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Abstract

Hypernymy, which is the sort of relationship exemplified in the pair 〈dog, animal〉
when both take their conventional senses, lies at the heart of many applications in
artificial intelligence and natural language processing. In this work, I investigate
automatic methods of identifying such sense-pairs. Many existing models for this
task implement feature inclusion, which is the intuition that senses like dog are
semantically narrower than senses like animal in that the properties one can apply to
the former can always conceivably be applied to the latter, but not the inverse. State-
of-the-art performance of these models has been limited by the Feature Exclusion
Problem, which is that in the sparse feature vectors representing a sense like dog, in
which a non-zero feature is interpreted as an applicable one, there are many non-
zero features that should also be non-zero in the representation of animal but aren’t.
This work begins by exploring in greater detail the nature of this problem before
exploring a post-processing technique designed to mitigate it.
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Zusammenfassung

Grundlage für viele Applikationen aus den Bereichen Künstliche Intelligenz sowie
natürliche Sprachverarbeitung ist die „Hyperonymi”, eine semantische Relation, die
beispielsweise das Verhältnis zwischen dem Wortpaar 〈Hund, T ier〉 beschreibt.
In der vorliegenden Arbeit werden Methoden untersucht, mit denen eine automati-
sche Erkennung derartiger Wortpaare erfolgen kann. Eine Reihe derzeit existierender
Modelle, die diesen Methoden zugrunde liegen, berücksichtigen dabei die feature in-
clusion, die davon ausgeht, dass Wörter wie „Hund” semantisch betrachtet enger
sind als Wörter wie „Tier”. Die Semantische Enge besagt, dass Eigenschaften, die
auf das Wort „Hund” zutreffen, immer auch auf das Wort „Tier” anwendbar sind,
wohingegen die umgekehrte Schlussfolgerung nicht zulässig ist.
Die Leistungsfähigkeit derartiger dem aktuellen Stand der Wissenschaft entspre-
chenden Modelle wird oftmals durch das Feature Exclusion Problem limitiert, wel-
ches darin besteht, dass viele Eigenschaften, die dem Wort „Hund” zugeordnet wer-
den können, eben nicht auch automatisch Bestandteil der Eigenschaften des Wortes
„Tier” sind, sondern ausschließlich auf das Wort „Hund” zutreffen. Im Rahmen
dieser Arbeit wird zunächst das eben geschilderte Problem detaillierter betrachtet
werden. Anschließend wird eine postprozedurale Vorgehensweise untersucht, die eine
Lösung des Problems ermöglichen soll.
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1 Introduction

1.1 Introduction

Smart technologies that promise to make interacting with technology via language
as fluid as interacting with a human being are becoming ubiquitous but despite
their spread, the technology is far from mature. In fact, the failure of software with
limited language-interpretation ability has become a cultural touchstone, with web
communities1 where people share their favorite examples of software acting deranged
as it tries to interpret a human.
While some of these failures are no doubt the result of software bugs, many of them
are the result of the sheer difficulty of natural language understanding, the formal
name for the problem of enabling a computers to understand human communication.
Contributing to the solution of the natural language understanding problem is the
goal of many different fields. One such field is Distributional Semantics (DS), one
goal of which is create models of language meaning (Distributional Semantic Models
or DSMs) that are trained automatically when provided with many examples of
human communication. The appeal of such models is that, if they work, they are
trivial to scale.
One task toward which DSMs have been applied is the identification of pairs of
senses2 〈A,B〉 such that A is a kind of B, a task I refer to as Hypernymy Recog-
nition (HR). HR is important for many downstream applications, such as Question
Answering (QA), Information Retrieval (IR), Information Extraction (IE), Machine
Translation (MT), Strong AI and others. If a QA system were asked a question like,
‘Does Barack Obama have a pet?’, it would have to infer the answer from related
information, e.g. ‘Barack Obama has a dog named Bo’. IR systems face a similar
challenge in that queries for a category can be satisfied with examples of that cate-
gory but not vice-versa. In IE, the organization of extracted information into tables
requires recognizing when an entity is an instance of a category. In MT, given a
target word to translate, there may not be an equivalent foreign language word but
there may be an equivalent to a word entailed by the target word. And a Strong AI
system would be expected to understand that if A can sleep, A could theoretically
also snore.

1such as http://www.damnyouautocorrect.com/
2Sense here refers to the meaning of word and it is necessary to use in light of the fact that
polysemous words may have many senses only one of which may be appropriate.
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Chapter 1 Introduction

Hypernymy is an asymmetric lexical relation in which senses acting as A does in ‘A
is a kind of B’ are referred to as subordinates or hyponyms and sense acting as B
does are referred to in this field as hypernyms.
The most common way of modeling hypernymy in DSMs is based on feature inclu-
sion, according to which the prototypical set of permissible features of the hypernym
includes the set of permissible features of the hyponym. For example, fish can have
the property of swim and animal, a hypernym of fish, can as well. However, fish
can not have the property gallop, though animal can. Thus, the set of features that
animal can have includes the set of features of fish (if we pretend that fish can have
only the one feature).
Expressing feature inclusion is trivial in DSMs when each word is represented by
a sparse feature3 vector4, which is a common practice: with sparse feature vectors,
feature inclusion is equivalent to a subset. Many researchers have created models of
hypernymy using DSMs and feature inclusion [Lenci and Benotto, 2012, Roller et al.,
2014, Weeds et al., 2014a]. Recently, however, problems limiting the effectiveness of
these models have become apparent.
The problem is that, rather than being a subset, the features of a hyponym’s vector
are very often not members of the set of features of hypernym’s vector. I refer
to features that are found in the hyponym’s vector but not the broader term’s
as excluded features and this problem generally as the Feature Exclusion Problem
(FEP).
To address the FEP, two procedures for enriching the representations of DSMs are
proposed and their effects analyzed. The hypothesis is that these procedures will
boost precision in hypernymous pairs more than non-hypernymous ones, and thus
improve the performance of feature inclusion models on the HR task. The results
suggest that, while the procedures fail to improve performance on HR, something
needs to be done to address the FEP.

1.2 Structure

The remainder of the work is structured as follows: Chapter 2 reviews background
information on DS and DSMs; Chapter 3 reviews the semantics of lexical relations
and the design of WordNet, a popular lexical database, which is used extensively in
this work; Chapter 4 reviews contemporary approaches to the task of HR; Chapter
5 describes the nature of the FEP in greater detail; Chapter 6 describes the proposal
for addressing the FEP; Chapter 7 consists of exploratory analyses of the effects of
the proposed solution; Chapter 8 examines the extent to which the proposed solution
improves HR performance; Chapter 9 concludes.

3Feature here refers to the dimensions of the space in which a given vector lives; it is also syn-
onymous with column.

4A sparse feature vector is one in which most of the elements are 0.

14



1.2 Structure

For readers already familiar with DSMs, lexical relations and WordNet, Chapter 4
may be a reasonable starting point.
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2 DS and DSMs

In this chapter, I will review the definition of DS and explain how DSMs implement
the theory in order to construct sparse feature vectors that serve as representations
of meaning. A deep understanding of how non-zero features in a feature vector
acquire their weight is important to appreciate the analysis of the Feature Exclusion
Problem (FEP) in later chapters. However, before starting on the details of DS and
DSMs, I will first describe the central idea behind representing meaning using space.
It should be noted that not all DSMs do represent meaning as sparse feature vectors
constructed from frequency statistics. A prominent and recent alternative to the
sparse feature-space model is the so-called neural embedding model, exemplified by
the work of Mikolov [Mikolov et al., 2013, Le and Mikolov, 2014], a more accessible
review of which can be found in [Levy and Goldberg, 2014]. The decision to only
review sparse feature spaces reflects the consensus among current work in HR; most
approaches to HR use approaches similar to what is described here. This consensus
is possibly because feature subsets, which are crucial to contemporary models of
HR, are more easily expressed when features can be present or absent, as in a sparse
feature space, which criteria does not hold in a typical dense vector in a neural
embedding.

2.1 The Geometric Metaphor for Meaning

As already stated, many models for HR are implemented as sparse feature spaces.
Independent of this task, however, sparse feature-space models are among the most
popular sort of DSM. The reasons for their popularity are not universally agreed
upon. One could argue, as Erk [2012] does, that these models have computational
advantages, in that we already have mathematical libraries that accept and manip-
ulate vectors. However, I think the appeal of these models reflects the more general
appeal of space as a figurative framework.
The ways in which space serves as a source domain for metaphor are myriad. Many
adjectives with spatial connotation can be used in a figurative way. Despair is deep,
for example. We talk about emotional well-being as a space (“I’m in a good place
right now”), or processes as journeys through space (“On the road to recovery”).
Lakoff and Johnson identify many such metaphors [Lakoff and Johnson, 1997, 1999]
and among the simplest of these is similarity-is-proximity. This metaphor is so
well-rooted that it is hard to think about similarity and not think about proximity

17



Chapter 2 DS and DSMs

[Lakoff and Johnson, 1999]. In the context of DSMs, this idea is referred to as
the geometric metaphor of meaning [Sahlgren, 2006] and the central idea for the
representation of words (when we assume each word represents a single sense) in a
DSM is to let words be entities in some space, whose locations we can encode using
vectors, the components of which are a function of observable phenomena, and to
treat the distance between points in this space as being inversely proportional to
their semantic similarity.
However, it is important to note that the similarity-is-proximity metaphor is imper-
fect in that many aspects of the source domain, space, cannot actually be applied
to meaning. We cannot say that one meaning is in front of another, for instance.
Moreover, there are problems interpreting psychological accounts of semantic simi-
larity as distance. Distance is metric, and therefore symmetric and subject to the
triangle inequality, whereas empirical measurements and thought experiments sug-
gest semantic similarity is neither. Tversky [1977] presented this example: reversing
the order of the arguments can change a statement’s meaning, e.g., “A man is like a
tree” implies that man has roots; “A tree is like a man” implies that the tree has a
life history. This suggests that similarity is order-dependent. In contrast, the state-
ment “The man is 5 feet from the tree” is the same when the order of its arguments
is reversed. Tversky also presented this example:

1. Jamaica is similar to Cuba (because of geographical proximity), and
2. Cuba is similar to Russia (because of political affinity), but
3. Jamaica and Russia are not similar at all*

which shows that the triangle inequality1 and transitivity do not constrain semantic
similarity. Nevertheless, if Lakoff and Johnson are right, space may be the only way
to think about meaning that is psychologically palatable.

2.2 The Finished Product

It is helpful to consider what the sparse feature-space in a typical DSM looks like
and to establish the terminology I will use. Sparse feature-spaces are also sometimes
referred to as coocurrence matrices because their non-zero values capture statistically
noteworthy cooccurrences. The magnitude of the values in each vector is a function
of the frequency with which a row element (thing being modeled) and basis element
(feature, very often a word or a word annotated with some grammatical or syntactic
information) cooccur in the corpus used as input. Fig. 2.1 shows a toy example
of such a cooccurrence matrix. The parameters that determine the makeup of the
row and basis elements, and the means by which the values of each component are
calculated, will be reviewed in the coming sections.

1The triangle inequality imposes the constraint that if A is similar to B and B is similar to C,
then A cannot be dissimilar to C.
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2.3 Defining Distributional Semantics


b1 b2 ...

w1 aw1
b2

w2 aw2
b1

...


Figure 2.1: A sample cooccurrence matrix, in which 0 values are omitted. The
row elements w1, w2... are from the set W , the things being modeled. The basis
elements b1, b2, ... are from the set B, the set of features in the space. The values
a ∈ A are the result of applying an Association Measure to cooccurrence frequency
statistics.

2.3 Defining Distributional Semantics

DS is a theory of meaning. A fundamental part of any theory of meaning is the
set of conditions under which two senses can be said to be semantically similar.
As Lenci [2008] writes, the hallmark of DS is to meet this requirement through
the Distributional Hypothesis (DH) [Harris, 1954]. The DH can be summarized by
a slogan popularized by one of its original proponents: “You shall know a word
by the company it keeps!” [Firth, 1957]. If we interpret the word company to be
lexical company, then as Lowe [2001] writes, we can know the semantic character of
a word by examining its associated words. Thus, the DH provides a means by which
large collections of human communication can serve as the sole input to a model of
meaning; one simply needs to examine associated words in the corpus to arrive at
a word’s meaning. More formally and broadly, the DH states that “the degree of
semantic similarity between two words (or other linguistic terms) can be modeled
as a function of the degree of overlap among their linguistic contexts” [Baroni and
Lenci, 2010]. Thus, we see that the DH is a definition of meaning, not just for
words, but for any linguistic item the modeler wants to treat as atomic or non-
compositional; the DH also doesn’t prescribe the sort of company one considers, and
any linguistic context can serve as company. Though the DH can be interpreted as a
cognitive hypothesis about the origin of semantic representations, this work adopts
an alternate interpretation of the DH as a quantitative method for semantic analysis
and lexical resource induction [Lenci, 2008].

2.4 DSMs and their Parameters

In order to implement the DH, DSMs must define overlap and linguistic context (as
in the Baroni and Lenci definition above) and they do so by defining a number of
parameters. Lowe [2001] identified a few of the most important parameters. I adapt
the Lowe formulation and formalize DSMs as a six tuple 〈R,B,C,A, S,M〉, where
R is the set of Row Elements, B is the set of Basis Elements, C is the definition
of cooccurrence, A is the Association Measure, S is the Similarity Measure and M
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is the Transformation or Smoothing, following [Turney and Pantel, 2010]. I will
address each of these in the coming sections.

2.4.1 Row Elements

Choosing the right set of row elements (the set linguistic items being modeled), can
be surprisingly challenging, even when the objective (lexical semantics) is clear. It
would seem obvious to choose the set of words as the set of items whose company
we must observe. In practice though, the boundaries of this set are not at all clear,
even when ignoring the fact that many words have more than one sense, and that
our efforts from the start will be compromised by having a single representation for
more than one sense.
One might say a word is a sequence of letters bordered by whitespace. Or, as Evert
[2005] points out, is it white-space? Or white space? All of these can be found in
common usage. The only way to discriminate words with spaces from groups of
words that are often used together is to take into account word meaning. And thus
it seems there is a chicken-and-egg problem: in order to achieve a lexical semantics,
we need to have one already. For the remainder of this work, I will use ‘words’ to
refer to uninterrupted sequences of characters that may include hyphens, and refer
to cases like ‘white space’ as multi-word expressions. This definition of word only
applies to English and other languages with fairly regular or simple morphological
systems. The challenge of preparing words for processing is the responsibility of the
tokenizer and this issue will be revisited in Sec. 2.4.7. I use the word sense to refer
to the meaning a word can have.

2.4.2 Basis Elements

The set of basis elements in the model, which is another name for the set of features in
the space, is one of the most interesting and important parameters in the DSM. The
set of possible basis element sets can be conceived as a spectrum of intentionality.
At one end are sets of basis elements consisting entirely of intentionally selected
or constructed basis elements. At the other end of the spectrum are sets of basis
elements that have not been selected intentionally, but which arise as a consequence
of a model of cooccurrence being applied to corpus. The historical trend has been to
move from extremely intentional basis element sets toward far less intentional ones.
Recently, however, researchers have proposed models that represent a compromise,
with a mixture of basis elements reflecting a priori beliefs about what is informative
as well as basis elements that arise from cooccurrence. The procedures described
here, which add new basis elements to an existing feature space, can be seen as part
of this trend.
One of the first attempts to model meaning with space was in the 1950s, by Osgood
[1952]. Osgood and his colleagues devised a set of 50 features along which they

20



2.4 DSMs and their Parameters

imagined senses might vary, each of which was defined by a scale with two extrema
(e.g., small-large, weak-strong). They then solicited ratings on a seven-point scale
from human subjects for a substantial set of words, and composed the ratings for each
word into a feature vector, such that each word occupied a point in 50-dimensional
feature-space. Other researchers since have attempted to hand-construct the set of
features along which it was theorized words or concepts vary [Waltz and Pollack,
1985]. However, a major problem with hand-selecting features is that it obliges
one to determine not just the number of features, but what the features are, and
the cost of failing is a semantic space in which the measured distance and the true
semantic distance are discrepant. And more problematic, Osgood’s methodology is
impractical to scale for larger sets of words.

Alternately, the set of basis elements can emerge as a cooccurrence model is applied
to a corpus. In the 1960s, the information retrieval community first began to use
documents as features to construct term-document matrices [Salton and McGill,
1983] but it was Schütze’s 1992 word-word cooccurrence matrices that bear the
greatest degree of similarity to contemporary DSMs. Rather than using documents
or features selected by hand, Schütze let the words themselves serve as the features of
the space. Schütze specified the width of a window in terms of number of characters
and by sliding this window (automatically) through a corpus and treating all words
within it at one time as co-occurring, was able to compute the frequency with which
words occurred in the window at the same in the corpus.

