
University of Freiburg

Department of Computer Science

Master’s Thesis

Efficient SPARQL Autocompletion on

Large Knowledge Bases

presented by Johannes Kalmbach

Matriculation Number: 4012473

Supervisor and First Reviewer:

Prof. Dr. Hannah Bast

Second Reviewer:

Prof. Dr. Fang Wei-Kleiner

August 2, 2021

Contents

1 Preliminaries 3

1.1 The Resource Description Framework . 3

1.2 The SPARQL Query Language . 4

1.3 Real-World Knowledge Bases . 7

1.4 Motivation: Formulating Proper Queries is Hard 8

2 Problem Definition 12

2.1 The SPARQL Autocompletion via SPARQL Problem 12

2.2 Examples . 13

2.3 Discussion . 14

2.4 Contributions . 15

3 Related Work 16

4 Autocompletion (AC) Queries 18

4.1 Calculating the Context . 18

4.2 AC Queries for Subjects . 19

4.3 AC Queries for Predicates . 20

4.4 AC Queries for Objects . 20

4.5 Adapting AC Templates . 21

4.6 Agnostic and Unranked AC Queries . 23

4.7 Semi-Sensitive AC Queries . 24

4.8 Mixed Autocompletion . 25

4.9 Adapting AC Query Templates to Complex SPARQL Constructs 25

5 Technical Contributions 28

5.1 Basic Architecture of QLever, Blazegraph and Virtuoso 28

5.2 Efficient Prefix Filtering . 30

5.3 Efficient Predicate Completion Using Patterns . 32

5.4 Caching of Subresults . 33

5.4.1 Description of QLever’s Cache . 33

5.4.2 Comparison to Blazegraph and Virtuoso . 34

5.4.3 Improvements for QLever’s caching . 34

5.4.4 Conclusion . 36

5.5 Implementation of a Memory Limit for QLever . 36

5.6 Implementation of a Timeout for QLever . 38

6 Evaluation 41

6.1 Tuning AC Queries . 41

6.2 SPARQL Engines and Hardware . 42

6.3 Autocompletion Queries . 43

6.4 Evaluation Metrics . 44

6.5 Results . 45

1

7 Conclusion 48

8 Acknowledgements 50

References 51

2

Abstract

We describe an autocompletion system, that is able to help users formulate complex

SPARQL queries on large knowledge bases. As the user types a SPARQL query, they are

presented with suggestions for the entity that is currently under the cursor. These sugges-

tions are context-sensitive. This means that they form a useful continuation to the part of the

query previously typed. We obtain these suggestions by executing special SPARQL queries

which we call autcompletion queries (AC queries). We formalize this setting as the SPARQL

Autocompletion via SPARQL problem. We describe a template-based approach that allows

the automatic generation of the AC queries. This approach can easily be adapted to a wide

range of knowledge bases. We provide technical improvements to the QLever SPARQL engine

that allow us to efficiently process the AC queries. We also provide an extensive evaluation

of our setup using multiple knowledge bases and query engines. This evaluation shows, that

context-sensitive autocompletion leads to significantly better suggestions than alternative ap-

proaches which do not consider the context. We also show that our improved version of

QLever is able to process 90% of a diverse set of context-sensitive AC queries in less than

1 second even on the large Wikidata knowledge base (6.9 Billion statements). This makes

our approach feasible for a pratical user interface because the high-quality context-sensitive

suggestions can be presented to the user interactively as they type.

1 Preliminaries

Knowledge bases, as defined by the RDF standard (Resource Description Framework) are one

of the most important methods for storing structured data. The standard way of retrieving

information from such knowledge bases is the SPARQL query language. In this section we will

first introduce RDF and SPARQL. We limit ourselves to the aspects of these standards that are

necessary to understand the remainder of this thesis. We then introduce Wikidata, Freebase and

Fbeasy, three general-purpose knowledge bases. We will then explain, why it is in practice often

hard to manually formulate useful SPARQL queries on large knowledge bases. This discussion

forms the motivation for the context-sensitive autocompletion system which we will introduced in

the subsequent sections.

1.1 The Resource Description Framework

The Resource Description Framework (RDF) is a standardized way to formulate structured data

or knowledge.1 Pieces of information are stored as triples of the form Subject Predicate Object.

A set of triples is referred to as a knowledge base. Consider for example the following simple

knowledge base which consists of three triples:

<Cillian Murphy> <profession> <Actor> .

<Cillian Murphy> <played-role> <Scarecrow> .

<Cillian Murphy> <played-role> <Thomas Shelby> .

In the first triple, the subject is <Cillian Murphy>, the predicate is <profession>, and the object is

<Actor>. Triple elements enclosed in angle brackets <> are Internationalized Resource Identifiers

1The full standardization documents can be found at https://www.w3.org/RDF/.

3

https://www.w3.org/RDF/

(IRIs) that uniquely identify an entity. To enforce this uniqueness, real-world IRIs are typically

much longer and start with an URL prefix that is controlled by the party “responsible” for this

entity. If we consider the above triples to be part of a dataset called “exampleKB” that is

maintained at the chair of Algorithms and Data Structures in Freiburg, the first triple of the small

knowledge base above realistically could look as follows:

<http://ad.cs.uni-freiburg.de/exampleKB/Cillian Murphy>

<http://ad.cs.uni-freiburg.de/exampleKB/profession>

<http://ad.cs.uni-freiburg.de/exampleKB/Actor>

To make this very verbose form more readable, we can equivalently abbreviate the common prefix

of the entities using a PREFIX declaration:2

PREFIX kb: <http://ad.cs.uni-freiburg.de/exampleKB/>

kb:Cillian Murphy kb:profession kb:Actor

In addition to entities identified by IRIs, which were just described, there is only one other type

of triple elements, the socalled literals. Literals can only appear as the object of a triple. They

can be annotated by a language tag that links the literal to a certain language, or by a datatype

to denote e.g a numeric or date literal. This is best shown by a few examples:

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

<Cillian Murphy> <name> “Cilian Murphy”@en .

<Cillian Murphy> <name> “Killian Mörfi”@az .

<Cillian Murphy> <date of birth> “1976-05-25T00:00:00”^^xsd:dateTime .

Here the language tag @az stands for the Azerbaijani language. RDF knowledge bases typically

use datatypes defined by the XML Schema Definition (XSD) (e.g. xsd:dateTime).

In this thesis we will always use the above definition of a knowledge base as a set of triples.

Note that it is equivalently possible to define a knowledge base as a graph, where the subjects

and objects are nodes and the predicates are labeled edges. For this reason, a knowledge base is

sometimes also referred to as a triple graph or knowledge graph. Some technical terms from the

SPARQL language, which will be described in the next section, also refer to this graph terminology.

1.2 The SPARQL Query Language

This section describes SPARQL, the standard query language for RDF data. SPARQL was stan-

dardized by the W3C consortium.3 The general idea behind SPARQL is simple: SPARQL uses

a syntax for querying a knowledge base, that is very similar to the syntax for specifying the

knowledge base. A SPARQL query also contains triples, but some triple elements are replaced by

variables that can assume the value of an arbitrary but fixed entity or literal (The variable is then

bound to this value). The query result consists of all variable bindings, for which a subset of the

2Using PREFIX declarations when specifying a knowledge base is only allowed when storing the knowledge base
using the RDF Turtle (.ttl) format and not in the simpler RDF NTriples (.nt) format, but this distinction is not
important for this thesis, as it is of a purely syntactical nature.

3The full standard can be found at https://www.w3.org/TR/sparql11-query/.

4

https://www.w3.org/TR/sparql11-query/

knowledge base matches the triples in the query. Consider the following simple SPARQL query

(it refers to the example knowledge base from the previous section):

SELECT ?actor ?role WHERE {
?actor <profession> <Actor> .

?actor <played-role> ?role .

}

The inner part of the query where the pattern is specified (between the curly braces) is called the

query body. The result of a SPARQL query is a table with one column per selected variable (?actor

and ?role in the example) and one row for each result (one row for each pair of actor and role

that match the query body). In addition to this basic triple format, SPARQL also supports more

complex features. In the following we will deliver a short description of several of these features

that are important for understanding this thesis.

Order By

An Order By clause stands after the query body and sorts the result according to the values of the

specified variables. For example appending the clause ORDER BY DESC(?actor) ASC(?role) to

our example query would sort the result in descending order by the value of the ?actor variable.

If this variable has the same value for some rows, these rows will be sorted in ascending order by

the ?role variable.

Group By and Aggregates

A Group By clause specifies one or more variables which are grouped. This means that all result

rows that have the same value for these variables are merged into one row for the final result.

For each variable that is selected, but not grouped, a so-called aggregate has to be specified that

defines, how the multiple different values for these variables are merged in the final result. Consider

the following example:

SELECT ?actor (COUNT(?role) AS ?role count) WHERE {
?actor <profession> <Actor> .

?actor <played-role> ?role .

} GROUP BY ?actor ORDER BY DESC(?role count)

The result will have exactly one row for each actor that has at least one <played-role> triple.

It will have two columns, ?actor and ?role count. The second column will contain the number of

<played-role> triples for the corresponding ?actor. (This is what the COUNT aggregate does).

Actors with more played roles will appear higher up in the result because of the ORDER BY

clause.

SPARQL supports a wide range of aggregates, from simple ones like COUNT, MIN, MAX,

SUM, etc. to almost arbitrary arithmetic expressions and string functions. Other than COUNT,

the only aggregate that is relevant for this thesis is SAMPLE, which chooses one of the different

values that have to be aggregated.

5

OPTIONAL

We can think of each triple in a SPARQL query as a constraint. Possible results (aka variable

bindings) are removed from the final result when they can’t fulfill these constraints because one

of the variables can’t be bound. This behavior can be relaxed by an OPTIONAL clause. Triples

that occur inside this clause do not eliminate possible results when the variables in these triples

cannot be bound, but these variables remain unbound. One can also think of this as assigning a

special NULL or UNDEFINED value to this column of the result. This behavior is best explained

by an example. In the query

SELECT ?actor ?role WHERE {
?actor <profession> <Actor> .

?actor <played-role> ?role .

}

we only get actors in the result, that have played at least one role. If we now put the second triple

into an OPTIONAL clause, we obtain the following query:

SELECT ?actor ?role WHERE {
?actor <profession> <Actor> .

OPTIONAL {?actor <played-role> ?role}
}

We now still get a result with two columns ?actor and ?role and the entities in the ?actor column

always have to be actors (the first triple in the query is outside of the OPTIONAL clause and thus

mandatory). For all actors, that have played at least one role, we get exactly the same results

as in the “original” query without the OPTIONAL. Actors that haven’t played any role are now

included with a single result row in which the ?role variable is undefined.

In addition to this simple case (A single triple inside a single OPTIONAL clause) there are

some more complex behaviors of the OPTIONAL feature, e.g. when there are multiple optional

clauses in the same query that share common variables. These rules are beyond the scope of this

thesis, the full specification of OPTIONAL clauses can be found in the SPARQL standard.

UNION

By using a UNION clause it is able to form the concatenation of two intermediate results. Consider

the following example that returns all actors who have won at least one Oscar or one Golden Globe,

together with the total number of such awards per actor:

SELECT ?actor (COUNT(?actor) as ?num awards) WHERE {
?actor <profession> <Actor> .

{?actor <won-award> <Academy Award>}
UNION

{?actor <won-award> <Golden Globe>}
} GROUP BY ?actor

6

MINUS

With a MINUS clause, results that match certain triples are eliminated instead of added to the

result. For example the following query yields all actors who have not won any Academy Award:

SELECT ?actor WHERE {
?actor <profession> <Actor> .

MINUS { ?actor <won-award> <Academy Award> }
}

Subqueries

Subqueries are complete SPARQL queries that are nested inside the body of another SPARQL

query. Although all queries that contain subqueries can be equivalently rewritten without this

feature, using subqueries often helps the readability of more complex queries. Sometimes using

subqueries can also help a query engine to perform a query faster (see section 6.1 for details).

1.3 Real-World Knowledge Bases

In this section we will introduce the three knowledge bases which are relevant for this thesis and

on which we have run our evaluation. This introduction stands at such an early point in this

thesis because we need some of the properties of these knowledge bases to motivate our problem

definition. We have chosen three knowledge bases of different sizes: Wikidata, Freebase and Fbeasy

(ordered from largest to smallest). All three store general knowledge. We have deliberately chosen

knowledge bases with similar contents but different sizes. This allows us to evaluate the influence

of a knowledge base’s size on our evaluation results.

Wikidata

Wikidata [29] is the knowledge base of the Wikimedia project. It is thereby a sister project

of Wikipedia. For instance the information boxes in many Wikipedia articles are automatically

generated using structured knowledge from Wikidata. Like all Wikimedia projects, Wikidata is

community-based, which means that everyone can easily contribute data. While this approach

helps the Wikidata project to grow quickly, it also poses some problems: Sometimes the way

that information is stored in triples (e.g. which predicates are being used) is inconsistent between

similar pieces of information. There are also many mistakes in this dataset, which are not always

quickly eliminated. We will later see an example for such a mistake that motivates the use of

our autocompletion system. In Wikidata, all IRIs are abstract IDs like Q42 (the author Douglas

Adams) or P106 (The predicate for the occupation of a person). The dump of Wikidata we used

contains ca. 6.9 billion triples, ca. 1.2 billion subjects, and ca. 32000 predicates.

Freebase

Freebase [4] also is a community-based knowledge base. It was originally maintained by the amer-

ican company Metaweb and purchased by Google in 2010. In May 2016 it was discontinued and

7

its contents were integrated into the Wikidata project.4 Freebase uses abstract IDs for most sub-

jects and objects (e.g. fb:m.02 286 for New York City) and human-readable names for predicates

and some common subjects or objects (e.g. fb:people.person.place of birth or fb:people.person).

Freebase has ca. 1.9 billion triples, ca. 125 million subjects and ca. 785000 predicates. Although

Freebase is discontinued, we have decided to integrate it into our evaluation, since it has a different

size characteristic than Wikidata: Although it has less than one third of Wikidata’s triples, it has

many more predicates.

Fbeasy

Fbeasy [8] (short for Freebase Easy) was created at the chair of Algorithms and Data Structures at

the University of Freiburg. It is basically a subset of Freebase where all IRIs are human-readable

names, e.g. <New York City> or <Person>. Freebase has ca. 362 million triples, ca. 50 million

subjects and ca. 2000 predicates.

