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Abstract

Handling increasingly complex queries is not only expectation, but the main prereq-

uisite for any robust modern relational database management system. As extracting

any meaningful insight requires interacting with dozens and dozens of relations in a

single query.

Having a domain expert synthesize a hand-crafted query in SPARQL is considered

the exception and not the rule, as the vast majority of the queries in the modern

day and age are machine-generated using high-level frontends, dashboards and busi-

ness intelligence tools. Synthesizing a good concrete execution plan is the relational

database management system’s Query Planner require joining multiple relations. the

Join order of the relations involved drastically affect the quality of the final plan.

Optimal Join Order of a set of relations can be formulated as an NP-Hard Optimal

Scheduling problem [1]. the same approaches, techniques and methodologies will be

repurposed for our intended use case. Exploring the search space of all possible plans

while constrained by a reasonable time frame and a computational budget heavily

relay on using estimation techniques to guess plan cost and using clever heuristics

to prune the search space. This thesis will mainly focus on Join Ordering techniques

capable of synthesizing efficient query plans where relatively large number of relations

are involved in polynomial time complexity.
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1 Introduction

‘Before we reach our goal,’ the hoopoe said,

‘The journey’s seven valleys lie ahead;

The Conference of the Birds

1.1 Motivation

The amount of data generated on the world wide web has been on the raise and

showing no signs of slowing down anytime soon, which begs for quick information

retrieval systems that can keep-up with the ever-increasing appetite. Knowledge

Graphs (section 1.2) has been the go-to approach for representing aforementioned

information. this thesis will explore methods, tools and techniques to quickly retrieve

information from a properly engineered SPARQL (section 1.4) database management

system.

1.2 Knowledge Graph

Knowledge graphs [3] are directed graphs with labeled edges that represent structured

knowledge about the world. Each vertex stands for an entity. Each directed edge

stands for a relation between two entities and the label says what the relation is.
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Figure 1: Wikidata revisions, 2014-2019 [2]

The World Wide Web has brought us vast amounts of data in electronic form and the

possibility of crowdsourcing. As a consequence, the field has been reborn and many

large knowledge graphs have been developed over the past fifteen years. Some con-

tain general-purpose knowledge, like Freebase, Yago, DBpedia, or Wikidata. Others

contain domain-specific knowledge, like UniProt (proteins), PubChem (chemistry),

OpenStreetMap (geodata), or DBLP (bibliographic data).

1.3 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [4, 5] is a framework for representing

information in the Web. RDF graphs are sets of “subject-predicate-object triples”

(fig. 2), where the elements may be IRIs1, blank nodes, or datatyped literals. They

are used to express descriptions of resources.

RDF datasets are used to organize collections of RDF graphs, are comprised of a

default graph and zero or more named graphs.

1Internationalized Resource Identifier
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The core structure of the abstract syntax is a set of triples, each consisting of a

subject, a predicate and an object. A set of such triples is called an RDF graph.

An RDF graph can be visualized as a node and directed-arc diagram, in which each

triple is represented as a node-arc-node link.

Subject ObjectPredicate

Figure 2: RDF SPO

1.4 SPARQL

SPARQL is the standard query language for RDF data[6]. SPARQL contains capabil-

ities for querying required and optional graph patterns along with their conjunctions

and disjunctions. SPARQL also supports aggregation, subqueries, negation, creating

values by expressions, extensible value testing, and constraining queries by source

RDF graph. The results of SPARQL queries can be result sets or RDF graphs.[7].

SPARQL query consists of a SELECT clause and a WHERE clause. The SELECT clause

specifies a sequence of variables, separated by spaces. In SPARQL, variables start

with a question mark. Each element of a triple can be an IRI, a variable or a literal.

The result of the query is a table with k columns, where k is the number of variables

in the SELECT clause. A row of the result table corresponds to an assignment of each

variable of the WHERE clause to an IRI or literal. Each assignment must match in

the sense that each triple of the WHERE clause exists in the knowledge graph, when

plugging in the entity or literal for each variable. The keyword FILTER restricts the

result table to rows that fulfill the specified expression. [3]
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1.5 QLever

QLever (pronounced “Clever”) is a SPARQL engine that can efficiently index and

query very large knowledge graphs with over 100 billion triples on a single standard

PC or server. In particular, QLever is fast for queries that involve large intermediate

or final results, which are notoriously hard for engines like Blazegraph or Virtuoso.

QLever also supports search in text associated with the knowledge base, as well as

SPARQL autocompletion [8, 9].

The following is an example from QLever’s (section 1.5) demos showcasing a SPARQL

query (listing 1.1) that uses wikidata to list the birth place of people with a particular

name using QLever [8, 9].

1 PREFIX wd: <http ://www. wik idata . org / en t i t y/>

2 PREFIX wdt : <http ://www. wik idata . org /prop/ d i r e c t />

3 PREFIX p : <http ://www. wik idata . org /prop/>

4 PREFIX psn : <http ://www. wik idata . org /prop/ statement /value−normal ized/>

5 PREFIX wik ibase : <http :// wikiba . se / onto logy#>

6 PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

7 SELECT ? person ? person_labe l ? p lace_labe l ? coord WHERE {

8 ? person wdt : P31 wd :Q5 .

