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Motivation

m Electronic messaging
m Spellchecking documents
m Natural language processing systems

Google image search!:

Your search - cute liitle catpi ctures - did not match any documents.

DeeplL machine translation?:

Cute liitle catpi ctures Niedliche kleine Katpi-
Katzenfiguren mit
sufRem Titel

limages.google.com
2deepl.com
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Spelling Correction

m Task definition:
Given a misspelled text Sinput
“S he isa Austran competer sceintist.”
predict the intended text Siue.
“She is an Austrian computer scientist.”
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Language Model 1/3

m Language models
estimate the probability p(w;|wy, ..., w;_1)
that a word w; follows the words wy to w;_;.

e Example: Sheis an ...

expert 5.4 %
active 4.7 %
author 3.1 %

Austrian 0.1 %

Austran | 2.5-1077 %
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Language Model 2/3

m Recurrent neural network with attention

e inputs € 10,256 subwords y

e LSTM and d.ehse: 1024 units
e 24 hours training on 2 GPUs

e paragraphs from Wikipedia M

context vector H

concat

attention

h hy h3
‘ LSTM H LSTM H LSTM H LSTM H LSTM F“ LSTM ‘
I [ I I I I
<START> She _is _an _Aust rian
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Language Model 3/3

m From subwords to words
e _Austrian = [_Aust, rian]

o p(Austrian|She is an) =
p(-Aust|She, _is, _an)-p(rian|She, _is, _an, _Aust)
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... for Spelling Correction 1/3

Input: S he isa Austran competer sceintist.

m Candidate corrections

e Vocabulary V containing 100,000 correctly
spelled words

o Edit operations

character insertion: Astran — Austrian
character deletion: isa — is

character replacement: competer — computer
character transposition: sceintist — scientist
split: isa — is a

merge: S he — She

e Combination of up to two operations:
isa — is an
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... for Spelling Correction 2/3
Input: S he isa Austran competer sceintist.

Procedure maintains k partial solutions:
1. | Sheis a | likely solution
2. | She is an | less likely

Generate candidate corrections:
{Austran, Austrian}

Append candidate corrections and rescore:
1. | She is an Austrian | likely solution
2. | She is a Austrian | less likely
3. | She is an Austran | very unlikely
4. | She is a Austran | very unlikely

B Keep the k best solutions.
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... for Spelling Correction 3/3

m Sequence rescoring
e Candidate score depending on the previous words
o reflects likelihood of candidate ¢ being correct
1. How well does c fit into the context?
— probability p(c|wa, ...w;_1)
2. How similar is ¢ to the input?
— number of edit operations ed

score(c) = —log(p(c|wi,..wi—1))+ Q-ed

log likelihood similarity

e Candidate score is added to solution score
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Approaches

NLMspell
e neural language model spelling corrector
e k = 10 partial solutions

TranslationSpell
e machine translation model
e input: misspelled English
e output: correct English
e encoder-decoder recurrent neural network
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Baselines

UnigramSpell: context-free baseline

e if word not in V, replace by most frequent
candidate

e preference for candidates with less edits

NgramSpell: context-dependent baseline
e same as NLMspell
e trigram language model

Google: commercial baseline
e copy text into Google document
e apply all suggested edits
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Evaluation: Language Models

N
1
erplexity(W) = [
peib Y( ) JHP(WI|W17--~7WI1)

i=1

model perplexity
LSTM 157.0
LSTM-attention 103.3
Transformer 106.5
GPT 117M [Radford et al., 2019] 78.7
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Evaluation metric 1/2

m Comparison of three sequences
e Siue = The cute cat eats delicious fish.
e Sinput = Te cute cteats delicious fi sh.
o Spredicted = 1he cute act eats delicate fi sh.
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Evaluation metric 1/2

m Comparison of three sequences
e Siue = T'he cute cat eats delicious fish.
e Sinput = Te cute cteats delicious fi sh.
o Spredicted = 1he cute act eats delicate fi sh.
m Cases
e True positives TP: a misspelled word is restored.