1.4 Motivation: Formulating Proper Queries is Hard

In the previous sections we have discussed, how structured knowledge can be stored in an RDF

knowledge base and how the SPARQL language can be used to retrieve certain information from a

given knowledge base. In this section we will discuss, why in practice it is often hard to manually

formulate “appropriate” SPARQL queries on a large knowledge base. By appropriate we mean

queries that deliver results that the user expected (this will become clearer with the examples

below). Some of the aspects we discuss refer to concrete knowledge bases, namely Wikidata,

Freebase and Fbeasy (see section 1.3).

SPARQL is Conceptually Easy, but Tricky in Practice

In general, formulating syntactically correct SPARQL queries is relatively simple. There are

relatively few keywords, and these are very similar to those used in other common query languages

like SQL. The triple-based syntax for the query body is straight-forward to learn. One could also

argue, that SPARQL is easier than SQL, since it does not include table or column identifiers

which have to be incorporated into the query. This fact on the other hand makes it often harder

to formulate good queries, because the data format (RDF) provides hardly any external structuring

to the data: There are only triples of subjects, predicates and objects. Additionally, each entity

can in principle occur in each of those positions. Because of this very limited structuring, RDF

is also sometimes referred to as a semi-structured format. On the one hand this format is very

flexible and allows capturing also complex and heterogeneous relations between entities that can’t

easily be represented in a fixed, table-based scheme like in relational databases. On the other hand,

this lack of structure makes it often hard to formulate good queries: When formulating a triple

for a query, one has to find the proper entities and additionally has to find out, in which position

(subject, predicate, object) they have to be placed to match the structure of the knowledge base.

In the following we will discuss some detailed aspects of query formulation whose difficulty often

4https://web.archive.org/web/20190320195748/https://plus.google.com/109936836907132434202/posts/

bu3z2wVqcQc

8

https://web.archive.org/web/20190320195748/https://plus.google.com/109936836907132434202/posts/bu3z2wVqcQc
https://web.archive.org/web/20190320195748/https://plus.google.com/109936836907132434202/posts/bu3z2wVqcQc

can be related to the general lack of external structure in RDF knowledge bases that was just

described.

Matching Labels to IRIs can be Tedious

Consider the example from section 1.2: We are given a general-purpose knowledge base and want

to retrieve a list of all actors and the roles they played. From the general structure of the SPARQL

language, an experienced user might immediately get the idea, that a triple that looks somewhat

like this should be part of the query:

?x <profession> <Actor>

To formulate this triple for a concrete knowledge base, we have to find the appropriate entities

from the knowledge base, which correspond to the concepts of “profession” and “actor” (we will

limit ourselves to the predicate “profession” in the following example). This task is easiest on the

knowledge base Fbeasy, where the IRIs of entities directly are readable names enclosed in angled

brackets. Even here we have to find out if the predicate that connects people to their professions

is called <profession> or <occupation>, only to find out, that <is-a> would be the appropriate

choice, because in Fbeasy, professions are part of the more general type predicate <is-a>.

The task of finding the correct predicate gets even harder for Freebase, where the predicates still

have somewhat readable names. Here the correct profession predicate is fb:people.person.profession.

Here fb: is the general prefix for all Freebase entities. From this entity’s name we can see, that

the predicates in freebase are hierarchically structured: From the name people.person.profession

we could deduce, that this predicate does not only denote the profession, but that it is also

only to be used with people, and that there might be other predicates that start with peo-

ple.person that could be useful for queries about people. This is true indeed, e.g. there also

is a fb:people.person.place of birth predicate on Freebase. This structuring of the predicates how-

ever only occurs on the level of entity names and is not represented in the RDF syntax.

Our task of finding a predicate that connects people with their professions becomes the hardest

on Wikidata. Here all the IRIs are abstract IDs. The predicate for professions is called wdt:P106.

The wdt: prefix is reserved for so-called direct or truthy predicates (see the third example in section

2.2 for details). P106 is an abstract ID that stands for the profession of a person. The connection

between this abstract ID and the human readable-names “profession” and “occupation” is also

contained in the Wikidata knowledge base. We will later make use of this connection in our

autocompletion system which resolves abstract IDs of Wikidata (and also Freebase) to human-

readable names which are then presented to the user.

In Conclusion we have seen in this paragraph, that it is hard in practice to find a specific entity

in a knowledge base, even if we already have a natural language description of this entity.

Entity Labels are Ambiguous

The following problem mostly occurs on Wikidata: There are many different entities that have

similar or even identical labels. In many cases only one of these entities is the correct one when

formulating a query. When we for example want to retrieve information about women from

Wikidata, the correct way to do this would be by retrieving humans with female gender, s.t. in

our “pseudo-triples” this part of the query could look as follows:

9

?x <is-a> <Human> . ?x <gender> <Female>

Here at some point we have to find the correct IRI for the <Female> object. In Wikidata there

are five entities that have “female” as a label5 and many more that have a label that starts with

“female”. Only one of these is correct in our context (when using it in connection with humans),

another one is used for plants and animals, and some of the others can be even considered mistakes:

In the version of Wikidata we used for our experiments, there was a female film maker that had

“female” as a label, which is probably not correct. To choose the correct entity among these

candidates we could for example try all of them out and check, for which of them the query result

becomes useful (which typically means non-empty). However, performing this step manually

quickly becomes tedious and even infeasible if we have to do so for many entities in a longer query.

It is however useful to keep this manual approach in mind: We will later use an automated version

of it in our context-sensitive autocompletion system (see section 4 for details).

Complex N-Ary Relations are Hard to Guess

This problem again mostly occurs on Wikidata. Consider the following request, that seems to be

simple at first: For the actress Meryl Streep obtain all Oscars which she has won, as well as the

corresponding movies. The correct query to do this on Wikidata is the following:

SELECT ?award ?film WHERE {
wd:Q873 p:P166 ?m .

?m ps:P166 ?award id .

?m pq:P1686 ?film id .

?award id wdt:P31 wd:Q19020 .

?award id rdfs:label ?award .

?film id rdfs:label ?film }

We will now explain this query: Meryl Streep is wd:Q873 and P166 stands for “won award”. The

p:P166 predicate is used to connect Meryl Streep to an abstract statement node (?m) that stands

for all the information connected to a single award that she has won. The ps:P166 predicate

connects the abstract node to the ID of the concrete award (e.g. the Academy Award for Best

Actress) and the pq:P1686 predicate connects the statement node to the ID of the film for which the

award was won. The triple ?award id wdt:P31 wd:Q19020 means that the award is-a (wdt:P31)

Academy Award (wd:Q19020). The two triples with the rdfs:label predicate connect the IDs of

the films and awards to a human readable label. The result of this query is then the following:

Academy Award for Best Actress Sophie’s Choice

Academy Award for Best Supporting Actress Kramer vs. Kramer

Academy Award for Best Actress The Iron Lady

The structure this query can also be visualized as a graph as seen figure 1. The reason for the

complexity of this query lies in the n-ary nature of the information : The information which award

was won for which movie at which point in time has to be connected via an abstract statement

5Wikidata distinguishes between primary labels, of which there is only one per entity, and alternative labels or
aliases. We use the term “label” to denote all of those labels and aliases.

10

Figure 1: Visualization of the SPARQL query “All Oscars of Meryl Streep and the films she won
them for” as a graph. Subjects and Objects of triples are nodes in the graph, predicates are labeled
edges. Variables are visualized as circles, graph nodes with fixed IRIs are visualized as rectangles.

11

node (?m in the query). It would not suffice to store the information in the format “Meryl Streep

won an oscar for the move Sophie’s Choice”, “Meryl Streep won an Academy Award for Best

Actress”, etc. because the important information which award was won for which movie would

be lost. Unfortunately the resulting structure makes the SPARQL queries more complex. Even

for people with experience with SPARQL and Wikidata it is tedious to correctly formulate such

queries.

Summary

We have discussed that it is in practice often hard to find the appropriate entities to be used in a

SPARQL query. For instance it is hard to find entities when we are already given a name for that

entity, because names are often ambiguous. It is also hard to formulate queries which include n-

ary information, because the formulation requires detailed knowledge about how this information

is stored in the concrete knowledge base. In the following we will introduce a formal problem

definition that helps us tackle these issues. Afterwards we will introduce an efficient and effective

solution to that problem which can in practice be used to mitigate the difficulties discussed in this

section.

2 Problem Definition

In this section we will formally define the SPARQL Autocompletion Via SPARQL problem. We

will discuss, how solving this problem can help in formulating SPARQL queries. We will also

discuss the scope and limitations of our problem definition.

2.1 The SPARQL Autocompletion via SPARQL Problem

Let q be a SPARQL query, called the target query. Let s be a prefix of the query body of q. We

require that s only consists of complete tokens. The term “token” denotes the subject, predicate,

or object of a triple. In the following we often say that “s has already been typed” to describe

this setup. Let t be the token in the target query q that stands directly after s. We call t the

target token. Let p be a prefix of a name or alias of t. The SPARQL Autocompletion via SPARQL

problem is then defined as follows:

We are given s and p and want to construct and process a SPARQL query called the autocom-

pletion query (often abbreviated by AC query in the following). This AC query must have the

following properties:

• The result of the AC query has three columns: The first contains an entity, the second one a

human-readable name for that entity and the third one contains a score. The query is sorted

in descending order of the scores. In the following we often call the results of AC queries

suggestions.

• All the names in the second result column start with the prefix p.

• One of the result rows contains the target token t in the first column.

To assess the quality of the constructed AC queries, we consider the following goals:

12

• Efficiency: The AC query shall be processed as quickly as possible.

• Relevance: The row containing t stands as early as possible in the AC query’s result.

• Sensitivity: When choosing an entity u 6= t from the first result column, then it is possible

to formulate a SPARQL query, whose query body starts with s + u (string contatenation)

and which leads to a non-empty result. We say that u sensitively continues the partial query

s.

2.2 Examples

In this subsection, we will illustrate our formal problem definition with some examples. These

examples will also show, how this definition relates to the setting of a user typing a SPARQL

query. First consider the following simple query on Fbeasy:

SELECT ?x WHERE {
?x <is-a> <Person> .

?x <gender> <Female> .

}

This is our target query q from the definition. Assume now, that a user wants to type this query,

and that the user has already entered the following part of the query body into an editor:

?x <is-a> P

The underscore denotes the current cursor position when typing. The first two tokens ?x <is-a>

are then the s from our definition and the prefix p is “P”. This means that the user is looking

for an entity that is a useful continuation of the <is-a> predicate and whose label starts with

“P”. The target token t is <Person>. On Fbeasy, we can formulate a corresponding AC query as

follows:

1. SELECT ?entity ?name (COUNT(?x) AS ?score) WHERE {
2. ?x <is a> ?entity .

3. BIND (STR(?entity) AS ?name) .

4. FILTER REGEX(?name, ”^P”)

5. } GROUP BY ?entity ?name ORDER BY DESC(?score)

Line 3 obtains labels for the ?entity variable by converting an IRI of the form <Entity> to the

literal “Entity”.6 The result of this conversion is written to the variable ?name. Line 4 allows

only results where the ?name starts with “P”. The ?score of an entity is the number of triples in

the <is-a> relation for this entity, calculated by the GROUP BY and COUNT operation. The

first lines of the result of this AC query look as follows:

<Person> “Person” 3970825

<Politician> “Politician” 127809

<Plant> “Plant” 60459

6Recall, that the IRIs are directly human-readable on Fbeasy, see section 1.3. The conversion from IRIs to
literals via STR() is required by the SPARQL standard, because string operations like regex/prefix filters are not
supported directly on IRIs.

13

We immediately see, that our target token <Person> is in the first result row, so the relevance

is perfect. Due to the way our AC query was designed, the sensitivity is also perfect: We only

obtain results that have at least one triple of the form ?x <is-a> ?result. For a discussion of the

efficiency of such AC queries, we refer to our evaluation in section 6.

As a second example, consider the same target query. Assume that we have completed the

first triple and the subject (a variable) of the second triple. The situation now looks as follows:

?x <is-a> <Person>

?x

This is the s from the definition, the prefix p is empty, the target token t is <gender>. The AC

query now needs to suggest predicates which are useful in connection with persons (from what the

user has typed, the variable ?x is already restricted to “being a person”). Such an AC query can

be formulated as follows:

SELECT ?entity ?name (COUNT(DISTINCT ?x) AS ?score) WHERE {
?x <is a> <Person> .

?x ?entity [] .

BIND (STR(?entity) AS ?name) .

} GROUP BY ?entity ?name ORDER BY DESC(?score)

The score we chose here for a certain predicate in the ?entity column is the number of persons

(?x) that occur as the subject of a triple with this predicate. Persons that have multiple triples

for the same predicate are counted only once, hence the DISTINCT. The design choices for the

ranking functions will be discussed in detail in section 4. The first result rows of this AC query

are as follows:

<is a> “is a” 3970825

<gender> “gender” 2276146

<birth date> “birth date” 1915167

In this case, we get our target token <gender> as the second suggestion, which is again very good.

Note that in this case we did not have to type a single letter, so we did not even have to know a

label for the entity we were looking for. The sensitivity is also again perfect by design of the AC

query.

2.3 Discussion

In this subsection we will discuss some important aspects and also limitations of the problem

definition.

• We assume that a hypothetical user is typing a SPARQL query. Even with good entity

suggestions, this scenario still requires some knowledge about the syntax of SPARQL and

some intuition about the way, structured information is stored as triples. There are other

approaches towards even easier accessibility of knowledge bases. These include graphical UIs

that hide the SPARQL syntax or systems that transform natural language questions into

SPARQL queries. We do not consider such approaches in this thesis and refer to the related

work section (section 3) as a starting point for readers, who are interested in them.

14

• Our definition assumes, that the user knows a label or alias for the target token. In practice

this works well for knowledge bases where entities have a lot of aliases and where it is thus

likely to correctly guess one of them. This is for example true for Wikidata. When using

this autocompletion setup with a knowledge base that only has few aliases per entity, one

could consider extending the autocompletion system with a synonym database to increase

the user’s chances to find the correct entity. This could be especially helpful for knowledge

bases like Fbeasy, where every entity only has exactly one label. Such external synonym

finders are also beyond the scope of this thesis. It is also worth noting that this problem only

arises when the user has to type anything at all. In the second example in section 2.2 the

target token was among the first results of the AC query without typing anything. In these

cases the user does not have to know an alias of the entity. In our evaluation (section 6) we

will explicitly evaluate the quality of the autocompletion results when no prefix is typed.