9 ? person wdt : P735/ rd f s : l a b e l " Patr i ck "@en .

10 ? person wdt : P19 ? p lace .

11 ? p lace wdt : P625 ? coord .

12 ? person r d f s : l a b e l ? person_labe l .

13 ? p lace r d f s : l a b e l ? p lace_labe l .

14 FILTER (LANG(? person_labe l ) = "en" ) .

15 FILTER (LANG(? p lace_labe l ) = "en" ) .

16 }

Listing 1.1: Birthplaces of people named Patrick

wdt:P31 (Instance)[10] that class of which this subject is a particular example

and member; different from P279 (subclass of); for example: K2 is an instance of
2showing 10 out of 4577 total results
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?person ?person_label ?place_label ?coord

Q102116670 Patrick Kenney Boston POINT(-71.057778 42.360278)
Q17626715 Patrick Grant Boston POINT(-71.057778 42.360278)
Q105923793 Patrick H. O’Connor Boston POINT(-71.057778 42.360278)
Q110138990 Edward P. Barry, Jr. Boston POINT(-71.057778 42.360278)
Q1267622 Patrick Ewing, Jr. Boston POINT(-71.057778 42.360278)
Q105731759 Patrick E. Murray Boston POINT(-71.057778 42.360278)
Q18912678 Maurice Patrick Foley Boston POINT(-71.057778 42.360278)
Q46978642 Patrick O’Brien Boston POINT(-71.057778 42.360278)
Q41449445 Patrick Sweeney Boston POINT(-71.057778 42.360278)
Q955405 Patrick Joseph Kennedy Boston POINT(-71.057778 42.360278)
... ... ... ...

Table 1: Truncated Result2of Query. listing 1.1

mountain; volcano is a subclass of mountain (and an instance of volcanic landform)

wdt:Q5 (Human)[11] any member of Homo sapiens, unique extant species of the

genus Homo, from embryo to adult.

wdt:P735 (Given Name)[12] first name or another given name of this person;

values used with the property should not link disambiguations nor family names.

wdt:P19 (Birth Place)[13] most specific known birth location of a person, animal

or fictional character.

wdt:P625 (Coordinate Location)[14] geocoordinates of the subject.
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2 Background

2.1 Query Planner

In spite of numerous advances in database management systems since the late 70s, the

high-level concepts discussed in Selinger et al. [15] still being actively implemented

and used as a reasonable starting point. For the past 40 years DBMSs have been

heavily influenced by the System R model as described in “Access Path Selection

in a Relational Database Management System1” . System R was an experimental

database management system developed to carry out research on the relational model

of data and was designed and built by members of the IBM San Jose Research

Laboratory [15]. System R’s model is still popular and widely mimicked, since it

defined a systematic framework where the plan space enumeration (chapter 5) is

defined independent of cost model (chapter 4) and the set of heuristics used in the

optimization algorithm [16, p. 128]

Obtaining the result of any query requires going through four phases: parsing, opti-

mization, code generation and execution. We are only concerned with the optimiza-

tion aspect. SPARQL statements (section 1.4) are designed to be declarative and

don’t require the user to specify anything about the access path to be used for tuple

retrieval, nor specify in what order joins are performed [15].

Out of all the possible permutations that a particular query with multiple joins

can be executed, the planner picks the order that minimizes the total access cost
1Bible of Optimization
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of executing the entire statement. the total access cost depends of a multitude of

factors which are explored in details (chapter 4).

Figure 3: Traditional Query Planner Architecture [17]

2.2 Query Graph

A Query Graph is helpful representation of a given query. Modeling relations as

nodes and the predicates as edges opens the door for graph algorithms to be utilized

in the domain of query planners.

The complexity dependant on the query shape [18] dp-wise, chains (fig. 4a) are the

easiest, cliques (fig. 4d) are the hardest [19, p. 196]

(a) linear/chain (b) star (c) cycle (d) clique

Figure 4: Query Graph Shapes [20, 3.2]
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2.3 Join Tree

A join tree 2 [19, p. 76] is a binary tree whose leaf nodes are the relations and whose

inner nodes are joins3.

Join trees are often classified [20] into left-deep trees (fig. 5a) where every join has

one of the relations Ri as its right input. right-deep trees where every join has one

of the relations Ri as its left input. zig-zag trees (fig. 5b) where at least one input of

every join is a relation Ri. bushy trees (fig. 5c) where no restrictions apply. the first

three are summarized as linear trees [19].