More recently, researchers have begun to filter and annotate the words used as basis
elements. For example, Weeds et al. [2014a] used only open-class words (nouns,
verbs, adjectives and adverbs) as basis elements. Baroni and Lenci [2010] anno-
tated words with both part-of-speech and grammatical dependency2 information,
e.g., ball-n_NSBJ 3, which translates to the noun ball governed by an NSBJ depen-
dency relation. Baroni and Lenci’s TypeDM model is also notable for its usage of
abstract basis elements based on linguistic research. For example, the sequence of
words such as has been shown by Hearst [1992] to indicate a hypernymy relation,
e.g., animals such as cats, and one basis element in TypeDM model corresponds
to 〈word, suchas, word〉. Attribute nouns (color, size, etc.) are likely to indicate a
property [Veale and Hao, 2008], e.g. the color of strawberries is red, where color is
an attribute noun, and this too can be exploited in the choice of basis elements. The
present work represents another example of incorporating linguistic knowledge, in
which this knowledge is used to modify the feature space by adding basis elements
whose value is a function of other basis elements, rather than grouping different
sorts of cooccurrences as is done in TypeDM.

2Grammatical dependencies are asymmetric relationships between pairs of words in a sentence.
In a dependency relation, one word is said to be governed by its governor and one implicit
governor, ROOT, governs the entire sentence.

3NSBJ is an example of a dependency from the Stanford typed dependencies [De Marneffe and
Manning, 2008]. It represents the relationship between a nominal subject and the clause that
governs it.
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2.4.3 Types of Cooccurrence

Given a choice of B, the set of basis elements, and R, the set of row elements, the
next step is to define C, what it means for a row and basis element to co-occur in
the same context.

2.4.3.1 Surface Coocurrence

One option is to define cooccurrence in terms of what Evert [2008] calls surface
distance. Surface distance considers distance in terms of either words (consecutive
sequences of characters, in contrast to multi-word expressions) or characters. Under
this definition, there are two parameters that can be varied: the size of the span and
its direction. The size of the span, when it refers to words, typically takes a value
between 2 and 5 words [Lapesa and Evert, 2014], although in some cases, it can
be in the hundreds [Evert, 2008]. With regard to direction, the span can extend in
both directions or it can be asymmetric [Sahlgren, 2006]. Importantly, no additional
processing of the text is needed to recognize surface cooccurrences.

2.4.3.2 Textual Cooccurrence

Textual cooccurrences are partially a response to criticism that using surface cooc-
currences requires one to choose a span size, the optimal value of which might be
language or even task dependent. Consider these three cases with give and speech:

1. to give a speech
2. to give an excellent speech
3. a speech was not and will not be given at this time

No value of span size but one sufficient to include (3) would capture give and speech in
these examples, and yet setting the span so large might introduce far more noise than
signal. Instead of a threshold defined in terms of proximity, textual cooccurrences
use textual units as thresholds, for instance sentential boundaries or documents
themselves. Salton and McGill [1983] used textual cooccurrences to construct their
term-document matrices. Textual cooccurrences then capture weaker relationships.

2.4.3.3 Syntactic Cooccurrence

Finally, syntactic cooccurrences, like surface cooccurrences, also use a notion of prox-
imity, but instead of measuring with respect to a number of graphemic words they
measure with respect to some linguistic interpretation, such as clauses or a syn-
tactic representation. For example, a verb and its direct object are adjacent in a
syntactic-link graph of a sentence. Although Evert [2008] defines these cooccur-
rences as requiring the components to be directly adjacent, researchers have also
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considered non-adjacent cooccurrences based on paths within syntactic-link graphs
[Baroni and Lenci, 2010, Padó and Lapata, 2007]. Syntactic cooccurrences can be
particularly useful for examining long-distance relationships within the sentence,
which might otherwise be obscured by the noise introduced with a larger span size.
While syntactic cooccurrences offer more precision, they also require preprocessing
of the input, which can be both computationally expensive and error-prone, and
which may impose assumptions.

2.4.4 Association Measures

The choice of C defines how the cooccurrence frequency statistics are compiled.
These frequency statistics, in turn, can be used as one of the inputs to an Association
Measure. Association Measures ensure that the value of the feature in a vector is
meaningful, the necessity of which will be explained in Sec. 2.4.4.2.

The other input to the Association Measure is the expected number of cooccurrences.
This value is computed by the statistical model. The statistical model is not a
free parameter and is entirely determined by C, the choice of cooccurrence type.
Nevertheless, different statistical models yield different expected values.

2.4.4.1 The Statistical Model

Essentially, the statistical model is a description of the sorts of instances under
consideration using class variables. For example, if a set of people varied according
to weight (fat/thin) and height (short/tall), the class variables would be weight
and height. If we are given the total number of people for each weight and for
each height, we could compute the expected number of tall thin people under the
assumption that thin people were evenly distributed between short and tall. In the
case of cooccurrence statistics, the set of classes we choose depends on the definition
of cooccurrence. The input to the statistical model, however, is always the same.
The input, called the frequency signature, consists of four different numbers: the
observed frequency, the marginal (class) frequencies, and a sample size. In terms
of notation, I use that of [Evert, 2008]: O will stand for observed frequency of the
cooccurrence, f1 and f2 will stand for marginal frequencies for the row element and
the basis element respectively and N will stand for the sample size.

As the details of the statistical model are not essential to this work, I review only
the statistical model for one type of cooccurrence, syntactic coccurrences, to give
a general sense of the procedeure. For a thorough review of statistical models, see
[Evert, 2008].

The statistical model for syntactic cooccurrences treats every sort of unique syntactic
relation as independent, and thus the marginals (sum of frequencies for each class)
for each syntactic relation are independent as well. Fig. 2.2 shows the procedure for
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Figure 2.2: Figure illustrating the syntactic cooccurrences of nouns and their pre-
nominal adjectives, from [Evert, 2008]. The arrows point from nouns to pre-
nominal adjectives. The table collects all of these cooccurrences to facilitate the
calculation of the frequency signature. For the pair 〈young, gentleman〉, O is 1,
f1 and f2 are 3 and 3 and N is 9.

calculating the frequency signature for 〈gentleman, amod− young〉, where amod is
a syntactic label denoting adjectival modification. The observed frequency O is the
number of times young is modifies gentleman in a manner that would be parsed as
amod, which is 1.4 The marginal frequency f1 is the number of times gentleman
is modified by any adjective via amod, which is 3. The marginal frequency f2 of
amod−young is the number of times young modifies any word via amod, which is 3
in this case. Finally, the sample size N is the number of times any adjective modifies
any noun via amod, which is 9. Thus the frequency signature of 〈gentleman, amod−
young〉 is (1,3,3,9).
The frequency signature contains all of the information required to compute the
expected value. For syntactic cooccurrences, one computes the expected value us-
ing E2 in Fig. 2.3, which can also be used with textual cooccurrences, though the
arguments will be computed differently. The formula for computing the expected
value for surface cooccurrences, E1, is only slightly different.

2.4.4.2 Using the Statistical Model

As alluded to earlier, Association Measures perform a critical function, by trans-
forming raw frequency into a quantity that is statistically robust. Because the
meaning of feature weights will be an important part of discussion later, I review
the motivation for using Association Measures.
Why not use frequency? While it is tempting to interpret the raw number of cooc-
currences between a row element and a basis element as a measure of relatedness,
there are two reasons why this number is not meaningful. Firstly, the raw num-
ber of cooccurrences is a function of the corpus from which the data are drawn,

4While in the case of an adjective modifying a noun, there may only be way in which the two
could be syntactically related, for other combinations of parts-of-speech, there may be more
than one way, in which case the specific syntactic relation is important.
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E1(f1, f2, N) = k × f1 × f2

N

E2(f1, f2, N) = f1 × f2

N

Figure 2.3: Figure showing how to compute the expected value E for all sorts of
cooccurrences, where f1 and f2 refer to the marginal frequencies of the two classes
and N refers to the population size. E1 is the formula for computing the number
of expected cooccurrences for surface cooccurrence and k represents the span size.
E2 is the formula for computing the number of expected cooccurrences for textual
and syntactic cooccurrences. For a more thorough derivation of these formula,
see [Evert, 2008].

whereas what is needed instead is information that generalizes to all potential sam-
ple corpora, and which is thus statistically robust. Secondly, the raw number of
cooccurrences is highly sensitive to the raw frequencies of both individual terms,
independent of their cooccurrence with each other. For example, in the Contem-
porary Corpus of American English [Davies, 2008], the coocurrence 〈is, the〉 occurs
roughly 90,000 times, making it a very common co-occurrence. However, both words
independently are also very frequent: the occurs 11.5 million times and is occurs 4.2
million times. If the corpus were the result of some random process, and there were,
as a result, no meaningfully related pairs of words, we would expect to see 〈is, the〉
about 100,000 times, which is only about 10% more often than chance alone would
predict.

The number 100,000 is not a subjective judgment but is actually a mathematical
result; it is the output of a statistical model like the one derived in Sec. 2.4.4.1. In
this case, these numbers were computed using the following procedure. The term the
occurs roughly 54 times for every 1000 words. If there were no relationship between
the and is, then every time is occurred, there would be a 54 in a 1000 chance
that the next would be the. Thus, the expected number of 〈is, the〉 cooccurrences
is the number of times is occurs multiplied by the rate at which the occurs. In
the case of 〈is, the〉, there is in fact no relationship between the two at all, as the
observed number of cooccurrences and the expected number under the assumption
of independence are close. In contrast to 〈is, the〉, the cooccurrence 〈burn, victim〉
occurs 48 times more often than chance would predict, suggesting that there is far
more evidence to reject the hypothesis that the two words are not meaningfully
related.

What is instead needed to replace raw frequency is some sort of comparison between
the observed frequency and what we would expect if there were no relationship
between the basis element and the row element. In this section, the responsibility
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PPMI(O,E) = max(MI(O,E), 0)

MI(O,E) = log2
O

E

simple− ll(O,E) = 2
(
O × log2

O

E
− (O − E)

)

Figure 2.4: The formula for various Association Measures, each of which accepts
as input O, the number of observed cooccurrences, and E, the number of expected
cooccurrences under independence.

of the Association Measure is explained in greater detail and examples of different
design choices are reviewed.
The responsibility of the Association Measure is to separate the signal of mean-
ing from the noise. This means that ideally, the measure would indicate both (1)
the strength of the relationship between the row and basis element and (2) how
statistically significant the strength is. As Evert [2008] explains, these two ideas
are related but not the same. Many true cooccurrences will both have a strong
positive relationship and occur statistically more often than chance; however, it is
also possible for the weak co-occurrence of infrequent words to be highly significant
(small highly significant effect) and for the number of observed cooccurrences to
vastly exceed their expected value, even while still being statistically insignificant
(big insignificant effect).
In practice, association measures must make a trade-off between these criteria.
Those that focus on the former are referred to as effect-size measures whereas those
that focus on the latter are significance measures. Effect-size measures fail to ac-
count for sampling variation and thus over-estimate the importance of a cooccurrence
when E is small, while significance measures tend to exaggerate the importance of
relatively small differences between O and E when O is large [Evert, 2008]. A survey
of all potential association measures is beyond the scope of this work; for such a
review, see [Evert, 2008]. Instead, I explain how a few common measures of asso-
ciation are constructed and the trade-offs they make with respect to effect size and
significance.
All association measures must somehow relate O, the number of observed cooccur-
rences, and E, the number of expected cooccurrences. The simplest way is to use
their ratio; however, this quantity is problematic when E is small, which is often the
case with rarely occurring row or basis elements, as the resulting ratio of O and E
becomes very large. Consequently, it is practical to take the logarithm of their ratio,
which shrinks the value of the ratio monotonically. The pointwise mutual informa-
tion measure (MI) uses the base-2 logarithm, the motivation for which stems from
information theory. The resulting value can be interpreted as the number of bits of
“shared information” [Church and Hanks, 1990] and is always a real number. It is
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Figure 2.5: Collocates of bucket in the British National Corpus according to the
association measures simple-ll, t-score, MI, and MI with frequency threshold f ≥
5, from [Evert, 2008]. t-score is another significance test and it is defined as O−E√

E
.

common practice after [Bullinaria and Levy, 2007] to let this value range from 0,
by taking the max of MI and 0, removing from the dataset any “anti-collocations”
[Evert, 2008] (row and basis elements that seem to repel each other). The resulting
quantity is called the positive pointwise mutual information (PPMI). In practice,
MI often awards greater-than-desired significance to low-frequency word pairs when
E << 1.

This tendency to assign high association scores to cooccurrences where O >> E
marks MI as an effect size measure; MI does not actually weigh the amount of
evidence. In contrast, simple log-likelihood is an association measure that measures
significance on a standardized scale known as the chi-squared distribution with one
degree of freedom.

The choice of association measure can have a profound effect on association scores,
as is apparent by comparing the different sets of top-ranked features in Fig. 2.5. Only
three collocates (water, a, and spade) appear in more than one list. Additionally,
the tendency for MI to reward rare events is clearly evident in the difference between
the two bottom-most tables.
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Minkowski(~u,~v) =
(

n∑
i=1
|ui − vi|N

) 1
N

F (~u) = {u1, u2, u3, ...un}

Jaccard(~u,~v) = |F (~u) ∩ F (~v)|
|F (~u) ∪ F (~v)|

cos(~u,~v) = u · v
|u| × |v|

Table 2.1: A small sample of similarity measures. The input to each similarity
measure is a pair of vectors, ~u and ~v.

2.4.5 Similarity Measures

The next DSM parameter is S, the similarity (or, equivalently distance) measure,
which accepts two row vectors and returns a quantity representing how similar they
are. Many such functions have been empirically compared [Weeds, 2003] and inter-
actions between the choice of similarity measure and other DSM parameters can be
significant [Lapesa and Evert, 2014]. Typically, in comparing the quality of a given
similarity measure, one tests the degree to which the geometric metaphor of meaning
holds in the space. To do this requires pairs of rows with either known similarity or
known relative similarity. A number of well-established benchmark tasks meet this
description. The TOEFL task introduced by Landauer and Dumais [1997] requires
models to identify a target word’s synonym in a list of candidates. The similarity
judgment task, for which there are many benchmarking datasets [Bruni and Gatica-
perez, 2013, Hill et al., 2014, Rubenstein and Goodenough, 1965], compares the
similarity scores generated by comparing two row vectors using a similarity measure
against human judgments on a Likert scale (or, in the case of MEN, using a slightly
different procedure) and models are compared with respect to the correspondence
between their scores and the humans’.

There are many potentially suitable functions that can be used to measure similarity
and Table 2.1 lists a small sample. The most common is cosine similarity, which
is the inner product of each vector after it has been normalized. The advantage of
cosine similarity is that it limits the effect of large values, which, as already men-
tioned, often occur when the expected value is very small in MI derived association
measures. Set-theoretic distance functions like Jaccard’s Coefficient, which ignore
magnitude entirely and count shared and non-shared features were also considered,
prior to the ascent of cosine similarity, as was the family of geometric distance func-
tions, such as the Minkowski distance functions, which are noteworthy for their
sensitivity to association score magnitude. Euclidean distance is a special case of
the Minkowski distance function when N = 2.
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2.4.6 Smoothing Methods

Smoothing is useful for a number of different reasons. One reason is that it can
increase the speed at which vectors can be compared by decreasing the density of
the cooccurrence matrix. Lin [1998] showed that there was little loss of precision
in the similarity scores of vectors even after removing all association scores below a
threshold.
Smoothing can also be treated as a way of improving the semantic properties of
the vectors in the space and, because the procedures described in Chapter 6 can be
interpreted as acting in a similar manner, I review one popular method of smoothing.
SVD is a popular method of smoothing in both information retrieval, where it is
known as Latent Semantic Indexing [Deerwester et al., 1990], and in computational
semantics, where it is known as Latent Semantic Analysis [Landauer and Dumais,
1997]. Deerwester et al. [1990] used truncated Singular Value Decomposition (SVD)
on a term-document matrix, and showed that it improved semantic similarity char-
acteristics. Landauer and Dumais [1997] applied the truncated SVD to a synonym
detection task, and showed that models improved to near-human performance.
Turney and Pantel [2010] suggest four ways of interpreting the impact of truncated
SVD on DSMs, two of which can already be used to interpret the procedures de-
scribed in Chapter 6. The first of these is as a means of identifying high-order
co-occurrence. While two vectors that share a feature in the original space must
have occurred with the same basis element, two vectors in the reduced space that
share a feature occurred with similar basis elements. This proves invaluable when
the set of basis elements are inter-related. The final way of interpreting SVD is
a method of sparsity reduction. The sparsity of cooccurrence matrices may be a
consequence of limited data, so SVD can be seen as a way of simulating missing
text.

