Neural Language Models for Spelling Correction Master's thesis

Matthias Hertel

Chair of Algorithms and Data Structures University of Freiburg

December 19, 2019

Introduction

2 Methods

3 Evaluation

Electronic messaging

- Electronic messaging
- Spellchecking documents

- Electronic messaging
- Spellchecking documents
- Natural language processing systems

- Electronic messaging
- Spellchecking documents
- Natural language processing systems

Google image search¹:

Your search - cute liitle catpi ctures - did not match any documents.

¹images.google.com

- Electronic messaging
- Spellchecking documents
- Natural language processing systems

Google image search¹:

Your search - cute liitle catpi ctures - did not match any documents.

DeepL machine translation²:

Cute liitle catpi ctures

Niedliche kleine Katpi-Katzenfiguren mit süßem Titel

¹images.google.com ²deepl.com

Spelling Correction

 Task definition: Given a misspelled text S_{input} "S he isa Austran competer sceintist." predict the intended text S_{true}. "She is an Austrian computer scientist."

Introduction

2 Methods

3 Evaluation

Neural Language Models for Spelling Correction

Language Model 1/3

Language models

estimate the probability $p(w_i|w_1, ..., w_{i-1})$ that a word w_i follows the words w_1 to w_{i-1} .

• Example: She is an ...

expert	5.4 %
active	4.7 %
author	3.1 %
 Austrian	 0.1 %
Austran	$2.5 \cdot 10^{-7}$ %

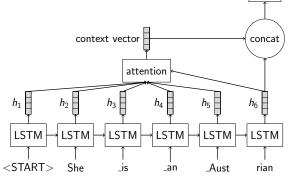
Language Model 2/3

Recurrent neural network with attention

output

dense

- inputs \in 10,256 subwords
- LSTM and dense: 1024 units
- 24 hours training on 2 GPUs
- paragraphs from Wikipedia



Language Model 3/3

From subwords to words

- _Austrian = [_Aust, rian]
- p(Austrian|She is an) = p(_Aust|She, _is, _an) · p(rian|She, _is, _an, _Aust)

... for Spelling Correction 1/3

Input: S he isa Austran competer sceintist.

- Candidate corrections
 - Vocabulary V containing 100,000 correctly spelled words
 - Edit operations
 - character insertion: Astran \rightarrow Austrian
 - character deletion: isa ightarrow is
 - character replacement: $competer \rightarrow computer$
 - character transposition: sceintist \rightarrow scientist
 - split: isa \rightarrow is a
 - merge: $S he \rightarrow She$
 - Combination of up to two operations:

isa ightarrow is an

... for Spelling Correction 2/3

Input: S he isa Austran competer sceintist.

1 Procedure maintains k partial solutions:

- 1. *She is a* likely solution
- 2. She is an less likely
- Generate candidate corrections: {Austran, Austrian}
- 3 Append candidate corrections and rescore: 1. | *She is an Austrian* | likely solution
 - She is an Austrian likely solution
 She is a Austrian less likely
 She is an Austran very unlikely
 She is a Austran very unlikely
- 4 Keep the k best solutions.

... for Spelling Correction 3/3

- Sequence rescoring
 - Candidate score depending on the previous words
 - reflects likelihood of candidate c being correct
 - 1. How well does c fit into the context?
 - \rightarrow probability $p(c|w_1,...w_{i-1})$
 - 2. How similar is c to the input?
 - \rightarrow number of edit operations ${\rm ed}$

$$\operatorname{score}(c) = \underbrace{-\log(p(c|w_1, \dots w_{i-1}))}_{\text{log likelihood}} + \underbrace{\lambda \cdot \operatorname{ed}}_{\text{similarity}}$$

• Candidate score is added to solution score

Approaches

INLMspell

- neural language model spelling corrector
- k = 10 partial solutions

2 TranslationSpell

- machine translation model
- input: misspelled English
- output: correct English
- encoder-decoder recurrent neural network

Baselines

- UnigramSpell: context-free baseline
 - if word not in *V*, replace by most frequent candidate
 - preference for candidates with less edits
- 2 NgramSpell: context-dependent baseline
 - same as NLMspell
 - trigram language model
- **3** Google: commercial baseline
 - copy text into Google document
 - apply all suggested edits

Contents

Introduction

2 Methods

3 Evaluation

Evaluation: Language Models

$$\operatorname{perplexity}(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{p_{i}(w_{i}|w_{1},...,w_{i-1})}}$$

model	perplexity
LSTM	157.0
LSTM+attention	103.3
Transformer	106.5
GPT 117M [Radford et al., 2019]	78.7

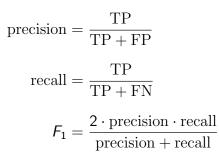
- $S_{\rm true} =$ The cute cat eats delicious fish.
- $S_{input} = Te$ cute cteats delicious fi sh.
- $S_{\text{predicted}} =$ The cute act eats delicate fi sh.

- $S_{\text{true}} =$ The cute cat eats delicious fish.
- $S_{input} = Te$ cute cteats delicious fi sh.
- $S_{\text{predicted}} =$ The cute act eats delicate fi sh.
- Cases
 - True positives TP: a misspelled word is restored.

- $S_{\text{true}} =$ The cute cat eats delicious fish.
- $S_{input} = Te$ cute cteats delicious fi sh.
- $S_{\text{predicted}} =$ The cute act eats delicate fi sh.
- Cases
 - True positives TP: a misspelled word is restored.
 - False negatives FN: a misspelled word is not restored.