• In our problem definition and evaluation, we assume that a concrete target query, which

the user wants to complete, exists. This scenario is somewhat artificial. In our experience,

users typically start with a natural language description for a desired piece of information,

which they want to retrieve from a knowledge base (e.g. “All female mayors of cities with

more than 1 million inhabitants”). However it is hard to quantitatively evaluate such a

scenario. It could be evaluated by conducting a user study, where users are first given a

general introduction into SPARQL and then are given such snippets of information which

they are supposed to retrieve from the knowledge base. Such a user study could be also used

to compare our autocompletion system to approaches that make knowledge bases accessible

without exposing the SPARQL language to the user. However, such a user study is also

beyond the scope of this thesis.

• We only provide the technical background for an autocompletion-based SPARQL-UI. When

designing such a UI in practice, a lot of aspects that are not part of this thesis have to

be considered. These include for example helping users with the syntactic aspects of the

SPARQL language like the correct usage of keywords. There exists a SPARQL UI at https:

//qlever.cs.uni-freiburg.de/. This UI was not developed by the author of this thesis,

but uses the ideas and technical contribution for this thesis to provide autocompletion.

2.4 Contributions

Many of the contents of this thesis are also contained in a scientific paper where the author of

this thesis is a co-author and which is currently under review [9]. The contributions described in

the technical section (section 5) have solely been developed by the author of this thesis. In that

section we will also document in detail, where we relied on already existing software, that was

only used in a novel way, and where new features where actually implemented by the author. The

autocompletion templates (section 4) were mostly developed by the author. Before the work on

this thesis started, a first draft of such templates was already pre-existing but these were rather

a general proof of concept and did not run on all knowledge bases and query engines which are

considered in this thesis. In addition, the careful optimization of these templates to make them

perform as efficiently as possible on all combinations of knowledge bases and query engines is

also a contribution of this thesis. The formalization of the problem definition (section 2), the

15

https://qlever.cs.uni-freiburg.de/
https://qlever.cs.uni-freiburg.de/

evaluation setup (metrics and evaluation modes, section 6) and the discussion of the results (later

in the same section) have been developed in a team effort among the authors of the paper. The

experimental evaluation was performed by the author of this thesis. This included implementing

the experimental setup as well as running it. The writeup of this thesis was performed by the

author completely independent from the writeup of the paper. In addition, this thesis includes

several additions in comparison to the paper contents, which are all contributions by the author

of this thesis.

3 Related Work

In this section we will give a brief overview over related work in the field of SPARQL autcompletion

in particular and easier access to complex knowledge bases in general.

SPARQL Autocompletion

Campinas et al. [13] describe an autocompletion system that also uses AC queries. This system is

only able to create suggestions for predicates and types (i.e. objects of dedicated type predicates

which have to be manually specified). In contrast, our system is able to create suggestions for all

subjects, objects, and predicates. Campinas et al. do not run their AC queries on the complete

knowledge base, but on a preprocessed graph summary, where subjects and objects that are con-

nected to the same predicates are merged together. This helps the efficiency, since the AC queries

become much easier on the smaller graph summary, but harms the relevance of the suggestions.

In a follow-up paper, Campinas [12] introduces Gosparqled. This system uses AC queries

that run on the complete knowledge base. The suggestions are sensitive but, in contrast to

our suggestions, unranked. This greatly helps the efficiency, since it suffices to calculate some

suggestions using a LIMIT clause, whereas calculating a ranking requires looking at all possible

sensitive suggestions. In general, unranked queries with a LIMIT clause are much easier to process

for many query engines (see section 5.1). Campinas evaluates this system on a knowledge base

which is less than half the size of the smallest knowledge base we consider in this thesis (Fbeasy).

On this small dataset, Campinas compares the suggestion relevance of Gosparqled to that of fully

ranked sensitive AC queries similar to those introduced in this thesis. He observes, that dropping

the ranking of the suggestions significantly reduces the relevance.

Jarrar and Dikaiakos [17] perform autocompletion for a query language called MashQL, which

is similar to SPARQL. Their suggestions are only context-sensitive if the context is linearly shaped.

This means that that if the user has already typed ?x <place of birth> ?y . ?y <country> ?z .

?z the system will only suggest predicates that are connected to countries in which at least one

entity has been born. But after typing a star-shaped context like ?x <place of birth> <Berlin> .

?x <gender> <Female> . ?x the suggestions will not be context-sensitive. This limitation does

not exist in the autocompletion system introduced in this thesis, where the full context is always

taken into account, independent of its structure. For efficiency reasons, Jarrar and Dikaiakos also

use graph summaries. The structure of these graph summaries is the technical reason for the

restriction on linearly-shaped contexts.

Bast et al. [7] present Broccoli. This system creates suggestions for tree-shaped queries (other

16

structures of queries are not supported at all). Broccoli uses a graphical user interface that does

not expose the underlying query language to the user. The main focus of Broccoli is combining the

search on structured data from knowledge bases with unstructured data from full-text corpora,

and autocompletion is also performed on the full-text data.

Ferré [15] presents SPARKLIS. In this system, users formulate queries as natural language, e.g.

“Give me every person whose gender is female and who works as a computer scientist”. SPARKLIS

computes context-sensitive autocompletion suggestions for these queries. The suggestions are

created by SPARQL queries that are similar to our AC queries from section 4, but are again

unranked (see above, where unranked suggestion have been discussed in connection with Campinas’

Gosparqled system). Ferré uses the cached results of previous AC queries for the same target query

to speed up the computation of the suggestions. We use a similar approach to caching, see section

5.4.

Other Assisted Formulation Systems

There are many approaches towards query formulation that do not rely on autocompletion queries.

In this paragraph we will shortly introduce some of these approaches together with a representative

system.

Log-Based Approaches

These approaches do not create suggestions based on the actual contents of the knowledge base

or database, but on query logs. They thus assume, that queries that have been formulated in

the past are representative for future queries. An example is found in Rafes et al. [25]. Their

system suggest basic graph patterns (parts of SPARQL queries that consist of at least one triple).

These suggestions are created using a hierarchical clustering based on basic graph patterns from

the query log.

Semantic Parsing

In this approach, the query is formulated in natural language and then automatically transformed

into SPARQL or another structured query language. An example is the Aqqu system presented by

Bast et al. [6], which transforms natural language questions into SPARQL queries. This system

is based on machine-learning and requires no ground-truth SPARQL queries but is trained from

question-answer pairs.

Example-Based Approaches

A user of the AutoSPARQL system presented by Lehmann and Bühmann [22] has to first enter

a simple query that yields at least one result of their “actual” target query. The user is then

repeatedly asked by the system, whether certain entities should be included in the final query

result and the query is automatically refined based on the user’s answers. This system only works

for tree-shaped queries.

17

4 Autocompletion (AC) Queries

In this section, we will describe how we can formulate AC queries that can be used to solve

the SPARQL Autocompletion via SPARQL problem (see section 2). We will introduce sensitive

AC queries that completely fulfill this problem definition. We will also introduce agnostic and

unranked AC queries that partially sacrifice the relevance and sensitivity of the results for faster

query times. We will also introduce mixed autocompletion that combines sensitive and agnostic

queries, forming a compromise between those two completion modes (In the following we will often

use the term completion mode for the usage of sensitive, agnostic, unranked or mixed AC queries).

All AC queries will be presented in the form of query templates. These templates still contain

placeholders. To obtain a concrete AC query, these placeholders have to be substituted depending

on what has already been typed by the user. At the end of this section, we will discuss how the

query templates can be adapted to work with almost arbitrary knowledge bases.

4.1 Calculating the Context

Sensitive AC queries necessarily have to depend on the previously typed partial query (the s from

the definition). But it might occur, that not all of s is connected to the currently typed triple.

Consider for example the following query:

SELECT ?a ?b WHERE {
?a <is-a> <Human> .

?b <is-a> <Human> .

?a <married-to> ?b .

}

The first two triples are not directly connected to each other, because they don’t share a common

variable. They only become connected by the third triple which connects ?a and ?b. Now assume

that the user has already typed the following in our autocompletion scenario:

?a <is-a> <Human> .

?b <is-a>

We see, that at this point the first triple is completely irrelevant for the object suggestions of

the second triple. It can thus be completely ignored when formulating the AC query. Note that

keeping this triple would not change the suggestions, but we have found that doing so severely

slows down some of the query engines we evaluated.7 For this reason we have decided to only

include the part of s into our AC queries that is actually connected to the currently typed triple.

We will call this connected part of s the %context%. In the following we will describe how to

calculate it:

Let tr be the currently completed partial triple (e.g. if we are currently completing an object,

then tr only contains the subject and predicate immediately before the current token). Set the

initial context ci to be the part of the query body that occurs before tr and thus has already

been typed. Let T be all triples and FILTER clauses that are contained in ci. Note that this

7This happens, because large cartesian products are materialized for the unconnected triples

18

also includes triples that occur inside SPARQL constructs like UNION, MINUS, OPTIONAL,

etc. Construct an undirected graph G with the node set T ∪ {tr}. Two nodes in G are connected

if and only if they share a variable. We compute the connected component on G that contains

tr by performing a breadth-first search. %context% is then ci without all triples that are not

part of this connected component. We additionally have to deal with the following special case:

subqueries are either contained in the context fully or not at all. A subquery is contained in the

context when one of its selected variables occurs in the above-mentioned connected component in

G. Please note also that this definition of the context and all the following query templates only

make sense, if we assume that the current triple tr is embedded directly into the query body and

not nested inside an OPTIONAL, MINUS, . . . clause. In section 4.5 we will show how we deal

with these constructs in a way that enforces this constraint. To illustrate this algorithm, recall

our example from the beginning of this paragraph:

?a <is-a> <Human> .

?b <is-a>

Here the partial triple tr is “?b <is-a>”, and T = ci is only the first triple “?a <is-a> <Human>”.

This triple does not share a variable with tr, thus the %context% will be empty. Note that the

tokens in tr (tokens from the same triple as the current cursor positions) are also part of the

relevant context. These are not included in the %context% placeholder, but will be included

into the AC query manually, see below.

4.2 AC Queries for Subjects

When the target token t is the subject of a triple, it is easy to see, that the %context% is always

empty, meaning that everything that was previously typed is not relevant for the AC query: Either

the subject is a variable, then we do not have to emit an AC query at all, or it is a fixed IRI. In

the last case it is also never connected to the previous triples (see section 4.1). We can obtain

suggestions for subjects on Wikidata using the following template:

1. SELECT ?entity (SAMPLE(?name) AS ?name)

2. (SAMPLE(?score) AS ?score) WHERE {
3. ?subject rdfs:label|skos:altLabel ?name .

4. ?subject ˆschema:about/wikibase:sitelinks ?score .

5. FILTER REGEX(?name, "^%prefix%")

6. } GROUP BY ?entity ORDER BY DESC (?score)

Line 3 gets the canonical name and all aliases for all possible subjects. Line 4 retrieves the

number of Wikimedia sitelinks8 of the possible subjects. This is the score used for ranking the

suggestions. Note that because of these two lines we will only get suggestions for subjects that

have at least one name or label and for which the number of wikimedia sitelinks is specified. This

is a design decision which has to be made for every knowledge base. In section 4.5 we will discuss

alternatives to this decision and how the retrieval of labels and the ranking of suggestions can

8Wikimedia sitelinks for an entity include for example all Wikipedia articles about this entity in different
languages.

19

be realized on other knowledge bases. Line 5 eliminates all subjects that don’t have at least one

name or alias that starts with %prefix% (this is the prefix p from the definition, we will use

this more verbose formulation in the following for the sake of readability). We remove this line

from the query if the prefix is empty. The GROUP BY clause in line 6 in combination with the

SAMPLE clauses in line 1 and 2 leads to only one result line per remaining ?subject (in case a

possible subject has multiple names starting with %prefix%). The result is sorted by the score,

meaning that entities with a higher number of sitelinks will be ranked higher in the result.

4.3 AC Queries for Predicates

When the target token is a predicate, we can use the following AC query template to retrieve

suggestions (it uses the definition of %context% in section 4.1).

1. SELECT ?predicate (SAMPLE(?name) AS ?name)

2. (SAMPLE(?score) AS ?score) WHERE {
3. { SELECT ?entity (COUNT(DISTINCT ?x) AS ?score) WHERE {
4. %context% %subject% ?predicate []

5. } GROUP BY ?predicate

6. ?predicate (^(<> |! <>)/(rdfs:label|skos:altLabel))? ?name .

7. FILTER REGEX(?name, "%prefix%")

8. } GROUP BY ?predicate ORDER BY DESC (?score)

The subquery from line 3 through 5 calculates all the predicates that sensitively continue the

current partial query body which consists of %context% and %subject%. %subject% is the

already completed subject of the currently typed triple. This subquery additionally counts, for

how many different values of %subject% a given predicate forms a sensitive continuation and

binds this value to the variable ?score. We then retrieve the labels and aliases for these predicates

(line 6). This is done via the rdfs:label and skos:altLabel relation. On Wikidata, these relations are

not connected to the predicate directly but via an intermediate node which we find by the property

path ∧(<> |! <>) (this means “follow any predicate in inverse direction”). We alternatively take

the IRI of the possible ?predicate itself as a label (the question mark around the whole property

path makes it optional). This is useful for several predicates which do not have a label, but are

human-readable IRIs themselves, e.g. rdf:type. In Line 7 we again filter out all predicates whose

name doesn’t match the already typed prefix. If the prefix is empty, this line is removed. Note

that we do not have a prefix regex here (which would start with ^) but also find matches inside

the label. This is again a design decision for Wikidata, because it enables us to find the human-

readable prefix IRIs by e.g. typing “type” for rdf:type. It is also feasible to compute, since typical

knowledge bases and namely Wikidata only contain relatively few predicates (see section 1.3),

so the expensive regex filtering will only be performed on few elements. The outer GROUP BY

clause in connection with the SAMPLE s again gives us only one result row per possible predicate

in case a predicate has multiple matching labels.

4.4 AC Queries for Objects

When the currently typed token t is an object, we can use the following AC query template:

20

1. SELECT ?object (SAMPLE(?name) AS ?name)

2. (SAMPLE(?score 2) AS ?score) WHERE {
3. { SELECT ?entity (COUNT(?entity) AS ?score 2) WHERE {
4. %context% %subject% %predicate% ?object

5. } GROUP BY ?object }
6. ?object rdfs:label|skos:altLabel ?name .

7. FILTER REGEX(?name, "^%prefix%")

8. } GROUP BY ?object ORDER BY DESC (?score)

The subquery in lines 3 through 5 computes the objects of all possible triples that match

the previously typed partial query body (This includes the %subject% and %predicate% that

immediately precede the current cursor position). We again count the number of such triples for

each possible object. Again we attach the labels/aliases and filter by the prefix if this prefix is

present. (For details see section 4.2). In case the target token object is completely unconstrained,

because %context% is empty and %subject% as well as %predicate% are variables, we do not

use this template, but we use the query template for subjects from section 4.2 instead, because it

provides a reasonable ranking for unconstrained entities.