2.4.7 Other Parameters

There are many additional parameters beyond the six tuple. Several important
parameters govern steps prior to the statistical calculations. For example, the raw
frequency matrix is often filtered to remove rows or columns with small marginals.
The corpus itself is a parameter, as are the pre-processing steps typically done to it
before it is used by the DSM. The pre-processing of corpora consists of one or more
processes including tokenization, normalization, and annotation.
Tokenization divides the corpus into tokens. In English, as we’ve already seen,
whitespace is often but always the delimiter between tokens. In some languages
(e.g., Chinese), words are not delimited by whitespace.
Normalization consists of two different processes: case folding and lemmatization.
Case folding converts words to lower case. Lemmatization removes grammatical
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suffixes, leaving words in their root form, e.g., chews 7→ chew. Case folding can
throw away potentially valuable information when capitalization is an informative
marker as in many capitalized acronyms or proper nouns. Lemmatization is fairly
accurate in English, which has a simpler and more regular morphological system
than many other languages; lemmatization is more complicated in languages with
complex morphological systems, where single words take on more complex meanings
equivalent to a sequence of words in English [Turney and Pantel, 2010].
Annotation adds additional information to the tokens, such as part-of-speech tags,
sense tags (which require a sense inventory and an accurate means of word sense
disambiguation), and syntactic information.
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3.1 What are Lexical Relations?

There are many different sorts of lexical relations. Given that the task at hand
is the identification of instances of lexical relations, it’s relevant to review what a
lexical relation is. To understand what a lexical relation is, Cruse [2004] points out,
it is helpful to consider what it isn’t. Cruse provides some guidelines that, while
not precise, are still helpful. For example: why is the relationship between dog and
banana, which we might call dogbananonymy, not a lexical relation?
Firstly, dogbananonymy doesn’t recur often enough, and only relations that occur
sufficiently often are worth assigning a name. You could argue that only relations
between two frequently co-occurring words would meet this criteria, but this ignores
the fact that, unlike dog and banana, other relations can be said to belong to classes
of identical relations; thus, even though cat is related to banana in a similar fashion
as dog is, this relationship is still not the same.
Conversely, a relation which was universal, and held between all pairs of words,
would have no discriminatory power. Cruse provides an example of a relation that
doesn’t discriminate: “can occur in the same English sentence as...” This relation
holds between all pairs of words because there are no words that cannot be written
in the same sentence.
Taken together, these criteria paint an information-theoretic picture of relations:
with regard to what qualifies as a relation, a relation must have non-zero entropy
and higher entropy is better.

3.2 Hyponymy and Taxonomies

Given that this thesis is focused on HR, the most important lexical relations are hy-
ponymym and co-hyponymy, which are paradigmatic lexical relations. Hyponymy is
the relation of kinds, as in dogs are a kind of animal, in which dog is the hyponym
and animal its superordinate or hypernym. Hyponymy is thus an asymmetric rela-
tion. Extensionally speaking, hypernyms are broader in that they refer to a broader
set of things (animals includes within it dogs). Intensionally, superordinates are
less informative [Murphy, 2002] and have more properties. Hyponymy serves as the
backbone of many ontologies and is thus sometimes referred to as the taxonomy
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relation [Cruse, 2004], although the taxonomy relation is technically not transitive.
In some instances, sentences with hyponyms entail other sentences with hypernyms,
e.g., I saw a dog entails I saw an animal. But, I did not see a dog does not entail I
did not see an animal.

In practice, defining in which sorts of sentences hyponymy entails and does not entail
is hard [Cruse, 2004]. At the level of words, hyponymy should always be transitive
but occasionally it isn’t. For example,

1. A hang-glider is a type of glider

2. A glider is a type of airplane, but

3. A hang-glider is a type of airplane

What the individual steps in this inference really rely on is implicit prototypicality,
e.g.,

1. A prototypical hang-glider is a type of glider

2. A prototypical glider is a type of airplane

3. A prototypical hang-glider is a type of airplane

the last example which fails because a hang-glider is not a prototypical glider. Thus,
hyponymy is itself prototypically transitive, but not always so.

Because it is generally entailing, hyponymy can be used to construct a taxonomy,
which is a directed acyclic graph used to express nested categories. In a well-formed
taxonomy, each subtree’s nodes are mutually exclusive with respect to sibling-level
subtrees and, consequently, there should only be one path to the root for every
node. In practice, when building taxonomies of actual every-day objects, this condi-
tion may be impossible to meet, for reasons we’ll soon see. Furthermore, oftentimes,
we find ourselves in need of a word that doesn’t exist. This tension between tax-
onomies in Platonic form and taxonomies in practice bears similarity to competing
psychological theories of category. Prior to Wittgenstein [1972], the dominant theory
of categories was the Aristotelian account, which stipulated that categorical mem-
bership could be defined in term of necessary and sufficient criteria. Wittgenstein
famously demonstrated the limitations of this approach by asking for a definition of
the category game, examples of which lack a single set of criteria. Prototype Theory
[Rosch, 1973], instead, defines category membership as graded, and a function of
distance to a best example, or prototype.

Cruse [2004] demonstrates the challenge these constraints pose to constructing a real
taxonomy using a toy example, cutlery, and contrasting it with a more representative
example, clothing. A very simple taxonomy of cutlery might use cutlery as the root,
fork, knife, and spoon nested just below cutlery and teaspoon, tablespoon and soup
spoon at a third level, nested below spoon. At each level of the taxonomy, the set of
referents to which the nodes might refer in the world are mutually exclusive; forks
can’t be knives or spoons, and vice-versa.
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In contrast, it is not nearly so simple to construct a taxonomy for clothing, within
which domain there are terms whose sets of possible referents overlap. Let’s say
the set of terms we’d like to include in the taxonomy consists of hat, shoe, goggles,
t-shirt, sneakers, sandals, which are easy to visualize, and headwear, footwear, and
sportswear which aren’t.

This characteristic of being easy to visualize has an indirect effect on the ease with
which these sorts of words can be incorporated into a taxonomy. The difference
between easy-to-visualize words, which Cruse [2004] calls ‘basic-level’, and hard-
to-visualize words, which are called restricted perspective-terms, is that within the
former, the set of referents are uniform enough to have some sort of prototypical
example, which we can then visualize, whereas the latter group refers to a set whose
members are required only to share a few defining features. For example, all head-
wear can be worn on the head.

The problems begin when trying to add these restricted perspective-terms to the
taxonomy. No matter which is added first, there will be a problem. If, after adding
the basic-level terms, headwear and footwear are added then where would be no way
to add sportswear ; if can refer to things that would be considered both headwear
and footwear (e.g., helmet and cleat), and thus there is no way to maintain the
exclusivity of categories and have sportswear below headwear and footwear. But, if
sportswear were added first, the same problem would arise as there are also certainly
referents of headwear and footwear that are not sportswear.

The problem is caused by the fact that terms like headwear and sportswear are not
proper subsets of each other, but rather have both shared and unshared elements.
Also interesting to note is the absence of a term to describe clothing not on one’s
head or foot (torsowear, one cannot say), which is the default, and what is assumed
when no specification supplied. As a result of these practical challenges, taxonomies,
like WordNet, which will be introduced shortly, are often not well-formed.

3.3 Co-hyponymy

Co-hyponymy is closely related to hypernymy and is predicated upon the incompat-
ibility of concepts. It is also known as Cruse [2004] co-taxonomy. Co-hyponyms are
sometimes also called coordinates Baroni and Lenci [2011]. For example, the pair
〈yacht, sailboat〉 are co-hyponyms that share a semantically close hypernym, boat.
The formal definition of co-hyponymy varies and in some cases its distinction from
other relations is hard to define. For example, in the BLESS dataset, co-coordinates
are only those words whose shared semantic class is very similar and the relation
random is used to refer to word pairs that have a more distant shared semantic class;
however, the threshold between what constitutes a random pair and what isn’t is
not explicitly stated.
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POS Unique
Strings

Synsets # Word-Sense
Pairs

Noun 117798 82115 146312
Verb 11529 13767 25047

Adjective 21479 18156 30002
Adverb 4481 3621 5580
Totals 155287 117659 206941

Table 3.1: The coverage of WordNet’s data, Miller and Beckwith [1990]

3.4 WordNet

In the last twenty years, many resources have arisen to meet the needs of researchers
in fields related to linguistics and WordNet is one such resource. WordNet [Miller
and Beckwith, 1990] is a large lexical database for English that records, among other
things, lexical relations between words. Conceptually, WordNet can be thought of
as two different data-structures. Firstly, there is a map between words and sets
of senses. For example, the word hug maps to a set consisting of the nominal
sense hug1 (gloss: a tight or amorous embrace) and two different verb senses, hug2
(to hold (someone) tightly in your arms, usually with fondness) and hug3 (to fit
closely or tightly). Each sense of hug belongs to a different synset, which consists
of all of the words that connote that sense. For example, the synset to which hug1
belongs includes also clinch5 and squeeze7. Synsets, in turn, belong to a rich, graph-
like structure, in which they comprise the nodes and semantic relations comprise
the edges. These edges are directed for asymmetric relations and undirected for
symmetric relations.
The designers of WordNet recognized that each part-of-speech class had its own
unique characteristics. This fact is reflected in the graph: the edges used for each
synset vary as a function of the part-of-speech class, as does the high-level structure
of the nodes of that part-of-speech class. Nouns are organized into a hierarchical
taxonomy, the root of which is entity. The topmost levels of the noun taxonomy are
semantically empty and are hard to lexicalize, but their inclusion allows all nouns
to fit into the same structure. Below these levels lie 25 beginner trees corresponding
to generally (though not entirely) mutually exclusive concepts. Fig. 3.1 presents a
small piece of the WordNet taxonomy, showing how some more semantically specific
words would be nested beneath more general terms.
By traversing the graph, it is trivial to follow entailed senses transitively toward
the root. Additionally, though Fig. 3.1 does not reflect this, some senses have more
than one hypernym, which means that there may be more than one path between
nodes in the graph (just as helmet is both headwear and sportswear). Typically, the
shortest path is used for computing distances in the graph. In this work, I frequently
present results as a function of naïve generality (NG), which refers to the number of
edges between a synset and the root of the noun taxonomy, under the naïve [Resnik,
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Figure 3.1: A portion of the WordNet noun taxonomy, Miller and Beckwith [1990]

2011] assumption that all edges are of equal semantic length.
The edges of verb synsets are similar to noun synsets in that entailment is still
supported but the sort of entailment reflected in the graph of verb synsets extends
beyond hypernymy to include more general entailment relations. More important
for our purposes is the fact that the high-level structure of verb synsets is not a
single taxonomy but rather a number of separate taxonomies, each of each which is
shallower and has a shape that has a bulge, which is the depth at which there is the
most lexicalization.
Adjectives and adverbs do no support entailment and so cannot be exploited to the
degree that verbs and adjectives are. However, they both still support synonymy.
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4 Recognizing Lexical Relations

In this chapter, I explain in detail the Distributional Inclusion Hypothesis (DIH),
which is the theoretical basis for all models of Hypernymy Recognition (HR) that use
feature inclusion. I then survey models that implement the DIH and measure their
performance, to illustrate how the status quo does not outperform crude baseline
models. The Feature Exclusion Problem (FEP), which I consider to be an important
factor limiting performance, is presented and analyzed in Chapter 5.

4.1 The Distributional Inclusion Hypothesis

The task of identifying asymmetric relations like hyperny has been attempted us-
ing a variety of approaches, including semi-supervised approaches based on shallow
lexico-syntactic features [Hearst, 1992], supervised learning models [Levy et al., 2015,
Roller et al., 2014, Santus et al., 2014, Snow et al., 2006, Weeds et al., 2014a] and
unsupervised models [Clarke, 2009, Geffet and Dagan, 2005, Kotlerman et al., 2010,
Santus et al., 2014, Szpektor and Dagan, 2008].
One of the most prominent hypotheses guiding the design of many supervised and
unsupervised models is the DIH [Weeds, 2003, Weeds and Weir, 2005], which is
supported empirically by the observation that more general words tends to occur in
a larger variety of contexts than do more specific words. The DIH is also consistent
with definitions of hypernymy as feature inclusion in semantics [Cruse, 2004]. The
DIH was formalized by Geffet and Dagan as follows: Given words 〈A,B〉, and f(w),
a function that determines for a sense its most important features, and that A→ B
denotes that A entails B, then A→ B ≡ f(A) ⊂ f(B).
Models operationalizing the DIH typically consider not only the proportion of fea-
tures shared by both narrower and broader terms but also the proportion of excluded
features from the broader term, the idea being that not only are the characteris-
tic features of the narrower term a subset of the broader term’s, but they are a
much smaller subset relative to the size of the broader term’s characteristic feature
set. This goes beyond the Geffet and Dagan formalization, in that (1) it implicitly
establishes the root of the taxonomy (the word which itself has no hypernym but
which hypernym to all other words) as a word whose characteristic contexts consist
of all possible features and (2) by not discriminating objectively on the basis of the
number of features in either the narrower or broader term (but instead discriminat-
ing with respect to proportions of features), it implicitly rewards extremely narrow
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terms as candidate hyponyms. While semantically this latter idea might seem plau-
sible, in practice it is problematic in a distributional setting, as narrowness is a
consequence of not just specificity of meaning but also rarity of usage. Kotlerman
et al. [2010] consider the practical challenges of sparse feature vectors in their list
of desired properties for asymmetric measures of distributional similarity, and note
that sparse feature vectors are less reliable. Their measure, which will be reviewed
shortly, is among the few to penalize extremely sparse feature vectors.

4.1.1 Challenges in Interpreting Feature Weight Semantically

The Geffet and Dagan formalization doesn’t specify the details of the characteristic
feature function f() and this may be because researchers in DS are not in complete
agreement about what the features in the sparse feature vector of a DSM actually
signify. The vast majority of researchers interpret the magnitude of a feature’s
weight as an important piece of information and typically also interpret this weight
as being proportional to the feature’s importance to the sense that the vector is
intended to represent (insofar as a feature’s weight is typically directly proportional
to the output of most similarity measures). In qualitative examinations of top-
ranked features, such as was done in Fig. 2.4, the hypothetical gold standard consists
of features that are intuitively related to the sense being represented.
This intuitive standard may not be a goal worth striving for. Semantics and the DIH
are not intended human-specific theories; their essence is independent of humanity.
However, the representations in a DSM exhibit many artifacts of human cognition,
as do our intuitions. T
It is important to mention that not only is this view of feature weight one of many,
but that the issue of how to interpret feature weight bears remarkable similarity to a
similar debate that took place among semanticists and philosophers about the nature
of conceptuality. In one view of concepts, which I refer to as the Set-Theoretic view,
concepts are defined by a set of necessary features that are of equal importance.
Alternately, there is the Prototype View of concepts, in which the importance of
features to a concept varies, and there may be no single set of sufficient features.
Thus, while the prevailing view is that features vary in importance to their vectors,
one could also treat features as having equal importance, a stance that embraces a
Set-Theoretic View.
Despite the consensus that feature weight is important somehow, there is substantial
disagreement about how it should be assigned and used. There is still debate about
which Association Measure is best (though positive point-wise mutual information is
popular, it is not universally dominant). Also, a number of researchers have explored
transformations of feature weight that, while monotonic, and thus order-preserving,
completely change the magnitude of features. And these researchers argue that
these transformations improve the semantic properties of vectors. Lapesa and Evert
[2014] consider the impact of log and square-root and find that these transformations
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improve the scores on standard benchmarks. There are also researchers who take
a more conservative approach to feature weight and conceptuality, and use feature
rank rather than the weight itself. Kotlerman et al. [2010] rank features by weight,
and use the ranks as indicators of importance. They note in defense of ranking as a
more stable measure that two features of consecutive rank may have very different
weights and similarly, features of the same rank in different vectors may have very
different weights.

It remains to be seen how the field will view feature weight in the future. However,
as will be clear after reviewing the performance of some baseline models, at least in
HR, feature weight does not contribute that much.

4.1.2 Defining the Characteristic Function

All models of HR must implicitly define f(), the characteristic function that returns
a word’s most important contexts. Most models adopt the Prototype View and
treat the magnitude of feature weight as proportional to importance. There are
data in HR that seem to show that feature weight should be considered. Kotlerman
et al. [2010] showed that the weight of features can be used to distinguish between
entailing and non-entailing pairs of vectors. See Fig. 4.1. Two baseline models I
include, PSet and RSet, ignore feature weight and treat every non-zero feature as
having equal importance.

4.2 Models of the DIH

In this section, I describe many recent or historically important HR models that use
feature inclusion to discriminate positive and negative instances of hypernymy.

The first model to use feature inclusion is that of Weeds and Weir [2005] and views
feature inclusion from an Information Retrieval (IR) perspective, in terms of preci-
sion and recall. In IR, a system returns a set of documents in response to a query and
we can evaluate the system’s quality based on the number of true positives (relevant
documents returned), false positives (irrelevant documents returned), false nega-
tives (relevant documents not returned) and true negatives (irrelevant documents
not returned). Under this view, non-zero features are akin to relevant documents.
However unlike with precision/recall in IR, the Weeds and Weir model adopts the
Prototype View and considers relevance to be graded. Given that ~u and ~v represent
the hyponym and hypernym respectively, and F (~u) is set of non-zero features for ~u,

Both PWeeds and RWeeds effectively measure proportions of total importance. Thus
the entire model can be summarized as predicting that the percentage of importance
from shared features in the narrower term should be greater than the percentage of
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Figure 4.1: This figure presents feature inclusion, the extent to which features of
the vector representing the narrower term are shared by the broader term’s vector,
as a function of feature rank within the narrower term for two pairs of vectors,
one pair of which represent an entailing pair of words, election→ vote, while the
other represent a non-entailing pair of words election 6→ reform. The difference
between the lines decreases with feature rank, suggesting that high-rank features
are useful for discriminating between entailing and non-entailing pairs. From
Kotlerman et al. [2010].

