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Abstract

In this thesis the SPARQL engine QLever was extended by a SpatialJoin operation.
The SpatialJoin operation receives two SPARQL subresults as input. Each input
contains, among other things, geometries. Then, each pair of geometries is added
to the result if and only if the distance between these two geometries is smaller
than a user-defined limit. The SpatialJoin operation is implemented using R-trees
to achieve fast runtimes. The algorithm has been evaluated on two datasets and
compared to a baseline solution. In addition, a detailed theoretical analysis was
performed, including a correctness proof of the algorithm.
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Zusammenfassung

In dieser Masterarbeit wurde die SPARQL Suchmaschine QLever um eine Spa-
tialJoin Operation erweitert. Die SpatialJoin Operation erhaelt zwei SPARQL-
Teilergebnisse. Beide dieser Teilergebnisse erhalten unter anderem Geometrien. Von
diesen Geometrien wird jedes Paar dem Ergebnis hinzugefuegt, genau dann wenn die
Distanz zwischen den beiden Geometrien kleiner als ein benutzerdefiniertes Limit
ist. Die SpatialJoin Operation wurde mithilfe von R-trees implementiert um schnelle
Laufzeiten zu ermoeglichen. Der Algorithmus wurde anhand von zwei Datensaet-
zen evaluiert und mit einer Baseline verglichen. Zudem wurde eine ausfuehrliche
theoretische Analyse durchgefuehrt, welche unter anderem die Korrektheit des Al-
gorithmus beweist.
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1. Introduction

This thesis starts by presenting some real-world examples of how geolocation queries
can be used with the result of this thesis. After the motivation, it presents related
work and gives an overview of this thesis.

1.1. Motivation

The use of geolocation information is ubiquitous. Most people use navigation ser-
vices to find the fastest way to their destination. When they want to eat out, they
look at an online map that shows the closest restaurants. And if they want to
know about places of interest at their vacation destination, they can look them up
beforehand. But geolocation services aren’t just used by individuals; they’re also
used by businesses. Obvious examples include logistics companies that need to route
their vehicles, and telecommunications companies that need to find the most densely
populated areas so they can begin upgrading phone antennas there.

One way to use these geolocation services is to use the OpenStreetMap [1] dataset.
The dataset contains a lot of information including geometries of the represented
objects. In order to find geometries or objects of interest and to combine them
with other constraints about the objects, a search engine like QLever [2] can be
used. In the version prior to the start of this thesis, it was not possible to efficiently
query the dataset for objects that were within a certain distance of each other. This
thesis introduces an algorithm that efficiently computes all geometries that are at
most a user-specified number of meters away from each other. Algorithm 1 shows
how a restaurant query can be expressed in SPARQL1. In this example, the user is
looking for restaurants that are close to a tram station and not too far away from
the current position. Figure 1.1 shows what this query looks like when posted to the
OpenStreetMap dataset 2 via the Qlever UI. The result of this query can be seen in
Figure 1.2.

Another example might be a telecommunications company looking for the densest
areas to start upgrading its antennas. By upgrading the antennas in the densest
area first, the new antenna can serve the most customers first. This allows the

1for those unfamiliar with the SPARQL language, a very short introduction is given in section 2.2
2The OpenStreetMap dataset has been converted to a knowledge graph using the OSM2RDF
tool. More about this in subsection 3.1.1
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Chapter 1 Introduction

Algorithm 1 Sparql Query for restaurants in Freiburg
SELECT ?restaurant ?tramstation WHERE {

?restaurant <is-building> "Restaurant" .
?tramstation <public-transport> "Tram Station" .
?tramstation <max-Distance-in-meters:100> ?restaurant .
?restaurant <max-Distance-in-meters:3000> currentPosition .

}

Figure 1.1.: This figure shows how a SPARQL query can be posted to QLever
using the QLever UI. The query is about finding restaurants, which are near a
tram station and not too far away from the current position looks.
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1.1 Motivation

Figure 1.2.: This figure shows the result of the query from Figure 1.1

telecommunications company to sell the faster phone service to more people com-
pared to the situation where a less dense area is upgraded first. Algorithm 2 shows
how to express this query in SPARQL. Using the GROUP BY statement, we can
ensure that each antenna has only one entry in the result table3. Since all entries of
the temporary table containing an antenna are aggregated into one row, the system
needs to know how to aggregate the rows for the position and the houses. In the
case of the antenna position, the keyword SAMPLE is used. This just uses an entry
from one of the rows. This is fine because the position for the antenna is the same in
all rows (since we are aggregating over the different antennas). So it doesn’t matter
from which row the position is taken. The aggregation for the houses is done with
the COUNT keyword. This counts the number of rows that result in the number
of houses that are within range of the antenna. In summary, the result table con-
tains one row for each antenna, which contains the position of the antenna and the
number of houses reached by the antenna.

3otherwise, each antenna would be shown with each house, as the cross-product would be built
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Chapter 1 Introduction

Figure 1.3.: This figure shows the query and the results of the query, which searches
for antennas, and how many apartments each antenna reaches

8



1.2 Related work

Algorithm 2 SPARQL query to find the best antenna position to upgrade
SELECT ?antenna

(SAMPLE(?position) AS ?positionOfAntenna)
(COUNT(?house) AS ?numberOfHouses)

WHERE {
?antenna <is-a> "Antenna" .
?antenna <has-position> ?position .
?house <is-building> "House" .
?house <has-position> ?positionHouse
?position <maxDistanceInMeters:1000> ?positionHouse .

}
GROUP BY ?antenna
ORDER BY DESC(?numberOfHouses) ?antenna

1.2. Related work

The most important related work is the paper that introduces the search engine
QLever [2]. QLever is a search engine by Prof. Bast et. al [2] for data structured as
a knowledge graph. Since this thesis extends the capabilities of QLever, QLever is
presented in detail in chapter 2.

Another very important paper is the OSM2RDF paper by Prof. Bast et.al [3]. It
translates the OpenStreetMap data provided in XML format into the RDF triple
format without any data loss. Since this tool is also essential for this thesis, it is
presented in detail in subsection 3.1.1.

The implementation of the algorithm in this thesis uses R-trees, which were intro-
duced in the R-trees paper by Guttman [4]. Since R-trees are a fundamental part
of this thesis, they are presented in chapter 4.

Instead of using R-trees, the algorithm could have been implemented using another
data structure. The S2 library, developed by Google [5], stores the data on a sphere
and aims to be an alternative to planar geometry algorithms. Because the data is
stored on a sphere rather than a plane, it avoids edge cases around the poles and
the -180/180 degree longitude line. The S2 library stores the data in a hierarchical
structure to allow fast queries. The S2 library is a very promising approach to the
problem this thesis tries to solve. When I started this thesis, I started the develop-
ment by implementing the infrastructure for SpatialJoin operations in general (no
matter which algorithm). During this time, another student started his thesis on a
problem related to SpatialJoin: Nearest Neighbor search. For this approach he uses
the S2 library. Since the S2 library is already used for an algorithm, it was decided
that my implementation should be done using planar R-trees. Since our thesis finish
at a similar time, it was unfortunately not possible to compare both approaches,
but this should definitely be done in the future.

9



Chapter 1 Introduction

Another important related work is the GeoSPARQL standard [6]. It extends SPARQL
with geospatial query capabilities. It has some mandatory features, such as support
for geometries and encoding them in well-known text representations. In addition
to mandatory features, there are also optional features, such as the distance func-
tion, which calculates the distance between two geometries. Implementers of the
standard can therefore decide whether or not to support the optional distance func-
tion. It’s also optional whether they implement it in an efficient way, like using an
R-tree, or whether they just use a simple filter that has to compute the distance for
all pairs. Some examples of SPARQL servers that support the GeoSPARQL stan-
dard are Apache Jena GeoSPARQL [7] or GraphDB [8]. Due to time constraints, it
was not possible to compare the performance of the presented algorithm with other
algorithms implementing the GeoSPARQL standard.

1.3. Structure of this thesis

After this introduction, the thesis continues by introducing knowledge graphs, SPARQL,
and QLever in chapter 2. The next chapter introduces OpenStreetMap, a dataset
on which the algorithm will be used. After that, a basic introduction to R-trees is
given, which is a fundamental building block of the presented algorithm. Then the
coordinate system of the earth is explained, as well as a mapping from the spher-
ical surface to a planar surface. As soon as these chapters have given the basics,
chapter 6 presents the changes in the infrastructure of the search engine QLever to
make the developed algorithm fit into it. Then the next chapter explains the pre-
sented algorithm in detail. chapter 8 analyzes the algorithm on a theoretical basis.
There, the problem that the algorithm solves is specified in a formal way. In addi-
tion, the runtime and space complexity of the algorithm is analyzed. Finally, the
chapter proves that the algorithm works correctly. After the theoretical analysis,
the practical analysis is presented. Here, the algorithm is analyzed on a synthetic
dataset as well as on the OpenStreetMap of Germany. The last chapter of this thesis
gives a conclusion and an outlook.
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2. The search engine QLever

QLever is a search engine by Prof. Bast et. al [2] for data structured as a knowledge
graph. This chapter presents the current state of QLever, which is the basis of this
thesis. The chapter starts by defining what a knowledge graph is and how SPARQL
can be used to retrieve information from a knowledge graph. After that, the imple-
mentation of QLever is presented. It’s shown how operations are implemented, how
the index is built. How queries are planned and how to interact with the program
via the server and the UI.

QLever has many more features, which are not relevant for this thesis. One example
is autocompletion, which helps the user to type queries [9]. Since this is not relevant
for this thesis, it will not be presented here. For more information about autocom-
pletion, see [9]. QLever is also able to search a linked text corpus in addition to the
knowledge graph. For more information about this, see [2].

2.1. Knowlegde Graphs

A knowledge graph is a graph consisting of nodes and directed edges. The nodes
are objects and the edges make some statements about the relationship between
two objects. An example can be seen in Figure 2.1. The same information from the
graph can also be stored as text. Then the nodes become subjects and objects, and
the edges become predicates. The same information of the graph from Figure 2.1 can
be seen in Table 2.1. The information in the table is stored as triples. This makes it
easy to parse and edit. Examples of large knowledge graphs are Wikidata [10] and
Freebase [11]. For a detailed description and comparison of these and some other
knowledge graphs, see [12].

11



Chapter 2 The search engine QLever

Table 2.1.: This table reprensents the information of a knowledge graph. The same
information can be represented as a graph, which can be seen in Figure 2.1

subject predicate object
<Uni Freiburg> <founded-in> 21.09.1457 .
<Uni Freiburg> <located-in> <Freiburg im Breisgau> .
<Uni Freiburg> <is-a> "university" .
<Albrecht VI.> <has-founded> <Uni Freiburg> .

<Minster of Freiburg> <located-in> <Freiburg im Breisgau> .
<Minster of Freiburg> <located-in> <Altstadt of Freiburg> .
<Minster of Freiburg> <is-a> "building" .
<Minster of Freiburg> <is-a> "church" .
<Freiburg im Breisgau> <inhabitants> 236,000 .

<Uni Freiburg> <has-library> <University Library Freiburg> .
<University Library Freiburg> <located-in> <Freiburg im Breisgau> .
<University Library Freiburg> <is-a> "building" .
<University Library Freiburg> <is-a> "library" .

<Altstadt of Freiburg> <located-in> <Freiburg im Breisgau> .

To retrieve information from a knowledge graph, a query language such as SPARQL [13]
can be used. The following chapter explains the basics.

2.2. SPARQL

SPARQL is a language that can be used to retrieve information from a knowledge
graph. This chapter explains the basics of SPARQL. Advanced concepts and the
full capabilities of SPARQL can be found in [13].

As a first introductory example, we will search for everything that is located some-
where. This can be done using algorithm 3. After the SELECT keyword, we declare
the variables that will appear in the result table. In this case, it’s the variable ?some-
thing, which represents an object that will be located somewhere. This somewhere
is stored in the variable ?location. Except for these variables, other intermediate
variables can be declared later, but they won’t be part of the result table unless they
are written here. After all the variables of interest have been declared, the WHERE
keyword is used to start a block of constraints that must be satisfied. In this case,
the only constraint is that the variable node must have an outgoing edge labeled
"located-in" that connects to another node (see Figure 2.1 for the input knowledge
graph). If the knowledge graph is stored as triples of subject, predicate and object,
we search for the subjects and objects of the rows that have the predicate "located-
in" (see Table 2.1 for the input triples). The result of this SPARQL operation can
be seen in the result table, Table 2.2.

12



2.2 SPARQL

Albrecht VI

Uni Freiburg

University Library
Freiburg

Freiburg im Breisgau

"21.09.1457"

Minster of Freiburg "236,000"

"building"

"library" "university"

"church" "Altstadt of Freiburg"

has-founded

located-inis-a

is-a located-in

inhabitants

located-inis-a

is-a

located-in

founded-in

has-library

located-in

is-a

Figure 2.1.: This figure shows a knowledge graph. The nodes are objects and
the relationship between nodes is represented by directed edges. The information
contained in this knowledge graph can also be represented in text form, as shown
in Table 2.1. Then the nodes are subjects or objects and the edges are predicates.
Source: Self made
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Chapter 2 The search engine QLever

Algorithm 3 SPARQL query for everything, which is located somewhere
SELECT ?something ?location WHERE {

?something <located-in> ?location .
}

Table 2.2.: Resulting table from the SPARQL query of algorithm 3

?something ?location
Uni Freiburg "Freiburg im Breisgau"

University Library Freiburg "Freiburg im Breisgau"
Minster of Freiburg "Freiburg im Breisgau"
Minster of Freiburg "Altstadt of Freiburg"
Altstadt of Freiburg "Freiburg im Breisgau"

Another simple SPARQL query might look like algorithm 4. Here we are looking
for anything that has a generalizing "is-a" information. This information is stored
in the variables ?something and ?itIsThis. The resulting table for this query can be
seen in Table 2.3.

Algorithm 4 SPARQL query for everything, which has a generalizing predicate
"is-a"
SELECT ?something ?itIsThis WHERE{

?something <is-a> ?itIsThis .
}

Table 2.3.: Resulting table from the SPARQL query of algorithm 4

?something ?itIsThis
Uni Freiburg "university"

University Library Freiburg "library"
University Library Freiburg "building"

Minster of Freiburg "church"
Minster of Freiburg "building"

If we want to know about everything that’s located somewhere and what its general-
ization is (or what they are in the case of multiple generalizations), we can combine
the two queries from above. The combination can be seen in algorithm 5. Here we
declare three variables to be in the resulting table and two constraints to be satisfied.
The two constraints are exactly the same as in the two simple queries in algorithm 3
and 4. Therefore, the intermediate results of this query are also the two tables from

14



2.2 SPARQL

before (Table 2.2 and Table 2.3). Now we need to join these two tables to create the
final result table. Since both tables have a common variable, in this case ?something,
they must be matched. The matching starts with the first row of the intermediate
result in Table 2.2. The variable ?something is "Uni Freiburg". Now it searches all
rows in Table 2.3 for "Uni Freiburg" in the ?something column. It finds the one
row that contains both "Uni Freiburg" and "university". So it joins those two rows,
resulting in the row "Uni Freiburg", "Freiburg im Breisgau" (which comes from the
first table) and "university" (which comes from the second table). The final row can
be seen in Table 2.4. Next, it tries to match the next row from Table 2.2. The
variable on which the two columns are joined is "University Library Freiburg". This
variable occurs twice in the intermediate result of Table 2.3. Therefore, two rows
are added to the resulting table. One row for the combination of "University Library
Freiburg" and "Freiburg im Breisgau" with "library" and one row for the combination
with "building". This can be seen in the second and third lines of Table 2.4. The
next two rows contain "Minster of Freiburg". Although the variable is the same,
each row is treated separately. The matching process is the same as before. Each
of the two rows from Table 2.2 is joined with the two rows from Table 2.3 that also
contain "Minster of Freiburg" in the ?something column, resulting in four rows in
the result table. This can be seen in rows 4 to 7 of Table 2.4. The last element
from Table 2.2 to be considered in the matching process is "Altstadt of Freiburg".
Since this variable does not appear in the ?something column of Table 2.3, it is not
part of the resulting table. Now the join process is complete and the resulting ta-
ble, Table 2.4, can be returned as the output of the combined SPARQL query from
algorithm 5.

Algorithm 5 SPARQL Query for everything, which is located somewhere and has
a generalizing predicate "is-a"
SELECT ?something ?location ?itIsThis WHERE{

?something <located-in> ?location .
?something <is-a> ?itIsThis .

}

Table 2.4.: Resulting table from the SPARQL query of algorithm 5, which looks
for something, which is located somewhere and has a generalization

?something ?location ?itIsThis
Uni Freiburg "Freiburg im Breisgau" "university"

University Library Freiburg "Freiburg im Breisgau" "library"
University Library Freiburg "Freiburg im Breisgau" "building"

Minster of Freiburg "Freiburg im Breisgau" "church"
Minster of Freiburg "Freiburg im Breisgau" "building"
Minster of Freiburg "Altstadt of Freiburg" "church"
Minster of Freiburg "Altstadt of Freiburg" "building"

15



Chapter 2 The search engine QLever

At the end of this section, i want to give some final remarks about the join process.

• As we have seen in the join process, the resulting table, which has seven rows,
is larger than both input tables, which have five rows each. This is due to
the "cross-product effect". This effect can be seen when joining "University of
Freiburg" and especially when joining "Minster of Freiburg". In each of these
cases, a row from one table is joined with several rows from the other table.
In the extreme case, the first join table contains n rows, all with the same
variable. The second table contains m rows, all with the same variable, which
also matches the variable from the other table. Then each of the n rows from
the first table is matched with each of the m rows from the second table. This
would result in a table of size m times n, which can be much larger than any
of the input tables.
• In the explanation above, it was mentioned that for each variable of the first

temporary table, the other table is fully searched. If both tables are sorted by
the join column, a full search can be avoided, resulting in a faster and more
efficient join process.
• The query can be interpreted as the table matching explained above. Another

way to look at this query is in terms of graph pattern matching. In this case,
the variables in the query impose constraints on the nodes and the edges be-
tween those nodes. The query can be thought of as a tiny subgraph (compared
to the knowledge graph) that is searched in the knowledge graph. Figure 2.2
shows the subgraph for the query of everything that is somewhere and has
an "is-a" generalization (see algorithm 5). The variables of this subgraph are
replaced by the contents of the matching subgraph. In this case, we are look-
ing for a node that has two outgoing edges, one labeled "located-in" and one
labeled "is-a". If this pattern is found, the content of the node is assigned
to the variable ?something. The content of the node connected to the node
by the located-in edge is assigned to the variable ?location. And the content
connected to the node by the "is-a" edge is assigned to the variable ?itIsThis.
• In the examples above, neither the nodes (subjects or objects) were constraints,

nor the edges (predicates) were variables. However, both is possible. An
example where the node (in this case the object) is a variable could be the
query of everything that is "located-in" the "Altstadt of Freiburg". In this
case, the node (object) is a constraint. An example where the predicate is a
variable is the query of all stored relationships of the University of Freiburg
("Uni Freiburg" ?relationshipTo ?TheObject). The graph of this query would
look like a node labeled "Uni Freiburg" (the constraint for the subject). The
outgoing edge is variable, as is the node.
• Since a knowledgegraph can only connect two nodes, it seems that it can’t

store every kind of information. N-ary information, which makes a statement
about n things simultaneously, can’t be stored directly. To get around this
limitation, a mediator node can be introduced. Then the subject is linked to

16



2.3 Operations

?something

?location

?itIsThis

located-in

is-a

Figure 2.2.: This figure shows a representation of the query from algorithm 5.
The structure of this graph will be searched in the complete knowledge graph of
Figure 2.1. The variables in the nodes, will be replaced by the real content of the
nodes from Figure 2.1. Source: Self made

the mediator node, and the mediator node is linked to the other n− 1 nodes.
This allows knowledge graphs to represent n-ary information and avoids the
need for a hypergraph.
• As mentioned at the beginning of this chapter, this chapter has only provided

a basic introduction to SPARQL. SPARQL is capable of many additional fea-
tures, such as filtering the resulting table and merging multiple rows into one
(for example, counting the number of rows that contain the same subject).

Now that knowledge graphs and SPARQL have been introduced, we can take a
closer look at how QLever is implemented to compute Sparql queries and retrieve
the information from the knowledge graph.