⋊⋉

⋊⋉

⋊⋉

⋊⋉

R2 R3

R1

R4

R5

(a) Sample left-deep tree
((((R2 ⋊⋉ R3) ⋊⋉ R1) ⋊⋉ R4) ⋊⋉ R5)

⋊⋉

⋊⋉

R4 ⋊⋉

⋊⋉

R2 R3

R1

R5

(b) Sample zig-zag tree
((R4 ⋊⋉ ((R2 ⋊⋉ R3) ⋊⋉ R1)) ⋊⋉ R5)

⋊⋉

⋊⋉

⋊⋉

R2 R3

R1

⋊⋉

R5 R4

(c) Sample bushy tree
(((R2 ⋊⋉ R3) ⋊⋉ R1) ⋊⋉ (R5 ⋊⋉ R4))

Figure 5: Linear Trees Structure

2sometimes are referred to as Binary Join Processing Trees (BJTs) [21, p. 9]
3possibly cross products
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2.4 Rule-Based Optimization

The Rule-Based approach popularized by DBMSs like SQUIRAL [22], Starburst

[23], EXODUS [24] relay on a predefined set of rules to repeatedly simplify the given

expression until no more transformations can be applied.

Most of the database common-wisdom rules such as filtering tuples as early as pos-

sible (predicate pushdown) or delaying cross product as late as possible are utilized.

Query planners restrict the space further by postponing cross-products as late as

possible. The intuition is that cross-products are expensive and result in large inter-

mediate results [21, p. 9].

Ensuring the correctness and equivalence of the output (two expression are said to

be equivalent if the generate the same output) applying rules requires solid theoret-

ical guarantees that gets more and more difficult as rules become more and more

complex.

R1 ⋊⋉ R2 = R2 ⋊⋉ R1 joining is commutative (1)

(R1 ⋊⋉ R2) ⋊⋉ R3 = R1 ⋊⋉ (R2 ⋊⋉ R3) joining is associative (2)

For example in eq. (3), a predicate with a few conjunctive clauses can be broken

down in separate individual operators and still produce the same output.

σp1∧p2∧p3(R) ≡ σp1(σp2(σp3(R))) (3)

10



2.5 Cost-Based Optimization

The Cost-Based approach popularized by Selinger et al. [15, 20] to evaluate potential

candidate plans is the to aggregate all the sources of delay that a plan execution might

encounter. All delay sources can be boiled down to CPU cost and I/O cost:

C = CI/O + wCCPU

where w is an optional weighting factor that can be adjusted or completely discarded

when the system is not CPU bound. weight of 0.5 implies that 50% of the CPU time

spent on a given plan will run in parallel with the I/O time. However, if we assume

the system is capable of total concurrency is assumed, the cost function can be

formulated as:

C = max(CI/O, CCPU )

The CI/O and CCPU of a given plan is the total sum of the costs of each operator:

CI/O =
∑

operator∈plan
CfI/O(operator) (4)

CCPU =
∑

operator∈plan
CfCPU (operator) (5)

The most influential factor when I/O cost of a given operator is the number of page

read (page fetches), while for CPU cost it’s the number of calls “Storage Interface”

(RSI) the estimate the number of tuples. In case of iterator-based implementation,

it is the number of invocations of a next() procedure to get the next tuple for

processing.

11





3 Cardinality Estimation

Obtaining an accurate estimate for a given relation’s cardinality is critical for gener-

ate a good plan [20, 24.2.6]. As small errors in calculating each relation’s cardinality

will propagate during joining operations. for example, joining 5 relation R1...R5 and

each relation with an erroneous estimate by a factor of 2; the cardinality estimate of

R1 ⋊⋉ R2... ⋊⋉ R5 will drift by a factor of 32.

Cardinality estimation boils down to counting the number of distinct in a multiset1.

Once data has grown so much and it becomes infeasible to keep track of the exact

count (due to the growing memory requirements), the proper course of action is

to use a probabilistic cardinality estimator such as Flajolet-Martin, BJKST, Hyper-

LogLog (or one of their many friends) since they require substantially less Memory.

Harmouch et al. have evaluated the accuracy, runtime, and memory consumption of

each of them [25].

Despite not being the main focus of this thesis, it’s still worth covering the prelim-

inaries of cardinality estimating and selectivity estimating; as even exhausting the

whole plan space with a bad estimate leads to wrong costs and wrong costs lead to

bad plans [17].

In most popular DBMSs [26], cardinality estimates operate under three assumptions,

Uniformity, Independence and Inclusion. these are traditional assumptions2 regard-

1Count-distinct problem
2approximating reality
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ing the uniformity of the distribution of values and the independence with respect

to each other [15, 16].

1. Assuming Uniformity means that all values have the same number of tuples,

distinct values are evenly spaced and they have the same frequency.

2. Assuming Independence of predicates means predicates on attributes in the

same table are independent, so when calculating selectivity of a conjunctive

clause is simply multiplying the selectivity of each predicate.

3. Assuming Inclusion means the domain of the join keys overlap such that the

smaller domain have matches in the larger domain [17].