F (~u) = {u1, u2, u3, ...un}
w(f ∈ F (u), u) = PPMI(uf )

PWeeds(~u,~v) =

∑
f∈F (u)∩F (v)

w(f, u)∑
f∈F (u)

w(f, u)

RWeeds(~u,~v) =

∑
f∈F (u)∩F (v)

w(f, v)∑
f∈F (v)

w(f, u)

WeedsDiff(~u,~v) = PWeeds(~u,~v) > RWeeds(~u,~v)

Figure 4.2: The composition of WeedsDiff, PWeeds and RWeeds. F (~u) is the feature
weight function, which returns the set of non-zero weights of a feature vector and
w(f, n) is the feature weight function, which returns the PPMI feature weight of
a given component of a feature vector.
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PClarke(~u,~v) =

∑
f∈F (u)∩F (v)

min(w(f, v), w(f, u))
∑

f∈F (u)
w(f, u)

RClarke(~u,~v) =

∑
f∈F (u)∩F (v)

min(w(f, v), w(f, u))
∑

f∈F (u)
w(f, v)

ClarkeDiff(~u,~v) = PClarke(~u,~v) > RClarke(~u,~v)

Figure 4.3: The composition of Clarke’s PClarke and RClarke models

relevance from shared features in the broader term. In evaluations, the Weeds model
was shown to be 71% accurate, but not significantly better than a näive model based
on word frequency Weeds and Weir [2005].
Clarke [2009] proposed a variation on the Weeds model which treats feature vectors
as approximations of frequency distributions. Under such a view, the intersection
of any two vectors represents the maximal number of times both words occurred
together within each context and, because the maximal number of times clearly
cannot exceed the number of times a single word occurred with a particular context
(i.e., the value of a particular component in one vector), the intersection vector is
0 for excluded features and takes the minimum value for shared features. Applying
this view of shared features to the feature vectors in a DSM, the components of
which are not actually frequencies but which have been transformed by a measure
of association, yields slightly different definitions of precision and recall: In their
evaluation, Weeds et al. [2014a] found ClarkDiff to have comparable or worse
performance to the Weeds model.
Lenci and Benotto [2012] compared precision and recall in a different way, and their
model was found to be better at discriminating hypernyms from other relations on
the BLESS dataset [Baroni and Lenci, 2011], although in similar tests by Weeds
et al. [2014a], its performance was neither the best nor significantly better than
other unsupervised models. Instead of comparing the magnitude of a precision and
recall term, they hypothesize that precision should be high and recall should be
low, which is analogous to the idea that narrower terms should be much narrower.
Again, the recall function rewards relative narrowness between the two terms, not
objective narrowness with respect to general vector width. Their model is:
Szpektor and Dagan [2008] recognized the potential of the Weeds model to reward
extremely narrow terms and attempted to mitigate this problem by taking the geo-
metric mean of precision and a similarity measure. The thought was that extremely
narrow terms would also exhibit low similarity. This model penalizes distantly re-
lated hypernymous pairs.
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InvCL(~u,~v) = 2
√
PClarke(u, v)× (1−RClarke(u, v))

Figure 4.4: The composition of the InvCL model

BInc(~u,~v) = 2
√
Lin(u, v)× PWeeds(u, v)

Figure 4.5: The composition of the Binc model

Kotlerman et al. [2010] presented a measure, BalAPInc, that builds upon the Szpek-
tor and Dagan [2008] model. They use the same balancing procedure as Szpektor
and Dagan, taking the geometric mean of a measure of similarity with a measure of
that captures degree of entailment, but use a new measure of degree of entailment,
APInc. APInc is derived from Average Precision (AP) [Voorhees and Harman,
1998], a measure from IR, which averages precision as a function of order in the re-
turned documents list. APInc differs from PWeeds Weeds [2003] in that (1) it models
the list of documents (which in this case are contexts) as an ordered list rather than
as a set, and (2) it models importance as an ordinal variable that is a function of
feature weight, rather than using feature weight itself. Additionally, rather than
rewarding high precision and low recall, as did InvCL, APInc rewards both high
precision and high recall.

To test the importance of feature weight, I include two models that ignore it com-
pletely. Their performance may provide insight into the viability of other models.

APInc(~u,~v) =

|F (u)|∑
r=1

P (r, ~u)× rel(f, ~u)

|F (v)|

P (r, ~u) =

r∑
t=1

tthfeature ∈ F (u)

r

rel(f, ~u) =

1− rank(f,F (u))
|F (u)|+1 if f ∈ F (u)

0 if f 6∈ F (u)

BalAPInc(~u,~v) = 2
√
Lin(u, v)× APInc(u, v)

Figure 4.6: The composition of BalAPInc
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PSet(~u,~v) = |F (u)∩F (v)|
|F (u)|

RSet(~u,~v) = |F (u)∩F (v)|
|F (v)|

Figure 4.7: The composition of two Set-Theoretic models, PSet and RSet.

Recently, another hypothesis concerning distributional features distinguishing hy-
pernyms from hyponyms was proposed. Santus et al. [2014] designed a measure,
SLQS, as a measure of semantic generality, and not specifically as a model of hyper-
nymy. The measure exploits the fact that more specialized words (narrower terms)
tend to take more informative arguments. The measure compares the median en-
tropy of typical arguments for both the proposed narrower and broader terms. ’ the
fact that it is a model of generality and not hypernymy, SLQS was shown to out-
perform PWeeds at both discriminating hypernym pairs and recognizing the direction
of entailment on pairs extracted from the BLESS dataset [Baroni and Lenci, 2011].
However, this thesis is concerned with improving performance on DIH-inspired mod-
els.
Thus far, the models that have been reviewed have been unsupervised and have
been operationalized in unreduced space, where feature vectors are sparse. There
have also been attempts to express the DIH in dense, reduced space (the space af-
ter smoothing with, for example, truncated SVD) and to use supervised learning
methods to induce a model that is more generalizable and better performing. Doing
so requires the modeler to make a decision about the input to the model. Weeds
et al. [2014a] experimented with various features, including binary and unary oper-
ators between pairs of vectors, as inputs to their supervised models, and were able
to achieve 15% reduction in error compared with unsupervised approaches. Roller
et al. [2014] use the normalized difference between vectors as features for a support
vector machine and were able to achieve state-of-art results on the BLESS dataset
[Baroni and Lenci, 2011]. However, as per both the analysis by Roller et al. [2014]
as well as additional work done by Levy et al. [2015], there is reason to suspect the
generalizability of what these supervised models actually learn. As per Roller et al.
[2014], the features learned by their model do not reflect a general comprehension
of feature inclusion, but instead are dependent upon the dataset. For example, a
classifier that sees that many hypernyms have the feature animal will grant that
feature additional weight. BLESS, in fact, seems a dataset particularly encouraging
of this sort of mistake, as its instances are not evenly distributed throughout seman-
tic space but are actually concentrated in a small number of semantically related
categories (e.g., birds, appliances). Levy et al. [2015] tested whether supervised
models are actually lexically memorizing by comparing the performance of models
provided only with lexical features and models provided with both contextual fea-
tures and lexical features, and they found that the difference, though favoring the
latter models, was small. In a subsequent test designed to test whether the model
was learning to recognize prototypical hypernyms (words close to the root of the
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taxonomy, that tend to be hypernyms by virtue of their generality) and to a lesser
extent, prototypical instances (words at the bottom of the taxonomy, that tend to
be hyponyms for this reason), Levy et al tested a trained classifier on a synthetic
test set in which hyponyms were paired randomly with hypernyms and showed a
high linear correlation between recall of the synthetic (and presumably incorrect)
instances and error in the actual test set.

4.3 Measuring State-of-the-Art Performance

In this section, I measure the performance of the models described in Sec. 4.2 on
the HR task using the Weeds et al. [2014b] dataset, the virtues of which dataset are
discussed in greater detail in Sec. 8.1.1. The performance of these models is high,
but not significantly better than baseline models that ignore feature inclusion.
The models used in this test are all unsupervised but because in most cases a pa-
rameter is needed to define a decision boundary, training was done through five-fold
cross-validation. The final parameter used is an average of the optimal parameter
from each fold.

4.3.1 Vector Representations

Given the impact of cooccurrence definition (surface, syntactic, etc.) on a DSM, and
that in the status quo, optimal parameter settings are still a matter of debate, two
DSMs are constructed and used as the basis for further modification and analysis.
The first of these, U, models coccurrence using surface distance whereas the other,
Y, models coccurrence using distance in a syntactic representation. Both U and Y

Model Name Description
PWeeds PWeeds(~u,~v) > p
RWeeds RWeeds(~u,~v) > p
PSet PSet(~u,~v) > p
RSet RSet(~u,~v) > p

InvCL InvCL(~u,~v) > p
WeedsDiff WeedsDiff(~u,~v)
BalAPInc BalAPInc(~u,~v) > p

SingleWidth |F (~u)| > p
WidthDiff abs(|F (~v)| − |F (~u)|) > p
Cosine cosine(~u,~v) > p

Table 4.1: A list of HR models. For models that do not return a prediction, a
parameter p is required as a threshold. To compute an optimal value for p for
each model, five-fold cross validation was used.
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use the same corpus, a concatenation of Wackypedia and ukWaK [Ferraresi et al.,
2008]. The corpora are lemmatized and POS tagged using TreeTagger 1 and the
sentences are parsed using MaltParser 2.

4.3.1.1 U

U is meant to represent a rather standard, surface distance-based DSM. It uses a
symmetric context window spanning two words and ignoring sentence boundaries.
The set of basis elements are lemmatized, POS-tagged, open-class words (nouns,
adjectives, adverbs, and verbs) and the set of row elements are all nouns. The
space was filtered from its original size to include only the top 100,000 features by
frequency and only rows with corpus frequency greater than 300. The features were
weighted using PPMI.

4.3.1.2 Y

Y is meant to represent a rather standard, syntax-based DSM. Cooccurrence were
considered to have occurred between two open-class words connected by depen-
dency from the set of major open-class dependencies (nsubj, dobj, iobj, conj, amod,
nmod). Additionally, all cooccurrence is treated as being direction-independent, but
direction is encoded with an additional tag, e.g. nsubj-r. The basis elements are
a concatenation of a lemmatized, POS-tagged, open-class word and a dependency
from this set e.g., nsubj_ball − n. As in U, the space is filtered to include only
the top 100,000 features and all rows with frequency greater than 300. The features
were weighted using PPMI.

The results are consistent with Weeds et al. [2014a] and show that simple models
like WidthDiff are comparable in performance to far more complex models, like
WeedsDiff, and even better performing than other BalAPInc. Also surprising is the
competitiveness of the PSet model, which is both simple and ignores feature weight
completely.

A closer look at performance as a function of the absolute difference in naïve gen-
erality3 (NG) suggests some of the causes for low performance. In Table 4.3, the
WeedsDiff model’s accuracy is shown for U as a function of the absolute difference
in NG of the pair of words in the problem. Pairs of words with the same NG are clas-
sified 22% less accurately than problems where the words differ in generality. The
performance drop cannot be explained in terms of similarity, as the cosine similarity
of the word pair seems nearly independent of absolute difference in NG.

1http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
2http://www.maltparser.org/
3Naïve generality refers to the number of edges between a synset and the root of the noun
taxonomy in WordNet.
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Model U Y
BalAPInc 58 51
WeedsDiff 68 70
Cosine 54 55
InvCL 58 66
PSet 62 70
RSet 49 49

SingleWidth 66 66
PWeeds 63 69
RWeeds 49 49

WidthDiff 67 70
Totals 59 61

Table 4.2: Percentage Correct for all models and DSMs

Abs. Diff. in NG Percentage Correct Sample Size Cosine Similarity
0 50 462 0.09
1 67 780 0.11
2 75 541 0.10
3 75 227 0.09
4 87 104 0.10
5+ 75 71 0.11

Table 4.3: Percentage of correctly classified problems as a function of the absolute
difference in NG of the input for the WeedsDiff model

As has been noted in other places, NG is crude and its crudeness reveals itself here,
as some of the word pairs with no difference in NG between are actually pairs that
should be classified as hypernyms, which is impossible for words at the same depth
in the taxonomy. After dividing the problems by their actual lexical relationship,
as recorded in the dataset, over 80% of pairs with absolute difference in NG of 0 are
listed as not hypernymous.
Additionally, as per Table 4.4, many of the models reveal themselves to have much
higher positive than negative predictive values, where positive predictive value (PPV)
is defined as the number of true positives over the number of true positives plus the
number of false positives and negative predictive value (NPV) is defined as the
number of true negatives over the number of true negatives plus the number of false
negatives. This phenomenon might be explained by relative homogeneity: hyper-
nymy is much rarer than co-hyponymy, and thus, compared to the much larger set of
co-hyponyms, which is on O(N) where N is the number of words in the taxonomy,
the set of hypernyms maybe more homogeneous. The recall-based models also seem
to be equivalent to a baseline model that assumes all instances are non-hypernymous.
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Model Negative Positive Percentage
Predictive Value Predictive Value Correct

BalAPInc 0.42 0.73 0.58
WeedsDiff 0.62 0.73 0.68
Cosine 0.45 0.63 0.54
InvCL 0.55 0.60 0.58
PSet 0.58 0.67 0.62
RSet 0.99 0.00 0.49

SingleWidth 0.64 0.68 0.66
PWeeds 0.54 0.72 0.63
RWeeds 0.99 0.00 0.49

WidthDiff 0.62 0.73 0.67
Table 4.4: Positive and Negative Predictive Values for various models on an HR
task
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5 Analysis of the Problem

In this chapter, I describe and analyze the causes of the Feature Exclusion Problem
(FEP), beginning with the magnitude of the problem, which is large enough to
substantiate the claim that in a conventional feature space, models based on feature
inclusion are bound to fail.

5.1 What is Feature Exclusion?

Feature exclusion is the phenomenon wherein, given a sparse feature vector rep-
resenting word w, the features of w are predominantly not shared by h, a sparse
feature vector representing a hypernym of w. I refer to features in w but not h
and in h but not w as excluded. In contrast, features shared by both w and h are
referred to as conserved, a more general notion than shared that can be general-
ized to any number of entailed hypernyms. Fig. 5.1 presents a visual example of
excluded, conserved and semi-conserved features. Feature Exclusion is problematic
for the Distributional Inclusion Hypothesis (DIH) because the DIH predicts that the
features of the narrower term will be a subset of the broader term’s features.

5.2 The Size of the Problem

Before explaining some of the reasons that these features are excluded, it is worth
considering the scale of the problem. How often are features actually excluded in the
narrower term? Sec. 5.2.1 considers this question by looking at rows in feature-space.
Sec. 5.2.2 considers this question by looking at features in feature-space.

5.2.1 Feature Conservation By Rows

This section presents an analysis of feature conservation by rows and shows that
when following a sequence of hypernymy relations, few features conserved at one
step will be conserved at a subsequent step. Table 5.1 shows the percentage of
features as a function of their degree of conservation over a sequences of hyperny-
mously related words w1, w2, and w3, such that w1 is a hyponym of w2 and w2
is a hyponym of w3. The sequences of words used in this sample was limited to
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Figure 5.1: A picture depicting three hypothetical sparse feature vectors, where
dark areas are non-zero features and white areas are 0. The features shared by all
three vectors are labeled conserved; some (not all) features shared by more than
one vector but not all are labeled semi-conserved and features that only occur in
one vector are labeled excluded.

sequences in which w1, w2 and w3 are found in adjacent levels of the WordNet
taxonomy. This constraint controls for semantic distance at the expense of sample
size. The sample includes 26,054 sequences from U and 21,094 sequences from Y1.
Degree of conservation refers to the categories of features in Fig. 5.1. In terms of
notation, degree of conservation is represented as a binary sequence, beginning at
the hyponym and terminating at the most distant hypernym in the analysis. Thus,
the degree of conservation of a conserved feature would be a sequences of ones: 111.
The degree of conservation of a feature shared by all but the most distant hypernym
would be a sequence of ones followed ultimately by a zero: 110. Because in a given
sequences {w1, w2, w3}, over 90% of features are likely to be zero for all three words
(because the space is sparse), and because such features are omitted from the table,
the percentages in each row of Table 5.1 do not add up to 100%.

A number of facts are striking about Table 5.1. Firstly, the proportion of features
that are conserved is tiny: on average between only 20 and 30 out of 100,000 columns
are conserved across the taxonomic span in this sample; had I extended this analysis
to a more distant hypernym, the number of conserved features could not possibly
have increased and would likely have further decreased. Secondly, the percent of Ex-
cluded features is significantly greater than either the Conserved or Semi-Conserved
features. While theoretically, if the most distant hypernym is at the top of the

1U and Y are DSMs constructed from the same corpus but using different definitions of cooccur-
rence; U uses surface cooccurrence while Y uses syntactic cooccurrence. As such, their feature
sets are also different; U’s features are part-of-speech annotated words while Y uses words
annotated with both part-of-speech tags and a dependency and a direction tag. See Sec. 4.3.1
for more details.
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5.2 The Size of the Problem

Space Conserved Semi-Conserved Excluded
110 011 101 001 100 010

U 0.027 0.097 0.331 0.060 2.853 1.093 2.712
Y 0.001 0.002 0.012 0.002 0.067 0.009 0.054

Table 5.1: The percentage of features as a function of conservation type for U and
Y for words {w1, w2, w3|w1 → w2 ∧ w2 → w3}. The percentage of features that
are zero in all three words is omitted.