4.5 Adapting AC Templates

We aim to formulate the autocompletion via SPARQL as a generic approach, that can be used

with any combination of query engine and knowledge base. However some adaptations have to be

made when changing the knowledge base. In this subsection we discuss, which design decisions

lie behind the above query templates, in which aspects they could be formulated differently, even

when using the same knowledge base (Wikidata in this case), and how they can be adapted to

different knowledge bases (Freebase and Fbeasy in particular).

Which Entities Are Suggested at All?

When we look at the template for subjects (section 4.2) we notice, that we only get suggestions for

entities that have at least one label or alias connected via the rdfs:label and skos:altLabel relations.

This eliminates a lot of entities that occur as subjects in Wikidata. For example, we never get

suggestions for the intermediate statement nodes (see the discussion on n-ary relations on Wikidata

in section 1.4). This is a useful decision because there is no feasible way to get a human-readable

description for those, and since they typically do not appear als IRIs directly in queries, but only

appear as values of variables in (intermediate) results. In general we suppose that one should

only suggest entities for which a human-readable representation can be easily created from the

knowledge base. In Freebase this can be done via the fb.type.object.name relation. In Fbeasy,

the IRIs are human-readable themselves, so names can be retrieved via BIND(STR(?subject) AS

?name) (see the examples in section 2.1).

In the template for predicates we consider all predicates that sensitively continue the previously

typed partial query. If %context% is empty and %subject% is a variable, we suggest all

predicates from the knowledge base. This approach is totally independent of the used knowledge

base. In the template for objects we consider all possible objects that sensitively continue the

current triple and can be assigned a readable name (this constraint is similar to the subject

21

template). Most importantly we never get suggestions for literals this way. If suggestions for

literals are desired, one can replace lines 6 and 7 in the object template by the following:

6. OPTIONAL { ?object rdfs:label|skos:altLabel ?name } .

7. OPTIONAL { BIND(STR(?object) AS ?name) } .

8. FILTER REGEX(?name, "^%prefix%")

This would include all connected objects. The ?name of objects that have no label via the

rdfs:label or skos:altLabel relation will be the IRI/literal itself. Note that the decision to include

literals in the suggestions might not always be helpful. If the user almost exclusively wants to

complete queries that don’t contain literals, showing many unnecessary literal suggestions might

confuse them. But typically this problem is not so relevant in practice, because most predicates

in real life queries are fixed IRIs (no variables) and because in most knowledge bases (including

Wikidata) each predicate has either only IRIs or only literals as objects. This means, that the

object suggestions will typically either be all IRIs or all literals.

How Do We Rank The Suggestions?

All the AC query templates are ranked. This means that a score is assigned to each possible

suggestion and the suggestions are sorted descending by the score function. This is an important

element for a high-quality autocompletion system: In section 3 we have seen examples of sensitive

but unranked autocompletion systems, whose performance is worse than that the performance of

sensitive and ranked systems like ours (also see the evaluation in section 6).

Our approach to ranking is as follows: For constrained tokens (this means that either the

%context% is not empty or one of the already typed tokens from the same triple is not a

variable) we count for each suggestion the number of triples that sensitively continue the query

(see sections 4.3 and 4.4). For unconstrained predicates we choose the same approach, namely

ranking them by their frequency in the whole knowledge base. This approach can be used in any

knowledge base, since it does not rely on any special characteristics of the knowledge base. In

particular, we have also found it to work well for Freebase and Fbeasy. In the following we will

call this score the sensitive score.

For unconstrained subjects and objects we have chosen the number of Wikimedia sitelinks as

a score (see section 4.2). This has proven to be a useful measure for most cases. We have found

that this works better than also ranking these suggestions by their frequency: There are entities

in Wikidata that appear in a high number of triples but are not very relevant. A similar approach

(manually calculating a score for each entity using predicates from the respective knowledge base)

can also be applied for other knowledge bases: For the score of subjects and unconstrained objects

on Freebase and Fbeasy we have chosen the number of types an entity has. As type relation

we used fb:type.object.type in Freebase and <is-a> on Fbeasy.9 In the following we will call this

method of score calculation the unconstrained score.

In a future work we could consider more complex score calculations and evaluate their impact

on the relevance and efficiency of the AC queries. Such advanced scores could be created e.g. by

9On Freebase and Fbeasy this works, because entities typically have multiple types, and more popular entities
have a higher number of types. On Wikidata this would not work, because there an entity typically has at most
one type. This holds for the “logical” type relation wdt:P31 (“is-a”) as well as for the more technical rdf:type.

22

combining the sensitive and the unconstrained score for objects. We could for example take a

weighted sum of both scores, multiply the sensitive score with the (possibly normalized) uncon-

strained score, or use the unconstrained score of the subjects of each possible continuation triple

as a weighting factor for the object suggestions.

How Do We Obtain Human-Readable Names For Entities?

During the discussion of the templates for Wikidata (sections 4.2 through 4.4) we have seen, how we

can obtain human-readable names for entities using the rdfs:label and skos:altLabel predicates. On

Freebase this can be done similarly using the predicate fb:type.object.name. On Fbeasy, the entities

are human-readable themselves but have to be converted to literals using a BIND(STR(. . .))

construct (see section 2.2 for details).

An additional question that one has to answer when adapting the AC query templates to a new

knowledge base is, whether simply adding any label to the suggestion suffices, or whether additional

information should also be shown. For example on Wikidata, some aliases are strange or even

misleading. For example, the literal “rdf:type” is an alias for the relation wdt:P31 (“instance of”)

which is not equivalent to the IRI rdf:type. In these cases it is beneficial to also add the canonical

label (e.g. via the rdfs:label relation) of the suggestions in a separate column. Another problem

might arise when two entities have exactly the same name. Consider the two entities wd:Q388320

and wd:Q2898115 which both have the label “Avishai Cohen”. Both stand for very famous Israeli

jazz musicians (the first one is a bassist, the second one a trumpeter), so even context-sensitive

autocompletion might not suffice here. To make a human user correctly disambiguate between

these entities we could also annotate the suggestions with the result of a description predicate

(e.g. schema:description). This can be done efficiently, because these additional columns do not

influence the suggestion result or the ranking. Thus it suffices to only resolve those columns for

the highest-ranked suggestions that are actually sent back to the user.

4.6 Agnostic and Unranked AC Queries

The sensitive AC query templates introduced above yield high quality results (see the evaluation in

section 6), but are often hard to compute, mainly because the %context% can become arbitrarily

large. We therefore also evaluated agnostic AC queries which ignore the context and only consider

the unconstrained score of the entities. This means that for the same token position (subject,

predicate, object) and the same typed prefix we will always get the same suggestions, independent

from what was previously typed in the query. Note that the AC query for subjects from section 4.2

is already an agnostic query, because subjects never have context (see there for an explanation).

In principle, we don’t require a dedicated SPARQL engine for agnostic autocompletion. We could

also precompute a list of all entities together with their scores and names, and then just filter

this list by the typed prefix and order it by score.10 However, later in this thesis we also describe

improvements for the SPARQL engine QLever, that allow us to answer all agnostic AC queries in

less than one second (see section 5).

As a baseline, and to demonstrate that not only the sensitivity but also the ranking are

10In a previous work the author of this thesis indeed implemented a data structure supporting such agnostic
suggestions as part of a simple SPARQL UI [18].

23

important for good suggestions, we also evaluate so-called unranked AC queries. These are similar

to the agnostic queries, but do not sort the final result by the score. This means that all entities

that match the typed prefix are suggested in an unspecified11 order. We will see that this approach

performs poorly, even when the set of possible entities is highly constrained by a very long prefix.

4.7 Semi-Sensitive AC Queries

So far we have discussed sensitive AC queries that consider the complete context of the target

token, but might be expensive to compute, and agnostic AC queries which ignore this context,

leading to less relevance of the suggestions, but higher efficiency. In this section we will briefly

discuss ways to formulate AC queries that lie between these two extremes.

Only Considering Intra-Triple Context

One possibility is to discard the %context% placeholder but keep the “intra-triple context” from

the placeholders %subject% and %predicate%. The most common use-case of this method is

the following: When completing an object, and when the predicate immediately before this object

is a fixed IRI (no variable), we will only get suggestions for objects that occur in this predicate

relation. Consider for example the following situation:

?x <is-a> <Human> .

?x <profession>

The sensitive templates would suggest all professions that are performed by humans. The

agnostic templates would suggest all possible objects. Typically, professions will not be high up in

this list, because in typical knowledge bases, e.g. countries have a higher unconstrained score than

professions. The semi-sensitive approach we just introduced would suggest all professions. Note

that in this example this will be almost as good as the fully sensitive completion, because almost

all professions are held by humans.12 But we still might get suggestions that lead to empty results

with this method: Imagine we have previously constraint our ?x from the example to “Humans

born before the year 1500”, then the semi-sensitive templates would still suggest the profession

computer scientist. But overall the suggestions should be much better than with the agnostic AC

queries, because the short-term context is correct (Typing profession and then getting USA as a

highly-ranked suggestion for the following object is highly irritating, but typically happens with

the agnostic templates).

Sampling The Context

A different approach towards semi-sensitive autocompletion is sampling from the context. In the

related work section (section 3) we have discussed several approaches that use a LIMIT clause

to reduce the number of intermediate results that are used for calculating the suggestions. We

have also seen that this significantly reduces the relevance of the returned suggestions. The main

problem here is that the LIMIT clause does not enforce a representative sample of the whole

result. We hypothesize, that the quality of this approach would greatly benefit from implementing

11More exactly, the order depends on implementation details of the query engine.
12Depending on the knowledge base, several fictional characters and animals also have professions.

24

a LIMIT variant that leads to a uniform random sample of the unlimited result. This could e.g. be

done by carefully sampling in all intermediate calculations. This approach would however require

heavy changes in the internal query processing of the different engines. Thus, the question how

efficiently this idea can be implemented and how well the achieved autocompletion results are is

beyond the scope of this thesis and is left open for future work.

4.8 Mixed Autocompletion

As a combination between the high-quality, but computationally expensive sensitive AC queries

and agnostic AC queries with exactly opposite characteristics, we also consider mixed autocom-

pletion. In mixed autocompletion for each step (when a new token starts, or when the user has

typed something) we start processing the corresponding sensitive and agnostic AC query at the

same time. If the sensitive query can be processed within a certain time (in our experiments we

choose 1 second) then the sensitive suggestions are shown. Otherwise the agnostic suggestions are

shown. In our evaluation we will see that this can improve the quality of the results especially

when many sensitive AC queries take too long to be feasible for autocompletion. There is however

one downside: Sometimes the user gets sensitive suggestions and thus knows, that they can safely

choose one of the suggestions as a meaningful continuation of the previously typed partial query.

But sometimes they get agnostic suggestions and can not rely on this property. As a workaround

in a concrete UI these different types of suggestions could be shown in different colors to make

the user aware of the difference in sensitivity. Another possibility is using certificate queries (also

called certificates in the following) to check the sensitivity of the agnostic suggestions. A certificate

is a SPARQL query, that checks if a single (agnostic) suggestion is able to continue the previously

typed context in a sensitive way. A template for a certificate for objects could look like this:

SELECT * WHERE {
%context%

%subject% %predicate% %candidate% .

} LIMIT 1

This template will lead to an empty result, if and only if the agnostic suggestion %candidate% is

not a sensitive continuation of the context. A certificate template for predicates could be derived

in a similar way.

4.9 Adapting AC Query Templates to Complex SPARQL Constructs

The AC query templates we have considered this far had one serious limitation: We always

assumed that the currently typed triple that contains the target token t is embedded directly into

the query body, and not part of a nested SPARQL construct13 like OPTIONAL, UNION, MINUS

or subqueries, and that these triples don’t contain property paths (in section 1.2 there is a short

introduction of these features). We will now discuss, how our previously defined templates can be

used to complete triples inside such constructs. In section 4.1 we have already seen how we deal

with these constructs when calculating the %context%.

13The SPARQL standard calls these constructs (among others) Graph Patterns.

25

OPTIONAL

When completing a triple that is contained inside an OPTIONAL clause, we act as if this triple

and all previous triples from the same OPTIONAL clause were outside the OPTIONAL clause.

Consider the following partially typed query:

1. SELECT ?actor ?award WHERE {
2. ?actor <profession> <Actor> .

3. OPTIONAL { ?actor <award-won> ?award .

4. ?award

Our token t (line 4) is a predicate whose triple is inside an OPTIONAL clause. The triple in line

3 is inside the same OPTIONAL clause. We then formulate our AC query as if our partial query

was actually the following:

1. SELECT ?actor ?award WHERE {
2. ?actor <profession> <Actor> .

3. ?actor <award-won> ?award .

4. ?award

This has the effect that we only get suggestions for predicates that create at least one variable

binding. For our example this means that we only are suggested predicates which are actually

connected to any award that was one by an actor. The more triples with this predicate exist that

fulfill this condition, the higher this predicate will be ranked.

UNION

When completing a token from a triple inside a UNION clause, we act as if this triple and all

previous triples from the same branch of this UNION were outside of the UNION. The other

branch of the same UNION is completely discarded, even if it stands before our current triple.

Consider the following partial query:

1. SELECT ?actor ?award WHERE {
2. ?actor <profession> <Actor> .

3. { ?actor <award-won> <Academy Award> .

4. } UNION {
5. ?actor <award-won> Gold

Here the current partial triple in line 5 is inside a UNION and thus moved out of this UNION.

The triple in line 3 is in the other branch of the same UNION and is thus ignored for the current

token (The current token is an object whose name starts with “Gold”). So we formulate an AC

query that actually corresponds to the following partial query:

1. SELECT ?actor ?award WHERE {
2. ?actor <profession> <Actor> .

3. ?actor <award-won> Gold

26

This way we maximize the number of possible results in each branch separately. We also enforce

that each branch of the UNION separately leads to a non-empty result.