3.1 Selectivity Estimation

Selectivity of predicates3 is a value in the interval [0, 1] and defined as the fraction of

entries in a data set or relation that satisfies some specified predicate [27, 2.1]. eq. (6)

gives approximate selectivity factors for different kinds of predicates [15, p. 26].

f =



1
card(?property) ?property = ?value

1
max(card(?property1), card(?property2)) ?property1 = ?property2

max(?property) - value
min(?property) - value ?property > ?value

value2 - value1
max(?property) - min(?property) ?value1 < ?property < ?value2

sz(values) ∗ f(?value1) ?property IN [?value1, ...]

f(pred1) + f(pred2)− f(pred1) ∗ f(pred2) pred1 OR pred2

f(pred1) ∗ f(pred2) pred1 AND pred2

1− f(pred) NOT pred

(6)
3also known as multiplicity factor, filter factor, reduction factor or filter selectivity

14



The selectivity fi,j , with respect to the join of Ri and Rj , is defined to be the expected

fraction of tuple pairs from Ri and Rj that will join [16].

fi,j =
expected no. of tuples in the result of joining Ri and Rj

no. of tuples in Ri ⋆ no tuples of Rj

=
|Ri ⋊⋉pi,j Rj |
|Ri ×Rj |

(7)

Estimating selectivity is the number of join result tuples divided by the cartesian

product of Ri & Rj . [16, 19, 20, p. 128,p. 76,p. 34]. If the fi,j is 0.01, then only 1%

of cartesian product’s tuples left after apply the join predicate pi,j .

|Ri ⋊⋉pi,j Rj | = fi,j |Ri||Rj |

3.2 Histogram-Based

Poosala et al. [28] define a histogram on attribute X as partitioning the data dis-

tribution T into β (≥ 1) mutually disjoint subsets called buckets and approximating

the frequencies and values in each bucket in some common fashion.

System R optimizer [15] uses trivial statistics [28, 4.1], such as the minimum and

maximum values (see table 2) in a each column to estimate selectivity factors. Using

such simple statistics will produce good selectivity estimates when the values are

uniformly distributed [29].

Equi-Width histograms [28, 4.2] (fig. 6a) group contiguous ranges of attribute values

into buckets, and the sum of the spreads in each bucket4 is approximately equal to

1/β times the maximum minus the minimum value that appears in V.

4i.e., the maximum minus the minimum value in the bucket
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Table 2: pg_stats Columns [30, 31, 52.27]
Column Type Description
schemaname name Name of schema containing table
tablename name Name of table
attname name Name of column described by current row
inherited bool If true, this row includes values from child tables
null_frac float4 Fraction of column entries that are null
avg_width int4 Average width in bytes of column’s entries

If greater than zero, the estimated number of distinct values
n_distinct float4 in the column. If less than zero, the negative of the number

of distinct values divided by the number of rows.
most_common_vals anyarray A list of the most common values in the column.

A list of the frequencies of the most common values,
most_common_freqs float4[] i.e., number of occurrences of each

divided by total number of rows.
histogram_bounds anyarray A list of values that divide the column’s values into

groups of approximately equal population.
correlation float4 Statistical correlation between physical row ordering

and logical ordering of the column values.
most_common_elems anyarray A list of non-null element values most often appearing within

values of the column.
A list of the frequencies of the most common

most_common_elem_freqs float4[] element values, i.e., the fraction of rows containing
at least one instance of the given value.
A histogram of the counts of distinct non-null

elem_count_histogram float4[] element values within the values of the column,
then, the average number of distinct non-null elements.

range_length_histogram anyarray A histogram of the lengths of non-empty and non-null
range values of a range type column.

range_empty_frac float4 Fraction of column entries whose values are empty ranges.
range_bounds_histogram anyarray A histogram of lower and upper bounds of non-empty

and non-null range values.
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Figure 6: Building Histograms [19, p. 569-573]

Equi-Depth histograms [29, 28, 4.3] (fig. 6b) have the sum of the frequencies in each

bucket be equal rather than the sum of the spreads, only the boundaries of buckets

needs to be stored5. (table 2)

3.3 Sampling-Based

Sampling-Based estimation can be a viable alternative to Histogram-Based estima-

tion (section 3.2) due to it’s ability to detect correlations between relation’s attributes

and nonuniform data [32, 33], Unlike histogram-based methods, Sampling don’t re-

quire storing and maintaining detailed statistics about the base data in the database’s

catalog [34, 35]

Lipton and Naughton proposed “Adaptive Random Sampling” [34] in the early 90s;

an algorithm to estimate the size of a general given query (Q) by partitioning the

query into disjoint subsets (Q1,Q2, . . . ,Qn), then count the size of randomly chosen

subsets. The running is directly proportional to size of the sample and the cost

it take to compute the samples. this estimation algorithm’s termination condition
5pg_catalog.pg_stats in the case of PostgreSQL
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expressed in terms of the size of the sum of the samples taken, rather than in terms

of the number of samples; giving it an adaptive flavor. If the samples are large; fewer

will be taken. if the samples are small; more will be taken [35].