Space Conserved Semi-Conserved Excluded
110 101 100

U 3.6 9.5 5.2 81.7
Y 9.2 15.3 12.5 63.0

Table 5.2: The percentage of feature weight with respect to w1 as a function of
conservation type for U and Y for words {w1, w2, w3|w1 → w2 ∧ w2 → w3}.

taxonomy, then 001-Features don’t represent evidence to contradict the DIH, 010-
Features and 100-Features are problematic for the DIH regardless of their position
in the taxonomy. In total, Excluded features account for over 92% of non-zero U
columns2. If we assert that Conserved > Semi-Conserved > Excluded, then there is
an inverse relationship between degree of conservation and the percentage of features
in the sample.

The problems with the DIH persist when adopting the Prototype View of features, in
which feature weight is interpreted as importance or relevance, and which view, when
applied to the DIH, leads to the prediction that the feature weight of a hyponym
should be a subset of the feature weight of the hypernym. In Table 5.2, which uses
the same vector space as above, the percentage of feature weight is with respect
to w1. Thus, an 010-Feature (a feature present only in w2) would have a feature
weight percentage of 0 with respect to w1 and for this reason, those sorts of features
are omitted from the table. With regard to problems in the DIH, the proportion of
relevance that is excluded is clearly dominant (as indicated by the relative size of
100-Relevance) (Wilcoxon signed rank test, v = 1745221, p < .0001). Additionally,
if Conserved > Semi-Conserved > Excluded, there is an inverse relationship between
conservation type and feature weight.

5.2.2 Feature Conservation

One can also consider feature conservation by examining the features directly. This
analysis is based on the intuition that we can measure the taxonomic span over

2The calculation for U is 2.853+1.093+2.712
0.027+0.097+0.331+0.060+2.853+1.093+2.712 = 0.093. This quantity for Y is

even greater.
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Figure 5.2: Histogram of the naive generality of all rows inU showing a high degree
of lexicalization around 7 edges.

which a feature is used by looking at the naïve generalities3 (NGs) (the number of
edges between a noun and the root of the WordNet noun taxonomy) of the set of
rows in which that feature is non-zero. A feature for which this set has high variance
is, in a sense, more conserved than a feature for which this set has low variance.
However, there is a bias that makes this analysis problematic: taxonomies are not
lexicalized evenly. Instead, as Fig. 5.2 shows, the distribution of NG over rows is
peaked around 7 edges from the root. So, the variance in NG of a particular feature’s
non-zero rows might exhibit lower variance because of the distribution of NG in the
population, and not because the feature is used only within a small taxonomic span.
Consequently, in order to test whether a given feature is conserved, I test whether
its set of NGs is significantly different from the set of NGs for all rows.

The set of NGs for 1084 randomly selected columns were compared against the
distribution of NGs for all rows. In 86% of columns sampled, the distribution of
NGs of the column was significantly different than the NGs for the set of all rows
(p-value ≤ .001, Welch Two Sample t-test). More intuitively, Fig. 5.3, which was
generated from the 99,998 columns in U, shows that the vast majority of columns
have a standard deviation less than 2.03, which is the standard deviation of NG
from the set of all rows.

3See Sec. 3.4.
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Figure 5.3: Histogram of standard deviations of NG of the non-zero rows for fea-
tures in U showing that most features exhibit a lower standard deviation than
the population from which they are drawn, here represented by a green line at
x = 2.03.
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It should be noted that this analysis is imperfect. Firstly, it relies heavily on NG,
which is unreliable, both in the sense that its assumptions are demonstrably not true
(not all edges can be treated as having the same semantic distance) and because
one must ignore the fact that words are polysemous when computing their NG. The
alternative to using polysemous rows isn’t a viable option as monosemous words are
concentrated at specific levels of the taxonomy.

5.3 Causes of Feature Exclusion

Having established the scale of the feature exclusion problem, we can examine some
of its causes. There are three main causes of feature exclusion, one of which concerns
the way in which human beings communicate, and the other two of which stem from
how meaning is represented in DSMs.

5.3.1 Feature Exclusion and Human Communication

The broadest cause of Feature Exclusion has to do with the tendency for speakers and
writers of natural language to adhere to Grice’s [Grice, 1975] Cooperative Principle
of conversation. Grice proposed four descriptive maxims for how people tend to
communicate, two of which have an impact on feature inclusion: the Maxim of
Quantity and the Maxim of Manner. The Maxim of Quantity states that utterances
should be neither too specific nor too general. The Maxim of Manner posits that
speakers should be sensitive to the capabilities and needs of their conversational
partners, and should express themselves as briefly, clearly and in as organized a
fashion as possible. Adherence to these maxims manifests in (1) a tendency to
use words within a certain span of generality and (2) a tendency not to introduce
superfluous arguments that attest to things that can be safely assumed.
Adherence to these maxims is easily demonstrable by example. Consider the fol-
lowing statements, I went to the zoo and saw the entities and I went to the zoo
and saw the Amazonian anaconda and the rattlesnake and the puff adder and the
copperheads and the orangutan and the gorillas and the chimpanzees etc. The for-
mer is too general, and tells little about the experience. The latter, which sounds
like something a young child might say, tells everything about the experience, but
assumes the reader wants a very granular response, or alternately, has the time to
read such a response. Instead, we expect a response that is a compromise between
informativeness and brevity, a la I went to the zoo and saw the animals or perhaps
I went to the zoo and saw the reptiles and primates.
In a related case, consider this unlikely statement: The tangible, mammalian, car-
nivorous, mobile, two-eyed dog wagged its tail. With respect to canonical examples
of dogs, the adjectives that precede the word dog are completely uninformative, as
almost all such dogs are tangible mammals that eat meat, can move, and have two
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eyes. However, what makes this case likely to lead to feature exclusion is that these
properties are informative when applied to animal, a hypernym of dog.

Another cause of feature exclusion is the non-compositionality of some word pairs.
Non-compositionality refers to the fact that the meaning of a pair of words is not
the sum of its parts, but something else entirely. For example, the word-pair red
apple is compositional: it can refer to an object that is both red and an apple. But,
a red herring need neither be red nor a herring. These cases are also referred to as
collocational, as in stiff drink. In a collocation, one element, the base, retains its
normal connotation whereas the other element, the collocate, contributes a sense
unlike its sense in other contexts [Evert, 2005]. Non-compositionality is problematic
for DSMs as representations of lexical meaning generally, and is consequently indi-
rectly problematic when using DSMs for HR. It is important to add the qualifier
‘as representations of lexical meaning’ because non-compositionality is not problem-
atic when trying to identify multi-word expressions. Indeed, non-compositionality
is crucial for such a task and red herring can be considered a multi-word expression.
But for lexical semantic representations, the central supposition of feature vectors
is that the relationship between a row and basis element is somehow illustrative of
some property of the row element. This assumption holds for compositional pairs,
but doesn’t for non-compositional ones. And because a non-compositional feature
is not illustrative of any property of a row element and is essentially unique, it is
far less likely to be shared by semantically related words and is thus likely to be
excluded.

In a similar case that is difficult to distinguish on the basis of association scores,
sometimes row and basis elements combine compositionally but are nevertheless still
highly associated with particular contexts, and thus are unlikely to be conserved.
For example, lion can take the feature mane, but few other words can. In contrast,
the broader term animal, a hypernym of lion, is unlikely to take the feature mane
but can take the feature hair. I refer to this case as Compositional Non-Entailing
because of the relationship between mane and hair, which is asymmetric: mane
entails hair but hair does not entail mane. Feature exclusion may also occur when
features are mutually entailing. For example, frog may take the feature gullet, and
animal, a hypernym of frog, may take a synonymous feature esophagus. Unlike the
earlier case, in which mane entailed hair but hair did not entail mane, these two
features are mutually entailing and any occurrence of gullet with frog should be
substitutable with esophagus without changing the truth conditions of the sentence.
The problem is a really a probabilistic one: hypernyms are less likely to use the same
feature as their hyponym, although this tendency isn’t as strong nor as systematic
as the Non-Entailing case. I refer to this case as Compositional Entailing.

Exclusion can also result from semantically equivalent features that are spelling
variants of each other, e.g., colour and colour, which can also be considered as a
special case of Compositional Entailing.

It is important to note that some of the cases of feature exclusion described above are
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Type Example
Non-Compositional red herring
Compositional Non-Entailing mane, hair
Compositional Entailing gullet, esophagus
Spelling Variation

colour, colorCapitalization
Case-Folding
Gricean *I went to the zoo and saw the entities.

Table 5.3: Types of Feature Exclusion

debatable, and determined by one’s objective in modeling and one’s interpretation
of the DH. If the goal is to measure contextual similarity, then clearly collapsing
features from different contexts is likely to have a deleterious effect. However, I
argue that for the task of HR, these examples are worthy of correction.

5.3.2 Feature Exclusion and DSM Design

Two aspects of DSM design actually contribute to feature exclusion. The first of
these is perhaps unavoidable, as it concerns the means by which we ensure the
statistical robustness of the representation. Recall that the raw coocurrence matrix
is weighted using an Association Measure that takes into account both the observed
number of cooccurrences and the expected number, under a statistical model of
independence. In fact, it is this very process that contributes to feature exclusion.

Consider a column in a typical raw cooccurrence matrix. The more conserved this
column is, the higher its marginal frequency. The higher its marginal frequency, the
greater the expected value for cells in that column. The greater the expected value,
the greater the number of observations required for a positive association score. The
greater the requirement, the less likely it is to be met, and thus the less likely those
cells will become features in the sparse feature space.

Of course, this characteristic of typical feature spaces is actually by design. The tra-
ditional view of feature weight is based on the idea that the more statistically novel
a feature is, the more discriminative power it should have for semantic similarity,
and thus the greater the weight should be.

There are objective and subjective reasons for using discriminative power as the
basis for feature weight, at least for applications that depend on semantic similarity.
Objectively, models using discriminative power to weight features, which includes
the status quo, have performed well on semantic similarity benchmarks. However,
it’s not clear the extent to which benchmark performance is necessary for high
performance in HR, and it is unlikely that benchmark performance will be more
important than minimizing feature exclusion, which is crucial to HR.
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More subjectively, these feature weighting schemes seem to reward features that
correspond with psychological salience, albeit imperfectly. For example, in U the
verb bark is the third largest feature in the vector dog, which is consistent with
an intuitive judgment that barking is important to the concept of dogness. Corre-
spondence with intuitive judgments is often used as a crude qualitative benchmark
of Association Measures, as in Fig. 2.5. However, there is reason to believe that
the correspondence between feature weights and psychological salience is something
that should be avoided rather than sought as the most salient features are rarely
good candidates for conservation. Rather, salient features tend to be either special
characteristics or characteristics that are typical of a near hypernym, meaning they
will be conserved over a short span, but not a longer one. For example, the ordered
list of 16 words most associated with eagle in the Edinburgh Associative Thesaurus
[Kiss et al., 1976] consists of bird, golden, nest, hawk, comic, fly, star, wings, Amer-
ica, eye, eyrie, mountain, soar, talons, air, and beak. With the exception of eye,
none of these are likely to be conserved across any great span, though fly, wings,
talons, bird, and beak are characteristics of many birds of prey.
The second aspect of DSM design that contributes to feature exclusion stems from
modeling meaning as space. In Cartesian space, we treat the dimensions as an or-
thornormal basis. But, not all spaces are treated this way. Frequently in machine
learning, dimensions of the feature space are assumed to be interdependent. Nev-
ertheless, in DSMs and semantic models, the basis elements of semantic spaces are
treated as independent; operations on vectors typically only compare components
with the matching component of the other vector.
Thinking of features as independent of each other means that two words can either
share a feature or they don’t; there is no degree of sharing, as there is no notion
of similarity or dependence between features. But intuitively, if one word has the
feature claw and another word the feature talon, these words are arguably far more
comparable than two words that have no features in common. This treatment of
feature similarity falsely treats as unrelated many features that are in fact related
in known ways. As will become clear after the proposed procedures are described,
this problem may be correctable.
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6 Entailed Features

In Chapter 5, I established the scope and causes of the Feature Exclusion Problem
(FEP). In this chapter, I present a proposal for mitigating the FEP by increasing
feature conservation. I begin by establishing the goals for this form of representation
before describing the proposal and finally the proposal’s theoretical motivation.

6.1 A New Goal for Representation

When considering feature inclusion as a model used for Hypernymy Recognition
(HR), the ideal feature space is very different from what is typically constructed in
the status quo. In the ideal feature space, there is no feature exclusion whereas, as
already demonstrated, in typical feature spaces, feature exclusion abounds. Because
there would be no feature exclusion, there would be perfect nestedness with respect
to features of word vectors and their hypernyms, as in Fig. 6.1. Furthermore, feature
weight would follow a similar pattern, with far more significant portions conserved
over greater spans of semantic distance.

Figure 6.1: A Venn diagram depicting the nestedness between features in an ideal
DIH-conforming feature space
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6.2 Proposal

While the ideal feature space may not be achievable, there are ways by which a
conventional feature space can be modified to make it exhibit more desirable char-
acteristics. I describe in detail two different procedures in this section.
Structurally, Procedures 1 and 2 are identical: both construct mappings offline
between features in the original space and lists of features in the modified space; both
apply these maps by iterating over the vectors in the original space and modifying
each vector independently. The essential difference is that whereas the mapping in
Procedure 1 exploits synonymy information, the mapping in Procedure 2 exploits
hypernymy.
Both procedures are also conservatively applied, in the sense that only a subset of
features in the original space are modified. This subset of feature are those that are
composed of a monosemous word 1. Monosemous is operationalized as (1) being in
WordNet and (2) having only one entry for that particular part-of-speech class2

Procedure 1 attempts to mitigate the FEP by dealing with cases like gullet/esophagus
and colour/color in Table 5.3. The intuition here is that if ~v1 has feature gullet but
not esophagus and ~v2 has the feature esophagus but not gullet, then ~v1 and ~v2 are
more related than if neither of them had these features. Thus, the map that is
constructed offline is between a monosemous feature f1 and a list of monosemous
features {f2, ...fn} such that all features are collectively synonymous.
Procedure 2 attempts to mitigate the feature exclusion cases like mane/hair in
Table 5.3, wherein one feature is a hyponym of the other or two features share
a common hypernym. The intuition here is that, given that (1) feature f1 is a hy-
ponym of f2, (2) that ~v1 has feature f1 but not f2, and (3) ~v2 has feature f2 but
not f1, the vectors are more comparable for having these features than not having
them. As with Procedure 1, a map of features to sets of features is created offline
and then this map is used by a function that can be called on each feature vector
in the space independently. However, in this case, instead of reflecting synonymy,
the keys and values of the map meet the constraint that the key is a hyponym of all
members of the set.
The application of each map to the feature space also differs with respect to how
feature weight is composed. Procedure 1 uses the function putOrMax(), which sets
all synonymous features to take the maximum feature weight of the features in the
set of features in the map. This ensures that if a vector has any of the synonymous
features, it effectively has all of them. Procedure 2 uses the function putOrAdd(),

1Features in U are composed of a word and part-of-speech tag. Features in Y are composed of a
word, a part-of-speech tag and dependency relation and a direction.

2When searching in WordNet via the web, there is no way to control the part of speech of the
query. When using a library to search WordNet locally, oftentimes the query is an object that
includes a part-of-speech tag. In either case, the result of the query is a set of matching synsets
in which that word occurs.
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input : o, a map between features and association scores representing the
original feature vector
k, a feature map {fa 7→ {fb, fc, fd, ...}}, where fi ∈ Features

output : n, a map between features and association scores representing the new
vector

n←− ∅
for Entry e ∈ EntrySet(o) do

if ekey ∈ KeySet(k) then
for f ∈ get(k, ekey) do

putOrMax(n, f, evalue)
end

else
putOrMax(n, ekey, evalue)

end
end
return n

Figure 6.2: Procedure for applying a feature map to a feature space using
putOrMax(). putOrMax() can be replaced with the function putOrAdd() and
used with Procedure 2’s map without changing the algorithm. EntrySet(map) is
equivalent to the function of the same name in Java, which returns a list of all
key-value pairs in a map. KeySet(map) returns all keys in a map.

which causes feature weight to become proportional to semantic generality, such
that the most general words take the most feature weight.
The iterative procedure is described in Fig. 6.2.