MINUS

When completing a token that is inside a MINUS clause, the current triple as well as all previous

triples inside the same MINUS clause are moved outside the MINUS clause. This has the effect,

that these triples would be “added” to the query result instead of “removed”. For our autocom-

pletion this means, that we get suggestions, that remove at least one row from the result and rank

suggestions higher, the more rows they remove. We therefore suggest the content of the MINUS

clause that makes this clause the most “active”. Consider the following example:

1. SELECT ?actor WHERE {
2. ?actor <profession> <Actor> .

3. MINUS { ?actor

Here we would create an AC query that corresponds to the following situation:

1. SELECT ?actor WHERE {
2. ?actor <profession> <Actor> .

3. ?actor

Subqueries

Subqueries are SPARQL queries that are nested inside the body of another SPARQL query. When

our current token is inside a subquery, we perform autocompletion on the subquery and ignore

the outer query. Note that this technically violates our goal of sensitive results: We might get

suggestions for subqueries that themselves yield results, but are not compatible to what was

previously typed in the outer query. In our experiments we have found this to work sufficiently

well and thus stuck with this simplified approach.

Property Paths

In the predicate position of each triple the SPARQL standard does not only allow variables or single

IRIS (e.g. <is-a>) but also so-called Property Paths. These consist of possibly nested sequences

(denoted by “/” and alternatives (denoted by “|”) of IRIS and variables. Additionally each

property path may be annotated by a modifier like “∗” (0 or more occurences of the same element

in sequence) or “+”(1 or more occurences in sequence), similar to regular expressions. A typical

property path is <is-a> / <subclass-of>∗, which enforces that the subject and object of the triple

are connected by a path of one is-a property and an arbitrary number of subclass properties.14 All

sequences and alternatives can be almost equivalently reformulated in a more verbose way by using

intermediate variables (for sequences) and UNION clauses (for alternatives).15 For autocompletion

14This property path actually does not exist in Fbeasy but its equivalent wdt:P31/wdt:P279∗ plays an important
role in Wikidata queries. We have translated this example to Fbeasy for simplicity.

15The only difference is that using the shorter Property Path syntax eliminates duplicate result rows which the
extended version does not. This behavior has however no significant effect on our autocompletion scenario.

27

we use this reformulation which allows us to use the templates described above. When the current

token has a modifier, we ignore this modifier and “manually” add it after the token has been

completed. This corresponds to our assumption, that queries are typed from left to right, so the

autocompletion system only learns about this modifier after the token has been completed. This

approach also enforces, that there exist at least one match, even if the modifier would allow the

empty path. This means that we don’t allow property paths, that have no effect on the query.

Conclusion

We have shown how our query templates from section 4 can be used to complete queries that

contain more complex SPARQL constructs. By this we have implicitly fulfilled an extended

definition of the sensitivity goal: We only allow continuations that actually affect the query result.

Namely we don’t allow OPTIONAL clauses that add no bindings, UNION branches that have no

results, MINUS clauses that remove no triples and property paths that only bind to the empty

path.

5 Technical Contributions

For the evaluation of the AC queries, we have chosen three query engines: Blazegraph, Virtuoso,

and QLever. As a contribution of this thesis, we have implemented several improvements for the

QLever engine, which make the execution of AC queries faster on this engine. In this section, we

will first describe the basic architecture of all three query engines. We will then describe several

features of QLever that are especially important for processing AC queries, and how we have

improved these features for this thesis. In the following, we will use the term “original version of

QLever” to denote a version of QLever without the contributions from this thesis.

5.1 Basic Architecture of QLever, Blazegraph and Virtuoso

QLever

QLever[5] is a SPARQL+Text engine, that is being developed at the chair of Algorithms and Data

Structures at the university of Freiburg. It is licensed under the Apache License 2.0 (open source).

In addition to standard SPARQL features, QLever also supports loading a set of text snippets that

are linked to a knowledge base and supports combined queries on the structured (knowledge base)

and unstructured (text) data. In this thesis we will only consider the standard SPARQL features

of QLever. QLever assigns a unique integer ID to each token (IRI or literal) of a knowledge base.

The set of all tokens that occur in a knowledge base is called the Vocabulary of the knowledge

base (Sometimes we will also use the term Vocabulary for the mapping from this set into the

ID space). The order of the IDs corresponds to the lexicographical or numerical order of the

corresponding tokens.16 This allows to perform range filters like prefix filters completely in the ID

space, without actually looking at the tokens (see section 5.2 for details). The disadvantage of this

ordering is, that the complete knowledge base has to be loaded into QLever at once. Therefore,

QLever currently does not support SPARQL UPDATE operations. In practice however, this is

16IRIs and string literals are sorted by their lexicographical value, numeric literals (including date and time
literals) according to their numeric value

28

not much of an issue, since even the full Wikidata can be loaded in less than 24 hours using a

machine like in our evaluation (see section 6.2). QLever stores the complete knowledge base in the

ID space in the six permutations PSO, POS, SPO, SOP, OPS, OSP (e.g. the PSO permutation

is primarily sorted by the predicate, then by the subject and last by the object). Each of these

permutations is stored as one large array on disk. Each query is first mapped to the ID space

by looking up the ID for each query token in the Vocabulary. The complete processing of the

query is then performed in the ID space.17 Only the final result is then mapped back to the string

space and sent to the user. The time needed for the first mapping can typically be neglected,

because most queries contain very few tokens. In the autocompletion scenario this also holds for

the final mapping, because we are actually only interested in a small number of suggestions (100

in our experiments), so the number of strings that has to be resolved is limited. An important

characteristic of QLever is, that all intermediate results are fully materialized in the ID space.

This is an advantage for queries that require sorting/ranking, because these operations cannot be

done without looking at the complete result, and because QLever is optimized for this use-case.

This is especially true for all of our (ranked) AC queries.

Blazegraph and Virtuoso

In this subsection we will shortly introduce Blazegraph and Virtuoso and their general architec-

ture. Blazegraph [10] is the engine behind the Wikidata Query Service18, Wikimedia’s official

SPARQL endpoint for Wikidata. Blazegraph is licensed under the GPL 2.0 license (open-source).

Blazegraph stores the knowledge base in three permutations (POS, SPO and OSP) in a B+ tree.

Virtuoso [28] is a combined SQL and SPARQL database. It has a dual-licensing system with a

commercial and an open-source version. The open-source version has slightly limited functionality,

e.g. it only supports literals with a limited length. Virtuoso stores all triples in a SQL database

with four columns: The subject, object, predicate and the graph name (this last column is not

relevant for us, since we only load one graph/knowledge base into one instance of Virtuoso).

SPARQL queries are transformed into SQL queries and then handed over to Virtuoso’s SQL

engine. Virtuoso builds the following indices for the triples table: PSO, POS, SP, OP. The SP

and OP indices are distinct.

Both Virtuoso and Blazegraph also seem to use some internal mapping from tokens to IDs/integers.

We found this information partially by looking at their documentations and sources, and partially

by closely monitoring the performance characteristics of these engines. However, these IDs do not

seem to reflect the lexicographical order of the tokens. This makes UPDATE operations like the

insertion of triples easier, because new IDs can just be created at the end of the ID space19. This

approach allows the efficient execution of basic operations like joins, which don’t require a specific

ordering of the ID space. However it does not help with efficient prefix filtering. In contrast to

Qlever, Virtuoso and Blazegraph both are able to only partially materialize intermediate result

when full materialization is not needed. This means, that for example a query like “Give me ten

female mayors of large cities” can be efficiently answered without materializing all female humans

17There are only few string options, that require checking of the full string value of a token and thus form an
exception to this rule. This holds for example for general regex filters.

18query.wikidata.org
19However, the developers of Virtuoso also recommend reading the whole knowledge base at once, because adding

triples requires at least partial rebuilding of the indices, which may take quite some time.

29

query.wikidata.org

or all cities. As soon as we need a ranked result (e.g. “Ten largest cities of the world”, or all of our

AC queries), their performance often gets very poor, because the full materialization is needed to

compute the ranking (see the evaluation in section 6).

5.2 Efficient Prefix Filtering

In the previous subsection we have seen, that the order of the IDs in QLever is equal to the

lexicographical ordering of the corresponding tokens. This directly implies, that given a prefix,

the IDs of all tokens in the knowledge base, that start with this prefix, form a consecutive range.

We can make use of this fact to compute a prefix filter, which in our AC query templates (section

4) was formulated as a SPARQL construct like this:

FILTER REGEX(?variable, ”^%prefix%”)

To compute these filters, we use the following operation: As input we are given an intermediate

SPARQL result r in ID space, that is a table of IDs, where the columns stand for the already

bound variables and one row represents a possible binding. We are also given c, one of the

columns/variables and a prefix p (a string). We want to create a new result that contains exactly

the rows from r where the ID in column c corresponds to a token that starts with p. To solve this,

we first get the IDs f and l of the first and last token in the Vocabulary that starts with p via

binary search on the (sorted!) Vocabulary. We then check for each row in r if the ID in column c is

in the range [f, l] and only add the row to the result, if it fulfills this condition. This immediately

gives us an algorithm that is linear in the number of rows in r (O(|r|))20. If the input r is sorted

on column c, this means that the rows, that will end up in our result, also form a consecutive

range. We can identify this range easily by finding the first row where column c is ≥ f and the

last row where c ≤ l by performing binary search. Our complexity is then O(log(|r|) + |o|) where

|o| is the number of rows in the result that have to be written.21 Especially when the prefix is

longer and thus many rows of r are eliminated this is very efficient.

Improvements of the Prefix Filter

The general approach to prefix filtering in QLever was already implemented in the original version

of QLever. We still considered a detailed description of this mechanism necessary since it is crucial

for understanding, why the AC queries can be executed efficiently by QLever. Additionally, for

this thesis the prefix filter was improved in the following ways:

• We have fixed several bugs in the original prefix filter implementation. This included the

correct detection, when to use it. We can use the prefix filter to compute a SPARQL regex

filter, when the regex starts with a circumflex and uses no other “special” regex characters

like “.”, “*”, etc. If all of these characters are correctly escaped, we can also use the prefix

filter. The detection of this case was originally broken. This bugfix is relevant for the AC

queries, because on all three knowledge bases there exist labels that include these characters.

20Here and in the following we neglect the cost of looking up l and r which is logarithmic in the size of the
Vocabulary.

21Currently, QLever always copies all intermediate results. It would be possible to implement the prefix filter
result as a “view” into its sorted input.

30

It is crucial that we never accidentally trigger QLever’s filter for arbitrary regexes in the AC

queries, since this filter has to look at the full strings and is thus very slow.

• We improved the size estimate for the prefix filter operation, which is used by QLever’s

query planner. Originally the size of the filtered result was severly overestimated. This

lead to inefficient query plans, because the prefix filter was executed too late in the query

execution. For the autocompletion we found the assumption, that the result of a prefix filter

is 10−k ·n where n is the size (number of rows) of the input and k is the length of the prefix

to work sufficiently well. This assumes, that typing a single character eliminates 90% of the

intermediate result.

• The lexicographic order of the strings that is used to determine the IDs originally was

determined by the ASCII value of the strings. This had the effect, that the prefix filters

were case-sensitive, because the small letters a-z and the capital letters A-Z form separate

ranges in the ASCII encoding. A similar problem occured with characters that lie outside

the ASCII range, but are typically considered variants of characters within the ASCII range.

This is true e.g. for German umlauts like “ä” or letters with diacritics like “á”. Originally,

those were not sorted close to the letter “a”. For the prefix filters in the AC queries, this had

the consequence, that all diacritics etc. had to be exactly typed. For example, when typing

the prefix “Ang”, one could get suggestions for Angelina Jolie but not for Ángela Molina.22

We fixed this by integrating proper unicode support into QLever using the ICU (International

Components for Unicode) library23, the de facto standard for unicode encoding.24 We then

perform the ordering of the strings according to a set of so called unicode collation rules.

These specify, how strings that use unicode characters are ordered. For example, when

comparing two strings, the letter case and all diacritics are first ignored, and only if the

strings compare equal, these aspects are used as a tie break. Using this rule, “an”, “An” and

“án” would be sorted closely together, and all three would stand before “ant”. Additionally

we can determine prefix matches that ignore these tie breaks, such that all these four strings

match the typed prefix “an” in an AC query.25 Integrating this feature is actually not

relevant for our evaluation, since we there assume that the user always knows an exact label

which includes proper casing and usage of diacritics etc. For a real life scenario this feature

however is crucial, because eliminating results because of a missing uppercase or because of

a missing diacritic, would be highly irritating.

22In Wikidata this problem sometimes was not relevant, because many entities had a simplified alias with all the
diacritics removed from the “actual” label. However we did not want to rely on special properties of a knowledge
base.

23http://site.icu-project.org/
24ICU provides the most complete set of features among the competitors in this field, but has some maintainability

issues, because it is a relatively old code base, that was originally ported from Java. The C++ community is still
struggling to provide a unicode library that is (at least nearly) feature-complete and has an interface that interacts
well with modern C++.

25This is an a strictly simplified description of the unicode collation. In reality the concrete rules depend on the
chosen language (e.G. in swedish, å comes after z, but in other languages user would expect it to be a variant of
a. Sometimes we can even chose between multiple sets of collation rules per language. For example, in German
dictionaries ü is treated as a variant of u, while in phone books it is treated like ue, making “Müller” and “Mueller”
appear next to each other. For details see https://unicode.org/reports/tr10/.

31

http://site.icu-project.org/
https://unicode.org/reports/tr10/

5.3 Efficient Predicate Completion Using Patterns

In this subsection we will shortly describe QLever’s pattern trick, an efficient mechanism to calcu-

late predicate suggestions. We will then show how we have improved this mechanism’s efficiency

by parallelizing it.

Motivation and Description of the Pattern Trick

In section 4.3 we have seen, that AC queries for predicates have the following form (we have

omitted the retrieval of labels since it is not relevant in this section):

1. SELECT ?predicate (COUNT(DISTINCT ?subject) AS ?score) WHERE {
2. ?subject <is-a> <human> .

3. ?subject ?predicate []

3. } GROUP BY ?predicate

This is a concrete example, that corresponds to the following situation in our assumed SPARQL

editor:

?subject <is-a> <human> .

?subject

Note that the trivial approach towards processing the AC query includes materializing all humans

from the knowledge base as well as all triples from the knowledge base that have one of the humans

as subject. This typically takes a long time. For example on Fbeasy there are 37 Million triples of

this form, but there are only 4M distinct matches for ?subject (humans), and the final result has

only 620 rows. To process queries like this, that simply count how often all predicates occur for a

given set of entities (in our example: all humans), QLever makes use of the following preprocessing:

1. For each subject s in the knowledge we compute the set of predicates p that have s as a

subject, meaning that there exists a triple of the form s p someObject. This set of predicates

is called the pattern of s.

2. We compute the set of distinct patterns: We have found, that typically, many subjects have

exactly the same pattern. We store each pattern only once.