e False negatives FN: a misspelled word is not
restored.

e False positives FP: an input word is changed
incorrectly.
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Evaluation metric 2/2

m Metric
... TP
precision = TP
1 TP
recall = ———
TP + FN
2 - precision - recall
F =

precision + recall
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Benchmarks

1,000 paragraphs from Wikipedia
every word misspelled with 20 % probability

m artificial benchmark
up to two randomly sampled operations out of
{insertion, deletion, replacement, transposition,
merge, split}

m realistic benchmark
typo collection by Peter Norvig
39,709 misspellings for 7,841 words
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Results 1/2

m Artificial benchmark

corrector precision  recall  F-score | sequence acc.
UnigramSpell 674 % 608% 63.9% 17.3 %
NgramSpell 803% 87.0% 881% 43.1 %
commercial 753 % 58.6% 659 % 22.8 %
NLMspell 925% 90.6 % 91.5% 49.5 %
TranslationSpell | 75.1% 77.0% 76.0% 28.2 %

m Realistic benchmark

corrector precision  recall  F-score | sequence acc.
UnigramSpell 505% 447% 474 % 22.0 %
NgramSpell 827% 798% 81.2% 45.7 %
commercial 859% 56.0% 67.8% 35.0 %
NLMspell 882% 887% 88.4% 57.4 %

TranslationSpell | 61.2% 589 % 60.0% 30.8 %
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Results 2/2

m NLMspell on different types of artificial misspellings

error type | precision  recall  F-score
nonword 93.7% 912% 924 %
real-word 87.0% 874% 872%
single-edit | 93.0% 91.6% 92.3%
multi-edit 81.0% 813% 81.2%

split 95.4% 952% 953 %
merge 99.7% 923 % 958 %
mixed 90.5% 88.4% 89.4%
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Conclusion

m [he attention mechanism improves
language models.

m Context helps to correct spelling:
unigrams < ngrams < neural model

m Difficult cases: multi-edits and real-word
errors.

m Language models worked better than the
translation approach.
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The end

Questions?
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NgramSpell

m N-gram language model
e Trigram Markov assumption:

P(Wi|W1, ---Wi—1) = P(Wi|Wi—2, Wi—1)

e Interpolation of trigram, bigram and unigram
probabilities:

count(is, an, Austrian)

Austriani _
p(Austrianlis, an) =« count(is, an)

count(an, Austrian)

1—a) a-
Fd-a)a count(an)
count(Austrian)
1—a)-
(1 a) .
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Neural language model

m Model without attention

y

dense]
nf onl e nl o %g
‘ LSTM H LSTM H LSTM %‘ LSTM H LSTM H LSTM ‘
T T I I T I

<START> She _is _an _Aust rian
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Transformer

m Transformer language model
e no recurrent network
e multiple attention mechanisms
e deep model
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Translation model

context vector !

attention

hn

Xn

dense

concat

S1 L)

<START> n
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Benchmark statistics

m error types in the two benchmarks

error type | artificial | realistic
single-edit 5348 3520
multi-edit 1015 564
split 651 7
merge 1266 4
mixed 493 7
nonword 7294 2443
real-word 1479 1654
total 8773 4102
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Runtimes

m Total runtimes in seconds

corrector artificial | realistic
UnigramSpell 55 25
NgramSpell 4,790.0 | 4,967.2
NLMspell 17,150.5 | 18,458.7
TranslationSpell | 3,134.1 | 2,308.8
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Perplexity

==

PP(W) = p(wy, ..., wn)~

M 1

p(Wla ) WN)

”::2

W,|W1, .. W,'_1)

N
= exp( N Z p(w;|wy, ..., w;_1)))
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Edit Distance
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Candidate generation

m Word stump index

e word stumps = all substrings with up to 2
characters removed

e their: their, heir, teir, thir, thei, eir, ..., ther, ...

e there: there, here, tere, thre, thee, ther, ...,
ther, ...

e if no common stump — edit distance > 2
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