6.3 Theoretical Justification

The design of the procedures is justified on many levels. Firstly, the procedures can
be seen as a means of constructing higher-order features. Unlike in truncated SVD,
in which the resulting feature set is a set of latent features that were not part of
the original feature set, the resulting space from the procedures is a concatenation
of the original space with some number of higher-order features. These higher-order
features arise naturally by considering entailed features that are not in the space. For
example, the feature dog entails organism. If organism were not already a feature
in the space but the feature dog was, organism would be added after applying
the procedure. The appeal of higher-order features lies in their ability to capture
indirect relationships: we no longer need to observe two words with the same feature
in order to compare them, but instead need only observe them with similar features,
as alluded to in Sec. 5.3.2. Failure to consider the similarity features reduces the
the granularity of semantically distant comparisons, obscuring meaningful relations
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between words. However, though the appropriateness of considering synonymous
features and features that are immediate hypernyms, it is less clear that distant
hypernyms, such as those at the very tops of taxonomies, need also be included.

Additionally, these procedures may be seen as a sparsity reduction measure. As
described in Sec. 5.3.1, the FEP is a consequence of the way we communicate . The
procedures here can be seen to simulate a feature space in which Gricean principles
didn’t constrain lexical choice and speakers used all permissible combinations of
words.

The choice of the putOrMax() and putOrAdd() functions in Procedures 1 and 2
respectively are also theoretically motivated. In Procedure 1, the putOrMax() func-
tions effectively designates synonymous features as equivalent. While this seems
intuitively obvious, it actually contradicts the conventional theory about feature
weight. Conventionally, feature vectors are compared on the basis of contextual
similarity and, from this perspective, collapsing contexts that may be semantically
equivalent means throwing away information. However, in this thesis, the object is
a semantic taxonomy and so contextual differences are relatively less important.

In Procedure 2, the decision to use putOrAdd() is also theoretically motivated. The
choice of the putOrAdd() operator treats feature weight as independent evidence
that can be combined. Thus, there is greatest support for features for which there is
the most evidence. Alternately, one could view the proportionality of feature weight
and semantic generality as creating a universal semantic foundation.

6.4 Related Work

The idea to improve the semantic characteristics of a vector space through some
sort of post-processing is not a new one. Indeed, Landauer and Dumais’s [Landauer
and Dumais, 1997] LSA can be seen as one example of this. However, unlike LSA,
the procedures described here are task-oriented and use semantic knowledge, rather
than mathematical principles, to guide the process.

Geffet and Dagan [2009] observed that the vectors in a typical cooccurrence ma-
trix, the magnitude of feature weights often does not always correspond with how
characteristic a feature is. Instead of rewarding features that are characteristic of
a word, association measures reward statistically novel features, and while this is a
reasonable proxy for characteristic-ness, it is remains imperfect. This observation
lead Geffet and Dagan to implement a bootstrapping procedure that re-weighted
features based on the sum of the similarity of neighboring vectors that also have
that feature. These weights can then be used to reduce the size of the matrix simply
by choosing the top N weighted features. Their bootstrapped vectors exhibited a
number of positive characteristics. They were found to perform better on a lexical
entailment task. When nearest neighbors were selected with a similarity measure,
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the precision of the resulting set, with respect to entailment, increased by 50% rel-
ative to the baseline. Additionally, reduced bootstrapped vectors were shown to
perform best when only the top 100 features were used. As in this approach, this
bootstrapping is useful in that it can be applied to all vectors in the space. How-
ever, because it is based on proximity, the vectors most in need of bootstrapping
(the narrowest vectors) may also be least impacted, as their nearest neighbors will
likely be farther away than vectors are that less sparse.
Faruqui et al. [2015] implemented a post-processing procedure that performed an op-
timization that minimized changes to vectors while also minimizing their distance to
semantically related neighbors. In experiments, they showed that retrofitted vectors
constructed using a variety of different methods performed better on a variety of se-
mantic similarity benchmarks and tasks. Unlike the present work, their retrofitting
procedure can only be applied to vectors representing words in a lexical resource.
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7 Exploratory Experiments

In this section, I present a number of exploratory experiments in order to understand
the impact of applying the procedures from Chapter 6 on U and Y, the two feature
spaces intended to represent the state-of-the-art1. This chapter does not explore
the impact of the procedures on Hypernymy Recognition, which is the subject of
Chapter 8.
Because the impact of Procedure 1 was minimal, I collapse the effects of both Pro-
cedure 1 and Procedure 2 into a single variable and I refer to spaces modified by
these procedures with the m subscript. Thus, the modified feature spaces of U and
Y are referred to as Um and Ym. Additionally, I refer to both procedures from
Chapter 6 collectively as the procedure.

7.1 Qualitative Impact

I begin with a qualitative analysis of feature ranks (by weight) for the vectors repre-
senting dog in both the U and Y. Because the procedure tends to make the largest
features nouns (because nouns have the deepest taxonomies), it is more informative
to separate features by part-of-speech. Furthermore, I relegate the analysis to fea-
tures in the original space, and exclude those added. Finally, because the ranks of
adjectives and adverbs change little (a consequence of the fact that entailment-based
modification was only applied to noun and verb features), I exclude these from this
analysis.
What is clear from the top-ranked features in Table 7.1 and Table 7.2 is that char-
acteristics that are relatively unique to dogs, e.g., musher, are demoted while char-
acteristics that are more general are promoted.
However, the sort of general features that are promoted in the feature spaces U and
Y seem to differ. In the U feature space, with only two notable exceptions, bird and
ungulate, the top noun features in the modified feature spaceUm seem fairly close to
the sorts of properties we would need to relate dog to other animals, but insufficient
to relate to more semantically distant words like hammer. Many of the top-ranked
verb features (bark, yap, yelp, and wag) in Um are also top-ranked verb features
from U. However, with the exception of bark, these features take lower ranks in Um.
As with the top-ranked noun features, the top-ranked verb features include many

1For details on how these two DSMs differ, see Sec. 4.3.1.
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Rank Noun Verb
U Um U Um

1 sledding animal bark bark
2 sniffer dog foul breed
3 sled mammal yap sterilize
4 musher food kennel treat
5 turd carnivore wag walk
6 rehome waste muzzle feed
7 whelk bird sledge frighten
8 leash ungulate salivate foul
9 crossbreed disease rehomed jiggle
10 cat canine rehoming eat
11 Alsatian hound neuter sleep
12 kennel guardian yelp yelp
13 mongrel primate cross-breed yap
14 poo goody snarl kennel
15 prairie guard herd wag

Table 7.1: The top ranked features by POS in both U and Um

that are suitable for comparison with other animals, e.g. breed, feed, and sleep, but
none that would be useful for comparison with semantically distant words.

Analysis of the top ranked features in Y and Ym shows a similar pattern, with
the promotion of features that are useful for comparison with semantically similar
words, e.g. NMOD-R_beast and NMOD-R_animal. In addition to these sorts of
features, a substantial proportion of the top ranked noun features are far more
general, e.g. NMOD-R_matter and NMOD_act, and are useful for comparisons
with semantically more distant words. Many of the top ranked noun features in Ym

seem to relate to personhood, for example NMOD-R_someone, NMOD_somebody,
NMOD_person, and NMOD_someone. This is may be a consequence of a subtle
feature of dogness, namely that dogs are domesticated animals that have become
important to humanity. Unlike the top ranked verb features in Um, the top ranked
verb features in Ym do not include any from the set of top ranked verb features in
Y. As in Um, many of the top ranked verb features, e.g. NMOD-R_sleep, NMOD-
R_excrete and NMOD-R_rest, are suitable for comparison with other animals.

7.2 Quantitative Impact

In this section, I explore the effect of the procedure with methods that are better
suited to quantification.
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Rank Noun Verb
Y Ym Y Ym

1 NM-R_sniffer NM-R_someone NM-R_bark NM-R_sterilize
2 NM_sledding NM-R_whole NM-R_foul OBJ_treat
3 NM-R_Mutt NM-R_beast SBJ_bark NM-R_walk
4 NM_turd NM-R_animal SBJ_foul OBJ_stroke
5 NM-R_Pogo NM-R_creature OBJ_skewer NM-R_sleep
6 NM-R_sled NM_somebody OBJ_wag SBJ_excrete
7 NM_faeces NM_person NM-R_sledge NM-R_steal
8 NM_poo NM_someone OBJ_bark OBJ_frighten
9 NM_bollocks NM-R_dog OBJ_rehoming NM-R_treat
10 NM_excrement NM-R_matter NM-R_snarl NM-R_arouse
11 NM_sled NM_act SBJ_neuter SBJ_run
12 NM-R_beagle NM-R_act OBJ_pet NM-R_excrete
13 NM_poop NM_animal SBJ_lick NM-R_wound
14 NM-R_collie NM_creature NM-R_pant NM-R_injure
15 NM_kennel NM_beast OBJ_neuter NM-R_rest

Note: NMOD is here abbreviated NM, for formatting reasons.
Table 7.2: The top ranked features by POS in Y and Ym

U Um Y Ym

Number of Rows 99110 99110 61364 61364
Number of Features 99997 102129 99999 103747

Density 0.8% 1.1% 0.8% 1.0%
Table 7.3: Dimensions and density of feature spaces. Density is computed by di-
viding the number of non-zero entries by the total area of the matrices.

7.2.1 Density and Dimensions

Perhaps the simplest way to assess the effect of the procedures is to ignore the
magnitude of feature weights and to consider the number of features in the space
and the number of non-zero entries. As Table 7.3 shows, the modified feature spaces
have about 2-4% more features and are about 70% denser than the original spaces.

7.2.2 Number of Non-Zero Entries

We can also examine what sorts of entries are non-zero by grouping different entries
together. For this analysis, I use naïve generality2 (NG) to group entries. Because
each row and feature are associated with a word, we can calculate the NG of rows
and features and use this number to assign for each entry an NGrow and NGfeat.

2See Sec. 3.4.
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Not in WordNet NGfeat ≤ 7 NGfeat > 7 Total
Not in WordNet 1.04 5.70 1.31 3.05
NGrow > 7 1.03 4.19 1.25 2.48
NGrow ≤ 7 1.05 8.50 1.29 4.10

Total 1.04 6.60 1.28 3.41
Table 7.4: The multiplicative factor by which the number entries in U would need
to multiplied to be equivalent to the number of entries in Um for various combi-
nations of NG rows and features.

The dependent variable in this analysis is the factor by which the number of entries
of a certain sort in the original space would need to be multiplied to be equal to the
number of entries of the same sort in the modified space. Because the procedure
only adds entries, this factor is always greater than 1.
There are two strong trends in the data in Table 7.4, one of which is an obvious
consequence of the procedures and the other less so. The marginal for entries with
NGfeat ≤ 7 (more semantically general features) is substantially greater than the
marginal for entries with NGfeat > 7, indicating that the change in density in
semantically more general features as a result of the procedures was substantially
greater than the change in density in less general features. More surprising is that the
marginal of NGrow ≤ 7 (more semantically general rows) is also substantially greater
than the marginal of NGrow > 7 rows. This indicates that the change in density
in semantically more general rows as a result of the procedures was substantially
greater than the change in density in less general rows. This may be caused by the
fact that, as per [Weeds, 2003], semantically more general words tend to be observed
in a larger number of contexts and thus, because those vectors are much bigger to
begin with, and because the procedures increase the number of features at a rate
proportional to the original vector’s size, they increase more.
Table 7.5 shows fY,Ym , and seems to exhibit the same patterns as Table 7.4, though
not as strongly.
Together, tables Table 7.4 and Table 7.5 suggest that semantically more general
columns are more likely to be conserved in modified spaces than unmodified ones,
because they are far denser.

7.2.3 Feature Conservation

An analysis of feature conservation3 provides additional evidence that the procedure
mitigates feature exclusion with respect to both the number of conserved features
as well as the amount of conserved feature weight. Table 7.6 presents the data from
an analysis of feature exclusion by number of features, in which the percentage of

3Feature conservation was first described in Sec. 5.2.1.
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Not in WordNet NGfeat ≤ 7 NGfeat > 7 Total
Not in WordNet 2.08 2.09 1.34 1.68
NGrow > 7 1.40 1.65 1.25 1.42
NGrow ≤ 7 2.41 2.73 1.50 2.03

Total 1.99 2.25 1.39 1.77
Table 7.5: The multiplicative factor by which the number entries in Y would need
to multiplied to be equivalent to the number of entries in Ym for various combi-
nations of NG rows and features.

Space Conserved Semi-Conserved Excluded
110 011 101 001 100 010

U 0.03 0.10 0.33 0.06 2.85 1.09 2.71
Um 0.18 0.18 0.60 0.13 3.31 1.22 3.13
Um

U 6.75 1.83 1.81 2.22 1.16 1.12 1.15
Y 0.001 0.002 0.012 0.002 0.067 0.009 0.054
Ym 0.003 0.003 0.018 0.002 0.073 0.009 0.058
Ym

Y 2.598 1.287 1.479 1.393 1.089 1.023 1.079
Table 7.6: Percent of features by degree of feature conservation.

features that are zero is excluded. Table 7.6 reveals that the percentage of features
that are conserved increased by a multiplicative factor of 6.75 and 2.60 in U and Y
respectively as a result of applying the procedures. The percentage of semi-conserved
features (i.e., features shared by two of the three words in the triple, but not all three)
increased by a multiplicative factor of 1.95 and 1.39 in U and Y respectively. In
contrast, the percentage of excluded features increased by a multiplicative factor
of 1.14 and 1.06 in U and Y respectively. Thus, the proportion of conserved and
semi-conserved features relative to the percentage of excluded features increased, but
this increase is mostly attributable to an overall increase in the number of non-zero
features and excluded features still account for the vast majority of features.

With regard to feature weight conservation, the procedures increase the amount of
feature weight in conserved, and to a lesser extent, semi-conserved features, while
decreasing the proportion of feature weight that is excluded. Table 7.7 shows that
the procedures increase the proportion of conserved feature weight by a multiplica-
tive factor of 9.80 and 3.48 in U and Y respectively. There may be a small effect
within the Semi-Conserved Features, such that the weight of features useful for more
distant comparisons in increasing, as demonstrated by the difference between 1.34
and 1.05 and 1.05 and 0.92 for U and Y respectively. In contrast, the proportion of
feature weight for excluded features is reduced significantly.
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Space Conserved Semi-Conserved Excluded
110 101 100

U 0.04 0.10 0.05 0.82
Um 0.35 0.10 0.07 0.48
Um

U 9.80 1.05 1.34 0.58
Y 0.09 0.15 0.12 0.63
Ym 0.32 0.14 0.13 0.41
Ym

Y 3.48 0.92 1.05 0.65
Table 7.7: Proportion of feature weight as a function of degree of feature
conservation.

NG U vs. Um Y vs. Ym

Not in WordNet 0.44 0.60
NGrow ≤ 7 0.37 0.53
NGrow > 7 0.36 0.56
Total 0.41 0.58

Table 7.8: Aggregate cosine similarity for pairs of vectors representing the same
word in both U and Y

7.2.4 Semantic Similarity and Naïve Generality

As described earlier, cosine similarity is a convenient and empirically useful way of
comparing semantic feature vectors. In contrast to most applications, where the
objective is to compare vectors in the same space, in this analysis the object is
to compare vectors in different spaces, the better to understand the impact of the
procedures. Cosine similarity can be used for this purpose with one caveat: cosine
similarity effectively treats the vectors, which in this case belong to features spaces
with different feature sets, as belonging to a single feature space whose feature set is
the union of the features of the vectors being compared. This depresses the similarity
scores lower than if non-shared features were discarded.

Table 7.8 presents data from a comparison of vectors representing the same word in
U and Um and Y and Ym, respectively. The data suggest that, generally, the effect
of the procedures is significant: the similarity between vectors representing the same
word is low. Additionally, the procedure had a stronger effect on U than on Y and
the effect on similarity seems independent of NG, as indicated by the relatively small
difference between the NGrow ≤ 7 rows and NGrow > 7 rows. However, words that
are not in WordNet, and which consequently do not have a nav̈e generality, seem to
be less strongly affected, as indicated by the greater similarity between the original
and modified vectors.

Another important consideration for a semantic vector space is the degree to which it
satisfies the geometric metaphor of meaning, which stipulates that distance in space
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Space Semantic Similarity (Pearson’s ρ) Synonym Identification (Correctness)
WS-353 MEN RG Simlex-999 ESL TOEFL

U 0.54 0.73 0.71 0.29 0.50 0.11
Um 0.27 0.57 0.53 0.21 0.29 0.06
Y 0.47 0.70 0.70 0.32 0.54 0.10
Ym 0.12 0.43 0.34 0.13 0.17 0.04

Table 7.9: Pearson correlation coefficients and Correctness Percentage for Semantic
Similarity and Synonym Detection tasks

should be equivalent to distance in meaning, as satisfying the geometric metaphor
of meaning, is part of the more general claim that the space exhibits semantic
characteristics. Data from a variety of standard semantic similarity and synonym
detection benchmarks actually suggest that the procedures substantially worsen
performance on these benchmarks. This result suggests that, whether or not the
procedures improve performance on HR, they will likely only be useful as task-
specific post-processing phase, and not for more general purposes.
Table 7.9 shows the results from a variety of semantic similarity benchmarks. The
Semantic Similarity columns are all tests in which the similarity of vectors is com-
pared with human judgments of semantic similarity and the overall score is the
Pearson correlation coefficient. The Synonym Identification columns are tasks in
which, for a candidate vector v, the closest vector, vi, from a set of vectors V , is
predicted to be the synonym of v. For a more in-depth review of these individual
benchmarks, see [Baroni and Lenci, 2010] and [Hill et al., 2014].
One possible explanation for this result is that by conserving features and feature
weight, the differences between vectors is decreased. And, indeed, whereas the mean
cosine similarity of vectors in the WS-353 task for U and Y is .1, the mean cosine
similarity for this same task for Um and Ym is .7.
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8 Experiments

In this section, I review various Hypernymy Recognition (HR) datasets and then
report the effect of the procedure described in Chapter 6 on performance. As in
Chapter 7, I use U and Y, the two feature spaces intended to represent the state-
of-the-art1 and refer to the spaces that have been modified as Um and Ym.