3.4 Machine Learning-Based

All machine leaning estimators have in common that they do not consume a query,

e.g., a SQL string, directly. Instead, a numerical representation of a query, called

feature vector, is consumed. A function that maps a query to its feature vector is

called query featurization technique (QFT) [36, 4.4].

Kipf et al. featurize queries into different sets and learn their cardinalities with a

specific Multi Set Convolutional Network (MSCN) architecture [37] [36, 4.4].
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4 Cost Model

4.1 ASI Property

One of the important ideas in the theory of sequencing and scheduling is the method

of adjacent pairwise job interchange. This method compares the costs of two se-

quences which differ only by interchanging a pair of adjacent jobs [1, p. 217].

Monma et al. describes [1, 38] any cost function C to have the Adjacent Sequence

Interchange property, if and only if there exists a cost-benefit ration function rank(s)

and function T (S) for sequence S

rank(S) =
T (S)− 1

C(S)
(8)

such that for all sequences a, b and all non-empty sequences v, u the following hold:

C(a, u, v, b) ≤ C(a, v, u, b) ⇐⇒ rank(u) ≤ rank(v) (9)

if auvb and avub satisfy the precedence constraints imposed by a given precedence

graph [39, A.].

rank function measures the increase in the intermediate result per unit differential

cost of doing join [16, 4.2].
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4.2 Cost Function: Cout

Cluet et al. proposed cost function Cout that computes the sum of the sizes of the

intermediate results after join operations, which is very suitable for our purposes since

it is consistent with the common database wisdom that minimizing the intermediate

results after join is a good heuristic.

Moreover, they showed that Cout has the ASI property (section 4.1) [38, Observation

7] which will be necessary when using some join-ordering algorithms like (algorithm 5

in section 5.2).

Under the the cost of writing the intermediate results to disk outweighs any CPU

cost, Cout can be defined as:

Cout(Ri ⋊⋉ Rj) := |Ri||Rj |fi,j

[19, p. 77] Given a join tree T , the result of cardinality |T | can be computed recur-

sively as:

|T | =


|Ri| if T is a leaf Ri

(
∏

Ri∈T1,Rj∈T2
fi,j)|T1||T2| if T = T1 ⋊⋉ T2

(10)

[19, p. 79] [38] Given a join tree T (section 2.3), the cost function Cout

Cout(T ) =


0 if T is a leaf of Ri

|T |+ Cout(T1) + Cout(T2) if T = T1 ⋊⋉ T2

(11)
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Figure 7: Cout where |R1| = 1000, |R2| = 2, |R3| = 2,
f1,2 = 0.1, f1,3 = 0.1 [19, p. 83]

⋊⋉

R1 R2

(a) Cout(R1 ⋊⋉ R2) =
1000 ∗ 2 ∗ 0.1 = 200

×

R1 R2

(b) Cout(R1 ×R2) =
2 ∗ 2 = 4

×

R1 R3

(c) Cout(R1 ⋊⋉ R3) =
1000 ∗ 2 ∗ 0.1 = 200

⋊⋉

⋊⋉

R2 R3

R1

(d) Cout((R1 ⋊⋉ R2) ⋊⋉ R3) =
1000∗2∗0.1+1000∗2∗0.1∗2∗0.1 = 240

⋊⋉

×

R2 R3

R1

(e) Cout((R2 ×R3) ⋊⋉ R1) =
2∗2+2∗2∗1000∗0.1∗0.1 = 44

⋊⋉

⋊⋉

R1 R3

R2

(f) Cout((R1 ⋊⋉ R3) ⋊⋉ R2) =
1000∗2∗0.1+1000∗2∗0.1∗2∗0.1 = 240
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Figure 8: Cout where |R1| = 10, |R2| = 20, |R3| = 20, |R4| = 10,
f1,2 = 0.01, f2,3 = 0.5, f3,4 = 0.01[19, p. 84]

⋊⋉

R1 R2

(a) Cout(R1 ⋊⋉ R2) =
10 ∗ 20 ∗ 0.01 = 2

⋊⋉

R2 R3

(b) Cout(R2 ⋊⋉ R3) =
20 ∗ 20 ∗ 0.5 = 200

×

R3 R4

(c) Cout(R3 ⋊⋉ R4) =
20 ∗ 10 ∗ 0.01 = 2

⋊⋉

⋊⋉

⋊⋉

R1 R2

R3

R4

(d) Cout(((R1 ⋊⋉ R2) ⋊⋉ R3) ⋊⋉ R4) =
10 ∗ 20 ∗ 0.01+ 10 ∗ 20 ∗ 0.01 ∗ 20 ∗ 0.5+
10 ∗ 20 ∗ 0.01 ∗ 20 ∗ 0.5 ∗ 10 ∗ 0.01 = 24

⋊⋉

⋊⋉

×

R2 R3

R1

R4

(e) Cout(((R2 ×R3) ⋊⋉ R1) ⋊⋉ R4) =
20 ∗ 20 ∗ 0.5+20 ∗ 20 ∗ 0.5 ∗ 10 ∗ 0.01+
20∗20∗0.5∗10∗0.01∗10∗0.01 = 222

⋊⋉

⋊⋉

R1 R2

⋊⋉

R3 R4

(f) Cout((R1 ⋊⋉ R2) ⋊⋉ (R3 ⋊⋉ R4)) =
10 ∗ 20 ∗ 0.01 + 20 ∗ 10 ∗ 0.01 + 2 = 6
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5 Plan Enumeration

5.1 DP-Based

Bellman defines Principle of Optimality [40, p. 83] as optimal policy has the prop-

erty that whatever the initial state and initial decision are, the remaining decisions

must constitute an optimal policy with regard to the state resulting from the first

decision.

