
forw BiLSTM128H20L1N 1.419 0.594 0.857
forw BiLSTM128H40L1N 1.427 0.588 0.855
forw BiLSTM256H20L1N 1.282 0.629 0.874
forw BiLSTM256H40L1N 1.355 0.613 0.864

Table : Reuters-21578 test set loss and accuracies. The loss is categorical
cross-entropy. The shown results are the 3-fold cross validated.

(Albert-Ludwig Universtät Freiburg) July 19, 2018 68 / 45



Appendix H: Detailed dynamic programming approach

Outline

1 Preliminaries

2 Baseline approaches

3 Dynamic programming approach

4 Deep learning background

5 Deep learning approaches

6 Evaluation

(Albert-Ludwig Universtät Freiburg) July 19, 2018 69 / 45



Appendix H: Detailed dynamic programming approach

Retokenization

Retokenization of a group tokens T1, · · · ,Tn, which are joined into a
big word w , is done by retokenizing any suffix of w according to:

Bw [i] = max
i<j≤|w |+1

{Bw [j] · θi,j + (1− θi,j) · Score(wi→j)} (13)

Where θi,j = |w |−j+1
|w |−i+1 is a normalizing term.

Bw [i] solves the suffix wi→

Choose the first token ending at position j , using Score(wi→j)

Solve the remaining shorter suffix recursively, using Bw [j]
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Appendix H: Detailed dynamic programming approach

Retokenization example

H e l l o w a r l d $
i 1 2 3 4 5 6 7 8 9 10 -
j - - - - - - 7 8 9 10 11
θi,j —– —- —– — — - 0.80 0.60 0.40 0.20 0.0
θi,jB —– —- —– — — - 0.0 0.0 0.0 0.0 0.0
S(wi→j) —– —- —– — — - 0.0 0.0 0.0 0.0 0.5
(1− θi,j)S(wi→j) —– —- —– — — - 0.0 0.0 0.0 0.0 0.5
B —– —- —– — — 0.5 0.0 0.0 0.0 0.0 0.0
nxt - - - - - 11 8 9 10 11 -

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’.
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Appendix H: Detailed dynamic programming approach

Retokenization example

H e l l o w a r l d $
i 1 2 3 4 5 6 7 8 9 10 -
j - - - - - 6 7 8 9 10 11
θi,j —– —- —– — — 0.83 0.67 0.50 0.33 0.17 0.0
θi,jB —– —- —– — — 0.42 0.0 0.0 0.0 0.0 0.0
S(wi→j) —– —- —– — — 0.5 0.0 0.0 0.0 0.0 0.0
(1− θi,j)S(wi→j) —– —- —– — — 0.08 0.0 0.0 0.0 0.0 0.0
B —– —- —– — 0.5 0.5 0.0 0.0 0.0 0.0 0.0
nxt - - - - 6 11 8 9 10 11 -

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’.
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Appendix H: Detailed dynamic programming approach

Retokenization example

H e l l o w a r l d $
i 1 2 3 4 5 6 7 8 9 10 -
j - - - - 5 6 7 8 9 10 11
θi,j —– —- —– — 0.86 0.71 0.57 0.43 0.29 0.14 0.0
θi,jB —– —- —– — 0.43 0.36 0.0 0.0 0.0 0.0 0.0
S(wi→j) —– —- —– — 0.0 0.5 0.0 0.0 0.0 0.0 0.0
(1− θi,j)S(wi→j) —– —- —– — 0.0 0.14 0.0 0.0 0.0 0.0 0.0
B —– —- —– 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0
nxt - - - 6 6 11 8 9 10 11 -

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’.

(Albert-Ludwig Universtät Freiburg) July 19, 2018 71 / 45



Appendix H: Detailed dynamic programming approach

Retokenization example

H e l l o w a r l d $
i 1 2 3 4 5 6 7 8 9 10 -
j - - - 4 5 6 7 8 9 10 11
θi,j —– —- —– 0.88 0.75 0.62 0.50 0.38 0.25 0.12 0.0
θi,jB —– —- —– 0.44 0.38 0.31 0.0 0.0 0.0 0.0 0.0
S(wi→j) —– —- —– 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(1− θi,j)S(wi→j) —– —- —– 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B —– —- 0.44 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0
nxt - - 4 6 6 11 8 9 10 11 -

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’.
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Appendix H: Detailed dynamic programming approach