8.1 Hypernymy Recognition Datsets

I use three different datasets in this analysis, each of which affords different advan-
tages and drawbacks for this task. Each dataset entry set consists of a word pair
〈x, y〉 and class label, which in this case is binary, denoting either x is hyponym of
y or x is not a hyponym of y.

8.1.1 Weeds Dataset

The Weeds et al. dataset [Weeds et al., 2014b] is considered the gold standard
for this thesis, as its many good properties outweigh the drawbacks. The Weeds
dataset consists of 2515 instances (input/output pairs), each consisting of a pair of
words and a class value. All words in all instances are both frequently occurring
and are likely to be monosemous2. It has an equal number of positive and negative
instances. The authors controlled for semantic similarity, such that the average path
distance in WordNet between pairs in the sets of positive and negative instances are
comparable. Finally, the set of instances does not include any pairs that can be
inferred from any other groups of pairs, thus preventing models from learning trivial
and ungeneralizable facts.

One property that may be beneficial for supervised HR is that the average path
distance between pairs overall is quite small, which means that, if it is the case that
the training instances exist in a low-dimensional manifold, the instances fall near
the decision boundary and there is a good chance that models trained with this
dataset will generalize to pairs that are farther apart.

1For details on how these two DSMs differ, see Sec. 4.3.1.
2Monosemous means having only one sense.
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8.1.2 BLESS Dataset

The BLESS dataset [Baroni and Lenci, 2011] was actually created to examine lexical
semantic relations, which includes many relations in addition to hypernymy. As
such, the dataset must be adapted in order to be used for HR. The relations included
in the dataset include many standard relations for lexical inference and some that
are relatively unique. Hypernymy, coord, which the authors define to mean words
that share a semantically close hypernym, and meronymy are all commonplace in
lexical inference. BLESS also includes a catch-all relation called random, which
holds between pairs of words that have a common distant ancestor in the taxonomy.
Finally, BLESS includes relations such as attri and event which have to do with
selectional preferences of adjectives and verbs respectively. Because it was designed
for learning so many lexical semantic relations, the number of hypernym instances
in BLESS is much smaller than the number of non-hypernym instances.
In this work, I use a subset of BLESS created by Levy et al. [2015] which includes
only instances applicable to lexical inference and which codes hypernymous pairs as
positive instances and all other relations as negative instances. The Levy subset is
not balanced. It consists of 14547 instances, 13210 of which are negative and 1337
of which are positive.
Using the Baroni and Lenci terminology, each instance in the dataset consists of a
concept, relation and relatum, e.g. concept is a kind of relatum, which can represent
an instance with the hypernymy relation. The concepts, of which there are 200, were
selected to be frequently occurring, and neither ambiguous nor highly polysemous.
The small number of concepts and much larger total number of instances means that
each concept occurs in many instances, another characteristic that makes it different
from the Weeds dataset. Critically, each concept belongs to one of 17 broader classes,
of which the concepts can be either typical or atypical instances. The relata were
selected from a variety of difference sources and as such, are representative of a
broad swath of semantic information.
Although it’s less of an issue for unsupervised models, which have no means of
prioritizing different dimensions of the input space, the usage of a small number of
concepts that belong to well-defined semantic groups proves critically detrimental
to supervised models. As Roller et al. [2014] observed, linear supervised models
trained using BLESS learn to weight features that are clearly not generalizable, but
are instead related to the broader classes to which the concepts belong.

8.1.3 Entailment Dataset

The Entailment dataset [Baroni et al., 2012], referred to in [Baroni et al., 2012] as
N1 |= N2, was constructed specifically for HR. It is balanced. There were no explicit
checks against polysemy, though the authors removed both hypernyms with many
hyponyms (which are typically very abstract words like entity) and checked all pairs
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to ensure correctness. The positive instances were generated from WordNet. After
generating the positive instances, the negative instances were generating by either
reversing positive instances (33% of negative instances) or randomly selecting other
words in the dataset, after checking to see that they do not constitute an entailing
pair. The result is 2770 instances. This procedure

8.1.4 Challenges of Dataset Construction

The HR setting presents many challenges to constructing a dataset. Firstly, there is
the issue of balance vs. breadth. If one considers a comprehensive taxonomy, the set
of all positive instances is significantly smaller than the set of all negative instances.
The set of all positive instances is the set of all pairs that can be generated by
considering the path to the root from every node. Given that taxonomies typically
display “bulges” of heavy lexicalization, we can approximate the total number of
pairs produced by this method as k × N , where k is the level at which the bulge
occurs. (In WordNet, this bulge occurs at around 6 edges from the root of the
noun taxonomy.) In constrast, the set of all negative instances is proportional to
N × (N − k), which, given that N >> k, is essentially N2.

To adopt a balanced approach means throwing away the vast majority of negative
instances. To adopt a broad approach means having a dataset that is extremely
unbalanced.

8.2 Experiments

8.2.1 Experiment 1

In Experiment 1, I assess the effect of the procedures using all three datasets, a
variety of models of feature inclusion, and both U and Y. Most models tested
require a decision boundary, which is a free parameter. To determine the optimal
value of these parameters for both the Weeds and Entailment datasets, I use 5-
fold cross-validation, and set the parameter value by maximizing accuracy. In the
case of the BLESS dataset, in order that the parameter not exploit the dataset’s
unbalancedness, I use the parameters from the Weeds dataset.

8.2.1.1 Results

Table 8.2, Table 8.1 and Table 8.3 present the results from the experiment from
the Weeds, Entailment and BLESS datasets, respectively. Because both the Weeds
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Model U Um Uth
m Y Ym Yth

m

BalAPInc 0.78 0.64 0.65 0.71 0.50 0.50
WeedsDiff 0.67 0.69 0.69 0.70 0.72 0.72
Cosine 0.75 0.71 0.71 0.74 0.64 0.64
InvCL 0.73 0.65 0.66 0.82 0.79 0.80
PSet 0.77 0.77 0.77 0.82 0.80 0.80
RSet 0.65 0.54 0.56 0.50 0.50 0.50

SingleWidth 0.64 0.64 0.63 0.68 0.68 0.68
PWeeds 0.78 0.76 0.75 0.82 0.80 0.80
RWeeds 0.67 0.57 0.59 0.50 0.50 0.50

WidthDiff 0.67 0.67 0.67 0.71 0.71 0.71
Table 8.1: Accuracy of models for Experiments 1 and 2 using the Entailment
dataset

Model U Um Uth
m Y Ym Yth

m

BalAPInc 0.58 0.49 0.49 0.51 0.49 0.50
WeedsDiff 0.68 0.68 0.68 0.70 0.70 0.70
Cosine 0.54 0.52 0.52 0.55 0.51 0.51
InvCL 0.58 0.61 0.61 0.66 0.69 0.69
PSet 0.62 0.66 0.66 0.70 0.70 0.70
RSet 0.49 0.49 0.49 0.49 0.49 0.49

SingleWidth 0.66 0.66 0.66 0.66 0.66 0.66
PWeeds 0.63 0.63 0.62 0.69 0.68 0.68
RWeeds 0.49 0.49 0.49 0.49 0.49 0.49

WidthDiff 0.67 0.67 0.67 0.70 0.69 0.69
Table 8.2: Accuracy of models for Experiments 1 and 2 using the Weeds dataset

dataset and the Entailment dataset are balanced, and because BLESS is not, Table 8.2
and Table 8.1 present accuracy percentages and Table 8.3 presents F1 scores3.
Broadly, the experimental procedures seem to have little to no effect; the marginals
for each space in all three tables suggest that accuracy and F1 scores decrease by a
small percentage or remain the same, and this seems to hold true for all individual
models as well.
However, a closer examination of the Weeds results reveals that the procedures
did have an effect on performance. Both precision models, PSet and PW eeds, one
or the other of which is an essential component in all other models, seemed to be
effected dramatically by the procedures. Table 8.4 shows that the procedures, rather
than boosting precision for positive instances, seem to have boosted precision for
all instances. In the case of PSet, the difference in precision between positive and

3F1 is the harmonic mean of precision and recall, which in this case refers to instances classified
and not shared and unshared features.
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Model U Um Uth
m Y Ym Yth

m

BalAPInc 0.22 0.02 0.03 0.21 0.00 0.00
WeedsDiff 0.18 0.18 0.18 0.19 0.20 0.20
Cosine 0.22 0.22 0.22 0.23 0.20 0.20
InvCL 0.20 0.16 0.16 0.23 0.21 0.21
PSet 0.21 0.21 0.20 0.23 0.22 0.22

SingleWidth 0.19 0.19 0.19 0.21 0.21 0.21
PWeeds 0.21 0.19 0.19 0.23 0.21 0.21

WidthDiff 0.18 0.18 0.18 0.19 0.19 0.19
Table 8.3: F1 score for Experiments 1 and 2 using the BLESS dataset. The RSet

and RW eeds models are omitted because the models classify all instances as nega-
tive and thus have an F1 score of 0.

Model Instance Type U Um Uth
m Y Ym Yth

m

PSet
0 0.10 0.18 0.16 0.15 0.19 0.18
1 0.16 0.27 0.24 0.27 0.35 0.33

PW eeds
0 0.11 0.39 0.36 0.12 0.31 0.29
1 0.18 0.46 0.43 0.25 0.44 0.42

Table 8.4: The output of PSet and PW eeds in all spaces, aggregated by instance class

negative instances seems to have increased slightly as a result of the procedures. In
the case of PW eeds, the difference in precision between positive and negative instances
didn’t change at all.

This same effect is also observed when grouping instances by the naïve generality4

(NG) of the input pair. Fig. 8.1 and Fig. 8.2 present the output of the PSet and PW eeds

as a function of the NG of both input words. While this means of grouping instances
is imperfect due to polysemy, it is still broadly accurate. A high-performing model
should exhibit striation along lines with slope of 1, as instances in which the NG of
the first word is less than the second cannot possibly be positive. While all of the
models do seem to exhibit such a characteristic, critically, the modified spaces do
not seem to exhibit it to a greater degree, as evidenced by the fact that the plots of
the modified spaces are merely lightened versions of the originals.

8.2.2 Experiment 2

The results of Experiment 1 suggest that the procedures boost precision in all in-
stances, rather than just in positive instances. One explanation for this result is
that entailed features are not useful for HR. An alternate explanation that I test is
whether a subset of all possible entailed features is useful for HR. While testing all

4See Sec. 3.4.
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Figure 8.1: Heatmaps for all spaces of the output of the PSet model for the Weeds
dataset

Figure 8.2: Heatmaps for all spaces of the output of the PW eeds model for the
Weeds dataset
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

U Um Uth
m Y Ym Yth

m

U 1.00 0.80 0.81 0.83 0.79 0.79
Um 1.00 0.94 0.76 0.82 0.82
Uth

m 1.00 0.75 0.81 0.81
Y 1.00 0.88 0.88
Ym 1.00 0.97
Yth

m 1.00


Figure 8.3: The Pearson correlations in the decisions of the WeedsDiff model
applied to the spaces

Disagree Agree Total
Close 184 1599 1783
Far 30 372 402
Total 214 1971 2185

Disagree Agree Total
Negative 85 994 1079
Positive 129 977 1106
Total 214 1971 2185

Table 8.5: A comparison of the decisions of WeedsDiff trained on U and Um as a
function of the absolute difference in NG of the instance and whether the instance
was a positive or negative.

subsets is impossible, Experiment 2 tests whether the applying the procedures to
only the top half of features, as determined by feature weight, proves more effective
than applying the procedures to all features.
The procedure is identical to Experiment 1, except that the algorithms are modified
to only consider the top half of features, by weight.

8.2.2.1 Results

The results from Experiment 2, which are in Table 8.2, Table 8.1 and Table 8.3,
are essentially indistinguishable from Experiment 1. Fig. 8.3 presents an analysis of
the decisions of the WeedsDiff model in each space, applied to each instance, and
shows there there is a high degree of correlation between the model trained on Um

and on U th
m (ρ = .94) and between Ym and Y th

m (ρ = .97), suggesting that despite
applying the procedures to only the top half of features, the result is nearly identical
with respect to HR. Table 8.5 presents frequency of agreement between U and Um

using the WeedsDiff model as a function of the ADNG of the pair and whether
or not it was positive. Chi-squared tests reveal that there is a significant effect of
positivity (χ2 = 8.4, df = 1, p = 0.004) but that there was no significant effect of
ADNG (χ2 = 2.7, df = 1, p = 0.10), suggesting that the effects of the procedure
were greater for positive instances than for negative instances.
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9 Conclusion

To conclude, I will revisit the motivation for this work, the intuition that guided the
design of the procedures and the reasons for their ineffectiveness before reviewing
options for future work.

9.1 Summary

The ability to identify positive instances of hypernymy is extremely important for
many tasks. While there has been some success at identifying positive instances
that are explicitly referred to in text using shallow lexico-syntactic patterns, the
most common approaches to HR using more scalable methods capable of identifying
all sorts of instances, which are based on using a DSM to construct representations
of word meaning, do not perform significantly better than baseline models; mostly,
these models assume that the representations of the hyponyms and hypernyms will
share many features and yet in most cases, the feature sets in these words’ rep-
resentations are almost mutually exclusive. I refer to this problem as the Feature
Exclusion Problem (FEP).

The scale of the FEP problem is part of what makes it such an issue. Due to the
small percentage of features that are typically shared between the vectors repre-
senting most hyponyms and hypernyms, and the fact that most models consider
only (1) shared features and (2) excluded features in the hypernym’s representation,
most features in the hyponym’s representation do not even participate, effectively
throwing away information.

Feature exclusion is the consequence of many factors. It is partially the consequence
of how we communicate, which leads us to choose a small subset of all permissible
combinations of words, and which in turn limits the sorts of cooccurrences we ob-
serve. Surprisingly, the FEP is also partially a consequence of how we compose the
feature vectors themselves; in the attempt to identify statistically robust cooccur-
rences, we also ensure that feature vectors become very sparse and that no features
will be maintained across a taxonomic span and thus feature conservation will be
low. Furthermore, though the vast majority of models treat feature weight as indica-
tive of importance, there is evidence that models that ignore feature weight perform
just as well, suggesting that, at least in HR, some conventional wisdom about DSM
design may not apply or may be altogether wrong.
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Finally, feature exclusion is a consequence in how we interpret and compare feature
vectors. By treating the basis of a semantic space as orthonormal, which is an
implicit when the components of vectors are only compared against the matching
components in other vectors, we ignore dependencies between the dimensions of the
space and thus treat similar features as unique and dissimilar. We do this despite
the fact that the very pursuit of lexical relations (and the fact that most dimensions
are associated with words) indicates that many dimensions are related to each other.
The procedure described here attempted to mitigate each of these problems. The
procedure can be viewed as a way to simulate patterns of language usage if humans
chose from the set of all permissible and coherent word-combinations, as opposed
to applying Gricean filters. The procedure, which dramatically changed the feature
weight of nouns and verbs, can be seen as redefining the semantics of feature weight,
from importance to each vector’s meaning to something to importance for compar-
isons with the set of all vectors in the space. Finally, the procedure can be viewed as
a way of treating features that are synonymous or which share a common hypernym
as similar and therefore comparable.
With respect to Hypernymy Recognition, the hope was that these procedures would
boost precision in positive instances of hypernymy more than negative instances.
However, this hypothesis was not borne out in the data.
Instead, Experiment 1 demonstrated that precision was boosted for all instances in
the datasets and performance on HR remained the same or worsened very slightly for
almost all models. Experiment 2 showed that applying the procedures to a subset
that, based on feature weight, were possibly more important to each individual
vector did not improve the quality of the resulting models either.