2.3. Operations

When computing the result of a SPARQL query, QLever translates the query into
operations. The most basic operation is a SCAN operation. A SCAN operation
is an operation that searches the entire knowledge graph for all matching triples.
In the example algorithm 5 there are two SCAN operations. The first scans the
entire knowledge graph for triples with a "<located-in>" predicate, and the second
scans the entire knowledge graph for triples with an "<is-a>" predicate. The SCAN
operation can also search for triples with three variables (this would return every
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triple from the knowledge graph) or triples with only one variable. An example of
a single variable would be if the ?location variable in the "<located-in>" line were
replaced by "Freiburg im Breisgau". Then the SCAN would find all triples that have
the predicate "<located-in>" and the object "Freiburg im Breisgau". Another im-
portant operation is the JOIN operation. It joins the result of two other operations,
for example two SCANs. In the case of algorithm 5, the two scan operations would
need to be joined. Since they share the common variable ?something, the JOIN
operation must take this into account and only join a row from one SCAN operation
with a row from the other SCAN operation if the variable ?something has the same
value. If the SCAN operations didn’t have a common variable, the cross-product of
the subresults would have been built. If the SPARQL query would have more than
two SCAN operations, then multiple JOIN operations are required. In the case of
three SCANs, first two SCANs would be joined and then the result of this JOIN
operation would be joined with the remaining SCAN operation. There are many
more operations, such as grouping, ordering, sampling, and counting, that would be
needed in algorithm 2. Since these operations are not really relevant for this thesis,
they will not be explained here.
QLever has an abstract operation class that groups the common properties of all
operations and forces others to be implemented by subclasses. The reason for this
enforcement is that, among other things, the QueryPlanner, which will be described
later, needs these functions to work properly. One of these functions is a size es-
timator, which estimates the size of the result. Another function estimates the
multiplicity, i.e. how many times the same entry is contained in a certain row of the
result table. In the example of the result table of Table 2.4, each column contains a
certain entry multiple times. For example, "Freiburg im Breisgau" appears five times
in the ?location column. Another function calculates whether the result is known to
be empty. Another function calculates the variable to column map. This function
returns a map containing key value pairs. The keys are the variables stored in the
result table of this operation and the value is the column where the information of
this variable is stored. The variable to column map for Table 2.4 would look like
this:
• ?something: 0
• ?location: 1
• ?itIsThis: 2

The last method that must be implemented by any subclass of the operation class
is the computeResult method. This method is called to compute the result.

2.4. IndexBuilder

To enable fast queries, QLever first computes an index of the knowledge graph. The
triples from the knowledge graph are stored in the index in a way that allows fast re-
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trieval of SCAN operations. The way they are stored is not in the usual triple format
as in the input knowledge graph, but ordered by subjects, predicates and objects. An
example of this is the PSO1 permutation. There, each predicate has a pointer to a
block in memory where all subjects and objects that occur in combination with that
predicate are stored. If a predicate has many subject-object combinations, another
optimization is added, where for each predicate-subject combination all objects are
stored in a separate place. Storing the information this way has the advantage that
the needed data is stored contiguously, which is cache-friendly and allows for very
fast read times, since no redundant information has to be read (such as the predi-
cate, which in this example is not variable, but was specified by the user). When
the information is stored this way, it’s called a PSO permutation, because the in-
formation is stored first by predicate, then by subject, and then by object. All the
other five permutations, such as POS, SPO, SOP, OPS, and OSP, can also be cre-
ated. Then any combination of variables in a scan can be read efficiently. Another
memory optimization is the use of a vocabulary. Here the subjects, predicates and
objects are translated into IDs, which require less memory. The IDs are calculated
in such a way that, for example, the ID of each string is smaller than the ID of
all strings that are behind the string in a lexicographic sort and vice versa. This
optimization makes it possible to sort the output without using the larger string
objects. Finally, before presenting the data to the user, the IDs are translated back
into strings. Some information of the triples that is small enough to fit into the
60 data bits of the ID is stored directly in the ID, without translation. Examples of
this are integers, which don’t need more than 60 bits. Parallel to my development
of the SpatialJoin, another student was working on a similar task with SpatialJoins.
He introduced an optimization in the Index Builder. Until this optimization, my
prototype of the SpatialJoin operation would load the IDs of the geometries from
the subresults. Then it would translate them back to strings, parse the strings to get
the geometry information, and then do the further computation with the geometry
information. Reading from disk is very slow compared to reading from memory, and
that’s where the other student’s optimization comes in. If the geometry is just a
point, it would be stored in the ID. IDs like this are then called GeoPoint. Then
the whole translation of the ID into the string, which would go over the disk, could
be skipped. Since the ID only has room for 60 data bits, and each point consists of
a latitude and a longitude, there is a small loss of precision. 30 bits per coordinate
corresponds to a spatial resolution of about 4 cm, which should be accurate enough
in almost all cases. For areas the optimization does not work, because 60 data bits
are not enough. So areas still have to be read from disk.

1PSO stands for the order of predicate subject object
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2.5. QueryPlanner

QLever uses a QueryPlanner that evaluates different ways to compute the given
SPARQL query and tries to find the fastest way to execute the query. The Query-
Planner uses dynamic programming. The base case of dynamic programming is the
SCAN operation. Therefore, the first row contains all SCAN operations of the query.
To get the next row, the row with index i, all possible subresults of earlier rows are
merged if the merged subresults would cover exactly i basic operations from the
input SPARQL query. When two of the subresults are merged, a JOIN operation is
created. The JOIN operation has as children the two subresults of the earlier rows
that were just merged. During merging, the QueryPlanner is using the variable to
column map to figure out, which subresults share a common variable. Only if two
subresults share a common variable they get merged2. Then the QueryPlanner uses
the information about the shared variable and which column the shared variable is
in each of the subresults to pass this information to the newly created JOIN op-
eration, as the JOIN operation needs this information to know which columns to
match. This process continues until the last row is reached, where all basic oper-
ations are covered. To evaluate the different query plans, the QueryPlanner uses
the getSizeEstimate, getCostEstimate and getMultiplicityEstimate functions of each
operation in the plan. This information can be used to calculate a runtime estimate.
The QueryPlanner then takes the cheapest plan and executes it.

During the query planning process, so-called ExecutionTrees are built. These Exe-
cutionTrees contain a hierarchical order of operations and the order in which they
must be executed. Before each operation can be executed, the subresults of the child
operation (the operations one hierarchy level below) must be present. To get the
final result, the computeResult function of the root node simply needs to be called.
It calls it’s children to compute their subresults, which call their children to com-
pute their subresults, and so on in a recursive manner. The ExecutionTree is thus
computed in a bottom-up fashion. Each operation calls the computeResult method
of it’s children to get their results and then performs its own operation. An example
of an ExecutionTree, from chapter 1 with the antenna query from algorithm 2, can
be seen in Figure 2.3. The figure shows the order of the operations, the size of the
subresults after each operation, the time it took to compute the operation, and the
variables contained in the subresult.

2.6. QLever Server

The server is the main program of QLever. It accepts queries via an http request,
calculates the result of the query and sends it back via http. The QueryPlanner

2unless in the end the last operations doesn’t contain a shared variable. In this case, the cross
product of the subresults must be built
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Figure 2.3.: This figure shows an ExecutionTree that has been constructed by the
QueryPlanner and executed by the main program. The nodes of the Execution-
Tree show the size of the (sub)results, the time taken to compute the (sub)results
and the variables contained in the (sub)result tables.
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and the operations are contained in the QLever server. As soon as a request is
received, the server starts the QueryPlanner to find out the fastest execution order
of the operations. Once the plan is built, it is executed and the result is sent
back along with computation statistics. After each query is computed, the result
is also cached (unless caching is disabled). This allows QLever to reuse the results
of previous queries if they are part of another future query. In addition, the server
also accepts partially typed SPARQL queries, where it computes context-sensitive
auto-completion suggestions.

2.7. QLever UI

The QLever UI is a web-based user interface for sending queries to the QLever server,
where the result is computed. Its appearance has already been seen in Figure 1.3.
The main QLever program contains a server that accepts queries, calculates their
result and sends it back to the QLever UI. The UI and the server share more data
than just the result. They also exchange information about the characters the user
enters in the query to provide context-sensitive auto-completion suggestions. After
the result is computed, an analysis of the computation can also be seen in the UI.
Such an analysis has already been shown in Figure 2.3.
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In this chapter, I will present the dataset that provides the information for this
thesis, as well as the conversion of it to make it compatible with the SPARQL
engine Qlever. Of course, the algorithm can also work with other datasets that
meet the necessary requirements, but it was designed with the OpenStreetMap [1]
in mind. For more information about the formal requirements that must be met for
the algorithm to work on any dataset, see section 8.1. For an example of another
dataset used with the engine, see section 9.1, where a synthetic dataset is created to
evaluate and compare the performance of this algorithm. Since the main use case
of this algorithm is to be integrated into QLever and to serve geo queries on the
OpenStreetMap data, I will introduce the OpenStreetMap dataset next.

3.1. OpenStreetMap

OpenStreetMap is a free map of the world. It consists of roads, rivers, railroads,
forests, buildings, etc. It is maintained on a voluntary and crowd-sourced basis by
people from all over the world. It’s goal is to provide a world map that is free for
everyone to use. In addition, it offers the data not only in pre-calculated maps,
but also in its raw format. This is especially useful for cases like this master thesis,
where you want to edit the data or use it in its raw form in your own algorithms.
Since the project is crowd sourced and volunteer driven, the amount of data per
region can vary greatly. Some regions have very high quality data, where even trees
and park benches are included in the dataset. In other regions, an entire village
may be missing.
OpenStreetMap represents objects internally in three ways: nodes, ways, and rela-
tions [14]. Nodes are the most basic building block of geometric objects: points.
They each have at least an ID and coordinates in latitude and longitude (using the
WGS84 system [15]). In addition to these mandatory features, a node can have any
number of key value pairs called tags, which store information like the name of the
point, its elevation, and so on. The next internal object is a way. It consists of an
ordered list of at least one point and can be as large as 20,000 points. All these
points are of the node type mentioned above. The way can be used to represent
line features such as a river or a road. If the first point in the list has the same
coordinates as the last point, it is a closed way. This can be used as a boundary of
a polygon, like a building, a country or a forest. As opposed to being the boundary

23



Chapter 3 OpenStreetMap

of an area, it could just be an object with a loop, like a roundabout. This ambiguity
can be resolved by using tags. A tag could be "area=false" or "boundary=true". The
final internal component is the relation. It consists of an ordered list of the other
components: nodes, ways, and other relations. One possibility is a multipolygon
with holes in it’s area. Then one way can represent the outer boundary and other
ways can represent the inner holes. Like the node and the way, the relation can have
tags that further describe the object. Most OSM data is stored in XML format [16].
If the data is needed in a different format, a conversion is required. There are many
different tools for this. One conversion tool is the osm2rdf tool by Prof. Bast et.
al. [3], which will be explained in the next subsection.

3.1.1. OSM2RDF

Since the data is needed in RDF triples format, but is only provided in XML format,
a conversion needs to be done. The OSM2RDF tool by Prof. Bast et. al. [3] provides
such a conversion. Unlike other conversion tools, it preserves all data, especially all
geometric information. In addition, the tool can add additional triples that cover
geometric relations between objects. These relations are "intersects" and "contains".
Using these additional triples, even SPARQL engines that can’t normally handle
geometric queries can handle them. However, the precomputation of these additional
triples is very slow. For the whole planet of open street map, the precomputation
takes 48 days, for the open street map data of Germany it takes 16 hours.
The OSM2RDF tool creates several predicates and prefixes during the conversion.
The aforementioned OSM elements "nodes", "ways" and "relations" get the prefixes
"osmnode:", "osmway:" and "osmrel:" and key value pairs get the prefix "osmkey:".
The conversion adds a triple containing the geometry as WKT (well known text)
and optionally the bounding box of the object using the predicate envelope.
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This chapter introduces the concept of R-trees. In this example, we try to find all
points of a given set of points that are contained in a query rectangle. A naive
approach would be to iterate over all points and check if a point is contained in the
rectangle. Using the rtree, we can be much faster. The general idea behind rtrees
is to improve query times by ordering the points in a hierarchical way. Using this
ordering, many comparisons can be skipped. In the next chapter, the idea behind
this concept will be explained in detail.

4.1. Working principle of R-trees

As an introductory example, let’s consider the two-dimensional Cartesian plane.
In addition, we have a set of points contained in this plane. An R-tree is a data
structure of type tree. The root node represents the set of all points. The children
of a node are one hierarchy level below the parent node. The union of all direct
children results in the set of the parent node. The sets of the children are disjoint
from each other. In this example, the sets are represented by rectangles whose sides
are parallel to one of the axes of the coordinate system. An example can be seen on
the left side of Figure 4.1. Here each point is represented by a blue dot. The nodes
of the R-tree are the colored boxes that contain a subset of the nodes. The red node
is the root node, which contains all points. The green nodes are the direct children
of the red node, each containing half of the points. The yellowish nodes are the
children of one of the green nodes, which contain half of the points of a green node
(and therefore a quarter of the points of the red node). The tree representation of
the R-tree can be seen on the right side of Figure 4.1.
Now that we have constructed the R-tree, we can use it. Suppose we want to know
all the points contained in a rectangle that is aligned with the coordinate system.
First, consider the following rectangle. Its lower left point is (-2.5, 1.5) and its
upper right point is (-1.5, 2.5)1. When querying the R-tree with the rectangle, the
procedure starts by comparing the query box with the root node. In this case, the
result is that the query box is completely contained in the rood node (the query box
is completely contained in the red box in Figure 4.1). Therefore, the comparison
continues with the direct child nodes of the root node (the two green nodes in

1Since the rectangle is aligned with the axes of the coordinate system, we know that the upper
left point is (-2.5, 2.5) and the lower right point is (-1.5, 1.5)
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Figure 4.1). The upper green rectangle also completely contains the box, but the
lower green rectangle has no intersection with the query rectangle. Therefore we
know that all points contained in the lower green rectangle cannot be contained in
the query rectangle. We can skip the calculation of whether the point is inside the
query rectangle for all points in the lower green rectangle. Since the query rectangle
is inside the upper green rectangle, the check continues with its direct children, the
two yellowish rectangles. Again, the query rectangle is contained in exactly one of
the children, the upper left yellowish rectangle. Therefore, we can exclude all points
of the other rectangle. Since the upper left yellowish rectangle is a leaf node and
has no children, each point contained in the node is now compared to the query
rectangle to see if it is contained in it. Because of the R-tree, only 9 instead of
36 points had to be compared to the query rectangle. The overhead of checking
the query rectangle against the rectangle of the nodes gets less and less as the set
of points per node gets larger. In this example, checking if a box is contained in
another box may not seem efficient, but once the number of points gets larger and
a node represents more than just nine points, the improvements in query times are
huge. Note that if a query rectangle is not completely contained within a node, but
intersects two nodes, then the points of both rectangles must be checked against the
query rectangle.

4.2. Usage of R-trees in this thesis

The goal of this thesis is to find all points that are within a certain user-defined
distance from another point. To solve this problem, a box is computed that contains
the entire area where all points are at most this distance away. This box will then
be the query box mentioned above. If we are interested in areas that are at most a
certain distance from another area or point, we can use the same technique again. We
create a rectangle containing the area where all possible matches must be contained,
and use this rectangle to query the R-tree. In this thesis the boost library, which
provides an implementation of an R-tree [17], gets used.
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Figure 4.1.: This figure shows how the R-tree splits a sample dataset of blue points.
On the left, the boxes show which points are contained in which nodes. On the
right side you can see the tree structure of the R-tree. Note that the boxes on the
left are usually as narrow as possible, but still contain all relevant points. Here,
they are not as tight only for illustrational purposes. Source: Self made
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5. The Coordinate System of the
Earth

This chapter gives a very brief introduction to the coordinate system of the Earth.
It’s explained how the coordinate system works on the spherical surface of the Earth
and how to map it to a Cartesian space.

5.1. Mappings and Projections

The Earth has the shape of an ellipsoid. This means that the distance from the
Earth’s surface to its center is not constant. Figure 5.1 shows an exaggerated illus-
tration of this phenomenon. It shows that the distance from the center of the Earth
to the equator is greater than the distance from the center to the pole. However,
the difference between the major axis and the minor axis of the Earth is very small,
the major axis is only 0.34 % larger than the minor axis. This difference is so small
that i will assume that the Earth is a perfect sphere in this master’s thesis. I will
also assume that the surface of the Earth has a constant height (so mountains and
valleys will be ignored). The reason for this is the same argument: The largest
mountain above sea level is Mount Everest with a height of 8849 meters. This is
only 0.14 % more than the radius of the Earth. These two approximations of the
Earth make the math much easier and allow for faster calculation times, while still
being very accurate for practical purposes.
Using these assumptions, we can identify any point on the Earth’s surface using only
two angles, called longitude and latitude. The first angle, called longitude, describes
the position in a west/east direction. It ranges from -180 degrees to 180 degrees.
By definition, negative numbers are east of the zero line of longitude and positive
numbers are west of it. The second angle, called latitude, describes the position in
the north/south direction and ranges from -90 to 90. Positive numbers are north
of the equator and negative numbers are south of the equator. This can be seen in
Figure 5.2.
Since R-trees work in Cartesian space and the surface of the sphere is not Cartesian,
we need a mapping from the surface of the sphere to the Cartesian plane. A very
popular mapping is the Mercator projection [20]. It is used, for example, by the
Open Stree Map [1], which is the dataset I am using in this thesis. It works by
projecting the surface of the Earth onto the surface of a cylinder of infinite height.
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Figure 5.1.: This figure is an exaggerated illustration of the difference between the
major and minor axis of the earth ellipsoid. Source: [18]
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Figure 5.2.: This figure shows how the coordinate system of the earth is defined.
λ is the angle of longitude and Φ is the angle of latitude. Source: [19]
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Figure 5.3a shows what this looks like. The Earth would be inside the cylinder,
and the equator and the surface of the cylinder would touch. To map a point from
the Earth onto the cylinder, construct a line using the center of the Earth and the
point you want to map. The intersection of this line with the surface of the cylinder
is where that point is projected. After projecting each point onto the cylinder, the
result would look like Figure 5.3b. The advantage of this mapping is that it preserves
angles, which means that the length scale is roughly constant for small distances.
The disadvantage is that distances, directions and areas are not preserved. The
further away from the equator, the greater the distortion. The poles themselves
can’t be represented, because the line from the center of the earth through a pole
doesn’t intersect the surface of the cylinder (because of its infinite height). Just
as an example of unequal distortion: In Figure 5.3b it appears that Greenland and
Africa are the same size, even though Africa is 14 times larger. Because of these
disadvantages, I chose a simpler mapping, basically the simplest mapping. It just
takes the Earth’s longitude and latitude coordinates and pretends they are Cartesian.
To be formal, it maps longitude lines to horizontal lines and latitude lines to vertical
lines, all of which have a constant distance from neighboring lines. This mapping is
called equirectangular projection, and what it looks like for the Earth can be seen
in Figure 5.4. Its advantage is that it’s really easy to transform coordinates from
one system to the other1. Its disadvantage is that the mapping does not preserve
distance, area, or directions. Therefore, the disadvantages are the same as in the
Mercator mapping, but because of the way easier and faster transformation I chose
this mapping. In this mapping, the difference between two points that have the
same latitude but are one degree apart in longitude can vary enormously. At the
poles the difference is zero, and at the equator the distance between the lines is
111.2 km. Table 5.1 gives some examples of the distance between two points on the
same latitude whose longitude lines are one degree apart. Because of the north-
south symmetry of the latitude lines, it doesn’t matter whether you are x◦ north or
south. Also because of the symmetry, the exact longitude doesn’t matter, only that
they are one degree apart. Because of these huge differences, the algorithm has to
compensate for them, which will be explained in chapter 7.

1Since nothing needs to be done
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Table 5.1.: This table shows the difference between two points that have the same
latitude and have a longitude difference of exactly one degree.

latitude coordinate difference between the two points
0◦ 111.2 km
±15◦ 107.4 km
±30◦ 96.3 km
±45◦ 78.63 km
±60◦ 55.6 km
±75◦ 28.78 km
±90◦ 0

(a) Source: [21] (b) Source: [22]

Figure 5.3.: This figure shows the Mercator Projection. The construction is shown
on the left. The Earth is inside a cylinder onto which the points are projected.
The final result of this projection is shown on the right.
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Figure 5.4.: This figure shows the equirectangular projection. The longitude lines
are mapped to horizontal lines, and the latitude lines are mapped to vertical lines.
Source: [23]
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This chapter contains the changes I made to QLever’s infrastructure to make the
SpatialJoin operation compatible with Qlever’s current codebase. The basic prop-
erties of QLever have already been presented in section 2.3 and section 2.5. This
chapter only discusses the changes that have been made. First, the changes in
QueryPlanner are presented and then the SpatialJoin class is introduced. Since I
did not make any changes in the IndexBuilder, these are the only changes that be-
long to the infrastructure. The SpatialJoin algorithm itself is not introduced here,
but in the next chapter.