Retokenization example

H e l l o w a r l d $
i 1 2 3 4 5 6 7 8 9 10 -
j - - 3 4 5 6 7 8 9 10 11
θi,j —– —- 0.89 0.78 0.67 0.56 0.44 0.33 0.22 0.11 0.0
θi,jB —– —- 0.39 0.39 0.33 0.28 0.0 0.0 0.0 0.0 0.0
S(wi→j) —– —- 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5
(1− θi,j)S(wi→j) —– —- 0.0 0.0 0.0 0.22 0.0 0.0 0.0 0.0 0.5
B —– 0.5 0.44 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0
nxt - 6 4 6 6 11 8 9 10 11 -

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’.
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Appendix H: Detailed dynamic programming approach

Retokenization example

H e l l o w a r l d $
i 1 2 3 4 5 6 7 8 9 10 -
j - 2 3 4 5 6 7 8 9 10 11
θi,j —– 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.0
θi,jB —– 0.45 0.35 0.35 0.3 0.25 0.0 0.0 0.0 0.0 0.0
S(wi→j) —– 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0
(1− θi,j)S(wi→j) —– 0.0 0.0 0.0 0.2 0.5 0.0 0.0 0.0 0.0 0.0
B 0.75 0.5 0.44 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0
nxt 6 6 4 6 6 11 8 9 10 11 -

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’.
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Appendix H: Detailed dynamic programming approach

Retokenization example

H e l l o w a r l d $
i 1 2 3 4 5 6 7 8 9 10 -
B 0.75 0.5 0.44 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0
nxt 6 6 4 6 6 11 8 9 10 11 -

Table : Values of retokenization of ‘Hellowarld’ into ‘Hello world’. The grey
cells mark the beginning of the new tokens according to nxt .
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Appendix H: Detailed dynamic programming approach

Grouping

Grouping T1, · · · ,Tn is done by grouping any suffix of tokens
Ti , · · · ,Tn according to:

F [i] := max
1≤d≤ω,n+1−i

{F [i + d ] + G(i ,d)} (14)

Where G retokenizes the group of chosen tokens Ti , · · · ,Ti+d−1:

G(i ,d) = max

{
Score(Ti ◦ Ti+1 ◦ · · · ◦ Ti+d−1) if not 0
Retokenize(Ti ◦ Ti+1 ◦ · · · ◦ Ti+d−1) otherwise

(15)
The remaining suffix of tokens is solved recursively by F [i + d ].
The group size is restricted up to ω ≤ 8 tokens.
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Appendix H: Detailed dynamic programming approach

Grouping in action

i d Tokens group Retokenization Joined Score G(i ,d)

1 1 He He - 0.0
1 2 He, llowarl Hello, w, a, r, l - 0.56
1 3 He, llowarl, d Hello, world - 0.75
2 1 llowarl l, to, w, a, r - 0.14
2 2 llowarl, d l, to, world - 0.44
2 3 llowarl, d, td l, to, world, to - 0.45
3 1 d d - 0.0
3 2 d, td d, to - 0.33
3 3 d, td, ay d, today - 0.4
4 1 td - to 0.5
4 2 td, ay - today 0.5
5 1 ay ay - 0.0

Table : G(i ,d) for the corrupt text: ‘He1 llowarl2 d3 td4 ay5’
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Appendix H: Detailed dynamic programming approach

Grouping in action

He llowarl d td ay
G 1 2 3 4 5

He 1 0.0 0.56 0.75 - -
2 - 0.14 0.44 0.45 -
3 - - 0.0 0.33 0.4

td 4 - - - 0.5 0.5
5 - - - - 0.0

He llowarl d td ay
i 1 2 3 4 5
F 1.25 0.94 0.5 0.5 0.0
nxts 4 4 4 6 6

Table : Functions F [i] and G(i ,d) for the tokens. Grey cells mark the
beginnings of the groups. The text is grouped into ‘(He1 llowarl2 d3) (td4 ay5)’
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Appendix I: Recurrent neural networks

Recurrent neural networks

x<t> RNN y<t>

c<t−1> c<t>

Figure : Recurrent neural network

RNNs process sequences over time.
LSTM and GRU are commonly used RNN architectures.
LSTM and GRU ”remember” parts of the input.
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Appendix J: Evaluation example
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Appendix J: Evaluation example

Example

Fixed text precision recall F1
‘Helloworld!’ 0.75 0.75 0.75
‘Hello world!’ 0.80 1.00 0.89
‘Helloworld’ 1.00 0.75 0.86

Table : G = ‘Hello world’, C = ‘Halloword’

(Albert-Ludwig Universtät Freiburg) July 19, 2018 78 / 45


