Natural Entity Typing in Wikidata

Master's Thesis Presentation

Johannes Mannhardt

Examiner: Prof. Dr. Hannah Bast 2nd Examiner: Prof. Dr. Abhinav Valada Adviser: Natalie Prange

March 11th, 2025

University of Freiburg, Chair for Algorithms and Data Structures

Wikidata: Structured collaborative knowledge base.

Wikidata entities:

- Items (QID): Everything there is, including people, places, concepts, etc. (~116 million items)
- **Properties (PID)**: Relationships between items (~12,400 properties)

Each entity usually has a label and a description.

Example triples (statements):

- Berlin (Q64) \rightarrow country (P17) \rightarrow Germany (Q183)
- iPhone (Q2766) \rightarrow developer (P178) \rightarrow Apple (Q312)
- Europe (Q46) \rightarrow part of (P361) \rightarrow Eurasia (Q5401)

Wikidata entities form a Knowledge Graph:

- Nodes: items
- Edges: properties

Ontological Properties:

- P31 (instance of): Assigns an entity to a class
 - "Germany" as instance of "Country"
- **P279 (subclass of):** Defines hierarchical relationships between classes
 - "non-coding RNA" as subclass of "RNA"
 - P279 is transitive

Entity Typing: Assign types to entity mentions, e.g., "Paris" as City or "Einstein" as Person.

Why Entity Typing?

- Enhances NLP tasks:
 - Named Entity Recognition
 - Search
 - Question Answering

Existing approaches: typically rely on context, crowd-sourcing, and smaller knowledge bases.

Goal: Natural entity typing in Wikidata

• Assign the most natural, single type to each Wikidata entity

Challenges:

- What even is a "natural type"?
- Ambiguity from overlapping types
- Inconsistent/wrong use of P31 and P279
- Lack of clear ontological constraints for new entities

Problem Statement

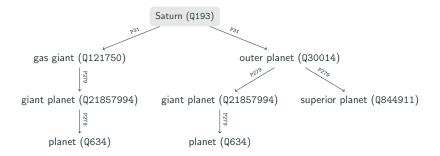


Figure 1: Multiple types assigned to *Saturn*, demonstrating varying levels of specificity.

Problem Statement

Figure 2: Multiple types directly assigned to the entity *London*, highlighting overlapping categories.

Approach: Identify potential types from existing connections

- P31 (instance of)
- P279 (subclass of)

Benefit: Clear candidate sets ensure consistency, simplify evaluation, and directly provide types as labels with corresponding QIDs.

Main Criteria:

- Layer 1: Select types reachable via P31 (instance of).
- Layer 2+: Select types reachable via P279 (subclass of).

Intuition behind criteria:

• If an entity is an instance of type *A*, and *A* is a subclass of *B*, the entity implicitly inherits *B* due to transitivity of P279.

Methodology: Selection Criteria

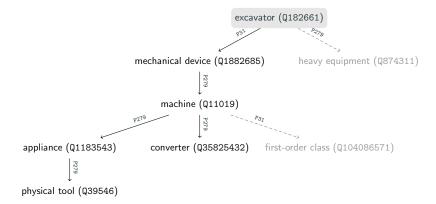


Figure 3: Systematic identification of candidate types based on Wikidata properties (P31 and P279).

Exceptions:

- Exception 1: If no P31 at Layer 1, allow P279 at Layer 1. (Reason: Wikidata does not strictly distinguish between classes and instances.)
- Exception 2: If Layer 2 has no P279 types and only one valid Layer 1 connection, reuse P31 at Layer 2. (Reason: Occasionally an entity is treated as a class without itself being a subclass of another class.)

Methodology: Training Data Generation

Challenges:

- Ensuring diversity in data coverage
- Manual labeling is slow and expensive

Approach: Automated labeling using LLM (Gemini Flash 1.5)

- Provide entity label, description, and candidate types
- LLM selects best-fitting type based on detailed system-string

Ensuring Structural Diversity:

- 1. Sample millions of entities from Wikidata
- 2. Filter out entities without labels/descriptions
- 3. Keep up to 3 entities per unique ontological position

Outcome:

• \sim 169,000 diverse labeled entities (\sim 24 hours for generation)

Graph-based Features:

• Node degrees (log in/out) based on different properties

Semantic Embeddings:

- **RDF2Vec** (Random walks + SkipGram) for knowledge graph embeddings [1]
- Universal Sentence Encoder for description-based embeddings [2]

Architectures:

- Feedforward Neural Network (FNN)
- Graph Neural Networks (GNNs)
 - GraphSAGE [3]
 - Graph Attention Network (GAT) [4]
 - Relational Graph Convolutional Network (R-GCN) [5] with additional properties/edge types

Training: Models trained using cross-entropy loss, regularization, hyperparameter tuning, class weights, and candidate masking.

Problem: Large output space (> 4000 types)

Solution: Candidate masking to restrict predictions to valid types.

Benefits:

- Ensures ontological consistency
- Reduces complexity for the models
- Significantly improves accuracy

Methodology: Candidate Masking

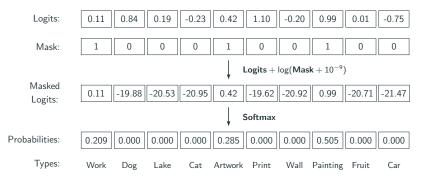


Figure 4: Candidate masking restricts model predictions to candidate types.