6.1. Changes in the QueryPlanner

For the SpatialJoin to be of any use, it must be used by the QueryPlanner. The
QueryPlanner is the part of the program that takes the triples of the query and
plans the strategy to get the output of the query in the fastest way. To achieve this
goal, it uses dynamic programming, as explained in section 2.5.
This usual procedure is not compatible with the SpatialJoin class. The predicate
"<max-dist-in-meters:1000>" (geometries that are at most 1000 meters apart) does
not exist in the knowledge graph. Therefore, a SCAN, which would normally be the
base case for each constraint in the SPARQL query, is not possible. Therefore, the
triple must be filtered out. The special predicate "<max-distance-in-meters:xxx>"
tells the QueryPlanner that this operation is not meant as a SCAN operation, but
as a SpatialJoin operation, which is then created by the QueryPlanner. xxx is the
number that gives information about the maximum distance that should be between
the joined geometries. This parameter must be passed to the SpatialJoin class. Af-
ter this is done, the triple containing "<max-dist-in-meters:xxx>" is removed from
the query (so that no SCAN operation is performed). The SpatialJoin object we just
created is added to the subplans. In its current form, the SpatialJoin doesn’t have
the input geometries yet, but it knows the names of the variables that contain the
geometry information (since these variables are the subject and object of the triple
with the special "<max-distance-in-meters:xxx>" predicate). When two subplans
are joined, the SpatialJoin cannot rely on the default behavior. Instead of joining
the SpatialJoin with the shared variable of a SCAN operation, the SCAN operation
must be added as a child to the SpatialJoin. This gives the SpatialJoin the geom-
etry input of that child. Once the SpatialJoin is merged with both variables (and
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therefore has two children), it has all the information it needs to compute the result.
From this point on, no further adjustments need to be made in the QueryPlanner.
The result of the SpatialJoin operation can now be used with the standard behavior
of the QueryPlanner, which is to create a JOIN operation when it is merged with
another subplan, where the SpatialJoin and the other subplan are the children of
the newly created JOIN operation. To ensure normal handling, the QueryPlanner
calls the isConstructed method whenever one of the subplans is a SpatialJoin op-
eration. Once both children have been added, the necessary information for the
calculation is available and the construction of the SpatialJoin is complete. In this
case, the method returns true and the special treatment mentioned above is skipped
(otherwise the QueryPlanner would try to add a child to the SpatialJoin instead
of performing a normal JOIN operation with the result of the SpatialJoin and an-
other subresult of the query). More details about the isConstructed method and
other methods of the SpatialJoin class that are also used during query planning are
presented in the next section.

6.2. The SpatialJoin Class

In QLever, every operation inherits from the abstract Operation class. Because of
this, there are many methods that need to be implemented. This ensures that the
interaction with the different operations works correctly and that the operations
have the same interface to the outside. The methods that need to be implemented
and some more are described in this section. Note that I have excluded the Near-
estNeighbor SpatialJoin part, since this part was not written by me, but by another
student. Therefore, the actual functions in the current repository may look slightly
different, as they sometimes have a case distinction between the NearestNeighbor
SpatialJoin and the MaxDist SpatialJoin.

• selectAlgorithm: This function accepts one of the available SpatialJoin
algorithms. Currently these are the Baseline algorithm, the BoundingBox
algorithm, and the S2 algorithm (which is used for the NearestNeighbors im-
plementation). The S2 algorithm can’t handle areas and the BoundingBox
algorithm can’t handle the NearestNeighbor search. This has to be considered
when choosing the algorithm.
• computeResult: This function calls the SpatialJoin algorithm selected by

the selectAlgorithm method to compute the result of the SpatialJoin operation,
which is then returned.
• resultSortedOn: Some operations don’t destroy an already existing sorting

(or create a new one, like the SORT operation). Then the sorted column
name(s) are returned. The baseline algorithm, which iterates over each row in
the right subresult for each row in the left subresult and enters the pair of rows
where maxDist is greater than or equal to the actual distance, would preserve
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the order of the left result table. However, since the Baseline algorithm exists
only for evaluation purposes and the BoundingBox algorithm can’t guarantee
not to break a sorting, this function returns an empty list.

• sizeEstimate: The sizeEstimate function tries to estimate the size of the
result of the SpatialJoin operation. Since it is not possible to know in advance
how many geometries are within maxDist meters of each other, we have to
assume the worst case, which is the cross product. To allow better query
planning for the average case, the size estimate is scaled by a factor of 0.001.
This doesn’t change the asymptotic behavior, only the absolute size estimate.
When the SpatialJoin operation is in the process of QueryPlanning, where it
does not yet have its children, it cannot return the cross-product size because
it does not know the size or size estimate of its children. Therefore, it returns
a dummy value of 1 in this case.

• costEstimate: This function estimates the cost of computing the Spa-
tialJoin. Let n be the number of rows of the left child and m the number of
rows of the right child. Then it returns (n · log(m)) + (m · log(m))+ the cost
estimate of the children. For a detailed discussion of the cost of the SpatialJoin
operation, see section 8.2.

• knownEmptyResult: This function returns whether it is known in advance
that the result will be empty. For the SpatialJoin operation, this is the case if
at least one of the subresults has a known empty result.

• getMultiplicity: This function takes a column as a parameter and returns
an estimate of the multiplicity of that column in the result table. This in-
formation is needed in QueryPlanning and in future JOIN operations that
take the result of the SpatialJoin as an input. The multiplicity allows you to
estimate how large the cross-product effect mentioned in section 2.2 may be.
If the children are not yet available, no estimate can be made and a dummy
multiplicity of 1 is returned. If both children are available, the multiplicity
can be calculated. In general, the multiplicity of a column times the number
of distinct entries in that column equals the number of rows in that column.
When calculating a SpatialJoin, no new entries are added to the result, only
existing entries from the left and right subresults are merged and copied into
the result. Therefore, the number of distinct items does not change. If the size
changes, it is simply due to items being copied multiple times in the result (if
a geometry is less than maxDist meters away from several other geometries,
it is copied once with each of the other geometries into the result, increasing
the multiplicity but not the distinctness). Therefore, the new multiplicity esti-
mate can be calculated by taking the sizeEstimate of the SpatialJoin operation
and dividing it by the distinctness of the column with that variable before the
SpatialJoin operation. There is a special case, for the column containing the
distance between the two geometries. This column is not included in any input
of the subresults and is assumed to have a distinctness of 1. This is because it
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is highly unlikely that the distance between two geometries will be the same as
the distance between two other geometries, even if the difference occurs only
after many decimal places.
• CacheKeyImpl: The CacheKeyImpl function returns a string that can be

used to uniquely identify this operation. This is necessary because the result
of an operation is cached and should only be reused if the future (sub)query
is exactly the same. Therefore, all parameters that affect the result of the
SpatialJoin operation must be included in this string along with their values.
These parameters are: the CacheKey of the children, the join variables, the
maximum distance that geometry objects are allowed to have to each other,
the information whether the distance between the geometries should be part
of the result table and in general all variables of the result column, as well
as the information whether the midpoint approximation is used for areas or
not. Note that the selected algorithm is not included in the CacheKey, since
the algorithm does not affect the result, only the time it takes to compute the
result. If the SpatialJoin does not have its children yet, it will just return a
dummy string of "incomplete SpatialJoin class", since not all the necessary in-
formation is available to know whether the result can be looked up in the cache
or needs to be computed again. Using this key, no result will ever be stored
in the cache and therefore the QueryPlanner will never replace an incomplete
SpatialJoin class with a result from the cache. Once both children are added,
the CacheKeyImple returns the correct cache key, and if the result has already
been computed, it can simply be looked up instead of being recomputed.
• getDescriptor: This function returns a short description of the SpatialJoin

operation that is displayed in the analysis ExecutionTree of the QLever UI. It
consists of the name of the operation, the two variable names of the geometry
and the maximum distance the geometries are allowed to have. An example
can be seen in Figure 2.3, where this function returns: "MAX DIST JOIN
?wkt1 to ?wkt2 from 1000 meter(s)".
• addChild: This function adds a child to the SpatialJoin operation. Be-

cause the children of the SpatialJoin algorithm are not always known when
the SpatialJoin is constructed, they must be added later. The reason the chil-
dren are not always known is that the QueryPlanner first constructs the base
cases, which are all SCAN operations and the special case for the SpatialJoin
operation, which is the SpatialJoin operation with no children. Because it
then merges all possible combinations using dynamic programming, sometimes
the children are just the SCAN for the geometry and sometimes the children
have already been merged with other operations before being merged with
the SpatialJoin. When merging another operation with the SpatialJoin, the
QueryPlanner would normally construct a JOIN operation, but if one of the
operations is a SpatialJoin that does not yet have both children, the Query-
Planner instead calls the addChild function to add the child to the SpatialJoin
operation. The addChild method returns a new SpatialJoin operation that has
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the child as an input. The reason for creating a new SpatialJoin operation is
that the QueryPlanner tries all possible combinations of merging the current
subplans. This results in the SpatialJoin being merged with many different
subplans. Therefore, the SpatialJoin object before the addChild method must
remain in existence so that it can continue to be merged with other subplans,
and the new SpatialJoin must also remain in existence because it will also be
merged with many different subplans. This results in a lot of sub-plans that
all have a different order of operations. In the end, the QueryPlanner chooses
the cheapest plan.
• isConstructed: This function returns true or false depending on whether

the SpatialJoin operation is constructed or not. The SpatialJoin operation is
constructed, when both of its children have been added. Then the function re-
turns true. This function is used in the QueryPlanner to let the QueryPlanner
know if it needs to handle the special case of adding a child to the SpatialJoin
operation instead of the usual JOIN operation, or if the SpatialJoin is al-
ready constructed and can be handled like any other operation with the usual
construction of the JOIN operation.
• VariableToColumnMap: Next, I will present the changes made to the Vari-

ableToColumnMap function. The VariableToColumnMap function returns
which variables are part of the result table and in which column they are lo-
cated. For the SpatialJoin operation, this function has a different return value
depending on the state of the SpatialJoin. Either it informs the QueryPlanner
about the variables that provide the geometric information for the SpatialJoin,
so that the QueryPlanner can merge it with subplans that provide this infor-
mation, or it gives the QueryPlanner information about the appearance of the
result table after the result has been computed. The state of the SpatialJoin
depends on the number of children that have already been added. First, the
VariableToColumnMap returns the two variables that need to be added be-
cause they provide the necessary information to the SpatialJoin. With this
information, the QueryPlanner knows that it can only merge other sub-plans
with the SpatialJoin if they provide one of the two required geometric informa-
tion. The QueryPlanner then joins the SpatialJoin with another sub-plan that
contains one of the required geometry variables. The other subplan is then
added as a child (instead of the usual creation of a JOIN operation). After
the first child is added, the VariableToColumnMap function returns only the
variable name of the missing child. This allows the QueryPlanner to merge
it with another subplan that contains a column with the necessary geometry
information. Once the SpatialJoin has both children, the VariableToColumn-
Map method can finally return what the result table will look like when the
SpatialJoin operation is computed.
• getResultWidth: This function has a different output depending on the

number of children already added by the QueryPlanner. If the QueryPlanner
has not yet added any children, the size of the result width is two, because
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the VariableToColumnMap needs to tell the QueryPlanner to merge it with
these two variables. As soon as one variable is merged, the getResultWidth
method returns one, because the VariableToColumn Map now only tells the
QueryPlanner about the missing variable, so that the QueryPlanner joins the
SpatialJoin with another plan that contains the missing variable. Once the
SpatialJoin has both its children, it returns the result width that the Spa-
tialJoin operation will have after it is calculated. Its size will be the result
width of the left child plus the size of the right child. If the distance between
each pair is to be added to the result, the result width is increased by one.
Unlike the usual JOIN operation, the result width is not the combined size
of the children minus one. Usually one is subtracted because of the common
variable used to join the child results. In this case, the "join" variables are
the geometry information, which can be different for each element of the pair,
since a pair is added if the geometries are less than maxDist meters apart.

Finally, I want to mention how the information from the query is parsed by the
SpatialJoin operation. Here I will explain a slightly outdated prototype that was
implemented by me, as the newer version was implemented by another student. In
the prototype, the aforementioned special predicate <mas-dist-in-meters:xxx> in-
dicated to the QueryPlanner that it needed to treat this triple differently. The com-
plete triple was something like ?leftGeometry <max-dist-in-meters:xxx> ?rightGe-
ometry. This triple would be passed to the Construtor of the SpatialJoin class.There
it would be parsed to get the value of maxDist and the names of the left and
right variables. With this information, it could then tell the QueryPlanner via the
variable-to-column map which subplans it could join with. A disadvantage of this
prototype is that it would be very confusing to add additional parameters to the
special predicate, such as whether the distance between the geometries should be
added to the result column, which algorithm should be used, or whether the mid-
point approximation should be enabled or not. Because of these disadvantages,
another student created a new method called SpatialService. Its syntax has already
been shown in Figure 1.1. Using this service and qlever’s auto-completion sugges-
tions, it is now easy to change all the parameters of the SpatialJoin and choose the
algorithm to use. Before the SpatialService, these parameters could only be changed
in the source code and the project had to be recompiled after changing a parameter.
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The result of the SpatialJoin operation can be computed using several algorithms.
The goal of each algorithm is to find the pairs of lines where one line comes from
the left input, the other line comes from the right input, and both lines represent
geometric objects that are at most maxDist meters apart. maxDist is a parameter
and can be chosen by the user. During this thesis two algorithms were programmed,
the baseline algorithm and the BoundingBox algorithm. The baseline algorithm
is very simple, but not very fast. The bounding box algorithm is more complex,
but also much faster. This chapter explains how both algorithms work. The proof
that the algorithms work correctly can be found in section 8.4. The algorithms in
this chapter include the running times in a comment. However, this chapter will
ignore the runtimes, as they are discussed in section 8.2. Note that the algorithms
are not implemented exactly as shown here. Some methods don’t exist and are
only introduced for clarity. For example, there is no function getMaxDist to get
the maximum distance, since this is done when parsing the query and passed to
the algorithm in the constructor, but to avoid using unintroduced class variables
in the algorithms, I added this method. Another example would be combining
multiple rows into a single function call that describes what the rows do, such as
computeLeftLongitudeBound. Also, code that is just for numerical stability is left
out of the explanation or included in the summary method calls (but mentioned in
the proof chapter).

7.1. The Baseline Algorithm

The baseline algorithm implements the trivial solution, which simply checks each
line of the left imput against each line of the right imput and keeps the line pair if
the distance is less than maxDist. The exact algorithm is shown in algorithm 61.
First, the algorithm reads the parameter maxDist and gets the subresults needed
to compute the result of the SpatialJoin operation. For more information about
retrieving subresults, see chapter 6. The algorithm then begins a nested for loop.

1Note that I have excluded some code that is only needed for the NearestNeighborSearch, as the
algorithm was extended by another student. The excluded code is only needed if you want
to have only the x nearest neighbors, but there are more candidates. Then you have to filter
the candidates. This is done with a priority queue. Since this is not needed for the maximum
distance query, which returns all results that are within the range of the maximum distance,
this part will not be explained here
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The outer for loop iterates over the rows of the left subresult, and the inner for loop
iterates over the rows of the right subresult. Then the distance between the left
geometry and the right geometry is computed using the computeDistance function
(for details on this function, see section 7.3). If the computed distance is less than
the maximum allowed distance, the lines are added to the result. After all pairs of
lines have been checked, the result is returned.

Algorithm 6 Baseline Algorithm()
maxDist = getMaxDist()
resultLeft = computeLeftSubResult()
resultRight = computeRightSubResult()
result = createEmptyResultTable()
for rowLeft in resultLeft do . O(n ·m · (g1 + g2)) or O(n ·m · g1 · g2)

for rowRight in resultRight do . O(m · (g1 + g2)) or O(m · g1 · g2)
d = computeDistance(rowLeft, rowRight) . O((g1 + g2)) or O(g1 · g2)
if d < maxDist then

result.addRow(rowLeft, rowRight)
end if

end for
end for
return result

7.2. The BoundingBox Algorithm

This section deals with the more complex BoundingBox algorithm. First, I will
introduce the general idea of the BoundingBox algorithm. Then I’ll quickly show
why the naive bounding box doesn’t work and how to compute a more complex one.

7.2.1. General Idea

The general idea of the BoundingBox algorithm, shown in algorithm 7, is to apply an
easy and fast to compute filter to reduce the number of candidates to be checked by a
large margin. Only then do the expensive distance calculation for the already filtered
set. To achieve the filtering, the already mentioned R-trees (see chapter 4) are used.
We add all points or areas of the smaller subresult to the R-tree. Then we iterate
over the larger subresult. Here we take the point or area and compute a box that is
large enough so that all 4 sides of the box are at least maxDist meters away from
the point or area (on the spherical geometry). Therefore, all results must be inside
this box. Then we query the R-tree with this box. The R-tree returns all points
contained in the query box. In most cases the set of these points is much smaller
than the complete set of points. Then we only need to do the expensive distance
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calculation for this much smaller subset. The details of the distance calculation
are discussed in section 7.3. If the distance is less than maxDist and the line pair
has not yet been added to the result, the line pair will be added to the result.
Later in this chapter, we will explain how duplicates can occur if this step is not
done. Let us return to the example from chapter 1. In algorithm 1 we entered the
query for all restaurants that are located in Freiburg, close to a tram station and
close to our current position. Let’s assume that the SpatialJoin operation between
the tram stations and the restaurants is computed before the SpatialJoin operation
between the restaurant and our current position2. The input to the SpatialJoin
operation is all restaurants and tram stations in the dataset and the maximum
distance of 3000 meters. The OSM Germany dataset contains about 10,000 tram
stations and 100,000 restaurants (see the size of the IndexScan operations in the
analysis of the ExecutionTree in Figure A.35). Since there are fewer tram stations
than restaurants, the algorithm builds the rtree for the tram station. Then it iterates
over all restaurants. For each restaurant, it computes the box that is guaranteed
to be larger than 3000 meters in all directions (on the spherical geometry). Then
it queries the R-tree with this box. If we assume that only cities with more than
100,000 inhabitants have tram stations, each of these cities has the same number of
tram stations and the query box is very inefficient and always contains the complete
city of the restaurant, then each query of the R-tree would return either 0 entries
(if the city is below 100,000 inhabitants) or 127, because there are 79 cities with
more than 100,000 inhabitants [24] and 10,000 tram stations divided by 79 cities is
127. Therefore, we would only need to calculate either zero or 127 distances for each
restaurant instead of 10,000 for each restaurant. This is a saving of 100 % or 98.73 %,
depending on whether the city is smaller or larger than 100,000 inhabitants. This
shows the huge potential of the BoundingBox algorithm compared to the baseline
algorithm, which would have to compute the distance for each of the 1,000,000,000
pairs.