3. We assign a unique ID to each pattern, and store the mapping from all subjects to their

pattern IDs, and the mapping from pattern IDs to the actual pattern.

To efficiently answer predicate AC queries as stated above, we make use of this preprocessing in

the following way:

1. We are given a set S of subjects. For each predicate p in the knowledge base we want to

find out, how many s ∈ S have at least one triple of the form spo, where o is an arbitrary

object.

2. We first count, how often each pattern occurs for our set S. This can be efficiently done

using a hash map Mpattern that maps pattern IDs to their occurence count and using our

precomputed mapping from subjects to their pattern ID.

32

3. We then initialize a hash map that maps predicate IDs to their occurence. For each pattern

pr in Mpattern and for each predicate p that is contained in pr we increase the count of p by

Mpattern(pr) (this is the number of occurences for the pattern in our input S).

We call this algorithmic scheme (the preprocessing as well as its usage during query processing)

the pattern trick. Note that the pattern trick is, more generally spoken, a dictionary compression

scheme with a very simple heuristic, namely choosing the patterns as dictionary entries. We have

found this to work well in practice, since in typical knowledge bases, many entities share the exact

same set of predicates (aka pattern). In a future work, we are planning to improve this scheme by

using a more advanced heuristic, e.g. by also compressing the predicate set across subjects which

have almost the same pattern.

Parallel Implementation of the Pattern Trick

For this thesis, we have improved the pattern trick that was just described by providing a paral-

lelized implementation of its query processing part, which we will shortly describe here:

• In step 2 (counting, how often each pattern occurs with the set of input subjects) we split up

the input set S into several parts. Each thread can then independently calculate the pattern

counts for one of the parts. This results in one hash map per thread. We merge those hash

maps by adding the counts for each pattern.

• Step 3 can be parallelized in exactly the same way, by letting each thread calculate the total

predicate count for some of the patterns, and afterwards merging the results.

We have implemented the parallelization using the OpenMP instruction set. We have used

the omp taskloop construct from OpenMP 4.5. This ensures that the parallelization also works

efficiently if there are other loads on the CPUs.

We have found that the pattern trick together with this parallelization allows efficient pro-

cessing of most predicate AC queries. In our evaluation (section 6) we will see, that QLever is

significantly better than other query engines, especially with respect to predicate AC queries.

5.4 Caching of Subresults

QLever’s caching mechanism is one of the main reasons why this engine is well-suited for executing

AC queries. In this section we will describe, how caching works in QLever, how QLever’s caching

mechanisms help with processing AC queries, and which improvements for the cache we have

implemented for this thesis.

5.4.1 Description of QLever’s Cache

As described in section 5.1, QLever fully materializes all (sub-)results during query processing.

QLever uses a least-recently-used (LRU) cache to store these subresults. This caching of subresults

is especially beneficial when many similar queries must be processed soon after each other: Similar

queries typically have common subresults, which QLever can compute only once and then cache

them. Such similarities between queries often occur when processing AC queries: If the user for

example starts typing a query with the triple ?x <is-a> <human> then the list of all humans is

33

part of the %context% for all following AC queries. QLever caches this list and thus only has

to calculate this first triple once. Even more important is the following usage of QLever’s cache

for autocompletion: All AC queries need to add labels to the relevant entities, because the labels

have to be shown to the user and QLever possibly has to perform prefix filtering on the labels.

Using QLever’s cache we can make this process much easier by by loading all entities and their

labels into the cache. Then all AC queries can reuse these pre-loaded results that are needed for

every AC query.

5.4.2 Comparison to Blazegraph and Virtuoso

Because autocompletion can greatly benefit from caching (see above) we have also tried to find

out, to which extent our competitors Blazegraph and Virtuoso have a cache for query results.

Unfortunately we could not find any useful information in their documentations.26 By manually

experimenting we found, that there does not even seem to be a cache for final query results in

these engines. Sometimes queries get faster when they are executed repeatedly, but the times

are still way too long for a simple read from a cache. We hypothesize that these speedups come

from caching parts of the knowledge base in RAM instead of caching intermediate or final query

results. Both engines seem to rely heavily on such mechanisms. Blazegraph’s documentation

explicitly recommends leaving a lot of free RAM on the machine for the operating system’s disk

cache. Virtuoso implements its own mechanism for caching the knowledge base and lets the user

configure, how much RAM it may use for this. Note that such caching mechanisms are often

useful in practice since typically some parts of a knowledge base are much more often needed

than others for typical queries. This is also true for our evaluation dataset. But we have also

experienced that QLever’s more advanced mechanism is even more suited for autocompletion (see

the evaluation and discussion in section 6). The claim that QLever’s caching is more advanced is

justified by the fact, that Blazegraph’s and Virtuoso’s behavior can be implemented as a special

case of QLever’s caching mechanism, namely by caching only the so-called Index Scans, where a

part of the knowledge base is simply read into RAM for further processing.

5.4.3 Improvements for QLever’s caching

In this subsection we describe the improvements to QLever’s caching mechanism that were imple-

mented for this thesis to make QLever more suitable for autocompletion.

Pinned Queries

We implemented pinned queries. The results of these queries are never evicted from the cache by

the LRU mechanism. There is however the functionality to clear the cache completely (including

the pinned results) or to just clear the non-pinned results. When pinning a query result, the user

either has the option to pin all intermediate results that occur during query processing, or to just

pin the final result. For the autocompletion we pin the following building blocks: All relevant

subjects/objects together with their labels and aliases and all predicates with their labels and

26The only aspect related to caching we could find was, that Virtuoso uses a cache to speed up the query planning.
This is not relevant for our work, because the AC queries in our evaluation are relatively cheap to plan, because
they do not contain many triples.

34

aliases (see section 4 for details on the AC queries). Each of those building blocks is stored twice.

One of the copies is ordered by the entities (sub-/objects or predicates) and is used when nothing

has been typed. Then we can efficiently join27 the cached building block with all the possible

entities from the %context%. The other copy is sorted by the label/alias column. It is used for

the prefix filtering when the user has already typed a prefix of the next entity. This operation can

be performed more efficiently if its input is sorted (see section 5.2 for details).

Making the Query Planner Cache-Aware

We improved QLever’s query planner in the following way: The query planner knows which

subresults are cached and considers these results with a cost of zero and knows their exact size

(Estimating the size of subresults is one of the trickiest aspects in query planning for SPARQL

and other query languages). In combination with the pinned queries we can use this for example

as follows: When considering a single AC query for an object, the fastest query plan includes

only retrieving the labels for the object suggestions that are actually relevant in the concrete AC

query. But when we have all possible objects and their labels in the cache, then reusing this result

is much faster. We therefore pin this precomputed object-label table (see above) and our query

planner implementation makes sure, that the query planner indeed chooses this plan which is only

cheaper when considering the cache.

Limiting the Cache’s Memory

Originally, QLever’s cache was only able to limit the number of subresults that could be held

in the cache simultaneously. This was problematic since these subresults can have very different

sizes. When there were many small subresults in the cache, the cache would start evicting elements,

although the memory consumption of the cache was low. When there were many large subresults in

the cache, the memory consumption could be enormous without triggering the eviction mechanism.

Because of this, we had to manually clear the cache regularly in our initial experiments with

SPARQL autocompletion to not run into memory problems. We have removed this problem by

actually measuring and limiting the total size of all elements contained in the cache. This allows us

to completely run our evaluation without manipulating the cache in the middle of the experiments.

Improving the Software Architecture

Originally, QLever’s cache was implemented as a C++ class that was highly specialized for the LRU

structure: It was based on a linked list where new elements and elements that were accessed were

moved to the front and the elements at the back of the list were the first to be evicted. Additionally

the datatype of the cached values was fixed to the datatype QLever uses for subresults. The cache

class additionally handled the thread-safe access to the cache and made sure, that subresults that

were required by two or more query computations at the same time were computed exactly once.

From the perspective of a clean software architecture, this original design had several problems:

It violated the single responsibility principle, which states that each class or module should have

exactly one purpose. Additionally the cache could not be used for different caching strategies (e.g.

27Here we refer to the standard database JOIN operation which can be performed more efficiently when the
inputs are sorted on the join column, for details see [5].

35

least frequently used) and could not be used for other software projects because it was fixed to

QLever’s subresult datatype. We overcame these issues in the following way:

• To reach single responsibility, we split the original functionality of the cache into three

separate classes28: The actual cache class, a class that handles the thread-safe access to

an arbitrary data structure and a class that makes sure, that each subresult is calculated

exactly once. The last class uses the cache to check if a requested subresult currently is

cached, but additionally has to keep track of subresults that are currently being computed

and therefore do not yet reside in the cache.

• We made the cache class a class template where the cached datatype is a template parameter.

This allows reusing the cache for different software projects. It also increases the testability,

because tests can be run with simple datatypes like integers.

• To make the cache compatible with other strategies than LRU, we implemented a priority

queue that supports the change key operation. Caching can be implemented using a priority

queue in the following way: Each element in the cache has a key that decides, when the

element is to be evicted from the cache. When the cache is full, we remove element with

the lowest key from the cache. This is exactly the pop or delete-min operation of a priority

queue. At some point in time, the keys of existing elements have to be updated. For typical

caching strategies the key of a cache element is updated when that element is accessed.

This key update can be implemented using the change key operation of a priority queue.

Implementing a priority queue ourselves was necessary, because the C++ standard library

only provides a priority queue that is implemented as a binary heap and therefore does not

support the change key operation.

5.4.4 Conclusion

We have described QLever’s approach to caching all subresults, and why this approach is more

suited for autocompletion than that of Blazegraph and Virtuoso. We have presented several

improvements for the cache, some of which immediately were helpful for the autocompletion

scenario and some of which improved the software architecture to make QLever ready for future

extensions.

5.5 Implementation of a Memory Limit for QLever

Originally, the total amount of RAM which QLever could use was not limited. Thus, when a query

required more memory than was currently available on the machine, QLever would frequently

be killed by the operating system’s Out-Of-Memory-Killer (OOM-Killer).29 This problem also

occured during initial experiments with the autocompletion evaluation, where we had to manually

identify the problematic queries and remove them from the evaluation. To avoid that QLever is

28Some of these classes were technically class templates.
29On Linux systems, programs are allowed to allocate more memory than is physically available. Problems only

arise once this memory is actually used. Once the amount of memory that is actually used regularly exceeds the
actual capacity, the system gets unusably slow, because it starts swapping out memory pages to much slower file
systems. To avoid this freezing, Linux starts killing the processes that are responsible for the high memory usage.

36

killed by the operating system’s OOM-killer, we have implemented a global memory limit which

has the following functionality and interface:

• Before starting QLever, the user decides how much RAM QLever is allowed to use. This

quantity is then passed to QLever as a commandline parameter.

• QLever keeps track of the total amount of memory that was dynamically allocated. By

dynamically allocated we mean heap allocations as they are performed by C++’s new opera-

tor.30 It is sufficient to track dynamic allocations, as the vast majority of QLever’s memory

consumption lies on the heap. This especially holds for all (sub-)results of queries.

• Before each dynamic allocation, QLever checks whether the sum of the already allocated

memory and the newly requested memory is still smaller or equal to the global memory

limit. If this is not the case, the allocation fails and throws an out-of-memory exception.

• When such an out-of-memory exception is thrown, the user is informed that their query

could not be processed due to the memory limit.

• Optionally (depending on QLever’s configuration), when failing an allocation because of

the limit, QLever checks first whether the requested memory can be allocated if the cache is

(partially) cleared first. In this case, the cache is cleared and then the allocation is performed.

This functionality is especially relevant if the cache is allowed to take up a large percentage

of the total specified memory limit.

Description of the Implementation

The memory limit was implemented by C++’s allocator interface. All containers of the STL

(Standard Template Library, C++’s standard library) can be templated on a specific allocator

type. This allocator type specifies how the container handles dynamic memory allocations and

deallocations. The default allocator type is std::allocator. It internally uses the global new

and delete operators. We have implemented a custom allocator called the LimitedAllocator. The

LimitedAllocator uses a std::allocator under the hood to perform the actual (de-)allocations.

The LimitedAllocator additionally stores the amount of memory m that is currently in use and

the memory limit l. When a LimitedAllocator is used to allocate n bytes, we first check if there

is enough space left, meaning that m + n ≤ l. If yes, we increase the memory counter by n bytes

(m := m + n) and use the std::allocator to actually allocate n bytes. If there is not enough

space left, we throw an out-of-memory exception. Deallocation of n bytes works in the opposite

way: We first deallocate the memory and then decrease the memory counter m by n bytes. We

have additionally implemented the LimitedAllocator in a threadsafe way.

Evaluation and Further Work

We have found that the memory limit completely prevents the QLever engine from being termi-

nated by the OOM-killer. Note, that this only works, if the amount of memory that QLever is

allowed to use is physically available on the machine. The user manually has to make sure that this

30There are other ways of dynamically allocating memory, e.g. the malloc function from C, but those do not
play a role in QLever.

37

property holds. The memory limit implementation only adds a very small time overhead to each

(de-)allocation, namely a comparison and addition to the memory counter m. Since the actual

allocations themselves are relatively expensive operations, we have found no measurable perfor-

mance difference after introducing the memory limit. However, with the current implementation

there still are some caveats:

• It is still possible to crash QLever when the user allows it to use more memory than is

actually available. This typically happens when QLever is allowed to use all the memory

that is left on the machine at its starting time. When other memory-intensive software is

started on the same machine, the invariant “memory limit for QLever ≤ available memory

on machine” is violated and QLever might again use too much memory and thus might

be killed. This is not a big problem in production, where the QLever instance should be

exclusively run on a dedicated machine. But it would still be nice, if QLever additionally

respected the total amount of RAM available on a machine as an additional limit. However,

to the author’s knowledge there exists no possibility to obtain this information in a way,

that is portable across different platforms and operating systems.

• Currently, QLever only has a global memory limit. This limit includes all queries that

are currently being processed and the contents of the cache. For some scenarios it could

also be useful to limit the memory for a specific query. Consider for example a QLever

instance which is accessed by many users at the same time. If one of the users inputs a

query that requires 98% of the total memory, then the other users are much more likely

to trigger an out-of-memory exception, even if their queries require a rather low amount

of memory. A per-query limit could prevent this unfair behavior. Such a limit could also

be implemented using the allocator-based approach by including multiple memory counters

into the LimitedAllocator, e.g. one for the global limit and one for the per-query limit.