The idea of dynamic programming applied to the generation of optimal join trees

is to generate optimal join trees for subsets of R1, . . . , Rn in a bottom-up fashion.

Optimal join trees for subsets of size one (single relations) are generated. From these,

optimal join trees of size two, three and so on until n are generated [20, p. 61].

The dynamic programming algorithms are often the core of commercial DBMSs

query planners. But solely relying on DP-based approaches is not recommended as

runtime increases exponentially with respect to the number of relations involved [20,

p. 69]. for example, PostgreSQL switches from DP-based approach to heuristic-based

approach for queries that involve more than 12 relations [41].

In this section, we will explore some of the most common DP-based algorithms with

accompanying pseudocode.
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Size-Driven Enumeration

Selinger et al. introduced the idea of using dynamic programming for finding optimal

bushy plans DPsize [15, 42, 43] by synthesizing plans of increasing sizes. DPsize

(algorithm 1) runs in exponential time complexity O(2N ) with an exponential space

requirement [21].

Shown in Algorithm 1, sets of relations contained in sl and sr do not overlap, and

ensures the existence a join predicate connecting a relation sl with a relation in sr,

while dp associates each set of relations the best plan found so far [20, p. 70].

Algorithm 1 DPsize [44, p. 540]

Input: connected query graph Q with n-relations (R← {R0, . . . , Rn−1})
Output: optimal bushy join tree without cross products

1: foreach Ri ∈ R do
2: dp[1 << i]← Ri ▷ init 2n DPTable
3: end for
4: foreach s ∈ {2, . . . , n} do ▷ size of plan
5: foreach sl ∈ {1, . . . , s− 1} do ▷ size of left subplan
6: sr ← s− sl ▷ size of right subplan
7: foreach Sl ⊂ R do ▷ all plans containing sl relations
8: foreach Sr ⊂ R do ▷ all plans containing sr relations
9: if Sl ∩ Sr ̸= ∅ continue ▷ no overlap

10: if Sl not connected to Sr continue ▷ existence of join predicate
11: p← dp[Sl] ⋊⋉ dp[Sr] ▷ current plan
12: if cost(p) < cost(dp[Sl ∪ Sr]) then ▷ relations contained in p
13: dp[Sl ∪ Sr]← p
14: end if
15: end for
16: end for
17: end for
18: end for
19: return dp[{R0, . . . , Rn−1}] ▷ optimal plan
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Figure 9: DPsize Algorithm Execution [45, p. 55]
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Subset-Driven Enumeration1

Vance et al. improved on (algorithm 1) by relaying on bit vector representation of

relations set giving us DPsub [46, 42, 43] (algorithm 3). It relies on Efficient Subset

Generation [46, 47, 4.1] and the fact that the increment by one operation is very

simple operation and can be used to generate the powerset of a given set as seen in

(algorithm 3). Each relation is represented by the i-th bit in the bitvector (table 3).

Algorithm 2 Efficient Subset Generation [19, p. 159]

1: S1 ← S&(−S)
2: do
3: S2 ← S − S1

4: . . . ▷ do something with S1, S2

5: S1 ← S&(S1 − S)
6: while S1 ̸= S

As demonstrated by Moerkotte [42, 43] that DPsize (algorithm 1) is superior to

DPsub for chain and cycle queries (figs. 4a and 4c). while, DPsub is superior to

DPsize (algorithm 1) for star and clique queries (figs. 4b and 4d).
1also know by Counter-Driven Enumeration
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Table 3: Generation in Integer Order[19, p. 156]

Int Bin Relations
0 000 {}
1 001 {R1}
2 010 {R2}
3 011 {R1, R2}
4 100 {R3}
5 101 {R1, R3}
6 110 {R2, R3}
7 111 {R1, R2, R3}

Algorithm 3 DPsub [42, p. 932]

Input: connected query graph Q with n-relations (R← {R0, . . . , Rn−1})
Output: optimal bushy join tree

1: foreach Ri ∈ R do
2: dp[1 << i]← Ri ▷ init 2n DPTable
3: end for
4: foreach S ∈ {1, . . . , 2n − 1} do
5: if (not connected S) continue
6: foreach S1 ⊂ S do
7: S2 ← S \ S1

8: if S2 = ∅ continue
9: if not connected S1 continue

10: if not connected S2 continue
11: if S1 not connected to S2 continue ▷ existence of join predicate
12: p← dp[S1] ⋊⋉ dp[S2] ▷ current plan
13: if cost(p) < cost(dp[S]) then
14: dp[S]← p
15: end if
16: end for
17: end for
18: return dp[{R0, . . . , Rn−1}] ▷ optimal plan
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5.2 IKKBZ

DP-based approaches alone (section 5.1) are not enough for modern DBMSs with

regular consumer hardware. In this section we will relax the global optimality require-

ment for queries involving large number relations in exchange for a polynomial-time

algorithm.