7.2.2. Limitations of the trivial query box

Now that we have seen the huge potential of the BoundingBox algorithm, let us get
into the details. This subsection will explain why the naive query box doesn’t work.
Let’s say we have a point M from which we want to get all points that are at most
maxDist meters away. First, maxDist has to be converted to degrees using

maxDistDegrees = maxDist · circumferenceEarth360
2In practice, the QueryPlanner would do it the other way around, because the current position
consists of only one triple. Therefore, this operation is faster and produces a smaller result.
Since the result is then used by other operations, they will also be faster because their input
will be smaller if this operation is done first.
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Algorithm 7 BoundingBox Algorithm()
maxDist = getMaxDist()
resultLeft = computeLeftSubResult()
resultRight = computeRightSubResult()
result = createEmptyResultTable()
smallRes = getSmallerResult(resultLeft, resultRight)
largeRes = getLargerResult(resultLeft, resultRight)
rtree = buildRtree(smallerRes) . O((n+m) · log(n+m))
for entry in largeRes do . O(m · n · (g1 + g2)) or O(m · n · g1 · g2)

alreadyAdded = []
queryBox = getQueryBox(getGeometry(entry))
candidates = rtree.query(queryBox) . O(m+ n)
for c in candidates do . O((m+ n) · (g1 + g2)) or O((m+ n) · g1 · g2)

d = computeDistance(entry.geometry, c) . O((g1 + g2)) or O(g1 · g2)
if d < maxDist AND (rowLeft, rowRight) NOT IN alreadyAdded then

result.addRow(rowLeft, rowRight)
alreadyAdded.add((rowLeft, rowRight))

end if
end for

end for
return result

Then the naive query box would just take the following bounds:

• upper latitude bound: lat(M) + maxDistDegrees
• lower latitude bound: lat(M) - maxDistDegrees
• left longitude bound: lon(M) - maxDistDegrees
• right longitude bound: lon(M) + maxDistDegrees

For the upper and lower latitude limits, this would work because the lines of lon-
gitude (where longitude is constant and latitude varies) are so-called great circles
(a great circle can be constructed by intersecting the surface of the sphere with
a Cartesian plane containing the center of the sphere). Shortest paths are always
on great circles, more on this in section 8.4). Since lines of latitude (lines of con-
stant latitude where the longitude varies) are generally not great circles, this naive
approach fails. Therefore, the query box fails for all latitudes except the equator
(because the equator is a great circle). Figure 7.1 shows an example where the lon-
gitude bound fails. The figure contains the point M as well as a longitude line with
points A, B, C and D on it. Point B has the same latitude as M . Notice that the
shortest path from M to B does not stay on the latitude of M and B, but leaves
it. Therefore, you can reach point B from point M with a shorter distance than the
naive query box would compute. Even if the naive query box would compute the
shortest path from M to B correctly (so maxDist would be 1.27 in this example),
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Figure 7.1.: This figure shows, different paths from M to the longitude line with
four points on it. Note that the shortest path is not the path fromM to B, which
would have the same latitude as M . Source: Self made

the line of longitude with the four points on it can be reached with a shorter path.
The path from M to A has a length of only 1.23. So you can reach a point outside
the naive query box by going from M to A and then going a little further in that
direction. Therefore, a different approach to computing the query box is needed,
which is explained in the next subsection and proved in section 8.4.

7.2.3. Construction of the Query Box

Before I explain the concrete construction of the query box, I want to briefly explain
the idea of how this approach can be extended to work not only for points, but also
for areas. Suppose we have a geometry that is an area and we want to get all
geometries (points or areas) that are closer than maxDist meters away. Since the
closest point from the area to other geometries is most likely not the same point for
all other geometries, the construction of the query box must take this into account.
First, the bounding box of the area is calculated (i.e., the smallest possible axis-
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aligned box that completely encloses the area). Then the center of the bounding
box is calculated. After that an upper bound is calculated for the distance from the
center to any point in the bounding box. This upper bound is added to maxDist.
Now we can compute the query box by pretending that the area is the center of the
bounding box and maxDist is increased by the upper bound for the distance from
the center to any point in the bounding box. The proof that this procedure works
is contained in section 8.4.

Now that we have the general idea of how the query box handles areas, we can
take a look at the implementation. Algorithm 8 shows the starting point of the
query box calculation. If the geometry for which we want to get the query box
is a point (represented as a GeoPoint), then we simply call another method called
computeQueryBox, which gets the point geometry and zero as an argument. Zero
is the upper bound from the center of the geometry to its bounding box. Since
points don’t need a bounding box, this distance is zero and maxDist doesn’t need
to be increased for this case. If the geometry is not a point, but an area, we
apply the idea presented above. We calculate the bounding box, the center of the
bounding box, and the upper bound for the distance from the center to any point
inside the bounding box. Then we call the same method as in the point case, but
we don’t just give it the center of the area, but also the upper bound. Then the
computeQueryBox function can take into account that we are dealing with an area
by increasing maxDist by the upper bound.

Now that we have dealt with the areas by reducing them to their midpoints, we
only need to compute the query box for the points (and have the option of adding
the upper bound to maxDist). The calculation of the query box can be seen in
algorithm 9. The first step is to increase maxDist by the bound to compensate
for areas that are approximated by their center. For points, this does not change
maxDist since this bound is just zero in this case. Then the function checks if the
maximum distance is greater than half the circumference of the earth. If this is
the case, then all points on the earth could be reached and the query box would
have to cover the whole globe. In this case, we simply return the box containing all
the points. A box is represented by its lower left point and its upper right point.
If the value of maxDist is greater than 0.4 times the circumference of the earth,
then we call an optimization for large query boxes, which will be explained later. If
none of the above cases occurs, the default calculation starts. First, the upper and
lower latitude bounds are calculated. If one of the poles is reached (so the upper
bound is 90 or the lower bound is -90), we don’t need to compute the longitude
bounds, because any longitude can be reached (by first going to the pole that is in
the query box, and then any longitude line can be reached by going an arbitrary
small amount to the longitude line). Therefore, we return the query box containing
all the longitude lines and the upper and lower latitude bounds just computed. If
no pole can be reached, we have to calculate the longitude bounds as well. If the
longitude bounds "cross" the -180 or 180 longitude line, we have an edge case. On
the sphere we have only one query box, but on the equirectangular mapping we
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can’t represent the one box from the sphere with only one box. So we need to
return two boxes. One box that contains everything on one side of the -180 or 180
degree longitude line, and one that contains everything on the other side. This can
be seen in Figure 7.2. The red query box was split into two query boxes because
the Cartesian space can’t handle the "wrap around" of the Earth. If the query box
does not cross the -180 or 180 line, we can just return the box with our 4 calculated
bounds. So far, I have only mentioned that the bounds are calculated, but have not
shown how this is done. The formulas will be explained and proven in section 8.4,
and are therefore presented here without further explanation. Let u be the point
from which we want to measure the distance to every other point. Let a be the
distance that a point may have to u. Then all points to be checked are those in the
following query box:

• upper bound: min{ 90, lat(u) + a · 360
circumference }

• lower bound: max{ -90, lat(u)− a · 360
circumference }

• left and right bound:
Case 1(upper bound is 90 or lower bound is -90): all longitude lines need to
be checked (left bound is -180, right bound is 180)
Case 2: the left (use negative sign) and right (use positive sign) bounds are:

lon(u)±+cos−1(
cos(a

r
)− cos2((90−|lat(u)|)· 2π

360 )
cos(a

r
)

sin((90− |lat(u)|) · 2π
360) · sin(cos−1( cos((90−|lat(u)|)· 2π

360 )
cos(a

r
) ))

)· 360
2π

Here r is the radius of the earth.

The correctness and the formulas themselves are proven and explained in Theorem 7.
Also note that the longitudes from the formulas above may need to be subtracted
or added by 360 to bring them into the range from -180 to 180 (see the note on
normalization at the end of the proof).

Algorithm 8 getQueryBox(geometry)
if geometry.isGeoPoint() then

return computeQueryBox(geometry.Point, 0)
else

box = geometry.getBoundingBox() . O(g)
midpoint = calculateMidpointOfBox(box)
bound = getUpperBoundMidpointToPointInBox(box)
return computeQueryBox(midpoint, bound)

end if

If maxDist is large, but not large enough to reach every point on earth, an op-
timization can be done. The idea behind this optimization is as follows: When a
pole is reached, all longitude lines must be checked. For maxDist values above
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Algorithm 9 computeQueryBox(startPoint, boundingBoxBound)
maxDistQueryBox = getMaxDist() + boundingBoxBound
if maxDistQueryBox > 0.5 * circumference_earth then

lowerLeftPoint = (-180, -90)
upperRightPoint = (180, 90)
return Box(lowerLeftPoint, upperRightPoint)

else if maxDistQueryBox > 0.25 * circumference_earth then
return computeBoxForLargeMaxDistances(startPoint)

else
upperLatBound = computeUpperLatBound(startPoint, maxDistQueryBox)
lowerLatBound = computeLowerLatBound(startPoint, maxDistQueryBox)
if isAnyPoleReached(upperLatBound, lowerLatBound) then

lowerLeftPoint = (-180, lowerLatBound)
upperLeftPoint = (180, upperLatBound)
return Box(lowerLeftPoint, upperLeftPoint)

else
leftLonBound = computeLeftLonBound(startPoint, maxDistQueryBox)
rightLonBound = computeRightLonBound(startPoint, maxDistQuery-

Box)
if leftLonBound < -180 then

lowerLeftPoint1 = (-180, lowerLatBound)
upperRightPoint1 = (rightLonBound, upperLatBound)
Box1 = Box(lowerLeftPoint1, upperRightPoint1)
lowerLeftPoint2 = (leftLonBound + 360, lowerLatBound)
upperRightPoint2 = (180, upperLatBound)
Box2 = Box(lowerLeftPoint2, upperRightPoint2)
return List(Box1, Box2)

else if rightLonBound > 180 then
lowerLeftPoint1 = (leftLonBound, lowerLatBound)
upperRightPoint1 = (180, upperLatBound)
Box1 = Box(lowerLeftPoint1, upperRightPoint1)
lowerLeftPoint2 = (-180, lowerLatBound)
upperRightPoint2 = (rightLonBound - 360, upperLatBound)
Box2 = Box(lowerLeftPoint2, upperRightPoint2)
return List(Box1, Box2)

else
lowerLeftPoint = (leftLonBound, lowerLatBound)
upperRightPoint = (rightLonBound, upperLatBound)
return Box(lowerLeftPoint, upperRightPoint)

end if
end if

end if
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Figure 7.2.: This figure shows, how the case gets handled, when the query box
crosses the -180 or 180 line: The query box gets split in two query boxes. Source:
Adapted from [23]

0.25 times the circumference of the earth, a pole can always be reached. To avoid
checking all longitudes all the time, this optimization was developed. The idea is to
take the point that is antipodal3 to the point for which the query box is computed.
Then we compute an anti query box containing only points that are guaranteed to
be further than maxDist meters apart. Next, we compute the distance for each
geometry, except for the geometries in the anti query box. To avoid implementing a
distinction between query box and anti query box, the anti query box is converted
to a set of query boxes that cover everything except the anti query box. This can
be seen in Figure 7.3. The anti query box is drawn in red and the converted query
boxes are drawn and shaded in green. Earlier in this chapter it was mentioned that
we need to check for duplicates. This can happen here (or in the case where the
-180 or 180 longitude line is crossed by the query box) when an area is contained
in multiple query boxes. For example, in Figure 7.3 the area could be contained in
the top green box and the middle left green box.

Now that the general idea of large query box optimization is introduced, we can take
a look at algorithm 10 that implements it. First the antipodal point is computed.
Then the anti distance is calculated. The anti distance is the distance any point can
be away from the antipodal point and still be further away than maxDist meters
from the start point. The anti distance is then converted to degrees. Then the
computeSingleBox function is called. This function basically does the same thing

3an antipodal point is exactly on the opposite side of the sphere. The most famous examples
of antipodal points are the North and South Poles. To avoid always writing antipodal point,
antipodal query box, and so on, this will be abbreviated as anti
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Figure 7.3.: This figure shows how the anti query box, drawn in red, gets converted
to the four querie boxes, drawn and shaded in green. Source: Adapted from [23]

as computeQueryBox, with one difference. It makes sure that it stays small enough
to not accidentally contain points that are maxDist meters away from the start
point. This can be done by guaranteeing that each point in the anti bounding box
is at most anti dist meters away from the anti point. If some points outside the
anti query box are also less than antiDist meters away from the anti query box, it
doesn’t matter. This is the opposite of compute query box, which wants to make
sure it’s large enough to guarantee that all points that are less than maxDist meters
away are contained in the query box. So the methods are basically the same, but
one method generously rounds up, while the other generously rounds down. This is
especially important when a pole is within reach of the antipoint. In this case, the
rounding down stops at the pole and does not include all longitudes, as the query
box would. This makes the anti query box smaller than it could be, but guarantees
that all points inside are more than maxDist meters away from the start point. The
correctness of this optimization is proved in section 8.4.

Algorithm 10 computeBoxForLargeMaxDistances(startPoint)
antiPoint = getAntipodalPoint(startPoint)
antiDist = circumference_earth / 2 - getMaxDist()
distDegrees = (360 / circumferenceEarth) * (antiDist / 2 )
antiBox = computeSingleBox(antiPoint, distDegrees)
return createBoxesAroundAntiBox(antiBox)
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7.3. Distance computation

This section explains the calculation of the distance between two geometries, which
is implemented in algorithm 11. First, the computeDistance function checks if the
midpoint approximation is activated. If this is the case, both geometries are first
converted to a point. If the geometry is already a point, the conversion function sim-
ply returns the point. Otherwise, it calculates the midpoint of the area and returns
it. Then the calculateSphericalDistance function is called, which calculates the dis-
tance between the two points. Since the calculateSphericalDistance function already
exists in QLever, it will not be discussed further. If the midpoint approximation
is not activated, the algorithm calculates the closest points on the equirectangular
mapping. It then uses these two closest points to compute the exact distance of those
two points on the spherical geometry. Because the closest points are calculated on
the equirectangular mapping (the mapping where nothing needs to be done because
we just pretend the spherical coordinates are Cartesian coordinates), the two closest
points may not actually be the two closest points. An example where this is not
the case is when both areas are close to the -180 and 180 degree longitude line, but
on different sides of it. Then the equirectangular map will map both geometries to
different sides of the map. One will be completely on the left side and the other
will be completely on the right side. The closest points on this mapping are the
points that are actually farthest apart. Since the distance between the areas is then
calculated using the spherical distance calculation, the calculated distance does not
go around the earth to the other area, but the error is simply that the shortest path
from the calculated points is taken. Since the points are on the wrong side of the
geometry, the distance can be off by the sum of the diameters of both areas.

Algorithm 11 computeDistance(geometry1, geometry2)
if midPointApproximation is activated then

geo1 = convertToPoint(geometry1) . O(g1)
geo2 = convertToPoint(geometry2) . O(g2)
return calculateSphericalDistance(geo1, geo2)

else
p1, p2 = calculateEuclideanClosestPoints(geometry1, geometry2) . O(g1 · g2)
return calculateSphericalDistance(p1, p2)

end if

7.4. Code quality

The final section of this chapter describes the measures taken to ensure high code
quality. First, the quality of the source code is discussed, and then the quality of
the algorithm itself.
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The most important step in achieving high quality code was code review. Before
the code could be merged into the main repository, a pull request had to be created.
This ensured that every line of code was seen by at least two people. The code
reviewer sees the code from a different perspective than the programmer, and often
finds improvements in style, organization, and optimization of the code. This is
especially true if the reviewer has more experience with the software project and
programming in general. To ensure good code quality before the code review, some
additional measures were taken. First, static code analysis was performed using the
Sonarqube tool. Static code analysis helped to find bugs in the code, such as unsafe
pointer access, improve code style by enforcing consistent naming rules, and prevent
overly complex, long, or nested functions. In addition, a format checker ensured
that the look and feel of the code was consistent and easy to read, for example, by
enforcing a maximum line length and ensuring that the parameters of a function
were grouped in an easy-to-read manner.
The most important measure to ensure a high quality implementation of the al-
gorithm is testing. Therefore, many tests have been written to ensure that the
SpatialJoin infrastructure and the SpatialJoin algorithm work properly. The goal of
the tests was to cover every possible case, especially the edge cases where bugs are
most likely to occur. To avoid forgetting to test some lines of code, an automated
test coverage tool checked which lines were covered or only partially covered by tests.
In total, the SpatialJoin operation is covered by 1642 tests. To give some examples
of such tests: A test is performed on a small dataset containing areas and points
where the distance of the objects is known. Then the spatialJoin algorithm is called
with different maximum distance values and the result is checked to see if exactly
the pairs that meet the maximum distance constraint are contained in the result.
Another example is the query box. To ensure that the query box works properly,
several checks are performed. First, over each boundary of the query box. The
distance to many points just a tiny bit outside the query box was calculated and
asserted to be greater than the maximum distance allowed. To ensure correctness
not only at the boundary of the query box, but also on a global scale, a grid test was
performed with points all over the globe. If the point was not contained in the query
box, it was asserted that the distance to the start point was greater than maxDist.
To make sure that the query box works for all start points, including points on the
-180 and 180 degree longitude lines and the North and South Poles, the above tests
were done with query boxes with many different start points, including all edge
cases.
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In this section the theoretical analysis of the presented algorithm will be described.
First, the problem is formally defined. Then the runtime complexity and the space
complexity will be analyzed and in the last part of this chapter the correctness of
the algorithm will be proved.

8.1. Formal problem definition

Let D be a data set of triples and E be the set of all entities in D. Then D contains
data in the form of triples, where the triples consist of three entities:

{(s, p, o) | s, p, o ∈ E}

In order to query it, entities as well as variables can be used. Let all variables be
contained in the set of variables V . A query is then a set of tuples, where each
element of the tuple can be an entity or a variable:

{(s, p, o) | s, p, o ∈ E ∪ V }

The SPARQL query from algorithm 5 is for example the following set:

{(v1, e1, v2), (v1, e2, v3) | vi ∈ V, ek ∈ E, i ∈ {1, 2, 3}, k ∈ {1, 2}}

where e1 is the entity "<located-in>" and e2 is the entity "<is-a>".
The result of the SPARQL query is a mapping m from the set of variables to a
tuple, containing elements from the set of entities. The tuple represents the column
of that variable in the result table. It maps each variable from the query to a tuple
of entities. The length of the tuple k is the number of rows in the result:

m : V → (r1, r2, ... , rk) | ri ∈ E, k, i ∈ N
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The concrete mapping of the query in algorithm 5, whose result table can be seen
in Table 2.4, would look like this:
v1 7→ (r1, r2, r2, r3, r3, r3, r3)
v2 7→ (r4, r4, r4, r4, r4, r5, r5)
v3 7→ (r6, r7, r8, r9, r8, r9, r8)
where ri ∈ E are the following entries:

• r1: Uni Freiburg
• r2: University Library Freiburg
• r3: Minster of Freiburg
• r4: Freiburg im Breisgau
• r5: Altstadt of Freiburg
• r6: university
• r7: library
• r8: building
• r9: church

With the basics above, we can now start to define the formal problem defini-
tion for the SpatialJoin algorithm. The input to the SpatialJoin algorithm is two
(sub)queries, both of which must contain at least one tuple of the following type:

(b1, "<asWKT>", b2) with bi ∈ E ∪ V, i ∈ {1, 2}

The variable b2 should then be a WKT representation of a geometry (if it is not
a WKT representation and therefore it is not possible to parse the geometry, the
row is skipped and is not part of the result). Let l be the mapping of the left
(sub)result and r the mapping of the right (sub)result. Let vl be the variables of
the left (sub)result and vr be the variables of the right (sub)result. Let Nl be the
set containing the row numbers of the left (sub)result and Nr be the set containing
the row numbers of the right (sub)result. The result of the SpatialJoin algorithm is
a mapping s with the following property:
s : {vg, vh | vg ∈ vl, vh ∈ vr} → {(l(vg)a, l(vg)b, ...) with a, b ∈ Nl,

(r(vh)x, r(vh)y, ...) with x, y ∈ Nr}
To better explain the mapping s, let’s consider the variable w1, which is contained
in the domain of l and s. Every element in the tuple of s(w1) is also contained
somewhere in the tuple of l(w1). It may be contained multiple times in l(w1) and
s(w1), and it may be contained more often in s(w1) than in l(w1) (because of the
cross-product effect). There may also be some elements in l(w1) that are not con-
tained in s(w1), but there will be no element in s(w1) that is not contained in l(w1).
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Whether an element of l(w1) is contained in s(w1) depends on whether the Spa-
tialJoin condition is satisfied or not. Let e be the tuple containing the geometries
from the left input and let f be the tuple containing the geometries from the right
input. Let d be the distance function, which takes two geometries as input and maps
them to the distance these two geometries have to each other on a perfect sphere,
where the radius of this perfect sphere is equal to the radius of the earth. Let m be
the maximum distance that any pair of geometries may have to each other in order
to be included in the result. Then the condition for the SpatialJoin:

d(el, fr) < m with el ∈ e, fr ∈ f

Lets consider the case, where d(el, fr) < m is true. Let a be the index of el in the
tuple e and b be the index of fr in the tuple f . Then we have the following equalities:

s(vg)x = l(vg)a ∀vg ∈ vl
s(vh)x = r(vh)b ∀vh ∈ vr
The two equations above summarize that the rows of the left and right (sub)result
are joined in a common row x if their distance is less than m. This is the result of
the SpatialJoin operation.