9.2 Future Work

This work raises a number of important questions and highlights some outstanding
older ones. The Feature Exclusion Problem remains a serious issue for DSMs and
HR. One fundamental question is whether to allow for semantic knowledge to in-
fluence how different features are compared, such that feature similarity becomes
more nuanced. Given how the procedures described here boosted precision for all
instances, another question concerns refinements to the method explored here. One
such refinement would change the way feature weights accumulate. The propor-
tionality of feature weight and semantic generality may have been the culprit, at
least in the case of models that considered feature weight, by adding new features
that were shared by all vectors and were also large in magnitude. One variation
worth exploring would be to make feature weight and semantic generality inversely
proportional.
Finally, unsupervised HR is made far more challenging than it needs to be because
it provides no clear way in which to introduce semantic knowledge. If, instead of
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attempting to classify instances as positive or negative, the task were to determine
the most likely location for a word in an existing taxonomy, models could still be
used to infer whether a pair of words were a positive instance of hypernymy or not
and incorporating known information would be simplified. Furthermore, the model’s
uncertainty would be more useful: models might express uncertainty over where in
the taxonomy an extremely sparse feature vector might fit. Similarly, terms that
have multiple hypernyms, such as sportswear and other restricted-perspective terms
(see Chapter 3), might be shown to also have multiple maximum-likelihood locations
in the taxonomy.

83



Chapter 9 Conclusion

84



Bibliography

Marco Baroni and Alessandro Lenci. Distributional Memory: A General Frame-
work for Corpus-Based Semantics. Computational Linguistics, 36(4):673–721,
December 2010. ISSN 0891-2017. doi: 10.1162/coli\_a\_00016. URL http:
//www.mitpressjournals.org/doi/abs/10.1162/coli_a_00016.

Marco Baroni and Alessandro Lenci. How we BLESSed distributional semantic
evaluation. . . .GEometrical Models of Natural Language Semantics, 2011. URL
http://dl.acm.org/citation.cfm?id=2140491.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and Chung-chieh Shan. En-
tailment above the word level in distributional semantics. In Proceedings of the
13th Conference of the European Chapter of the Association for Computational
Linguistics, pages 23–32. Association for Computational Linguistics, 2012.

Elia Bruni and Daniel Gatica-perez. Multimodal distributional semantics Marco
Baroni , Thesis Advisor. 48(December), 2013.

John A Bullinaria and Joseph P Levy. Extracting semantic representations from
word co-occurrence statistics: a computational study. Behavior research methods,
39(3):510–526, 2007.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual infor-
mation, and lexicography. Comput. Linguist., 16(1):22–29, 1990. ISSN 08912017.
URL http://portal.acm.org/citation.cfm?id=89095&dl=.

Daoud Clarke. Context-theoretic Semantics for Natural Language : an Overview.
(March):112–119, 2009.

DA Cruse. Meaning in language: An introduction to semantics and pragmatics.
2004. URL http://philpapers.org/rec/CRUMIL.

M Davies. The corpus of contemporary american english (coca): 400+ million words,
1990-present, 2008. URL http://corpus.byu.edu/coca/.

Marie-Catherine De Marneffe and Christopher D Manning. The stanford typed
dependencies representation. In Coling 2008: Proceedings of the workshop on
Cross-Framework and Cross-Domain Parser Evaluation, pages 1–8. Association
for Computational Linguistics, 2008.

S Deerwester, S Dumais, T Landauer, G Furnas, and R Harshman. Indexing by
latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

85

http://www.mitpressjournals.org/doi/abs/10.1162/coli_a_00016
http://www.mitpressjournals.org/doi/abs/10.1162/coli_a_00016
http://dl.acm.org/citation.cfm?id=2140491
http://portal.acm.org/citation.cfm?id=89095&dl=
http://philpapers.org/rec/CRUMIL
http://corpus.byu.edu/coca/


Bibliography

Katrin Erk. Vector Space Models of Word Meaning and Phrase Meaning: A Sur-
vey. Language and Linguistics Compass, 6(10):635–653, October 2012. ISSN
1749818X. doi: 10.1002/lnco.362. URL http://doi.wiley.com/10.1002/lnco.
362.

Stefan Evert. The Statistics of Word Cooccurrences Word Pairs and Collocations.
(August 2004), 2005.

Stefan Evert. Corpora and collocations. Corpus Linguistics. An International Hand-
book, pages 1–53, 2008.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris Dyer, Eduard Hovy, and
Noah a. Smith. Retrofitting Word Vectors to Semantic Lexicons. Proceedings of
NAACL, (i), 2015.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and Silvia Bernardini. Introduc-
ing and Evaluating {ukWaC}, a Very Large Web-Derived Corpus of {English}.
Proceedings of the 4th {Web as Corpus} Workshop, pages 47–54, 2008.

J.R. Firth. A synopsis of linguistic theory 1930-55. The Philological Society, 1952-59,
1957.

Maayan Geffet and Ido Dagan. The distributional inclusion hypotheses and lexical
entailment. Proceedings of the 43rd Annual Meeting on Association for Computa-
tional Linguistics - ACL ’05, pages 107–114, 2005. doi: 10.3115/1219840.1219854.
URL http://portal.acm.org/citation.cfm?doid=1219840.1219854.

Maayan Geffet and Ido Dagan. Bootstrapping Distributional Feature Vector Quality.
(November 2008), 2009. ISSN 0891-2017. doi: 10.1162/coli.08-032-R1-06-96. URL
http://eprints.pascal-network.org/archive/00006704/.

Paul Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan, editors,
Syntax and Semantics, chapter 3: Speech, pages 41–58. Academic Press, 1975.

Zellig S. Harris. Distributional structure. Word, 10(23):146–162, 1954.

Marti a. Hearst. Automatic Acquisition of Hyponyms ftom Large Text Corpora.
Proceedings of the 14th conference on Computational Linguistics, 2:23–28, 1992.

Felix Hill, Roi Reichart, and Anna Korhonen. SimLex-999: Evaluating Semantic
Models with (Genuine) Similarity Estimation. August 2014. URL http://arxiv.
org/abs/1408.3456.

G. R. Kiss, Christine Armstrong, and Robert Milroy. An associative thesaurus of
English. Medical Research Council, Speech and Communication Unit, University
of Edinburgh, 1976.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan Zhitomirsky-Geffet. Direc-
tional distributional similarity for lexical inference. Natural Language Engineering,
16(04):359–389, October 2010. ISSN 1351-3249. doi: 10.1017/S1351324910000124.
URL http://www.journals.cambridge.org/abstract_S1351324910000124.

86

http://doi.wiley.com/10.1002/lnco.362
http://doi.wiley.com/10.1002/lnco.362
http://portal.acm.org/citation.cfm?doid=1219840.1219854
http://eprints.pascal-network.org/archive/00006704/
http://arxiv.org/abs/1408.3456
http://arxiv.org/abs/1408.3456
http://www.journals.cambridge.org/abstract_S1351324910000124


Bibliography

George Lakoff and Mark Johnson. Metaphors We Live By. In Jodi O’Brien and
Peter Kollock, editors, The production of reality: essays and reading on social
interaction, chapter 12, pages 124–134. 1997.

George Lakoff and Mark Johnson. Philosophy in the Flesh: The Embodied Mind
and Its challenges to Western Thought. Basic books, 1999. ISBN 0465056733
9780465056736 0465056741 9780465056743.

Thomas K. Landauer and Susan T. Dumais. A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representation of
knowledge., 1997. ISSN 0033-295X.

Gabriella Lapesa and S Evert. A Large Scale Evaluation of Distributional Semantic
Models: Parameters, Interactions and Model Selection. Transactions of the As-
sociation for . . . , 2:531–545, 2014. URL https://tacl2013.cs.columbia.edu/
ojs/index.php/tacl/article/view/457.

Quoc V. Le and Tomas Mikolov. Distributed Representations of Sentences and
Documents. 32, May 2014. URL http://arxiv.org/abs/1405.4053.

A Lenci and G Benotto. Identifying hypernyms in distributional semantic spaces.
. . . on Lexical and Computational Semantics-Volume 1: . . . , pages 75–79, 2012.
URL http://dl.acm.org/citation.cfm?id=2387650.

Alessandro Lenci. Distributional semantics in linguistic and cognitive research. Ital-
ian Journal of Linguistics, 20(1):1–31, 2008. ISSN 11202726.

Omer Levy and Yoav Goldberg. 2014 - Dependency-Based Word Embeddings.pdf.
Proceedings of the 52nd Annual Meeting of the . . . , 2014. URL http://www.cs.
bgu.ac.il/~yoavg/publications/acl2014syntemb.pdf.

Omer Levy, Steffen Remus, and Chris Biemann. Do Supervised Distributional Meth-
ods Really Learn Lexical Inference Relations? NAACL 2015, 2015.

Dekang Lin. An information-theoretic definition of similarity. In ICML, volume 98,
pages 296–304, 1998.

Will Lowe. Towards a theory of semantic space. Proceedings of the Cognitive Science
Society, 2001. ISSN 0305-0009. doi: 10.1017/S0305000900006309.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, pages
1–12, 2013. URL http://arxiv.org/abs/1301.3781.

GA Miller and Richard Beckwith. Introduction to wordnet: An on-line lexi-
cal database*. International journal . . . , (August), 1990. URL http://ijl.
oxfordjournals.org/content/3/4/235.short.

Gregory Leo Murphy. The big book of concepts. MIT press, 2002.
Charles E Osgood. Psychological Bulletin. 49(3), 1952.
Sebastian Padó and Mirella Lapata. Dependency-Based Construction of Semantic
Space Models. (December 2004), 2007.

87

https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/457
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/457
http://arxiv.org/abs/1405.4053
http://dl.acm.org/citation.cfm?id=2387650
http://www.cs.bgu.ac.il/~yoavg/publications/acl2014syntemb.pdf
http://www.cs.bgu.ac.il/~yoavg/publications/acl2014syntemb.pdf
http://arxiv.org/abs/1301.3781
http://ijl.oxfordjournals.org/content/3/4/235.short
http://ijl.oxfordjournals.org/content/3/4/235.short


Bibliography

Philip Resnik. Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. arXiv preprint
arXiv:1105.5444, 11:95–130, 2011. URL http://arxiv.org/abs/1105.5444.

Stephen Roller, Katrin Erk, and Gemma Boleda. Inclusive yet selective: Supervised
distributional hypernymy detection. Proceedings of the Twenty Fifth . . . , pages
1025–1036, 2014. URL http://www.cs.utexas.edu/users/ml/papers/roller.
coling14.pdf.

Eleanor H. Rosch. Natural categories, 1973.
Herbert Rubenstein and John B. Goodenough. Contextual correlates of synonymy,
1965. ISSN 00010782.

Magnus Sahlgren. The Word-Space Model Using distributional analysis to represent
syntagmatic and paradigmatic relations between words. 2006. ISBN 9171552812.

G Salton and M JMcGill. Introduction to modern information retrieval. Introduction
to modern information retrieval, 1983. ISSN 0070544840.

Enrico Santus, A Lenci, Qin Lu, and SS im Walde. Chasing Hypernyms in Vector
Spaces with Entropy. EACL 2014, pages 38–42, 2014. URL http://www.aclweb.
org/anthology/E14-4#page=58.

H. Schütze. Dimensions of meaning. Proceedings Supercomputing ’92, 1992. doi:
10.1109/SUPERC.1992.236684.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Semantic taxonomy induction
from heterogenous evidence. Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the ACL - ACL ’06,
pages 801–808, 2006. doi: 10.3115/1220175.1220276. URL http://portal.acm.
org/citation.cfm?doid=1220175.1220276.

Idan Szpektor and Ido Dagan. Learning Entailment Rules for Unary Templates.
2008. doi: 10.3115/1599081.1599188. URL http://eprints.pascal-network.
org/archive/00004483/.

PD Turney and Patrick Pantel. From frequency to meaning: Vector space models
of semantics. Journal of artificial intelligence research, 37:141–188, 2010. URL
http://www.aaai.org/Papers/JAIR/Vol37/JAIR-3705.pdf.

Amos Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.
ISSN 0033-295X. doi: 10.1037//0033-295X.84.4.327. URL http://content.apa.
org/journals/rev/84/4/327.

Tony Veale and Yanfen Hao. Acquiring Naturalistic Concept Descriptions from the
Web. In Proceedings of the Sixth International Language Resources and Evaluation
(LREC’08), pages 1121–1124, 2008.

Ellen M. Voorhees and Donna Harman. Overview of the Seventh Text REtrieval
Conference (TREC-7). In Proceedings of the Seventh Text REtrieval Confer-
ence (TREC-7), pages 1—-24, 1998. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.2.4400.

88

http://arxiv.org/abs/1105.5444
http://www.cs.utexas.edu/users/ml/papers/roller.coling14.pdf
http://www.cs.utexas.edu/users/ml/papers/roller.coling14.pdf
http://www.aclweb.org/anthology/E14-4#page=58
http://www.aclweb.org/anthology/E14-4#page=58
http://portal.acm.org/citation.cfm?doid=1220175.1220276
http://portal.acm.org/citation.cfm?doid=1220175.1220276
http://eprints.pascal-network.org/archive/00004483/
http://eprints.pascal-network.org/archive/00004483/
http://www.aaai.org/Papers/JAIR/Vol37/JAIR-3705.pdf
http://content.apa.org/journals/rev/84/4/327
http://content.apa.org/journals/rev/84/4/327
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.4400
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.4400


Bibliography

D Waltz and J Pollack. Massively parallel parsing: A strongly interactive model of
natural language interpretation. Cognitive Science, 9(1):51–74, March 1985. ISSN
03640213. doi: 10.1016/S0364-0213(85)80009-4. URL http://doi.wiley.com/
10.1016/S0364-0213(85)80009-4.

JE Weeds. Measures and applications of lexical distributional similarity.
(September), 2003. URL http://www.sequenceserial.com/Users/juliewe/
weedsthesis.pdf.

Julie Weeds and David Weir. Co-occurrence retrieval: A flexible framework for lex-
ical distributional similarity. Computational Linguistics, (May 2004), 2005. URL
http://www.mitpressjournals.org/doi/abs/10.1162/089120105775299122.

Julie Weeds, D Clarke, and J Reffin. Learning to distinguish hypernyms and
co-hyponyms. Proceedings of the . . . , 2014a. URL http://musicdoc.org.uk/
Users/juliewe/semanticrelations.pdf.

Julie Weeds, David Weir, and Jeremy Reffin. Distributional Composition using
Higher-Order Dependency Vectors. Proceedings of the 2nd Workshop on . . . ,
2014b. URL http://www.aclweb.org/anthology/W/W14/W14-15.pdf#page=21.

Ludwig Wittgenstein. Philosophical Investigations, volume 2 ofG.˜E.˜M.˜Anscombe
(trans.). Blackwell, 1972. ISBN 0631146709.

89

http://doi.wiley.com/10.1016/S0364-0213(85)80009-4
http://doi.wiley.com/10.1016/S0364-0213(85)80009-4
http://www.sequenceserial.com/Users/juliewe/weedsthesis.pdf
http://www.sequenceserial.com/Users/juliewe/weedsthesis.pdf
http://www.mitpressjournals.org/doi/abs/10.1162/089120105775299122
http://musicdoc.org.uk/Users/juliewe/semanticrelations.pdf
http://musicdoc.org.uk/Users/juliewe/semanticrelations.pdf
http://www.aclweb.org/anthology/W/W14/W14-15.pdf#page=21

	Contents
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Introduction
	1.2 Structure

	2 DS and DSMs
	2.1 The Geometric Metaphor for Meaning
	2.2 The Finished Product
	2.3 Defining Distributional Semantics
	2.4 DSMs and their Parameters
	2.4.1 Row Elements
	2.4.2 Basis Elements
	2.4.3 Types of Cooccurrence
	2.4.4 Association Measures
	2.4.5 Similarity Measures
	2.4.6 Smoothing Methods
	2.4.7 Other Parameters


	3 Lexical Relations and WordNet
	3.1 What are Lexical Relations?
	3.2 Hyponymy and Taxonomies
	3.3 Co-hyponymy
	3.4 WordNet

	4 Recognizing Lexical Relations
	4.1 The Distributional Inclusion Hypothesis
	4.1.1 Challenges in Interpreting Feature Weight Semantically
	4.1.2 Defining the Characteristic Function

	4.2 Models of the DIH
	4.3 Measuring State-of-the-Art Performance
	4.3.1 Vector Representations


	5 Analysis of the Problem
	5.1 What is Feature Exclusion?
	5.2 The Size of the Problem
	5.2.1 Feature Conservation By Rows
	5.2.2 Feature Conservation

	5.3 Causes of Feature Exclusion
	5.3.1 Feature Exclusion and Human Communication
	5.3.2 Feature Exclusion and DSM Design


	6 Entailed Features
	6.1 A New Goal for Representation
	6.2 Proposal
	6.3 Theoretical Justification
	6.4 Related Work

	7 Exploratory Experiments
	7.1 Qualitative Impact
	7.2 Quantitative Impact
	7.2.1 Density and Dimensions
	7.2.2 Number of Non-Zero Entries
	7.2.3 Feature Conservation
	7.2.4 Semantic Similarity and Naïve Generality


	8 Experiments
	8.1 Hypernymy Recognition Datsets
	8.1.1 Weeds Dataset
	8.1.2 BLESS Dataset
	8.1.3 Entailment Dataset
	8.1.4 Challenges of Dataset Construction

	8.2 Experiments
	8.2.1 Experiment 1
	8.2.2 Experiment 2


	9 Conclusion
	9.1 Summary
	9.2 Future Work

	Bibliography