Ibaraki and Kameda got their inspiration from Monma et al. work in finding a

general algorithm for sequencing problems with series-parallel precedence from the

field of Scheduling & Operation Research.

Monma et al. [1, p. 216] original motivation is a tackling the problem of least cost

fault detection, where in a system of consisting of n components is to be inspected

sequentially by applying tests to each component until one fails or each component

pass it’s test.

Each component j has testing cost cj and a probability 0 ≤ qj ≤ 1 of passing it’s

test. the probability that the i-th component in sequence s Qs
i = qs(1)qs(2) . . . qs(i−1).

the expected testing costs for a sequence s of length k is
∑k

i=1Qs
i cs(i). the problem

is to find feasible permutation Π which minimizes the expected cost:

min
Π∈F

k∑
i=1

Qs
i cs(i)

Recursive definition of the cost function f for
∑
Qici is defined on all sequences

as:

f(j) = cj for job j

f(s, t) = f(s) + q(s)f(t) for sequences s, t

where q(s) = qs(1)qs(2) . . . qs(k) for sequence s of length k.
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Krishnamurthy et al. improved[16] on Ibaraki et al. [1, 48] and propose O(n2)

algorithm 5 for finding the optimal left-deep tree (fig. 5a) for an acyclic2 query

graph (inner joins only) where in is the number of relations in the query.

In case of a query graph contains cycles, compute the minimum spanning tree3 using

algorithm 4 that minimize the product of all selectivities. The intuition behind that

is a high selectivity impact over choosing the order [16, Observation 2].

Algorithm 4 Kruskal’s Algorithm [49, 23.2]

Require: G(V,E), w
1: A = ∅
2: foreach v ∈ G.V do
3: MAKE-SET(v)
4: end for

▷ sort the edges of G.E into non-decreasing order by weight w
5: foreach (u, v) ∈ G.E do
6: if FIND-SET(u) ̸= FIND-SET(v) then
7: A = A ∪ {(u, v)}
8: UNION(u, v)
9: end if

10: end for
11: return A

Once we have an acyclic graph, pick the first relation and construct a precedence

tree where the relation is the root of the tree and every other relation is pointing

outwards as seen in fig. 11.a. This indicates which relations have to be joined first

before other joins become feasible [41, p. 7].

Then, Normalize and Merge Chains repeatedly based on their rank for every sub-

tree4. rank(R6) ≤ rank(R7) then R6 should be joined before R7.

The intuition behind Normalization is that if the direction stated in the precedence

tree and the rank function disagree (R6 → R7 but rank(R6) ≤ rank(R7)), this con-

stitute a contradiction that can be resolved by combining these 2 relations (R6, R7)

2non-recursive
3or any other algorithm, i.e. Prim’s
4sometimes referred to as wedge [48, p. 496]
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into a single relation R6R7. This new compound relation is treated as a single unit

when merging chains (fig. 11.b, fig. 11.c).

The intuition behind merging chains is due to the absence of any restrictions between

the member relations of 2 (or more) parallel chains under the subtree, we can merge

them into a single chain with sorted ranking (from smallest to largest).

Finally, the intuition behind Denormalization is after successive Normalization and

Merging Chains, we are left with a single chain where we unpack any compound

relations created from any normalization procedure in order to end up with the

single relation that can be part of final join tree.

The aforementioned process is repeated5 for every relation as the precedence tree

root the tree with the lowest cost is considered the optimal left-deep tree of the

given query. The total cost of the spanning tree is defined as the product of all the

selectivities and riot the summation as it is commonly stated for the minimum cost

spanning tree problem [16, p. 136].

For optimizing non-recursive queries, an polynomial O(N2) heuristic search algo-

rithm (algorithm 5). The theory [48, 16] is based requires that the cost functions

have a certain form [21].