• The allocator-based implementation of the memory limit requires changes in every place,

where dynamic allocations are performed. This bears the risk that some of those places

were missed during the implementation. However we took great care to track the places

where QLever allocates memory. C++’s allocator interface is helpful with this task, as it

suffices to pass the allocator to a container (data structure) when it is created, and the

container will then use this allocator for all of its allocations. This problem of manually

passing the LimitedAllocators around could be solved by overloading the global operators

new and delete. This would in fact track all allocations. However, this mechanism would not

allow per-query limits and also would make it harder to flexibly change QLever’s allocation

mechanisms in general.

In summary we can say that the global memory limit implementation introduced for this thesis

efficiently eliminated one of the most common sources of QLever’s crashes especially in load-heavy

scenarios like sensitive autocompletion.

5.6 Implementation of a Timeout for QLever

Originally, QLever did not support the cancellation of queries. This means that after a query

was sent to Qlever, it would either run to completion or until Qlever was shut down or crashed.

38

Additionally, the total number of queries that could be processed simultaneously by QLever was

limited by a user-defined constant (the total number of operating system threads that QLever’s

HTTP server was allowed to use). The properties just described frequently lead to the following

problems:

• There are queries, which QLever is able to process, but which take a very long time (hours

or even days). Typically a user does not want to wait this long and would like to cancel

such a query and accept that it has failed. But since there was no way to cancel a query,

QLever would keep on processing such a query until it was completed or QLever was shut

down or crashed. During this long time, QLever would require resources (CPU time and

memory) for the query processing. Additionally, such a query would block one of QLever’s

server threads for a long time.

• After issuing several of the “infinite” queries just described it could happen, that all of

QLever’s server threads were used by such queries. This meant, that no new queries could

be accepted by QLever until one of the long-running queries had completed or until QLever

was manually restarted. This problem could be tackled by allowing QLever to use a higher

number of threads. But the problem of the wasted system resources would remain.

The problems just described occured often during initial experiments with the context-sensitive

autocompletion, because in this scenario many similar queries are issued within a short time. This

section will describe the implementation of a timeout mechanism for QLever. The desired behavior

of this mechanism is the following: The user inputs a query and a maximum time T . QLever then

starts processing the query. If this processing has not finished after time T , all computations

belonging to this query are stopped, the RAM that was used by the query is freed, and a timeout

error is reported to the user.

Different Approaches to Canceling Computations

When implementing a computation that can time out, there are two general approaches which will

be called cooperative and non-cooperative in the following. In the cooperative approach, the

computation itself regularly checks whether it has timed out. If it has timed out, the computation

stops itself and returns an error value indicating the timeout. In the non-cooperative approach

we run a second program or function in parallel to our main computation. This second function

is typically called a watchdog. If the maximum time for the main computation has elapsed and it

has not yet finished, the watchdog aborts the computation and reports the error.

At a first glance the non-cooperative, watchdog-based approach seems to be easier and cleaner

since it requires no changes within the “actual” computation. However, this approach requires,

that the computation can be safely canceled from outside, which is not always possible. For

example it is typically possible to cancel processes, e.g. by sending them a kill signal on Linux

systems. But there is no way to cancel computations that run in a thread that was created using

the C++ standard library. On Linux systems one could use the native pthreads (Posix Threads)

library that supports killing and canceling threads in an uncooperative way. This approach is very

likely to cause serious problems, since it does not interact well with possible cleanup operations

that the canceled routine has to perform. Herb Sutter, the head of the ISO-C++ standardization

39

committee writes the following about the non-cooperative canceling of threads: “Every major

platform has reinvented this trap because it seems like a simple idea at first, until you realize it’s

nearly impossible to write correct code whose execution can be abruptly killed at arbitrary and

unpredictable points.”31 Sutter’s further argumentation can be summarized as follows: It is not

possible to safely cancel threads without the the routine running in the thread cooperating to at

least some amount. The canceled routine at least has to define some cancellation points where it

may safely be stopped.

Description of the Implementation

For the reasons that we just discussed it was necessary to choose a cooperative approach for

QLever’s timeout functionality. We implemented a function checkTimeout() that checks whether

the current computation has run out of time. If this happens, a timeout exception is thrown which

leads to the canceling of the complete query and to an appropriate message to the user. We then

had to decide, in which places we should call the checkTimeout() function. In general we should

call it often enough to make sure that a computation is canceled quickly after it has run out of

time. But if checkTimeout() is called too often, this might hurt the performance: Although the

checkTimeout() function is computationally very cheap, its overhead might still be measurable

when called too often in a tight loop.

For most operations that can occur when processing a query, it was relatively straightforward

to integrate the timeout checks. In loops for example it often suffices to identify a suitable constant

k depending on how computationally expensive each iteration is. We then call checkTimeout()

in every k-th iteration of the loop. Another case that is a little bit more difficult is when QLever

uses a possibly long-running call to an external library like C++’s STL. In many of those cases

the library call could be split up into multiple shorter calls with timeout checks in between. One

example for this scenario are large reads from disk, which can trivially be replaced by multiple

smaller reads.

Timeout for Sort Operations

The only relevant operation that does not fall under one of the two cases we just discussed

is sorting. Efficient sorting algorithms neither consist of loops with roughly equally expensive

iterations nor can they trivially be split up into smaller operations. We first experimented with

a custom cancelable sort which we implemented by adding timeout checks to an open-source sort

implementation. While this approach worked in general, we have decided against integrating it into

QLever, because it introduces a high maintainability burden: We would no longer automatically

benefit from improvements of external sorting libraries, but would have to adapt our code manually

when an update for the used sort implementations is released. For a standard operation like sorting,

where there is a lot of specialized research, this is undesirable. For this reason we have decided to

solve the timeout for sorting differently: We estimate the time, that the sort will take, and only

allow starting it, if this estimate is not much longer than the remaining time for the query. This

approach is feasible, because we are only sorting integers in QLever and thus the required time is

highly predictable. We have implemented a SortEstimator. This module sorts inputs of different

31https://www.drdobbs.com/parallel/interrupt-politely/207100682

40

https://www.drdobbs.com/parallel/interrupt-politely/207100682

sizes when QLever is started and measures the required time. These measurements are then used

to estimate the processing time for other sorting operations.

6 Evaluation

In this section we will first describe the experimental setup. We will then present and discuss our

results.

6.1 Tuning AC Queries

Many SPARQL queries can be formulated equivalently in different ways. For example most queries

that contain subqueries can be reformulated without using this feature. One reason for choosing

between these equivalent reformulations is, that some forms might be more understandable for

humans that write and read these queries. But unfortunately many SPARQL engines perform

differently depending on which equivalent form we choose for the query. In section 4 we have

described AC query templates in the form we consider most readable to humans. However when

we use these templates directly with our three query engines Virtuoso, Blazegraph and QLever,

they often perform poorly. We therefore have tried to slightly adapt the templates for each

engine to get the maximum performance. Some of this changes are equivalent, some of them

slightly change the semantics of the query without having too much of an impact concerning the

autocompletion scenario. In the following we will describe the most important aspects that played

a role in this process.

How to Perform the Prefix Filtering

In our query templates in section 4 we have used the following form of prefix filters:

FILTER REGEX(?name, ”^%prefix%”)

QLever automatically uses the efficient prefix filters described in section 5.2 for this construct. For

Blazegraph and Virtuoso the performance of this SPARQL construct is very slow. We alternatively

tried SPARQL’s STRSTARTS function which makes it easier for the query planners to recognize,

that only a prefix match is needed. Unfortunately this did not help the performance. Additionally,

Blazegraph as well as Virtuoso support additionally building a full-text index to perform more

efficient keyword search using special predicates (bdfs:search on Blazegraph and bif:contains on

Virtuoso. But even when we removed all spaces and other deliminators from the labels, which

makes the keyword search basically a prefix search32, we could not find a significant speedup in

our scenario.

When to Perform the Prefix Filtering

The AC query template for objects (section 4.4) roughly works as follows: First we get all possible

objects that sensitively continue the context, as well as their score. In a second step, after having

grouped these objects, we retrieve their labels and apply the prefix filter. For Virtuoso and

32Both engines require for their fulltext search, that a fixed prefix of the searched keyword is specified. This
indicates that their fulltext indices use a data structure that should be optimized for prefix search.

41

Blazegraph this is indeed the fastest order of operations. In QLever however, when we have

already typed some letters, we can use the following order: First retrieve all possible objects for

which the prefix filter matches, ignoring the context. This can be done efficiently if we cache a

table with all possible objects and their labels and use the efficient prefix filter (see section 5).

When the prefix is sufficiently long, this already restricts the set of possible objects by a lot. For

example, of the 70M entities in Wikidata which have at least one label, only 2.3M entities have a

label that starts with “cat”. Then we only join this restricted set with the context. This indeed

helps the efficiency: In QLever, object AC queries are less likely to time out, if they contain a

filter with a longer prefix. For Virtuoso and Blazegraph this reformulation does actually worsen

the performance, because it leads to a higher number of expensive prefix filters that have to be

computed. Note, that even though the queries yield identical results, none of the engines is capable

of moving the joining of the names and the prefix filtering into or out of the grouping operation.

Therefore we had to create an additional template for QLever for the case of objects, where the

typed prefix is sufficiently long (we have found that 3 characters are a good threshold).

How to Retrieve Labels

In section 4.5 we have already discussed how we can obtain human-readable names for entities

on Wikidata, Freebase and Fbeasy. When using the version of Blazegraph that is used by the

Wikidata query service33, there is an alternative way to obtain labels on Wikidata, namely the

so-called label service. It is activated by adding the following special triple to the query body:

SERVICE wikibase:label bd:serviceParam wikibase:language “en”

If this triple is present, then for each ?variable that is present in the query the new variable

?variableLabel will be bound to the canonical label of this entity. For typical queries, which do

not filter on the labels, this way of retrieving them is more efficient than joining with the label

relation via a “normal” triple. We have experimented with this label service on the combination of

Blazegraph+Wikidata but have found no significant changes in the query times. We hypothesize

that the expensive prefix filter operation dominates any possible speedup in the retrieval of the

labels.

6.2 SPARQL Engines and Hardware

This subsection is identical to the corresponding section in [9]. It was written by the author of

this thesis.

We evaluate our own extension of QLever, described in Section 5, against Virtuoso and Blaze-

graph, the basic architecture of which was already described in Section 5.1.

All experiments were performed on a standard PC with an AMD Ryzen 7 3700X CPU (8 cores

+ SMT), 128 GB of DDR-4 RAM and 4 TB SSD storage (NVME, Raid 0). We also ran our

experiments on HDD storage (Raid 5), and found little difference.34

33https://github.com/wikimedia/wikidata-query-rdf/. The label service described in this section is not in-
cluded in the “vanilla” version of Blazegraph from their official github repository.

34However, indexing on HDD is much slower for Virtuoso and Blazegraph, but that is not the focus of this paper.

42

https://github.com/wikimedia/wikidata-query-rdf/

QLever was configured with a memory limit of 70GB for query processing, of which 30GB

were available to the query cache. Before each experiment, the query cache was cleared and the

basic building blocks of every AC query were pinned to the cache (see section 5.4 for details).

For Virtuoso, we use the latest release candidate of the open-source edition (7.2.6), configured

using the largest memory preset for 64GB of RAM.35 For Blazegraph, we used the latest stable

release (2.1.5), configured according to Blazegraph’s own recommendations for running Wikidata

[10]. In particular, Blazegraph gets 16GB for the JVM heap, while the rest of the RAM is used

for disk caching by the operating system.

6.3 Autocompletion Queries

As a basis for our evaluation we used the example queries for Wikidata which are provided by

the Wikidata query service [30]. These cover a wide range from rather simple to very complex

queries and use almost all features of the SPARQL query language. We had to exclude some

queries from this dataset because they cannot be processed using the Wikidata knowledge base

alone (Some of them use the additional Lexeme dataset which was not part of our evaluation, and

others query an external SPARQL endpoint using the SERVICE keyword). Some other queries

had to be removed because they heavily rely on SPARQL features which are not supported by

one of the query engines we used. For the same reason, some other queries had to be slightly

changed. These changes never made the query easier since we mostly removed FILTER clauses

with arithmetic expressions, that one of the engines did not support. This left us with 301 target

queries for Wikidata. For Freebase we manually translated all of the Wikidata queries for which

the content was also part of Freebase. The same approach was taken for Fbeasy. This lead to 115

target queries for Freebase and 99 target queries for Fbeasy.

From these target queries we derived the autocompletion queries which we used in our evalu-

ation according to the following procedure:

1. For each token (subject, predicate, object) in a target query which is not a variable, sample

a label from the knowledge base and calculate the %context% (see section 4.1).

2. From the label calculate prefixes of length 0, 3 and 7.

3. For each of the three prefixes create an AC query by plugging in the context and the prefix

into the appropriate AC query template (see section 4). Run each of these AC queries,

measure the execution time and determine, at which position in the result the token appears.

4. If the sampled label is shorter than 3 or 7 characters respectively, we modify the AC queries,

such that they enforce a full match with the label instead of a prefix match. This corresponds

to the user of an UI indicating (e.g. via entering a special character) that they have reached

the end of a label they want to type.

The following details of our experimental setup are also worth noting:

• The queries were transmitted using the HTTP SPARQL endpoint that all engines provide.

We measured the total roundtrip time of the HTTP request. Using QLever, which also

35When scaling this preset up to 128GB we found no significantly different results, but frequently ran into
problems with the out-of-memory killer.

43

reports the pure query execution time, we found that the overhead of the HTTP connection

was less than 50ms.

• We did not issue AC queries for predicates that retrieve the label of an entity (e.g. rdfs:label

or fb:type.object.name). Those appear in almost every query and would have distorted

our results. Additionally we assumed, that a well-designed UI would make using these

predicates in a query unnecessary, because resolving entities to human-readable names should

be performed automatically by the UI instead of manually via a SPARQL triple.

• We evaluate the following completion modes: unranked, agnostic, sensitive, mixed (see sec-

tion 4). The unranked and agnostic modes are only evaluated on QLever, since they only

are a baseline that in principle doesn’t even require a SPARQL engine (see section 4.6). If a

completion query takes longer than 5 seconds, we count it as failed. In the mixed mode we

issue the agnostic and the sensitive query at the same time. If the sensitive query returns a

result within 1 second we use this result, else the agnostic result (we are able to consistently

calculate agnostic AC queries in 1 second, see below).

6.4 Evaluation Metrics

In this section we describe how we measure our goals of efficiency and relevance.

Measures for Efficiency

We report for each experiment the percentage of queries that were faster than 0.2s (this is typically

considered to be interactive) and 1s respectively (here the user notices the wait, but this is typically

still acceptable). We also report the percentage of timeouts after 5s.