Methodology: Benchmark Datasets

Two Benchmarks: Total of 800 human-annotated entities

- 500 sampled entities
- 300 hand-picked entities

Metrics:

- Top-1 accuracy
- Mean Reciprocal Rank (MRR)
- Sometimes allow > 1 types for an entity to avoid penalizing small differences in specificity/focus

Results

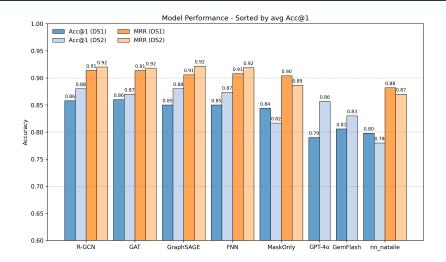


Figure 5: Model performance comparison on human-annotated benchmarks with candidate masking.

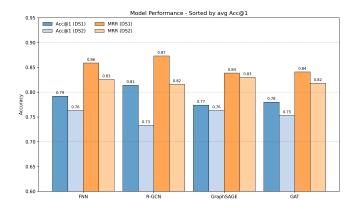


Figure 6: Model performance comparison on human-annotated benchmarks without candidate masking.

Examples of Correct Predictions

Entity (Wikidata ID)	Predicted Type (Wikidata ID)	Probability (%)	
Mona Lisa (Q12418)	painting (Q3305213) work of art (Q838948) drawing (Q93184)	98.4 0.6 0.3	
Costa Concordia (Q190542)	shipwreck (Q852190) ship (Q11446) boat (Q35872)	67.8 5.9 4.8	
Mount St. Helens (Q4675)	volcano (Q8072) mountain (Q8502) landform (Q271669)	66.9 23.4 1.3	
baseball cap (Q639686)	clothing (Q11460) headgear (Q14952) hat (Q80151)	24.6 6.5 6.0	

 Table 1: Examples of correct predictions made by the masked FNN model.

Entity (Wikidata QID)	Predicted Type (Wikidata QID)	Probability (%)
Kreuzberg (Q308928)	locality of berlin (Q35034452) populated place (Q123964505) neighborhood (Q123705)	72.6 12.8 9.7
Wilhelma (Q679067)	garden (Q1107656) botanical garden (Q167346) park (Q22698)	80.2 17.1 0.4
cinnamon (Q28165)	substance (Q378078) material (Q214609) fiber (Q161)	12.3 11.6 11.3
quadrate bone (Q589072)	class of anatomical entity (Q112826905) class (Q5127848) entity (Q35120)	98.1 1.5 0.1

 Table 2: Examples of incorrect predictions made by the masked FNN model.

Key Limitations:

- Subjectivity: Ambiguity in natural type selection
- Noisy Training Data: LLM-generated labels are inconsistent
- Wikidata's characteristics complicate candidate selection

Areas for Future Work:

- Crowdsourced benchmarks
- Refine training-data with human-in-the-loop feedback
- Incorporate more sophisticated LLMs
- Propose new Wikidata property for natural types

Acknowledgments:

- Prof. Dr. Hannah Bast
- Prof. Dr. Abhinav Valada
- Natalie Prange

Thank you for your attention! Questions?

LLM System String i

Objective:

From a pre-selected list, choose the most natural, everyday-language type for a Wikidata item based on its label and description.

Rules:

- Your choice **must** be one of the provided pre-selected types.
- Generally, choose the broadest category that still represents a natural and commonly understood everyday term (e.g., choose 'Disease' over 'Infectious Disease', 'RNA' over 'Non-coding RNA', 'Star' over 'Variable Star', etc.).
- However, if a more specific category is a **very commonly recognized and understood** everyday category, choose it. Think about what a typical person would call it (e.g., 'Lake' rather than 'Body of Water', 'Village' rather than 'Human Settlement', etc.).
- Again, avoid too much specificity (e.g., choose 'Surname' over 'Japanese Surname', 'Monument' over 'Heritage Monument', etc.).
- Generally speaking, a good type is short and intuitive, while a bad type is long and overly specific.
- Return only the type (with label and QID).
- Do not output JSON.

Examples:

- Berlin -> City
- Albert Einstein -> Person

LLM System String ii

- T-Shirt -> Clothing
- Germany -> Country
- Carbon Dioxide -> type of chemical entity
- Breaking Bad -> Television Series
- Jazz -> Musical Genre
- Sagrada Família -> Church
- Green Tea -> Drink
- FC Bayern Munich -> Sports Club (Football Club would be too specific)

Important: A type as long and specific as e.g. 'civil parish in Ireland' will **almost never** be a good choice (just 'civil parish' would be much better). Remember, a type should be short, intuitive, and represent a commonly understood category.

Comparison of Entity Typing Approaches:

Approach	Knowledge Base	Context?	Manual Data	Scale
Tipalo	DBpedia	No	Yes	Medium
TRank/TRank++	Multiple	Yes	Yes	Small
ManyEnt	Wikidata	Yes	Yes	Medium
RL-TRank	Multiple	Yes	Yes	Medium
Our Approach	Wikidata	No	No	Large

References i

- P. Ristoski and H. Paulheim, "RDF2Vec: RDF graph embeddings for data mining," in *The Semantic Web – ISWC* 2016: 15th International Semantic Web Conference, Proceedings, Part I, (Berlin, Heidelberg), pp. 498–514, Springer, 2016.
- D. Cer, Y. Yang, S.-Y. Kong, and et al., "Universal sentence encoder for english," in *Proc. EMNLP 2018: Sys. Demos*, (Brussels, Belgium), pp. 169–174, ACL, 2018.
- W. L. Hamilton, R. Ying, and J. Leskovec, "Inductive representation learning on large graphs," *CoRR*, vol. abs/1706.02216, 2017.

- P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, "Graph attention networks," 2018.
- M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg,
 I. Titov, and M. Welling, "Modeling relational data with graph convolutional networks," 2017.