Recursive definition of the cost function [38, p. 60][19, p. 112][20, Definition 3.2.1]:

CH(ϵ) = 0

CH(Ri) = 0 if Ri is the root

CH(Ri) = hi(ni) if Ri is not the root

CH(S1S2) = CH(S1) + T (S1) ∗ CH(S2)

(12)

T (ϵ) = 1

T (S) =
∏
Ri∈S

sini
(13)

5trivially parallelizable with std::transform_reduce & policy std::execution::par_unseq
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Algorithm 5 IKKBZ [20, p. 54] [19, p. 120-123]
Require: an acyclic query graph G and an ASI cost function CH

1: S ← ∅
2: foreach Ri ∈ R do ▷ Consider each relation as starting relation
3: Gi ← Precedence graph derived from G rooted at Ri

4: Si ← IKKBZ-Sub(Gi, CH)
5: S ← S ∪ {Si}
6: end for
7: return argminSi∈SCH(Si) ▷ optimal left-deep tree
1: procedure IKKBZ-Sub(G,CH) ▷ precedence graph G, cost function CH

2: while Gi is not a chain do
3: r ← a subtree of Gi whose subtrees are chains
4: IKKBZ-Normalize(r)
5: ▷ merge chains under r according to rank function
6: end while
7: IKKBZ-Denormalize(Gi) ▷ optimal left-deep tree under Gi

8: end procedure
1: procedure IKKBZ-Normalize(R) ▷ a subtree R of precedence graph G
2: while ∃r, c ∈ R, rank(r) > rank(c) do
3: ▷ replace r, c by a compound relation r′ that replace rc
4: end while
5: end procedure ▷ normalized subtree
1: procedure IKKBZ-Denormalize(G) ▷ precedence graph (compound relations)
2: while ∃r ∈ R : r is a compund relation do
3: ▷ replace r sequence of relations it represent
4: end while
5: end procedure ▷ denormalized precedence graph G
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Figure 10: Sample Query Graph
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1
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1
2

1
10

(a) Query Graph

SELECT * FROM
R1, . . . , R7 WHERE
R1.a = R2.a and
R1.b = R3.b and
R1.c = R4.c and
R4.d = R5.d and
R4.e = R6.e and
R6.f = R7.f

(b) SQL Query

SELECT ?r1...?r7
WHERE {

?r1 a ?v1 .
?r1 c ?v2 .
?r1 c ?v3 .
?r2 b ?v2 .
?r3 c ?v3 .
?r4 d ?v4 .
?r5 e ?v5 .
?r6 f ?v6 .
?r7 g ?v7 .
?r3 c ?v3 .

}
(c) SPARQL Query

Table 4: Rank Computation for Figure 12
R n s C T rank
R1 10 0.20 2.00 2.00 0.50

R2 100 0.50 50.00 50.00 0.98

R3 100 0.25 25.00 25.00 0.96

R4 100 0.20 20.00 20.00 0.95

R5 18 0.33 6.00 6.00 0.83

R6 10 0.50 5.00 5.00 0.80

R7 20 0.10 2.00 2.00 0.50

R6R7 200 0.05 15.00 10.00 0.60

R4R6R7 20000 0.01 320.00 200.00 0.62
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Figure 11: Precedence Trees of Figure 10
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Figure 12: IKKBZ Algorithm Execution [19, p. 124] for fig. 11.a
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5.3 Linearized DP

As demonstrated in section 5.2, we can find optimal left-deep tree in O(n2) time.

Neumann et al. [50] showed that relative order can act as a really good starting point

for one of the DP plan enumeration algorithms algorithms 1 and 3 to construct

an optimal bushy tree for the given relative order [41, p. 2], such simplification

reduces the amount fo plans considered by the DP-based enumeration algorithms.

this process is known as State Space Linearization.

Algorithm 6 linDP [50, 4.2]

Require: G(V,E), w, CH

1: G′ = MST(G,w) ▷ algorithm 4
2: O = IKKBZ(G′, CH) ▷ algorithm 5
3: foreach Ri ∈ R do
4: dp[i, i]← Ri ▷ init n2 DPTable
5: end for
6: foreach s ∈ {2, . . . , |O|} do
7: foreach i ∈ {0, . . . , |O| − s} do
8: foreach j ∈ {1, . . . , |O| − s− 1} do
9: L← dp[i, i+ j − 1] ▷ left subplan

10: R← dp[i+ s, i+ s− 1] ▷ right subplan
11: if L can join with R then ▷ existence of join predicate
12: P ← L ⋊⋉ R ▷ current plan
13: if C(P ) < C(dp[i, i+ s− 1]) then
14: dp[i, i+ s− 1]← P
15: end if
16: end if
17: end for
18: end for
19: end for
20: return dp[0, |O| − 1] ▷ sub-optimal bushy tree
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6 Conclusion

IKKBZ (section 5.2) has proven to be useful in any Query Planner for many reasons.

it can be used on it’s own to find an optimal-left deep plan in polynomial time which

is good enough for most practical use-case1, or act as a stepping stone for a DP-based

enumeration algorithm that results in an bushy plan in a reasonable amount of time

(section 5.1).

Although linearization (section 5.3) process no longer guarantee the optimality of

the output plans and may result in suboptimal bushy plans, it still synthesize really

good plans that are not far from the global optimal ones [50].

All the aforementioned algorithms heavily relay on accurate cardinality estimations

(chapter 3) which get harder and harder as the number of joins increase and the

amount data increase.

1Oracle for example, doesn’t bother at all with bushy plans [17, 6.2]
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