8.2. Runtime complexity analysis

The runtimes of the algorithms and their statements have been added to the algo-
rithms in chapter 7. If a line does not contain a comment, then the runtime for the
statement in that line is an element of O(1). Comments next to for loops indicate
the runtime of the entire for loop, not just the line.

Before analyzing the runtimes, I want to introduce some variables that affect the
runtime:

• Let n be the number of rows in the left input

• Let m be the number of rows in the right input

• Let g be the number of points contained in the geometry. If the geometry is
a point, then g is one, but if the geometry is a polygon, then g can have any
number of points.

ComputeDistance: The runtime of the computeDistance function, shown in al-
gorithm 11, is O(g1 + g2) when the midpoint approximation is enabled. The reason
for this is that every point in the geometry must be considered for the conversion
to a point. The calculation of the distance between the two points is done in con-
stant time. However, if the midpoint approximation is not activated, the runtime is
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O(g1 ·g2), because for every point of one geometry, every point of the other geometry
has to be considered.
BaselineAlgorithm: The runtime of the baseline algorithm, shown in algorithm 6,
depends on whether the midpoint approximation is used. If the midpoint approx-
imation is used, the runtime is an element of O(n ·m · (g1 + g2)). This is because
the algorithm iterates over each row of the left input. For each of these rows, it
iterates over the right input, and for each of these rows, the distance computation
requires a runtime of O((g1 + g2)). When the midpoint approximation is not used,
only the runtime of the distance function changes. This changes the total runtime
of the algorithm to O(n ·m · g1 · g2).
ComputeBoxForLargeMaxDistances: This function only performs operations
that take a constant amount of time.
ComputeQueryBox: This function only performs operations that take a constant
amount of time.
GetQueryBox: The runtime of this function is an element of O(g), because
the bounding box has to be computed, which has to consider every point of the
geometry. The calculation of the center and the bounding box consists of only a few
basic operations with constant runtime, and the function computeQueryBox is also
constant.
BoundingBox algorithm: For the runtime analysis of the BoundingBox algo-
rithm shown in algorithm 7, I will start with the innermost if statement. Adding
a row to the result table has a constant runtime (at least amortized) and adding
an entry to a set is also constant. The computation of the if statement is constant,
as is a comparison and a set lookup. Computing the distance between two entries
has a runtime of O((g1 + g2)) or O(g1 · g2), depending on whether the midpoint ap-
proximation is used or not. This part of the BoundingBox algorithm is executed for
each candidate of the R-tree. In the worst case (if maxDist is large enough to reach
all points in the R-tree), all elements of the R-tree (the smaller (sub)result) can be
candidates. The smaller size of the sub(results) is in O(m + n). So the runtime so
far is O((m + n) · (g1 + g2)) or O((m + n) · g1 · g2). The first statement before the
for loop is to query the R-tree, which takes at most O(m+ n) time (if all entries of
the R-tree are contained in the query box. The runtime is usually O(log(m + n))).
Adding O(m+ n) to the already analyzed runtime does not change anything, since
the runtime is already greater than O(n+m). Creating a query box has a constant
runtime, as does creating an empty set. Therefore, the runtime of the already an-
alyzed part is O((m + n) · (g1 + g2)) or O((m + n) · g1 · g2). All of the previously
analyzed parts of the BoundingBox algorithm are done for each row of the larger
input. The larger part of the input is an element of O(m+ n). Therefore, the total
runtime for everything done so far is O((m+ n)2 · (g1 + g2)) or O((m+ n)2 · g1 · g2).
In the part of (m + n) · (m + n), (m + n) is meant once for the larger (sub)result
and once for the smaller. Therefore, this part can be shortened to m ·n, so that the
total runtime so far is an element of O(m ·n · (g1 + g2)) or O(m ·n · g1 · g2). The last

56



8.3 Space complexity analysis

nonconstant statement is to build the R-tree, which takes O((n+m) · log(n+m)),
where (n + m) stands for the size of the smaller subresult. Since it stands for the
smaller size, the runtime is also en element of O(n·m). Since the runtime for building
the R-tree has to be added to the runtime of everything else, it doesn’t change the
total runtime, which is already larger. To sum up the runtime for the BoundingBox
algorithm, the runtime is in O(m · n · (g1 + g2)) when the midpoint approximation
is used, and in O(m · n · g1 · g2) when the midpoint approximation is not used. This
is the same runtime as the baseline algorithm. However, the runtime is only the
same if the maxDist value is large enough to cover the entire data set. The usual
runtime, where querying the R-tree takes only O(log(n+m)), reduces the runtime
of the bounding box algorithm, making it faster than the baseline algorithm. For
a practical analysis that also measures the constant factors that are ignored by the
O-notation, see chapter 9. Note also that the geometries g1 and g2 are usually not
large, and for practical purposes they can be considered a constant factor. Since
the QLever project wants to estimate the most likely runtime and not the absolute
worst case, the geometries g1 and g2 are seen as constant and the query of the R-tree
is estimated as log(m).

8.3. Space complexity analysis

computeDistance: The (temporary) space used during the execution of the
method is an element of O(g1 + g2), since each geometry has to be stored. This is
true both when midpoint approximation is enabled and when it isn’t.
Baseline algorithm: The space complexity for the baseline algorithm is an
element of O(n ·m · (g1 +g2)). This worst-case space consumption occurs if the value
of maxDist is large enough so that the distance between each pair of geometries
is less than maxDist. If that’s the case, then each row of the left input is merged
with each row of the right input and inserted into the result table, which takes the
mentioned amount of space. In addition, it needs to store the geometries for both
(sub)results, which adds the (g1 + g2) part to the total space consumption.
ComputeBoxForLargeMaxDistances: This method uses a constant amount
of space and does not need to store input size dependent information.
ComputeQueryBox: This method uses a constant amount of space and does not
need to store input size dependent information.
GetQueryBox: This function has a space requirement of O(g) because the com-
plete geometry must be present when the bounding box is calculated.
BoundingBox algorithm: As with the baseline algorithm, the worst-case space
consumption is an element of O(m ·n · (g1 + g2)), since the algorithm must add m ·n
entries to the result table if all pairs of geometries have a distance to each other less
than maxDist. In addition, it needs to store the geometries for both (sub)results,
which adds the (g1 + g2) part to the total space consumption.
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8.4. Proofs of some properties

This section proves the correctness of the algorithm and the calculations it performs.
It begins by introducing the notation used in this section. Then important properties
of spherical geometry are introduced and the proofs of correctness are presented.

8.4.1. Notation and Conventions

This subsection covers the notations and conventions used in the following subsec-
tions for the theoretical part, especially for the proofs. They are presented in the
following list:

• Points: Points on a sphere are given as lowercase letters, such as u, v, or w.
The center of the sphere is called M .

• Subtended angles: A subtended angle is defined as follows: Let M be the
center of the sphere and u and v be points on the surface of the sphere.
Then the angle between the (Euclidean) lines Mv and Mu is called the sub-
tended angle. The line from u to v on the surface of the sphere has length
subtended_angle · radius. To distinguish subtended angles from other angles,
subtended angles have a tilde over them, like α̃, β̃, or γ̃.

• Lines on the surface of a sphere: Unless otherwise noted, a line connecting
two points on the surface of a sphere is the smaller fragment of a great circle
(a definition of a great circle can be found in subsection 8.4.2) containing
those two points. This is also the shortest possible path between these points.
The line can be identified by a subtended angle or by the length of the circle
fragment. If the length is given separately, rather than as a subtended angle,
it will be a lowercase letter, such as a, b, or c. Note that a is the distance that
corresponds to the subtended angle α̃, b corresponds to β̃, and c corresponds to
γ̃. However, this definition is not unique. If the points are exactly on opposite
sides of the sphere (for example, the north and south poles), then there are
infinitely many shortest paths. In this case it will be specified which of them
is meant.

• Angles: Angles are given in radians and written with a Greek letter such as
α, β, or γ. Angles on the surface of the sphere are defined as follows: Let a
and b be two lines on the surface of our sphere that start and intersect at point
u. Let P be the plane containing point u and let P be tangent to the surface
of the sphere. Project the first ε % of each of the lines a and b onto the plane
P and let ε → 0 1. The angle is then measured on the projected lines using
the usual rules of Euclidean geometry.

1Only project the first ε % because the surface of the sphere can be approximated by a plane if
the region is very small
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• Coordinates: Up to this point, longitude and latitude coordinates have been
used as a range from -180 degree to 180 degree for the longitudes and -90 degree
to 90 degree for the latitudes. In this chapter the longitudes will be in the
range from 0 degree to 180 degree east or west. The latitudes will be in the
range from 0 degree to 90 degree north or south

8.4.2. Spherical Geometry

This chapter introduces some concepts of spherical geometry that will be needed for
some proofs.
Big Circle: Let M be the center of our sphere and let P be a plane containing
M . Then the intersection of P with the surface of the sphere results in a big circle.
Antipodal point: Let p be a point on the sphere. The antipodal point is the
point on the opposite side of the sphere. The antipodal point of p is also the point
furthest away from p. The most famous pair of antipodal points is the North and
South Poles.
Shortest Path: Let u and v be two points of our sphere with center M . Let B be
the big circle containing u and v. u and v divide the big circle into two fragments.
The smaller of the two fragments is the shortest path from u to v (and vice versa
from v to u).
Euler Triangle: Let u, v, and w be points on the surface of a sphere. Let each
point be connected to every other point so that they form a triangle. Let α, β and
γ be the angles between two lines. If all these angles are less than π radians, the
triangle is called an Euler triangle.
Triangle Inequality: Unlike in Euclidean space, the triangle inequality is not
generally applicable to triangles on a sphere. However, if we restrict the triangles to
Euler triangles, then the triangle inequality is applicable. This means: If a, b, and c
are the lengths of the lines of an Euler triangle, then the sum of two lines is at least
as large as the remaining line (so a+ b ≥ c, a+ c ≥ b, and b+ c ≥ a).
Spherical law of cosines and spherical Pythagoras: Let the three points u,
v and w define a triangle. The lines a, b and c of the triangle are fractions of big
circles, which could also be represented by their subtended angles α̃, β̃ or γ̃. The
lines are angled to each other at the angles δ, ε and ζ. All of this can be seen in
Figure 8.1. The first spherical law of cosines states, that

cos(α̃) = cos(γ̃) · cos(β̃) + sin(γ̃) · sin(β̃) · cos(δ)

If the angle δ is equal to π
2 then the formula simplyfies to the spherical Pythagorean

analog (because cos(δ) = cos(π2 ) = 0):
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cos(α̃) = cos(γ̃) · cos(β̃)

Law of Haversines: Let the three points u, v and w define a triangle. The lines
a, b and c of the triangle are fractions of big circles, which could also be represented
by their subtended angles α̃, β̃ or γ̃. The lines are angled to each other at the angles
δ, ε and ζ. All of this can be seen in Figure 8.1. The haversine is defined as

hav(θ) = sin2(θ2) = 1− cos(θ)
2

Using the spherical law of cosines, the fact that cos(θ) = 1 - 2 · hav(θ) and the
addition identity cos(a− b) = cos(a) · cos(b) + sin(a) · sin(b) one can derive the law
of haversines:

hav(α̃) = hav(γ̃ − β̃) + sin(γ̃) · sin(β̃) · hav(δ)

We will also need the inverse of the haversine, which is defined as follows:

archav(θ) = 2 · arcsin(
√
θ) = arccos(1− 2 · θ)

From a mathematical point of view, there’s no difference between using the law of
cosines or the law of haversines. But for small angles, the haversine function provides
numerical stability, while the cosine function does not. For angles close to π, the
haversine function can result in a complex number if a rounding error becomes too
large; the law of cosines doesn’t have this problem. Therefore, we will need both
laws, depending on the angle.

8.4.3. Proofs

This subsection presents the proofs for the correctness of the algorithm used. Since
some proofs share logic, this logic is split into separate proofs. This improves read-
ability by making the proofs shorter and avoids repetition.
The first proof of this chapter shows, that the edge of a spherical triangle, which
is opposite of the π

2 angle, is the longest, if the adjacent sides are at most 1
4 of the

circumference.

Theorem 1. In a triangle formed by three points u, v, and w, where each side
adjacent to v is at most 1

4 of the circumference of the sphere and the angle at point v
is π

2 , the side opposite to v is greater than or equal to the other sides in the triangle.
For a detailed construction of the points and sides, see Figure 8.2.
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Figure 8.1.: This figure shows the setup for the Spherical Pythagorean Theorem,
the Spherical Law of Cosines, and the Spherical Law of Haversines. Source: Self
made
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Proof. Since we have a π
2 angle, we can use the spherical analog of the Pythagorean

theorem. Therefore we have

cos(β̃) = cos(α̃) · cos(γ̃) (8.1)

Since we required that each side adjacent to v be at most 1
4 of the circumference,

we know that each of these subtended angles is between 0 and π
2 . This means that

0 ≤ α̃ ≤ π

2 (8.2)

0 ≤ γ̃ ≤ π

2 (8.3)

The cosine function is strictly monotone decreasing from cos(0) = 1 to cos(π2 ) = 0.
Therefore, cos(α̃) must be between 0 and 1. Using this information and the equality
in Equation 8.1, we know that cos(γ̃) must be at least as large as cos(β̃). Since
the cosine function is strictly monotonically decreasing, we know that γ̃ must be
less than or equal to β̃. The lengths of the sides can be easily calculated, given the
subtended angle and the radius r:

c = γ̃ · r ≤ β̃ · r = b (8.4)

This equation shows that b is greater than or equal to c. Using Equation 8.3,
Equation 8.1 and the same reasoning as before, we know that α̃ must be less than
or equal to β̃ and therefore a ≤ b.

Since both a and c are less than or equal to b and b is the side opposite the π
2 angle,

the claim that this side is at least as long as the other sides has been proved.

The next proof shows that the distance from a point not contained on a big circle to
that big circle is unique, or that all points on the big circle have the same distance
to that point.

Theorem 2. The shortest path from a point u to a big circle C that doesn’t contain
u is unique or all points on C have the same distance to u.
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Figure 8.2.: Set up to prove that the side opposite the π
2 angle is the longest or at

least equal to the other two sides. Source: Self made
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Proof. Let u be a point on the sphere, which is, without loss of generality, the North
Pole. Next, consider the plane P of a big circle C. It must contain the center M
of the sphere. In addition, the plane contains at least two points of the equator,
which are on opposite sides. W.l.o.g. let these points be on the 90th longitude
south and east. Since these three points are on a line, the plane is still not uniquely
defined. Let v be a final point to uniquely define the plane, which is w.l.o.g. on
the 0th longitude. We only need to consider the cases where v is between the 0
degree latitude (equator) and the 90 degree latitude north, since all other cases are
symmetrical to one of these cases.
Case 1: v is on the equator (v has 0 degree latitude)
The big circle formed by the intersection of P and the sphere is the equator. On the
equator, all points have the same distance to the North Pole, because "just going
straight up" is walking along a line of longitude, and lines of longitude are big circles
and therefore shortest paths.
Case 2: v is above the equator (latitude of v is > 0 degree latitude north)
The plane P can also be defined by a point and two Euclidean lines. One point isM
and the first Euclidean line e is the line connecting the two points on the equator,
which are on the 90th meridian east and west (so all points on this line have the same
latitude). The second Euclidean line f is the line from M to v. When the latitude
of v is changed, the line e stays in P because it is orthogonal to the line Mv. Since
the latitude of v is greater than 0, P is tilted with respect to the equatorial plane.
Since we restricted the latitude of v, the angle α of P to the equatorial plane is 0 <
α < π

2 . Let w be a point on C. As we decrease the longitude of w (going toward the
longitude of 0, which is the longitude of v), the latitude increases (because of the
angled plane). Since the decrease can be done from either the west or the east, and
both sides are symmetric, the unique point with the lowest longitude, and therefore
the highest latitude, is v. As in case 1, the shortest path from any point on C to u
is "just going up". Since v has the highest latitude, it’s distance to u is the smallest.
These two cases cover all possibilities, and in both cases the claim is valid. Therefore,
the claim is proven.

The next theorem proves, that the shortest path from a point to a big circle intersects
the big circle at an angle of π

2 .

Theorem 3. The shortest path from a point u to a big circle C, intersects C at an
angle of π

2 .

Proof. From Theorem 2 we know that we need to consider two cases. Let the setup
be the same as in this proof (the point u is w.l.o.g. the North Pole, the plane P of
the big circle C is w.l.o.g. defined by the following four points: the center of the
sphere M , the two points on the equator at longitudes of 90 degrees east and west,
and the point v on the 0th longitude line with a variable latitude).
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Case 1: v is on the equator (v has a latitude value of zero)
The plane of the equator and P are the same plane. The coordinates of v are
therefore 0 latitude and 0 longitude. The shortest path from v to u is the fragment
of the line of longitude 0 from v to u. The tangent of this line at the equator has
an angle of π

2 to the equatorial plane and therefore to C.

Case 2: v is above the equator (latitude of v > 0Â◦ north)
The tangent of C at point v is the Euclidean line e, which is parallel to the Euclidean
line from the 90th meridian east to the 90th meridian west of the same latitude. Let
Q be the plane containing the line of longitude 0 (since this is a non-Euclidean line,
it uniquely defines the plane). This plane is orthogonal to the line e. All tangent
vectors of the 0th longitude are contained in Q and therefore the tangent line of C
at point v is orthogonal to the line from v to u.
These two cases cover all possibilities, and in both cases the claim is valid. Therefore,
the claim is proven.

The next proof in this chapter shows, that the shortest distance between two lati-
tudes is obtained, when the path between the latitudes intersects the start latitude
and target latitude at an angle of π

2 .

Theorem 4. The shortest path between two latitudes is, where the line from the
first to the second latitude intersects both latitudes at an angle of π

2 .

Proof. Since the distance from the upper latitude to the lower latitude is the same
as the distance from the lower latitude to the upper latitude, we consider only the
case from the lower latitude to the upper latitude. 2

First, we define the point u to be the point of our lower latitude, which has an
arbitrary longitude. W.l.o.g., let this longitude be zero. Point v has the same
longitude as u, but a higher latitude. Next, we define a great circle. The first point
on the big circle is point v, the second point is the center of the sphere and the third
point (which must not be on the line of v and the center of the sphere 3) is on the
equator and has a longitude of 90. It doesn’t matter in which direction, both points
on the equator with longitude 90 are contained in the great circle, because the great
circle is symmetric about the line from v to the center of the sphere. This west-east
symmetry ensures that the angle of intersection of the great circle at point v with
the line from u to v must be π

2 . All this can be seen in Figure 8.3, where blue is the
lower latitude and orange is the upper latitude. The big circle is drawn in red. Now
consider any point w which has the same latitude as v but a different longitude.

2Lower latitude means a smaller latitude number and therefore being closer to the equator (no
matter if north or south of the equator)

3otherwise the plane of the big circle would not be uniquely defined
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Figure 8.3.: This figure shows the setup for the proof of the shortest distance
between two latitudes. Source: Self made

Consider the line from u to w, shown in green. This line is divided into two parts
by the big circle. Let x be the point where the big circle intersects this line. From
Theorem 1 we know that the line from u to x is at least as long as the line from u
to v (since this is the line opposite the angle of π

2 in the triangle formed by u, v,
and x). Since the line fragment from x to w is greater than zero, the line from u to
w must be longer than the line from u to v. Therefore, the shortest path between
two latitudes is where the line between the latitudes intersects both latitudes at an
angle of π

2 , which was claimed.

The next proof gives an upper bound, for the shortest parth from any point to a
longitude line.
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Theorem 5. The shortest path s from a given point u to any line of longitude is
upper bounded by the line from u to the nearest pole.

Proof. Since the lines of longitude are fragments of a large circle containing the
poles, we know that the shortest path a from u to the pole is the path that stays
on the line of longitude. From the pole, we only need to go an ε amount in the
direction of the target longitude. The triangle inequality gives us an upper bound
on the path length:

a+ ε ≥ s

For ε→ 0, the upper bound converges to

lim
ε→0

a+ ε = a (8.5)

Therefore the distance to each longitude is upper bounded by a, which is the distance
to the corresponding pole.

As we just showed: All longitudes can be reached from a given point u by simply
going "straight up or down" to the corresponding pole. Let the distance of this upper
bound be a. The next proof considers the case, where we are interested in the most
distant longitude, that can be reached within a distance of less than a.

Theorem 6. The most distant line of longitude L that can be reached from point u
at a distance less than the distance to the nearest pole intersects the line from u to
L at an angle of π

2 at a unique point.