- $S_{\text{true}} =$ The cute cat eats delicious fish.
- $S_{input} = Te$ cute cteats delicious fi sh.
- $S_{\text{predicted}} =$ The cute act eats delicate fi sh.
- Cases
 - True positives TP: a misspelled word is restored.
 - False negatives FN: a misspelled word is not restored.
 - False positives FP: an input word is changed incorrectly.

Metric



Benchmarks

1,000 paragraphs from Wikipedia every word misspelled with 20 % probability

- artificial benchmark up to two randomly sampled operations out of {insertion, deletion, replacement, transposition, merge, split}
- realistic benchmark
 typo collection by Peter Norvig
 39,709 misspellings for 7,841 words

Results 1/2

Artificial benchmark

corrector	precision	recall	F-score	sequence acc.
UnigramSpell	67.4 %	60.8 %	63.9 %	17.3 %
NgramSpell	89.3 %	87.0 %	88.1 %	43.1 %
commercial	75.3 %	58.6 %	65.9 %	22.8 %
NLMspell	92.5 %	90.6 %	91.5 %	49.5 %
TranslationSpell	75.1 %	77.0 %	76.0 %	28.2 %

Realistic benchmark

corrector	precision	recall	F-score	sequence acc.
UnigramSpell	50.5 %	44.7 %	47.4 %	22.0 %
NgramSpell	82.7 %	79.8 %	81.2 %	45.7 %
commercial	85.9 %	56.0 %	67.8 %	35.0 %
NLMspell	88.2 %	88.7 %	88.4 %	57.4 %
TranslationSpell	61.2 %	58.9 %	60.0 %	30.8 %

NLMspell on different types of artificial misspellings

error type	precision	recall	F-score
nonword	93.7 %	91.2 %	92.4 %
real-word	87.0 %	87.4 %	87.2 %
single-edit	93.0 %	91.6 %	92.3 %
multi-edit	81.0 %	81.3 %	81.2 %
split	95.4 %	95.2 %	95.3 %
merge	99.7 %	92.3 %	95.8 %
mixed	90.5 %	88.4 %	89.4 %

Conclusion

- The attention mechanism improves language models.
- Context helps to correct spelling:

unigrams < ngrams < neural model

- Difficult cases: multi-edits and real-word errors.
- Language models worked better than the translation approach.

The end

Questions?

NgramSpell

- N-gram language model
 - Trigram Markov assumption:

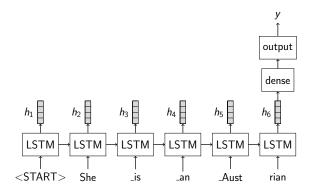
$$p(w_i|w_1,...w_{i-1}) = p(w_i|w_{i-2},w_{i-1})$$

• Interpolation of trigram, bigram and unigram probabilities:

$$egin{aligned} & p(ext{Austrian}| ext{is}, ext{an}) = & lpha \cdot rac{ ext{count}(ext{is}, ext{an}, ext{Austrian})}{ ext{count}(ext{is}, ext{an})} \ & + (1-lpha) \cdot lpha \cdot rac{ ext{count}(ext{an}, ext{Austrian})}{ ext{count}(ext{an})} \ & + (1-lpha)^2 \cdot rac{ ext{count}(ext{Austrian})}{N} \end{aligned}$$

Neural language model

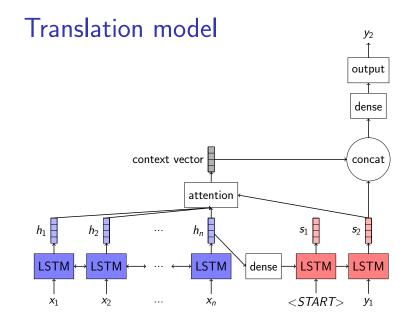
Model without attention



Transformer

Transformer language model

- no recurrent network
- multiple attention mechanisms
- deep model



Benchmark statistics

error types in the two benchmarks

error type	artificial	realistic
single-edit	5348	3520
multi-edit	1015	564
split	651	7
merge	1266	4
mixed	493	7
nonword	7294	2448
real-word	1479	1654
total	8773	4102

Runtimes

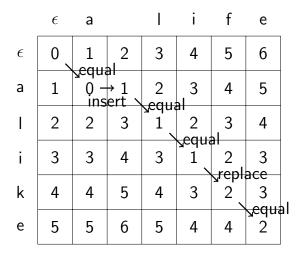
Total runtimes in seconds

corrector	artificial	realistic
UnigramSpell	5.5	2.5
NgramSpell	4,790.0	4,967.2
NLMspell	17,150.5	18,458.7
TranslationSpell	3,134.1	2,308.8

Perplexity

$$\begin{aligned} PP(W) &= p(w_1, ..., w_N)^{-\frac{1}{N}} \\ &= \sqrt[N]{\frac{1}{p(w_1, ..., w_N)}} \\ &= \sqrt[N]{\prod_{i=1}^N \frac{1}{p(w_i | w_1, ..., w_{i-1})}} \\ &= \exp(-\frac{1}{N} \sum_{i=1}^N \log(p(w_i | w_1, ..., w_{i-1}))) \end{aligned}$$

Edit Distance



Candidate generation

Word stump index

- word stumps = all substrings with up to 2 characters removed
- their: their, heir, teir, thir, thei, eir, ..., ther, ...
- there: there, here, tere, thre, thee, ther, ..., ther, ...
- if no common stump \rightarrow edit distance >2

References

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are unsupervised multitask learners.