Proof. Let a be the distance from u to the closer pole and b < a be the distance,
which is the maximum line length allowed. Since the distance to the nearer pole is
at most 1

4 of the circumference (equality happens if u is on the equator), we know
that b must be less than that. Let L be the farthest longitude that can be reached
from u at a distance of b. Let v be the point where the line from u intersects L.
We know that v must be the closest point of the big circle containing L (otherwise
we could go to L by a shorter path, which is especially smaller than b. So we could
take that shorter path and reach an even more distant line of longitude from there,
which would be a contradiction to our definition of L). From Theorem 2 we know
that v is the unique shortest point (since b is smaller than 1

4 of the circumference
of the sphere, which would be the distance if all points on L had the same shortest
distance). From Theorem 3 we know that the path from u to L intersects L at an
angle of π

2 .

In subsection 7.2.3, there were a lot of formulas for calculating the query box. The
next proof, will prove the correctness of these formulas and the query box in general.

Theorem 7. The query box, as explained in subsection 7.2.3, always contains all
points, that are at most a ∈ R+ meters away.
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Proof. Let u be our starting point, from which all paths start. Then three cases can
occur: both poles can be reached with a distance of at most a meters, only one pole
or zero poles.

Case 1 (both poles are reachable): If both poles can be reached, then the upper
latitude limit is 90, because min{90, lat(u) + a · circumference

360 } evaluates to 90. This
is because lat(u) + a · circumference

360 evaluates to a higher number than 90, since the
second part just translates the distance of a in degrees that a covers on a big circle.
This is added to the current latitude of u. The result must be greater than or equal
to 90, since this is the case when both poles can be reached. The reason why the
lower bound is -90 is analogous. According to the construction of the query box,
all longitudes are checked (because of Theorem 5, the distance to all longitudes is
upper bounded by the distance to the pole. If the pole can be reached, a point on
any longitude line can be reached). Therefore, we have just created a query box
that contains all points. Therefore, no point can be missed.

Case 2 (only one pole can be reached): First we consider the case where
the pole is the North Pole. As in case 1, the upper latitude bound is 90 (see the
calculation and reasoning above). The longitude bounds are -180 to 180, since the
upper latitude bound is 90. This is necessary, because of Theorem 5. Since all
longitudes are included, a point can only be missed if the latitude is too high or
too low. Since the upper bound for latitude is 90, a point above u can’t be missed.
Therefore, we only need to prove that points with a latitude lower than the query
box can’t be reached from u. Let l be the lower bound lat(u)− a · circumference

360 . Let
v be the point with a latitude of l that has the same longitude as u. The distance
from u to v is a (the formula just converted the distance of a from meters to degrees
of latitude along a large circle). According to Theorem 4, the shortest path to any
point on l is the path on the same longitude (so from u to v) (since the longitude
line intersects both latitude lines at an angle of π

2 ). Therefore, any point on the
same latitude as l or on a latitude less than l has a longer path than the path from
u to v. Since the path from u to v has a length of a, all other paths are longer than
a, and therefore the query box contains all points that are reachable from u.

Case 3 (no pole can be reached): The arguments for the upper and lower
bounds of the query box are analogous to the lower bound in case 2. To prove the
longitude bound, we need to construct a triangle. W.l.o.g. let u be on the northern
hemisphere. The case where u is on the southern hemisphere is analogous. The
setup of this proof can be seen in Figure 8.4. u is the first point of the triangle
and the North Pole, labeled w, is the second point. v is the point on the longitude
farthest away from u, but still within a distance of a. From Theorem 6 we know
that the angle at v must be π

2 . The distance from u to v is a, which can be converted
to a subtended angle using

α̃ = a

r
(8.6)
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where r is the radius of the earth. The subtended angle for the line from u to w
(the north pole) is

γ̃ = (90− lat(u)) · 2π
360 (8.7)

This formula simply calculates the difference between the latitudes of u and w and
converts it to radians. Now that we have two of the three subtended angles and a
right angle at v, we can use the Spherical Pythagorean Theorem to calculate the
third subtended angle β̃:

cos(γ̃) = cos(α̃) · cos(β̃)

β̃ = cos−1( cos(γ̃)
cos(α̃)) (8.8)

Note that we could already calculate the latitude of v, since the latitude of v is just
β̃ from the North Pole on any longitude line. For the proof of the longitude bound,
we don’t need to know the specific latitude of v, so we don’t explicitly calculate it
here.
Now that we have all three subtended angles, we can use the law of cosines 4 to
obtain the angle δ:

cos(α̃) = cos(γ̃) · cos(β̃) + sin(γ̃) · sin(β̃) · cos(δ)

cos(δ) = cos(α̃)− cos(γ̃) · cos(β̃)
sin(γ̃) · sin(β̃)

δ = cos−1(cos(α̃)− cos(γ̃) · cos(β̃)
sin(γ̃) · sin(β̃)

) (8.9)

δ is the longitude difference of u and v, which we are interested in. Therefore we
just need to convert it to degrees and add it to u (or subtract it from u if we want
to know the left bound):

lon(v) = lon(u)± δ · 360
2π (8.10)

4In practice, we would use the law of haversine for small distances (or small subtended angles
representing the maximum distance) because of numerical stability. For the proof, it is sufficient
to use only the law of cosines
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If we plug Equation 8.9, Equation 8.8, Equation 8.7 and Equation 8.6 into Equation 8.10
and use the north-south symmetry5, then we get the following formula:

lon(u)±+cos−1(
cos(a

r
)− cos2((90−|lat(u)|)· 2π

360 )
cos(a

r
)

sin((90− |lat(u)|) · 2π
360) · sin(cos−1( cos((90−|lat(u)|)· 2π

360 )
cos(a

r
) ))

) · 360
2π

This is the formula from chapter subsection 7.2.3. Because of Theorem 6, there is
no longitude further away than a meters. Therefore the query box is also valid in
this case.
Note that at this point a coordinate normalization may be necessary to have the
coordinates in their usual form. For example, this formula might calculate the left
boundary to be at -190. In this case, all we need to do is add 360, which results in
170. If the result is greater than 180, we would need to subtract 360. This doesn’t
change the resulting point, because adding or subtracting 360 from the longitude
value just means going around the Earth once at a constant latitude and coming
back to the same point.
These three cases cover all possible cases, and in all cases the query box is valid.
Therefore, the statement is proven.

The next proof shows an optimization that is not necessary for correctness or com-
pleteness, but can improve the performance of the algorithm. The optimization is
useful when the maximum distance is large (i.e. it is used as soon as the maximum
distance is larger than 1

4 of the circumference). In this case, a pole is always within
reach of maxDist, so the longitude bounds would always cover all longitude lines.
To improve this, we can compute an anti-query box for the antipodal point, which is
guaranteed to contain only points further away than the maximum allowed distance.
Then we check everything except this anti-query box. A more detailed explanation
can be found in subsection 7.2.3. To prove the correctness of the anti-query box, we
first need to prove a helper theorem about the maximum distance from the center
of the query box to any point inside the query box.

Theorem 8. Let p be the center of a symmetric query box6 that does not contain
a pole 7. Let u be the point on the left side of the query box that has the same
latitude as p, and let v be the point on the top side of the query box that has the

5The symmetry of the northern and southern hemispheres can be used by taking the absolute
value of the latitude.

6Symmetric means that the left and right sides have the same distance to the center, and the top
and bottom sides have the same distance to the center.

7The proof would still work in this case, but the argument would be more complicated. So the
algorithm just stops at the pole.
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Figure 8.4.: Setup for the proof of the longitude bounds of the query box. Source:
Self made
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same longitude as p. Let d be the distance from p to u and e be the distance from p
to v. Let d and e be less than 1

4 of the circumference of the Earth. Then the distance
from the center p to any point inside the query box is upper bounded by the sum
d+ e.

Proof. Let w be any point in the bounding box. Due to the symmetry of the
bounding box, we can assume that w is in the upper left quadrant. Let x be the
point that has the same latitude as p and the same longitude as w. Then construct
a triangle with the points p, w, and x. Let a be the distance from p to x, b be the
distance from x to w, and c be the distance from p to w. All this can be seen in
the figure Figure 8.5. Note that the distance e (from p to v) mentioned in the proof
statement is not shown, and instead the distance from u to v′ is shown, where v′ is
the point that has the same latitude as v and the same longitude as u. The distance
from p to v is the same as the distance from u to v′. In both cases, the distance is e,
because the difference in latitude is the same, and p and v have the same longitude,
and u and v′ have the same longitude8. Since both d and e are less than 1

4 of the
circumference, the triangle inequality can be applied. Using the triangle inequality,
the following statement follows:

a+ b ≥ c

Let d be the distance from p to u and e be the distance from p to v. The latitude
of x and u is the same, so d ≥ a. The longitude of x and w is the same, so e ≥ b.
This gives the following inequality:

c ≤ a+ b ≤ d+ e

This inequality proves the statement.

Note that the proof requires that u be the point on the same latitude as p, not the
point where the distance from p to the left is smallest. If the smallest distance from
p to the left were above u, the triangle inequality could not be applied to points
below p.
Now that we have proved the helper theorem, we can continue to prove the correct-
ness of the anti query box.

Theorem 9. Let u be the point from which we want to get all points that are at
most m meters away, and let m be less than half the circumference of the Earth.
Let v be the antipodal point of u. Then create a symmetric anti query box around

8When the longitude of two points is the same, the shortest path between the two points is to
stay on the longitude, because a longitude is a subset of a great circle
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Figure 8.5.: Setup for the proof of the maximum distance from the center point
of the bounding box to any point in the inside of the bounding box. Source: Self
made
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v. Let a be the distance from v to the left side of the anti query box and b be the
distance from v to the top of the anti query box9. Let c = a + b and let d be half
the circumference of the Earth. If c < d−m, then every point contained in the anti
query box has a distance to u that is greater than m.

Proof. Let w be any point in the anti query box. Then there exists a shortest path
from u to v that contains w10. Going along this shortest path, starting at u, the
intersection of the anti query box is reached. Let x be the intersection point and e
be the distance from u to x. If w is on the edge of the anti query box, then w = x.
Otherwise you have to go a little longer on the shortest path to w for a distance
greater than zero. So the distance from x to w is ≥ 0. This means that if the
shortest path from u to x is already greater than m, then the path from u to w is
definitely greater than m. From Theorem 8 we know that the distance from x to v
is less than or equal to c. Let this distance be f . Since d is the distance between
u and v (since they are antipodal), and x splits the path, we know that e + f = d.
From the proof statement we know that c < d−m, which is equivalent to c+m < d.
So we have c + m < e + f . Since f ≤ c, we have m < e. Since e is the distance
from u to the anti query box (to x) and this distance is already greater than m, the
distance to w is at least as large as e and therefore greater than m. So the distance
from u to w is greater than m. This proves the statement that every point in the
anti query box has a distance to u that is greater than m.

Next, I will prove the correctness of the area part of the algorithm and that the
query box contains all possible candidates and that no candidate is missed. Let me
briefly recapitulate the construction of the query box. First, the bounding box of
the given area is computed. Next, the center u of this bounding box is calculated.
Then we use Theorem 8 to calculate the upper distance from the midpoint u to any
point inside the bounding box. Let b be this distance. Then we construct the query
box in the same way as the query box for points using point u, but we increase the
maximum allowed distance a by b. So the new maximum distance a point can be
away from u is a + b.

Theorem 10. If a point v is at most a ∈ R+ meters away from an area, then it is
at most a + b meters away from the center of the area.

Proof. Consider the shortest path from u to v. Let x be the point where this shortest
path intersects the bounding box of the area. This can be seen in Figure 8.6. With
Theorem 8 the distance from u to x is at most b meters. Because of the requirement
that v is at most a meters away from the area, and the entire area is contained in
the bounding box, the distance from x to v can be at most a (if the area intersects

9because of the symmetry, the distance to the left side is the same as to the right side, and the
distance to the top is the same as to the bottom

10There are an infinite number of shortest paths from u to v, since they are antipodal. One of
these paths contains w
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the bounding box at x, otherwise the distance from x to v is less than a). Therefore,
the total distance from u to v can be at most a + b meters.
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Figure 8.6.: Setup for the proof of the area part of the algorithm, where the
maximum allowed distance gets increased to compensate for the size of the area.
Source: Self made
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In this chapter, the performance of the presented algorithm is evaluated and com-
pared. The evaluation is performed on two datasets. The first dataset is a synthetic
test dataset developed for the purpose of this evaluation. The second dataset is the
OpenStreetMap dataset of Germany. After introducing the synthetic dataset and
the general testing procedure, the results of the different evaluations are presented.
The first experiment evaluates whether the R-tree should be built for the larger or
smaller input. After that, the efficiency of the query box was evaluated. Then,
the different functions of the code were analyzed for their impact on the runtime,
and finally, the performance of the algorithm was evaluated on the OSM Germany
dataset.

9.1. Synthetic Dataset

In order to get very good evaluation results, a synthetic dataset has been developed.
The reason why most of the tests were not performed on a real dataset like Open-
StreetMap is that this could lead to wrong conclusions. Let’s take as an example
the analysis of the influence of the maximum distance on the query. Suppose an
object is located in the center of Freiburg. There are many objects around it, but
as soon as the maximum distance becomes large enough to reach objects outside
of Freiburg, the density of objects is likely to decrease by a large amount because
fields, meadows, etc. do not have as many geo-objects in the OSM data. Therefore,
a false conclusion might be that the maximum distance does not have a big impact
on the runtime. In reality, it may have a large effect that is counteracted by the
lower density of geo-objects outside of Freiburg. Therefore, a synthetic dataset with
a uniform density of geo objects was created. The creation of the dataset was done
with algorithm 12 and 13. For each longitude and latitude, four points and one area
are added to the dataset. Each point and area is given a unique name and the data
set will contain at least two triples of them. The first triple specifies whether it is a
point or an area (to allow filtering the data and to have queries where only points
or only areas are evaluated). The second triple adds the WKT string(well known
text, that represents the geo object). For some points and areas these are the only
triples. However, if the longitude and/or latitude is divisible by a number between
two and five, additional triples are added. These triples add the information that
this point or area has a longitude or latitude that is divisible by that number. These
triples are added to allow queries where the inputs have different sizes. If an input
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geometry must also satisfy that its latitude or longitude is divisible by one or more
numbers, the input size differs and decreases the more numbers it must be divisible
by. Using this algorithm, a dataset with the following statistics was created:

• Number of triples: 1,396,512

• Number of subjects: 322,202

• Number of predicates: 6

• Number of objects: 322,209

The following sections, all use this dataset, unless otherwise noted.

Algorithm 12 Algorithm to create the test dataset. Note that for simple expla-
nations, edge cases like handling of the poles and the -180 and 180 longitude edge
cases are not contained in this description of the algorithm.

for latitude from -90 to 90 do
for longitude from -180 to 180 do

addPoint(longitude, latitude)
addPoint(longitude + 0.5, latitude)
addPoint(longitude, latitude + 0.5)
addPoint(longitude + 0.5, latitude + 0.5)
addArea(longitude, latitude)

end for
end for

Algorithm 13 Algorithm for adding a point to the synthetic dataset. The addArea
method is analogous to this addPoint method, but creates a polygon consisting of
9 points instead of a single point as here
name = getName(longitude, latitude)
addTriple(name, ’<isPoint>’, ’<true>’)
wkt = getWKTForPoint(longitude, latitude)
addTriple(name, ’<asWKT>’, wkt)
for index from 2 to 5 do

if latitude is divisible by index then
addTriple(name, ’<lat-is-div-by>’, index)

end if
if longitude is divisible by index then

addTriple(name, ’<lon-is-div-by>’, index)
end if

end for
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9.2. General test setup

The Evaluation procedure can be summarized using the following list:

1. Create/Get the knowledge graph
2. Create the Index
3. For each experiment:

a) Make adaptions in the code for the current experiment
b) Compile the code
c) Run the qlever server
d) Query the server with the test queries

The first step is to get the knowledge graph. For most tests, this would be the
synthetic knowledge graph (see section 9.1). For some tests, this would be the OSM
dataset for Germany. After the knowledge graph is available, the IndexBuilderMain
program from qlever (see section 2.4) is used to create the index. Once the index
is created, the part all experiments have in common is done. The next steps had
to be done for each experimental setup. In most cases, some code was added to
log runtime data, more on this in the following sections of the experiments. After
that, the changed code has to be recompiled. Since the changes in the SpatialJoin
algorithm do not affect the index building process, the index does not need to be
rebuilt. Once the code is compiled, we can start the server. At this point, we need
to change many of the default settings to ensure reproducible testing:

• Cache size is set to 0 B
• max size of a single cache entry is set to 0 B
• Set the maximum number of entries in the cache to 0
• Number of queries computed in parallel is set to 1
• Limit memory usage to 100 GB

The most important change is to disable any kind of caching. If multiple queries
are run consecutively with only a slight change in a parameter, the following queries
should not be able to use partial or even complete results from previous experiments.
This would make comparing results useless. Another important setting is to disable
parallel queries. If the server were to process multiple queries at the same time,
they could interfere with each other. An example would be if both queries tried to
access the same file at the same time and one of them has to wait.
The final step is to send test queries to the server and log the data from each
test query. For most queries, a Python script has been written that sends queries
of a similar format to the server, where each query has a unique combination of
parameters. The varied parameters include the maximum distance allowed, the size
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of the left subresult, the size of the right sub-result, the algorithm used, whether
to query only points, only areas, or both, and a few more. A typical query might
look like algorithm 14. The first line selects the variables we want to query. The
variable ?dist is added internally by the SpatialJoin and contains the exact distance
between ?a and ?b. The first two lines after the select clause initialize the variable
?a. If only points should be queried, ?isPointA gets replaced by <true>. If only
areas are to be returned, it is replaced by <false>. The next line binds the WKT
representation of the geometry of ?a to the variable ?wktA. The next two lines do
the same for the variable ?b. When both variables are initialized, the constraints
are added. There are nine possible constraint levels for each child. As the level
increases, all the constraints of the previous levels must be satisfied, as well as the
constraint of the current level. It starts with a constraint level of zero, which is no
constraint. The first real constraint is that the longitude must be divisible by two.
The next constraint level adds that the latitude must be divisible by two. After
that, a third constraint is added, which limits the longitude to values that are also
divisible by three. Then the latitude must also be divisible by three. This continues
until the latitude and longitude values must be divisible by two, three, four, and five.
In this case, the variable ?a has constraint level zero, which means no constraints,
and the variable ?b has constraint level three. So it has three constraints. Finally,
the SpatialJoin triple or SpatialJoin service is added. For the sake of brevity, and
because I didn’t implement it myself, I’ll just mention the SpatialJoin service and
refer to chapter 6 for more information.

Algorithm 14 This shows an example SPARQL query generated by the script.
The algorithm for creating queries like this needs to know the maximum distance,
whether ?a and ?b should be points, areas, or both, the constraint level for ?a and
?b, and the algorithm to use to compute the result.
SELECT ?a ?b ?dist WHERE {

?a <isPoint> ?isPointA .
?a <asWKT> ?wktA .
?b <isPoint> ?isPointB .
?b <asWKT> ?wktB .
?b <lon-is-div-by> <two> .
?b <lat-is-div-by> <two> .
?b <lon-is-div-by> <three> .
addSpatialJoin(’?wktA’, ’?wktB’, maxDist, algorithm)

}

9.3. Build R-tree analysis

This section analyzes whether it is more efficient to build the rtree for the smaller
subresult and then query it using the elements from the larger subresult, or if it
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should be done the other way around. The test queries for this analysis are built
and sent by a query script, which is shown in algorithm 15. The first parameter
varied is the maximum distance, which has values from 1 m to 10,000,000 m. The
other two varied parameters are the size of the left child and the size of the right
child. The query is built as explained in section 9.2. Since the algorithm builds the
R-tree for the larger or smaller subresult, no matter if the smaller subresult is the
left subresult and the larger subresult is the right subresult or vice versa, we can
use this symmetry and query the server only if the right subresult has a smaller or
equal number of constraints. For this experiment, three time intervals were logged.
The first interval is the time from the start of the spatialJoin operation to the end
of the spatialJoin operation. The second interval is the time it took the program to
build the R-tree, and the third interval is the time it took to query the R-tree using
the other subresult.

Algorithm 15 This algorithm shows, how the queries for this analysis got con-
structed and send to the server.

for maxDist in [1, 10, 100, 1000, 10000, 100000, 1000000, 10000000] do
for restrictionLeft from 0 to 8 do

for restrictionRight from 0 to 8 do
if restrictionRight <= restrictionLeft then . use symmetry

query = createQuery(maxDist, restrictionLeft, restrictionRight)
sendQuery(query) . logging is done by the server

end if
end for

end for
end for

The results of this experiment can be seen in Figure 9.1. In the appendix, the partial
results of the R-tree build time ratios are shown in Figure A.1 and the query time
ratios are shown in Figure A.2. 1. Figure 9.1 shows the ratio of the time for the
complete BoundingBox algorithm ( total time for building the smaller rtree

total time for building the larger rtree ). A ratio less than
one means that it was faster to build and query the smaller R-tree, a ratio greater
than one means that it was faster to build and query the larger R-tree. A number
of -1, colored in red, indicates that more than 100 GB of memory would have been
required, which is why the calculation could not be performed. The y-axis shows the
different experiments, sorted by the size ratio of the children ( size smaller child

size larger child ). The
x-axis shows the maximum distance allowed between two geometries. The figure
clearly shows that it’s much faster to build the smaller R-tree when the children
have a large size difference (i.e. small size ratios of the children, shown in the lower
half of the figure). However, there are very few exceptions where it is faster to build
the larger R-tree. Note that the cases where both children have the same size (i.e.

1Since it’s kind of obvious that building the smaller R-tree is faster than building the larger R-
tree, and that querying more entries takes longer than querying fewer entries, these figures are
only in the appendix.
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size ratios of one, shown in the upper quarter) do not contribute to the decision
whether it’s more efficient to build the smaller or the larger R-tree, since both have
the same size. The reason for including these cases is to get a feel for the seemingly
random fluctuations. Technically, these cases should take exactly the same amount
of time whether the smaller or larger R-tree is built (since they have the same size).
If the numbers fluctuate a bit, it shows that other factors contributed to it. In
basically all of these cases, it was faster to build the larger R-tree. Since this can’t
be explained by the code, other factors like server load were probably the cause.
Since I did all the measurements with building the R-tree for the smaller child first,
and then all the measurements with building the larger child, it seems that the
second time slot had a lower server load or some other favorable conditions. To
draw a conclusion, we have to ignore the experiments with a child size ratio of one
and just keep in mind that there is a slight variance in the time ratios. In general,
there are very few cases where it is faster to build the larger R-tree, but many cases
where it is much more efficient to build the smaller R-tree. And of those few cases
where it’s faster to build the larger R-tree, the time saving is at most 30 %, while the
many cases where it’s faster to build the smaller rtree, the time saving is sometimes
more than 50 %. Therefore, it is very clear that the preferred option should be to
build the smaller R-tree. Because of this, the next evaluations have all been done
with the setting to build the smaller R-tree.

9.4. Efficiency of the query box

This section analyzes how efficient the query box is. To measure the efficiency of
the query box, we look at how many points are in the result table and how many
points were in the query box. The closer the ratio size of result table

geometries in query box is to one,
the more efficient the query box is. The analysis of the efficiency on the runtime
is measured by the ratio geometries in query box

geometries in R-tree . The smaller this ratio, the greater
the time savings, since only this fraction needs to be analyzed by the algorithm in
detail. The setup for this experiment is as follows: One of the subresults consists
of a single point from which the measurements are taken. This point is varied by
different experiments. Since the density of points along a latitude line is constant, it
doesn’t make sense to vary the longitude of this point. Therefore, only the latitude
of the point is varied. The other child is set up as described in section 9.2, with the
restriction levels varying from zero to eight. The next parameter to be varied is the
maximum distance, which has the values 1 m, 10 m, 100 m, ..., 10000000 m. Some
representative results are shown in Figure 9.2, Figure 9.3 and Figure 9.4. All other
results can be seen in section A.2. Next, we analyze both ratios.
First, let us take a closer look at the ratio size result table

geometries in query box shown on the right
side of the figures. For a latitude of zero degree, the ratio is at least 50 %, but for
some distances it’s also 100 % or close to 100 %. The heatmap for the latitude of 50
degree shows an efficiency of 100 % in almost half of the cases. In about a quarter
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Figure 9.1.: This figure shows the ratio of the total time of the spatialJoin operation
( total time when building the smaller rtree

total time when building the larger rtree ). A ratio smaller than one means, that it was
faster to build and query the smaller R-tree, a ratio bigger than one means, that
it was faster to build and query the larger R-tree. A number of -1, colored in red,
indicates, that more than 100 GB of memory would have been required, which is
why the calculation could not be done
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of the cases the efficiency is 50 % and in the other quarter it is 70 % to 80 %. The
heatmap for the latitude of 90 degrees has an efficiency of 100 % in almost all cases.
Very few cases have an efficiency of 90 % and only one case has an efficiency of 70 %.
The reason that the ratios get higher as the latitude increases is because of the pole
handling. When a pole is reached, the query box has to consider all longitudes.
The closer the query point is to the pole, the fewer latitudes will be reached and
the smaller the query box will be. The reason why smaller maximum distances that
don’t reach the pole in combination with smaller number of geometries in the R-tree
have percentages of either 100 % or 50 % is that the result table is very small. If
there are only a few geometries in the R-tree and they have a uniform density on
the earth, then there is hardly any geometry close to the query point. Then it often
happens that the result table has one entry and either the query box also has one
entry, resulting in 100 % efficiency, or it has two entries (because the second one
was barely in reach), resulting in 50 % efficiency. Because of this effect, there can
be no values in between. Therefore, the most meaningful part of the query is the
upper right quadrant. Here we usually have ratios from 60 % to 90 %, most of the
time above 80 %.

Second, we take a closer look at the ratio geometries in query box
geometries in the R-tree shown on the left side

of the figures. This ratio is especially important for the runtime of the algorithm.
The lower it is, the fewer cases have to be checked. Varying the latitude has little
effect on this ratio. The ratio is basically always below 10 % in all cases, which
means that at most only a tenth of the comparisons have to be done and 90 % of
the comparisons can be skipped. This effect is even greater if both subresults are
large. Then for all points of the subresult that wasn’t used to build the R-tree,
90 % of comparisons can be saved. Looking at the heatmaps, there is only one
case where not 90 % of the comparisons can be saved. This is the case when the
maximum distance is 10000000. Then the query box contains more than 50 % of
the points. However, looking at the ratio size result table

geometries in query box for these cases, one can
see that basically all points in the query box are also contained in the result (except
for very low latitudes, where an unefficient edge case of an edge case occurs (the
pole is barely reached with a large max distance value). If one of these conditions
would not be met, then basically all points of the query box would be included in
the result). Therefore, it is not a weakness of the algorithm to have a high ratio
for the max distance of 10,000,000, because those points need to be checked, since
basically all of them are contained in the result. In fact, it would be very bad if the
ratio for this max distance value were low, because that would mean that geometries
would have been ignored, even though they should have been included in the result.

In summary, the query box is a very efficient way to filter the geometries. In almost
all cases, at least 90 % of the comparisons could be saved, and of the 10 % that were
compared, most end up in the final result.
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Figure 9.2.: This figure shows the analysis of the query box efficiency for a latitude
of 10. The left side shows the ratio geometries in query box

geometries in R-tree and the right side shows
the ratio size result table

geometries in query box .

Figure 9.3.: This figure shows the analysis of the query box efficiency for a latitude
of 50. The left side shows the ratio geometries in query box

geometries in R-tree and the right side shows
the ratio size result table

geometries in query box .
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Figure 9.4.: This figure shows the analysis of the query box efficiency for a latitude
of 90. The left side shows the ratio geometries in query box

geometries in R-tree and the right side shows
the ratio size result table

geometries in query box .

9.5. Analysis on the OpenStreetMap data of
Germany

This section analyzes the algorithms on the OpenStreetMap dataset of Germany.
This dataset is much larger than the synthetic dataset introduced above. It has the
following statistics:

• Number of triples: 30,903,390,824

• Numer of subjects: 1,455,708,653

• Number of predicates: 30,032

• Number of objects: 3,073,801,549

9.5.1. Pairs of university building

In this analysis, the query was to find all pairs of university buildings in Germany
that are at most a certain distance apart. This distance was given the values 0.01 km,
0.1 km, 1 km, 10 km, 100 km and 1000 km. Each tested distance was queried with
the bounding box algorithm with and without midpoint approximation and with
the baseline algorithm. An example query with a maximum distance of 1 km and
using the bounding box algorithm can be seen in Figure 9.5. The results of all
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queries can be seen in Table 9.12 and are visualized in Figure 9.6. The heatmaps
in Figure 9.6 all have three rows, showing the size, the total computation time, and
the time taken just for the spatialJoin operation. The rows show the distance the
pairs of university buildings were allowed to be from each other. Since the sizes and
times have different orders of magnitude, a logarithmic scale was chosen. Looking
at the times of the spatialJoin operation of the BoundingBox algorithm without
midpoint approximation, it can be seen that with each increase in the size of the
distance, the time for the spatialJoin operation also increases significantly, but not
by exactly one order of magnitude. When using the BoundingBox algorithm with
midpoint approximation, this increase is much less than an order of magnitude and
the times are much smaller than the times of the BoundingBox algorithm without
midpoint approximation. From this we can already conclude that the exact distance
calculation is expensive, more about this later. If we compare the times for the Spa-
tialJoin operation of the BoundingBox algorithm with the Baseline algorithm, we
can clearly see that the BoundingBox algorithm is much faster than the Baseline
algorithm. The times of the Baseline algorithm don’t depend on the maximum dis-
tance, so the outperformance of the BoundingBox algorithm increases the smaller
the maximum distance becomes. We can also see that for the baseline algorithm,
basically the entire time of the query computation was spent on the spatialJoin
operation. This isn’t the case when looking at the BoundingBox operation. Com-
paring the total time for the query and the time for the spatialJoin operation, we
can see that there is a huge difference in most cases, especially when the midpoint
approximation is used. Looking more closely at the total time for the BoundingBox
algorithm with midpoint approximation, we can see that the time does not seem to
depend on the maximum distance. This indicates that another part of the query
is the bottleneck and not the spatialJoin operation. To analyze the query, we can
take a closer look at the ExecutionTree and analyze the timings of each operation.
An example ExecutionTree is shown in Figure 9.7. In this illustration of the Exe-
cutionTree, operations that took a long time are highlighted in red. Here we can
see that the two operations that took the most time were a join operation with 18
seconds and a sort operation with 15 seconds. When comparing this to the 0.285
seconds of the spatialJoin operation, it can be seen why the total time of the query
does not seem to depend on the maximum distance. One last note: I don’t know
why the QueryPlanner builds the ExecutionTree the way it does. As you can see in
the query in Figure 9.5, the query for building1, geo1, and wkt1 is the same as for
building2, geo2, and wkt2. Even though it is the same, the QueryPlanner planned
them differently. The left child of the SpatialJoin operation of the ExecutionTree
in Figure 9.7 shows a very efficient ordering of the operations to get the first sub-
result of the spatialJoin operation. Why the QueryPlanner did not plan the other
subresult equally efficiently should be evaluated. Finally, I want to take a look at
the result size of the spatialJoin operation. The size of the result query increases

2The appendix contains the ExecutionTree with timing information for all queries in
subsubsection A.3.1.1
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as the maximum distance parameter increases. With each increase in the maximum
distance, the size of the result table also increased by about an order of magnitude.
That’s to be expected. But if you take a closer look at Table 9.1 and compare the
size of the result for the BoundingBox algorithm without midpoint approximation
with the size of the result for the BoundingBox algorithm with midpoint approxi-
mation, we can notice a slight difference in most values. For a maximum distance
of 100 km the difference is only 0.09 %, but for a maximum distance of 0.01 km the
result size of the spatialJoin without midpoint approximation is more than twice
as large as the one with midpoint approximation. The reason for this is that when
the maximum distance and the size of the geometry of the object, in this case the
university building, are of the same order of magnitude, the approximation is not
good. If we approximate two buildings that are 5 by 5 meters with their center,
then the walls of the building can be at most 5 meters apart, otherwise their cen-
ters are more than 10 meters apart, which would exclude them from the result. If
the approximation isn’t used, the walls of the two buildings can be up to 10 me-
ters apart and still be in the result. This also explains why the difference for the
maximum distance for 100 km is so small. There are hardly any pairs of university
buildings that are less than 100 km apart when measured wall to wall, but more
than 100 km apart when measured center to center. In this case, the size of the
university building is small enough compared to the up to 100 km distance between
the buildings that this approximation is very good. Another example where the
midpoint approximation would fail badly is if you take the river Rhine. It runs from
the south of Germany to the North Sea in the Netherlands. If the river were approx-
imated by the center of its bounding box, the center would probably be close to the
center of the western border of Germany. When calculating the distance from, say,
the university library of freiburg to the Rhine, the midpoint approximation would
give a very poor estimate and should not be used. These two examples show that
the midpoint approximation can be good or bad depending on the geometry and its
size compared to the maximum distance. Since computing the true distance is much
more expensive than computing the distance using the midpoint approximation, one
should consider whether the current query requires the true distance or whether the
midpoint approximation is good enough.

9.5.2. Comparison to the OSM2RDF paper

In this section I want to compare the performance of the SpatialJoin algorithm
with the OSM2RDF tool [3]. Since the OSM2RDF tool and the SpatialJoin oper-
ation do not implement the same concept, but only share some common features,
this comparison is not meant to imply that we should replace one with the other.
The "contained in" and "intersects" predicates that the OSM2RDF tool adds to the
dataset cannot be computed by the SpatialJoin operation, and the OSM2RDF tool
does not allow you to specify a maximum distance between objects. The OSM2RDF
paper analyzed it’s performance based on four queries. These were
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Figure 9.5.: Example SPARQL query to get pairs of university buildings, which
are at most 1 km apart from each other.

Figure 9.6.: Visualization of the times and result sizes for the university pair query
for different maximum distances computed with different algorithms. Note the
logarithmic scaling.
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Figure 9.7.: This figure shows an example ExecutionTree for the BoundingBox
algorithm with no midpoint approximation and a maximum distance of 1 km
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Table 9.1.: Results of the university pairs queries on the OpenStreetMap germany
dataset. In the experiment column, BoundingBox or baseline refers to the used
algorithm and "no midpoint" or "midpoint" gives the information, whether the
midpoint approximation was used or not.

experiment dist size input size result total time in ms SpatialJoin
time in ms

BoundingBox,
no midpoint

1000
km

8437 x 8437 70,812,225 438,670 403,025

BoundingBox,
midpoint

1000
km

8437 x 8437 70,812,255 51,975 18,012

baseline, no
midpoint

1000
km

8437 x 8437 70,812,255 1,089,868 1,055,074

BoundingBox,
no midpoint

100
km

8437 x 8437 7,277,251 85,733 50,539

BoundingBox,
midpoint

100
km

8437 x 8437 7,270,635 36,816 2,122

baseline, no
midpoint

100
km

8437 x 8437 7,277,251 1,074,835 1,041,136

BoundingBox,
no midpoint

10
km

8437 x 8437 1,208,191 41,545 7,701

BoundingBox,
midpoint

10
km

8437 x 8437 1,205,023 34,972 471

baseline, no
midpoint

10
km

8437 x 8437 1,208,191 1,077,733 1,044,641

BoundingBox,
no midpoint

1 km 8437 x 8437 493,357 36,202 3,365

BoundingBox,
midpoint

1 km 8437 x 8437 481,133 35,179 285

baseline, no
midpoint

1 km 8437 x 8437 493,357 1,059,261 1,026,718

BoundingBox,
no midpoint

0.1
km

8437 x 8437 72,317 35,657 958

BoundingBox,
midpoint

0.1
km

8437 x 8437 48,357 34,135 177

baseline, no
midpoint

0.1
km

8437 x 8437 72,317 1,071,177 1,038,522

BoundingBox,
no midpoint

0.01
km

8437 x 8437 18,055 998 573

BoundingBox,
midpoint

0.01
km

8437 x 8437 8,731 35,760 174

baseline, no
midpoint

0.01
km

8437 x 8437 18,055 1,040,716 1,040,279
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1. all university buildings
2. all university buildings in the bounding box of germany
3. all university buildings in the bounding box of Freiburg
4. all university buildings in Freiburg

The first query does not contain any distance information, so a SpatialJoin operation
would not be part of it. Therefore, it can’t be compared. The second query could
be simulated (by picking a university building in the center of Germany and then
making a query where you want to have every university building that is at most
"radius of Germany" meters away from it. However, this would require the OSM
data of the planet, otherwise the comparison would be unfair. Since the machine
of the evaluation has only 128 GB RAM and other people are working on this
machine in parallel, it was not possible to use the OSM data of the whole planet.
Therefore, this query can’t be compared either. The third query can be compared
using the simulation approach mentioned above. We choose the university library in
Freiburg and want to get all university buildings that are at most 25 km away from
the university library. The fourth query can be simulated in the same way as the
third query. Table 9.2 shows the results of this comparison3. Looking at the times
you can see that all operations are quite fast, but the fastest is query four, which
uses the pre-computed triples from the OSM2RDF tool. Query three, the bounding
box algorithm without midpoint approximation, and the baseline algorithm all have
similar total times. And the BoundingBox algorithm with midpoint approximation
has the slowest time. This is a surprising result, since the midpoint approximation
is supposed to make the algorithm faster at the expense of accuracy. Looking at the
previous evaluation result, this is also clearly the case, this query is the exception.
A possible reason could be that for very small sizes (as one child consists of only
one entry: the university library of freiburg) the construction of the approximation
takes longer than the computation of the actual distance. Another explanation
could simply be random noise in the form of server load, interrupts, or operating
system scheduling. To summarize this section, the best query times for contained
in relations can be achieved using the pre-calculated triples. If the data set does
not change often, or if you need to use contained in triples frequently, the pre-
calculation time is definitely worth it, especially since it produces accurate results
and does not simulate the contained in Freiburg relation over a building in Freiburg
and a distance. If the dataset changes a lot and you do not need exact contained
in predicates, then the SpatialJoin is a good alternative, since it does not require
any additional pre-computation time and is also very fast - just not as fast as pre-
computed triples. As mentioned earlier, this should not be seen as a replacement,
since the data from the OSM2RDF tool is needed to get the geometry information
into the knowledge graph. But one can choose to skip the step of pre-computing

3The ExecutionTree for each SpatialJoin operation can be seen in the appendix in
subsubsection A.3.1.7. The times for the OSM2RDF queries were taken from the OSM2RDF
paper [3]]
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Table 9.2.: Comparison of the query of university buildings in the bounding box
of Germany from the OSM2RDF paper with the simulated version of this query
using the SpatialJoinAlgorithm

algorithm total time spatialJoin time pre compu-
tation time

OSM2RDF Query 3 391 ms - 16 hours
OSM2RDF Query 4 134 ms - 16 hours
BoundingBox with midpoint ap-
proximation

646 ms 390 ms -

BoundingBox no midpoint ap-
proximation

339 ms 106 ms -

Baseline no midpoint approxima-
tion

350 ms 130 ms -

the predicates if an approximation of the contained in predicate and the intersecting
predicate4 is good enough. For the OpenStreetMap dataset of the whole planet this
could save 48 days of time, for the OpenStreetMap dataset of Germany this would
save 16 hours of time.

9.5.3. Other queries

In this section, I just want to quickly show the computation times of the sample
queries from the introduction chapter.

The results for the restaurant query from algorithm 1 and the antenna query from
algorithm 2 are shown in Table 9.35. The restaurant query is fast no matter which
algorithm is chosen. As in the previous section, the time for the analysis with the
midpoint approximation is slightly longer than the time without the approximation.
This indicates that the approximation overhead does not pay off for very small input
sizes. For the antenna query, the midpoint approximation does pay off, but only
slightly. The runtime of the baseline algorithm for the antenna query was very bad.
It timed out after 45 minutes. A look at the log showed that the algorithm was just
at a progress of 16.5 %. If it had continued at that rate, the baseline algorithm would
have taken 4.5 hours to compute the result. Since the BoundingBox algorithm can
compute the result in less than 3 minutes, the Baseline algorithm is no match here.

4Via a distance of zero and no midpoint approximation
5The ExecutionTrees for each query are included in the appendix in subsection A.3.2 and
subsection A.3.3
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Table 9.3.: This table shows the query times for the examples from the introduction

query time of Bounding-
Box algorithm with
midpoint approxi-
mation

time of Bound-
ingBox algorithm
without midpoint
approximation

time of baseline
algorithm

restaurant query 2,780 ms 2,479 ms 4,662 ms
antenna query 153,481 ms 163,256 ms > 45 minutes

9.6. Runtime analysis of the code

The final analysis of the evaluation is the runtime analysis of the code. For this
analysis, the synthetic dataset is used again. The queries were again sent by the
query script as explained in section 9.2 and algorithm 15. The code of the Spa-
tialJoin class was adapted by adding the statistical measurements. Each method
that was measured had a current time measurement as the first statement in its
method body. Then the last statement of the method (which could be the end of
the method or the line before each return statement) was also a time measurement.
The time difference was the time taken by the method (including the time taken by
other functions called by that method). Since a method can be called very often,
for example over 300,000 times, if it is called for each element of the input, the time
difference of each function call was added to a class variable and logged once at the
end. So we get the time spent in each logged method during the whole query. If the
function takes a large amount of time, it may be because it is rarely called but is
very expensive, or because it is called very often. When the time measurement was
added, the code sometimes had to be changed. If the return statement called an
expensive method, that time would not be logged. To avoid this and to also log the
expensive call, the expensive call was assigned to a dummy variable. Then the time
was measured and only then the dummy variable was returned. As mentioned in al-
gorithm 15, the analysis was done for all size combinations of the children and many
max distance values. In addition, the analysis was done once with the midpoint
approximation enabled and once with the true distance computed. The memory
limit was 100 GB, but this was not enough to compute each query. The queries
with the following parameters had an out-of-memory exception (each entry had the
exception regardless of whether midpoint approximation was enabled or not):

• maxDist: 1,000,000 size children: 322202 and 322202
• maxDist: 10,000,000 size children: 322202 and 322202
• maxDist: 10,000,000 size children: 322202 and 96662
• maxDist: 10,000,000 size children: 96662 and 96662
• maxDist: 10,000,000 size children: 322202 and 32042
• maxDist: 10,000,000 size children: 96662 and 32042
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• maxDist: 10,000,000 size children: 322202 and 10682

The out-of-memory exception occurs when the max distances are very large and
the size of the children is very large. Of the 720 queries tested, only the 14 queries
mentioned above had an out of memory error (each one above once with midpoint
approximation and once without).
A total of seven functions were measured. The reason why only these seven functions
were measured is that the other functions are only called by one of these basic
functions. Therefore, the time of the other functions is indirectly measured by
measuring only these seven functions. Unfortunately, simply adding the time spent
in each method does not give the total time of the algorithm. The reason is that some
times are counted twice. For example, when constructing the R-tree, the method
getRtreeEntry is called. Therefore, the time of getRtreeEntry for the entries of
the smaller child is counted twice. The same happens with the computeDistance
and computeDistanceArea functions. The time spent in the computeDistanceArea
function is counted twice.
Since the runtime of the algorithm and the runtime of the different functions can
differ by many orders of magnitude, depending on the size of the children, a loga-
rithmic transformation was chosen for the visualization. This means that the time
t spent in each function was the input to the function loge(t). In order to easily
compare the runtime of the algorithm with different inputs, each run of the algo-
rithm is displayed in one line as a cumulative bar plot. The only disadvantage of
this visualization is that you can’t read the total time of the algorithm on the x-axis,
because summing logarithms is like multiplying the original values. In the runtime
of the code, however, the original values are added, not multiplied. Therefore, the
absolute value of the x-axis is meaningless in this case, and only the absolute size
of each color is meaningful (when this absolute value is put into the exponential
function, the runtime of that part of the code is output). Changing the x-axis to
a logarithmic scale and then displaying the cumulative values without transforming
each with the logarithm would not be helpful in comparing the runtimes of the func-
tions. The reason for this is that the x-axis is then non-linear, and the runtime of
the first functions compared to the last functions would appear to be much greater
than the difference really is. Using the procedures with the linear x-axis and the
logarithmic times, the runtimes of the functions can be compared to each other and
to other runs of the algorithm, which is the main reason for this evaluation. The
transformed and untransformed versions of the data can be seen in the appendix in
section A.4.
Figure 9.8 shows the results of this analysis for the query with a maximum distance
of 100,000 meters between the geometries. It shows the logarithm of the time taken
by each method, depending on the size of the input children and whether the mid-
point approximation was used or not. If a color is not shown, it means that the
time spent on that method was less than two microseconds6. Figure 9.9 shows the

6If the time was one microsecond, then loge(1) = 0 and therefore no time is shown. If the method
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timing analysis with a linear x-axis.

In the following list, the impact of each method on the runtime is quickly analyzed.

• getRtreeEntry: This function is very expensive because it has to read the
data from disk. This process has to be done for each geometry of the left entry
and the right entry. Therefore, the larger the size of the children, the more
time is spent in this function. The maximum distance value has no effect on
this function, nor does the midpoint approximation. Compared to the other
functions, this one is quite expensive. For small child sizes, this is often the
only time that can be seen in the linear plot.

• computeQueryBox: This function is run for each of the geometries in the
larger input. Since the runtime of a single run of this function is constant, the
total time spent in this function depends only on the size of the larger child.
Compared to the other functions, this one is really cheap.

• computeDist: This function is called for each pair in the query box. In the
worst case, this can be the product of the sizes of the children. Depending on
the maximum distance value, the query box will contain more or less points.
Since the time of the computeDistArea function is also included, the runtime
also depends on the midpoint approximation. If the midpoint approximation is
disabled, the expensive computeDistArea function is added to the time of this
function. Therefore, this function is faster when the size of the children and
the maximum distance is small and the midpoint approximation is disabled.
Compared to the other functions, it has a small impact when the midpoint
approximation is enabled and a large impact when it is disabled.

• computeDistArea: This function will only be called if the midpoint approx-
imation is disabled. Like the computeDist function, it is called for each pair
of geometries in the query box, but with the restriction that one of them must
be an area. The runtime of this function depends on the number of elements
in the query box, which depends on the maximum distance. In addition, it
depends on the size of the children, since it is called for each potential pair.
Compared to the other functions, this function is very expensive.

• addResultTableEntry: This function is called for each pair of geometries
included in the output. Therefore, it depends on the maximum allowed dis-
tance, but also on the size of the children. When there are few results in the
table, the time spent on this function is so small that it doesn’t even show up
in the log-transformed times. But if the size of the children is large and the
maximum allowed distance is also large, then this function is rather expensive.

is fast enough (or was not called, such as the computeDistArea function when the midpoint
approximation was enabled) for the start time and end time to be the same time (with an
accuracy of one microsecond), then log(0) would throw an error. When this happened, a zero
was added by the exception handling
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• buildRtree: This function depends on the size of the smaller child, as each
geometry of the smaller child is inserted into the R-tree. It does not depend on
the maximum allowed distance or the midpoint approximation. As the values
have to be read from the disk, this function can take longer, if the smaller child
is large, but compared to other functions, like the computeDistArea function,
it is still quite cheap.
• queryRtree: This function gets called for each entry of the larger child.

Depending on the maximum allowed distance and the size of the R-tree (the
size of the smaller child), it needs more or less time, as more or less values
from the R-tree need to be returned. Compared to the other functions it is
cheap, when the size of the children and the maximum distance is small, when
they are large its time is only rather cheap.

Comparing the runtime of queries with midpoint approximation to queries without
midpoint approximation shows that the midpoint approximation is very efficient.
The results for all queries can be seen in the appendix in section A.4. There they
are presented in logarithmic and normal plots.
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Figure 9.8.: This figure shows the times spent in different methods for the query
with a maximum distance of 100000 meter, depending on the size of the children
and if the midpoint approximation is used or not. The x axis is logarithmic98



9.6 Runtime analysis of the code

Figure 9.9.: This figure shows the times spent in different methods for the query
with a maximum distance of 100000 meter, depending on the size of the children
and if the midpoint approximation is used or not. 99





10. Conclusion and Outlook

The last section of this thesis will briefly conclude the master thesis and give an
outlook on improvements that could be made to make the algorithm even better
than it already is.

10.1. Conclusion

During this thesis, I developed an efficient algorithm to compute the SpatialJoin
operation, which computes all pairs of geometries that are at most a user-defined
distance apart from each other. The algorithm was successfully integrated into the
search engine QLever and the QueryPlanner of QLever was adapted to correctly
consider the special case of the SpatialJoin algorithm. Both the algorithm itself
and the infrastructure changes were developed under the highest coding quality
standards. The code itself has been analyzed by a reviewer, a static code analysis,
and a format checker. The changes in the infrastructure and the algorithm itself
are confirmed to work properly by more than 1600 tests, which check the correct
functioning of the normal use cases, as well as the edge cases. The algorithm has
been thoroughly analyzed and proven correct on a theoretical level. Last but not
least, the algorithm has undergone a practical evaluation on a synthetic dataset
developed for the purpose of testing and analyzing this algorithm. The algorithm was
also tested on a real dataset, the OpenStreetMap of Germany. For both tests, the
BoundingBox algorithm was compared to the baseline algorithm. The BoundingBox
algorithm outperformed the baseline algorithm in all cases, especially as the input
size increased.

10.2. Outlook

The algorithm can still be improved to give more accurate results or to give the
same results faster. The following list gives some ideas that can be implemented in
the future:

• In its current form, the algorithm only considers the latitude and longitude of
the geometries. The third dimension, height, is still missing. The algorithm
could be improved to include height data so that the distance between geome-
tries on skyscrapers or cliffs and objects on the ground is correctly calculated.
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• The second part of the algorithm, after building the R-tree, can be parallelized
to reduce the runtime significantly. The R-tree is queried with each row of the
second input child. The computation of the query box, the querying of the R-
tree with the query box, and the computation of the distance are independent
for each row. Therefore, it could easily be parallelized.
• The query box could be split into two boxes to exclude even more points that

don’t need to be checked. Suppose we have a point on the northern hemisphere
for which we want to create a query box. In the current implementation, the
farthest longitude that can be reached is always above the point. Therefore,
if we were to split the current query box into two parts, we could shrink the
bottom part because fewer longitudes could be reached below the point.
• To avoid loading all geometry data from disk, which is a really slow process, we

could store a bounding box in the IDs to have them always in main memory.
This would make building the R-tree much faster, since no data needs to be
loaded from disk, and querying the R-tree with the other input would also be
faster, since those geometries would not need to be loaded as well. Due to
the limited number of 60 data bits the precision would not be perfect. The
spatial resolution would be about circumferenceEarth

215 = 1.2 km per coordinate.
This is good enough to exclude a lot of results. It will not exclude as many
results as the current method, but checking a few more results is probably
faster than reading all the geometries from disk. Another option would be to
store the bounding box in two IDs. Then each ID would contain a GeoPoint.
One GeoPoint would represent the lower left corner of the bounding box and
the other the upper right corner. Since GeoPoints are already implemented,
this extension should be quite easy.
• The last option I want to present in this outlook is the option to extend this

algorithm to ellipsoids of revolution like the Earth. Ellipsoids of revolution are
three dimensional, but can be generated by a two dimensional ellipse rotated
around an axis. Therefore an ellipsoid of revolution has only two axes (see
Figure 5.1). To extend the presented algorithm to ellipsoids of revolution, one
simply scales the larger axis until it has the size of the smaller axis. After this
scaling process, we have constructed a perfect sphere. This scaling process
does not increase the size between any points on the ellipsoid, many points
now have a smaller distance compared to the unscaled ellipsoid. If we now
run the presented algorithm on this smaller sphere, the filtering process of the
algorithm (the query box constructed with maxDist) will return at least as
many results as before (since the scaled version is smaller, the same distance
can reach more points (or at least the same number of points on parts of the
sphere not affected by the scaling)). So we reach all points and some more (so
the filtering is a bit less effective), but no points are missed. After filtering,
the distance is calculated for each pair individually. Here we have to calculate
the distance on the unscaled ellipsoid using an updated formula that applies to
ellipsoids. With these small adjustments, the algorithm can be easily adapted
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10.2 Outlook

to ellipsoids. Since the formulas for ellipsoids are more complicated and take
longer to compute, the algorithm will be slower. Here you have to decide which
trade-off between accuracy and speed you want to make. For most cases the
assumption that the earth is a perfect sphere is good enough and will give
good results.
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A. Appendix

A.1. Build R-tree analysis

Figure A.1.: This figure shows the ratio of the time needed for building the rtree
( time building the smaller rtree

time building the larger rtree ).
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Figure A.2.: This figure shows the ratio of the time needed for querying
( time querying the smaller rtree

time querying the larger rtree ).

A.2. Query box efficiency

This section shows the results of the analysis for the query box efficiency for the
latitudes, which were not shown in the main chapter about the query box efficiency.
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A.2 Query box efficiency

Figure A.3.: This figure shows the analysis of the query box efficiency for a latitude
of 0. The left side shows the ratio geometries in query box

geometries in rtree and the right side shows the
ratio size result table

geometries in query box .

Figure A.4.: This figure shows the analysis of the query box efficiency for a latitude
of 10. The left side shows the ratio geometries in query box

geometries in rtree and the right side shows
the ratio size result table

geometries in query box .
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Figure A.5.: This figure shows the analysis of the query box efficiency for a latitude
of 20. The left side shows the ratio geometries in query box

geometries in rtree and the right side shows
the ratio size result table

geometries in query box .

Figure A.6.: This figure shows the analysis of the query box efficiency for a latitude
of 30. The left side shows the ratiogeometries in query box

geometries in rtree and the right side shows the
ratio size result table

geometries in query box .
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A.2 Query box efficiency

Figure A.7.: This figure shows the analysis of the query box efficiency for a latitude
of 40. The left side shows the ratio geometries in query box

geometries in rtree and the right side shows
the ratio size result table

geometries in query box .

Figure A.8.: This figure shows the analysis of the query box efficiency for a latitude
of 50. The left side shows the ratio geometries in query box

geometries in rtree and the right side shows
the ratio size result table

geometries in query box .
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Figure A.9.: This figure shows the analysis of the query box efficiency for a latitude
of 60. The left side shows the ratio geometries in query box

geometries in rtree and the right side shows
the ratio size result table

geometries in query box .

Figure A.10.: This figure shows the analysis of the query box efficiency for a
latitude of 70. The left side shows the ratio geometries in query box

geometries in rtree and the right side
shows the ratio size result table

geometries in query box .
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A.2 Query box efficiency

Figure A.11.: This figure shows the analysis of the query box efficiency for a
latitude of 80. The left side shows the ratio geometries in query box

geometries in rtree and the right side
shows the ratio size result table

geometries in query box .

Figure A.12.: This figure shows the analysis of the query box efficiency for a
latitude of 90. The left side shows the ratio geometries in query box

geometries in rtree and the right side
shows the ratio size result table

geometries in query box .
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A.3. Complete data from the OpenStreetMap
Germany evaluation

This section of the appendix contains all of the data from the evaluation on the osm
germany knowledgegraph.
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A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.1. University queries

A.3.1.1. University buildings at most 1000 km apart from each other

Figure A.13.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 1000 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with no midpoint approximation
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A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.14.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 1000 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with the midpoint approximation115
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Figure A.15.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 1000 km meters apart from each other. The result has
been calculated using the baseline algorithm with no midpoint approximation116



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.1.2. University buildings at most 100 km apart from each other

Figure A.16.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 100 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with no midpoint approximation
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A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.17.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 100 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with the midpoint approximation119
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Figure A.18.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 100 km meters apart from each other. The result has
been calculated using the baseline algorithm with no midpoint approximation120



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.1.3. University buildings at most 10 km apart from each other

Figure A.19.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 10 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with no midpoint approximation
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A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.20.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 10 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with the midpoint approximation123
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Figure A.21.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 10 km meters apart from each other. The result has been
calculated using the baseline algorithm with no midpoint approximation124



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.1.4. University buildings at most 1 km apart from each other

Figure A.22.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 1km meters apart from each other. The result has been
calculated using the boundingBox algorithm with no midpoint approximation
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A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.23.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 1 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with the midpoint approximation127
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Figure A.24.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 1 km meters apart from each other. The result has been
calculated using the baseline algorithm with no midpoint approximation128



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.1.5. University buildings at most 0.1 km apart from each other

Figure A.25.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 0.1 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with no midpoint approximation
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A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.26.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 0.1 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with the midpoint approximation131
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Figure A.27.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 0.1 km meters apart from each other. The result has been
calculated using the baseline algorithm with no midpoint approximation132



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.1.6. University buildings at most 0.01 km apart from each other

Figure A.28.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 0.01 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with no midpoint approximation
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A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.29.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 0.01 km meters apart from each other. The result has been
calculated using the boundingBox algorithm with the midpoint approximation135
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Figure A.30.: Analysis of the runtimes for the search for pairs of university build-
ings, which are at most 0.01 km meters apart from each other. The result has
been calculated using the baseline algorithm with no midpoint approximation136



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.1.7. University buildings at most 25 km from the university library
freiburg away

Figure A.31.: Analysis of the runtimes for the search of university buildings, which
are at most 25 km meters apart from the university library freiburg. The result
has been calculated using the boundingBox algorithm with no midpoint approxi-
mation

138



A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.32.: Analysis of the runtimes for the search of university buildings, which
are at most 25 km meters apart from the university library freiburg. The result
has been calculated using the boundingBox algorithm with the midpoint approx-
imation
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Figure A.33.: Analysis of the runtimes for the search of university buildings, which
are at most 25 km meters apart from the university library freiburg. The result
has been calculated using the baseline algorithm with no midpoint approximation140



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.2. Restaurants near the university library freiburg and near a
tram stop

Figure A.34.: Analysis of the runtimes for the search of restaurants near the uni-
versity library which are also near a tram stop. The result has been calculated
using the boundingBox algorithm with no midpoint approximation
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A.3 Complete data from the OpenStreetMap Germany evaluation

Figure A.35.: Analysis of the runtimes for the search of restaurants near the uni-
versity library which are also near a tram stop. The result has been calculated
using the boundingBox algorithm with the midpoint approximation 143
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Figure A.36.: Analysis of the runtimes for the search of restaurants near the uni-
versity library which are also near a tram stop. The result has been calculated
using the baseline algorithm with no midpoint approximation144



A.3 Complete data from the OpenStreetMap Germany evaluation
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A.3.3. Antenna query

Figure A.37.: Analysis of the runtimes for the search of antennas and the amount
of apartments near them. The result has been calculated using the boundingBox
algorithm with no midpoint approximation
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Figure A.38.: Analysis of the runtimes for the search of antennas and the amount
of apartments near them. The result has been calculated using the boundingBox
algorithm with the midpoint approximation 147
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A.4 Timing analysis of the code

A.4. Timing analysis of the code

Figure A.39.: This figure shows the times spent in different methods for the query
with a maximum distance of 1 meter. The x axis is logarithmic
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Figure A.40.: This figure shows the times spent in different methods for the query
with a maximum distance of 10 meter. The x axis is logarithmic
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A.4 Timing analysis of the code

Figure A.41.: This figure shows the times spent in different methods for the query
with a maximum distance of 100 meter. The x axis is logarithmic
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Figure A.42.: This figure shows the times spent in different methods for the query
with a maximum distance of 1000 meter. The x axis is logarithmic
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A.4 Timing analysis of the code

Figure A.43.: This figure shows the times spent in different methods for the query
with a maximum distance of 10000 meter. The x axis is logarithmic
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Figure A.44.: This figure shows the times spent in different methods for the query
with a maximum distance of 100000 meter. The x axis is logarithmic
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Figure A.45.: This figure shows the times spent in different methods for the query
with a maximum distance of 1000000 meter. The x axis is logarithmic
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Figure A.46.: This figure shows the times spent in different methods for the query
with a maximum distance of 10000000 meter. The x axis is logarithmic
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Figure A.47.: This figure shows the times spent in different methods for the query
with a maximum distance of 1 meter
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Figure A.48.: This figure shows the times spent in different methods for the query
with a maximum distance of 10 meter
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Figure A.49.: This figure shows the times spent in different methods for the query
with a maximum distance of 100 meter
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Figure A.50.: This figure shows the times spent in different methods for the query
with a maximum distance of 1000 meter

160



A.4 Timing analysis of the code

Figure A.51.: This figure shows the times spent in different methods for the query
with a maximum distance of 10000 meter
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Figure A.52.: This figure shows the times spent in different methods for the query
with a maximum distance of 100000 meter
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A.4 Timing analysis of the code

Figure A.53.: This figure shows the times spent in different methods for the query
with a maximum distance of 1000000 meter

163



Chapter A Appendix

Figure A.54.: This figure shows the times spent in different methods for the query
with a maximum distance of 10000000 meter
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