Measures for Relevance

For measuring the relevance we assumed the following scenario: Each time a user types something,

an AC query is started. The results of these queries are shown on pages of 7 suggestions each. It

is less important, on which exact position the target token is, but on which page it appeares. This

motivates the following metric:

MRRk (Mean Reciprocal Rank)

The Reciprocal Rank for an AC query is 1 divided by the page number on which the target token

appears. This means that we get 100% for a token on the first page, 50% for a token on the second

page, etc. When the token does not appear at all in the AC query’s result, the Reciprocal Rank is

0. More formally it is 1/((r mod k) + 1), where r is the position of the target token in the result

and k is the page size. The Mean Reciprocal Rank (MRRk) is the average of all the Reciprocal

Ranks of one experiment. We report it for k = 7 separately for each of the prefix lengths 0, 3 and

7.

44

KSk (Keystrokes)

In this metric we measure the number of keystrokes aka the required prefix length until the token

is shown on the first page for pages of size k. Note that due to our experimental setup, the KSk

for a single token is either 0, 3, 7 or the length of the typed label plus 1. We use the last case if

the token does not appear after 7 characters. This assumes that by specifying the full match with

the label (see section 6.3) we can always get the token on the first page. We report the average

over the KS7 for all tokens of an experiment.

Sens. (Sensitivity)

In the Sens. column of our evaluation results we report the percentage of AC queries for each

experiment for which the results were sensitive and which did not time out. We also count a

result as non-sensitive if the user has no way of knowing whether the results are sensitive. For

the agnostic and unranked experiments, the sensitivity is then 0% by this definition; for sensitive

experiments it is the percentage of AC queries that did not time out. For mixed results it is the

percentage of sensitive AC queries that could be answered in under 1s, so where we did not use

the agnostic fallback. Note that the difference between sensitive and mixed evaluations in this

column comes from the different timeout (5s for sensitive, 1s for mixed).

6.5 Results

In table 1 on page 46 you can see our main results. This table only reports results for tokens

where the context was not empty, because those are the tokens for which sensitive completion can

actually make a difference. An interactive webapp to explore the evaluation in more detail, as well

as detailed instructions to reproduce the results can be found at https://ad-publications.cs.

uni-freiburg.de/ARXIV_sparql_autocompletion_BKKKS_2021.materials/. In the following

we will discuss some important aspects of these results.

Sensitive Autcompletion Improves the Quality of Suggestions

When comparing the MRR with 0 letters typed between the agnostic completion and the sensitive

completion using QLever (which is consistently the best) we get the following values: 25% vs. 67%

on Fbeasy, 12% vs. 60% on Freebase and 6% vs. 50% on Wikidata. This means that especially

on the larger knowledge bases, the target token is almost never among the first results when using

agnostic autocompletion. This is totally expected because the agnostic autocompletion will always

suggest the same entities and because there is no prefix which constrains the suggestions. For the

sensitive completion the average MRR of at least 50% on all knowledge bases means, that many

of the target tokens appear on the first or second page of the result (Recall that a target token on

the first result page has a MRR of 100% and 50% on the second page). When typing a prefix of

length 3 or 7 the results get much better for agnostic as well as sensitive, the difference between

these modes becomes smaller, and sensitive stays ahead. But we consider the prefix length of 0

to be the most important case because the user doesn’t need to know a label of the entity which

they are looking for. When getting good suggestions without typing anything the user can be

“inspired” by the suggestions on how the query should be continued.

45

https://ad-publications.cs.uni-freiburg.de/ARXIV_sparql_autocompletion_BKKKS_2021.materials/
https://ad-publications.cs.uni-freiburg.de/ARXIV_sparql_autocompletion_BKKKS_2021.materials/

Fbeasy (314 tokens) ≤ 0.2s ≤ 1.0s Max Sens MRR7 KS7

Unranked Qlever 100% 100% 444ms 0% 0: 0% 3: 33% 7: 72% 8.04

Agnostic Qlever 100% 100% 470ms 0% 0: 25% 3: 86% 7: 96% 3.75

Sensitive Blazegraph 26% 42% 45% > 5s 55% 0: 38% 3: 53% 7: 53% 5.74

Sensitive Virtuoso 37% 61% 25% > 5s 75% 0: 58% 3: 65% 7: 65% 3.79

Sensitive Qlever 91% 97% 1% > 5s 99% 0: 67% 3: 96% 7: 97% 1.77

Mixed Blazegraph 26% 97% 1234ms 45% 0: 50% 3: 94% 7: 97% 2.52

Mixed Virtuoso 47% 100% 1000ms 72% 0: 57% 3: 96% 7: 91% 2.07

Mixed Qlever 90% 100% 1000ms 98% 0: 66% 3: 96% 7: 98% 1.75

Freebase (478 tokens) ≤ 0.2s ≤ 1.0s Max Sens MRR7 KS7

Unranked Qlever 100% 100% 645ms 0% 0: 0% 3: 24% 7: 55% 9.05

Agnostic Qlever 100% 100% 621ms 0% 0: 12% 3: 83% 7: 94% 4.52

Sensitive Blazegraph 29% 46% 41% > 5s 59% 0: 39% 3: 57% 7: 58% 5.32

Sensitive Virtuoso 41% 59% 19% > 5s 81% 0: 43% 3: 79% 7: 80% 3.79

Sensitive Qlever 87% 97% 0.5% > 5s 100% 0: 60% 3: 97% 7: 99% 2.06

Mixed Blazegraph 28% 100% 1041ms 49% 0: 42% 3: 93% 7: 98% 2.68

Mixed Virtuoso 42% 100% 1000ms 62% 0: 43% 3: 97% 7: 99% 2.42

Mixed Qlever 73% 100% 1000ms 82% 0: 59% 3: 96% 7: 99% 2.15

Wikidata (1258 tokens) ≤ 0.2s ≤ 1.0s Max Sens MRR7 KS7

Unranked Qlever 100% 100% 635ms 0% 0: 0% 3: 8% 7: 53% 10.87

Agnostic Qlever 100% 100% 696ms 0% 0: 6% 3: 64% 7: 92% 5.88

Sensitive Blazegraph 3% 27% 59% > 5s 41% 0: 26% 3: 36% 7: 37% 7.93

Sensitive Virtuoso 35% 53% 24% > 5s 76% 0: 38% 3: 67% 7: 67% 5.26

Sensitive Qlever 71% 90% 6% > 5s 94% 0: 50% 3: 92% 7: 95% 2.91

Mixed Blazegraph 0% 98% 1066ms 25% 0: 22% 3: 71% 7: 94% 4.71

Mixed Virtuoso 35% 100% 1002ms 59% 0: 36% 3: 76% 7: 91% 4.22

Mixed Qlever 68% 100% 1000ms 88% 0: 47% 3: 93% 7: 98% 2.76

Table 1: Evaluation Results. Each row represents one experiment consisting of a knowledge
base (Fbeasy, Freebase, Wikidata), a query engine(QLever, Virtuoso, Blazegraph), and a mode
(Unranked, Agnostic, Mixed, Sensitive). We report the percentage of AC queries that can be
computed in ≤ 0.2s and ≤ 1.0s. The Max column shows the percentage of timeouts, or the
maximum computation time, of there were no timeouts. The Sens column shows the percentage
of sensitive AC queries in an experiment. The MRR7 (average mean reciprocal rank) is separately
reported for each of the prefix lengths 0, 3 and 7. The KS7 column reports the average number of
keystrokes until a token is on the first suggestion page. For details on the metrics see section 6.4.

46

QLever is Able to Compute Sensitive AC Queries Efficiently

We now compare the sensitive results between Blazegraph, Virtuoso and QLever. We see, that on

all three knowledge bases, QLever is able to deliver the result of at least 90% of the sensitive AC

queries in at most 1 second which is still feasible for a system that feels interactive. The closest

competitor is Virtuoso which only delivers 50 to 60 percent of the sensitive results within a second,

depending on the knowledge base. This would be infeasible for an interactive autocompletion

system, since the user would have to wait too long for roughly every second query. Blazegraph

performs even worse. Even with a rather generous timeout of 5 seconds we see that Virtuoso

and Blazegraph have many timeouts. We have found that, especially on Blazegraph, many of

these queries even fail with a much longer timeout of 60 seconds. In summary we can say that

our improved version of QLever (including the improvements describe in section 5) is the only

one of the systems we compared, on which computing sensitive AC queries is feasible. We could

unfortunately not evaluate our improved version of QLever against the original version of QLever,

because the original version was lacking the ability to run many of the AC queries due to missing

features or crashes under heavy load.

Agnostic is an Interactive and Useful Baseline

The agnostic AC queries can be consistently computed in at most 1 second by QLever and have

a decent quality as soon as the user types a prefix of the next entity. This means that, at least

when we have some idea of what the next entity in the target query is supposed to be, an agnostic

autocompletion system already can be of great help to a user. As already stated in section 4.6

such a system can also be implemented without a complete SPARQL engine and such an approach

has already been taken by several SPARQL UIs, for example by the Wikidata Query Service36.

We however argue, that agnostic autocompletion is a good and feasible baseline, but that our

sensitive approach performs significantly better. This has already been discussed in the previous

paragraph and will be further elaborated below.

Mixed is a Good Compromise

The mixed autocompletion uses the sensitive result if it can be computed in at most 1 second

and the agnostic result else. Thus it is feasible as an interactive autocompletion system. For

all knowledge bases and engines, the mixed MRR is higher than the agnostic MRR, because the

sensitive results almost always have a higher MRR than the agnostic results and all engines are able

to compute at least some sensitive AC queries in 1 second. QLever again outperforms Virtuoso

and Blazegraph. This is a direct consequence of the better sensitive performance (see above).

The raw MRR values even suggest that mixed generally performs better than sensitive in many

cases. There is however the following caveat that is connected to our goal of sensitivity : With

a sensitive result, the user knows, that all the suggestions are useful continuations to the partial

query that was already typed. This is not the case for agnostic results. From our own experience

we consider this difference in sensitivity to be highly relevant, but it is hard to quantify. Please

note, that the Sens column in the result does only measure how many sensitive results were used

in the experiment. This is only a proxy for the actual sensitivity, because some of the suggestions

36http://query.wikidata.org

47

http://query.wikidata.org

from an agnostic result might also be sensitive according to our definition in section 2. In the

mixed mode, the user sometimes sees sensitive suggestions and sometimes agnostic suggestions,

which might be confusing. In a practical UI one could e.g. use a different color for the sensitive

and agnostic results when the mixed autocompletion is applied.

Ranking is Important, Especially for Agnostic Results

As a baseline we have also integrated unranked AC queries (see section 4.6) which are like agnostic

AC queries but without ranking. We observe, that this unranked mode performs much worse than

the agnostic mode. This holds even when a prefix of length 3 or 7 is typed and the difference

between these modes becomes bigger for larger knowledge bases. This means that the choice of

an appropriate ranking function is an essential ingredient of an agnostic autocompletion system.

We have not evaluated, which influence the ranking function has on the sensitive autocompletion.

But examples for sensitive but unranked SPARQL autocompletion systems have previously been

evaluated by other authors were they performed significantly worse than sensitive and ranked

systems (see for example [13] and [12] and the discussion of these papers at the beginning of

section 3).

7 Conclusion

In this thesis we have shown, how the formulation of SPARQL queries (target queries) on large

knowledge bases can be made easier by processing other SPARQL queries (AC queries), which

are automatically generated using templates and which compute context-sensitive suggestions for

the continuations of the target queries. We have introduced several improvements to the QLever

query engine that allow the efficient processing of fully sensitive and ranked AC queries. This

is a novelty in comparison to previous work where the suggestions were either not fully sensitive

(e.g. because suggestions were computed based on a summary of the knowledge base) or not

fully ranked (e.g. because suggestions were based on a non-uniform sampling of query results).

We have formally defined the SPARQL autocompletion via SPARQL problem and introduced

several metrics that allow the empirical analysis of SPARQL-based autocompletion systems. We

have conducted a thorough evaluation of different autocompletion modes (fully sensitive, fully

agnostic, and combinations of these extremes) on different query engines (Virtuoso, Blazegraph,

and QLever) and knowledge bases (Fbeasy, Freebase, and Wikidata). This evaluation has shown,

that using our template-based autocompletion approach and our improved version of QLever it is

possible to build an autocompletion-based user interface for SPARQL engines that interactively

provide the user with high-quality suggestions for entities when formulating a complex query on

a large knowledge base.

Further Work

In this final section we will discuss, how the work of this thesis could be used as a basis for further

research towards highly efficient and effective SPARQL autocompletion systems.

48

Implementing and Evaluating Semi-Sensitive Autocompletion

In sections 4.7 and 4.8 we have discussed several approaches towards semi-sensitive autocom-

pletion, which we expect to be computationally cheaper than the sensitive autocompletion and

to yield better results than agnostic autocompletion. Due to time constraints we did not inte-

grate these ideas into our evaluation. It could be interesting to experiment with such approaches

in the future, to see where their potential lies especially for cases, where sensitive AC queries

are conceptually too expensive because of a huge intermediate %context% (see section 4.1 for

details).

Building a Fully Featured UI

This thesis only describes the technical foundation of an autocompletion system. This can be used

as a basis for a graphical user interface for SPARQL engines which includes suggestions based

on autocompletion. At http://qlever.cs.uni-freiburg.de there already exists a prototype

of such a UI which was implemented by Daniel Kemen and Julian Bürklin, and which greatly

benefits from the interactive autocompletion mechansim described in this thesis. It remains to

further improve this UI and to systematically evaluate its quality (see also the next paragraph).

Conducting a User Study For Autocompletion Systems

Our evaluation in section 6 was based on a rather artificial setting: We used a set of ground

truth target queries and evaluated, how far up the “correct” token was in the autocompletion

suggestions when typing the query from top to bottom. In our experience, this is a good proxy for

the actual suggestion quality for a real user, who doesn’t know the correct query in advance. To

verify this experience, one could conduct a user study to assess how fast users are able to extract

a certain piece of information from a knowledge base using different autocompletion mechanisms.

This user study could even include completely different approaches to making knowledge bases

accessible (e.g. graphical UIs or systems that transform natural language into SPARQL query),

and compare these approaches to our autocompletion system.

Improved Ranking Functions

In this thesis we have used rather simple functions to rank the autocompletion suggestions, that

were solely based on a single property of the suggested entities, like the number of distinct subjects

in the context that have a certain predicate for sensitive predicate suggestions (see section 4). In

our evaluation (section 6), we have found these to be rather effective. It could how ever be possible

to try out more complex rating functions, which for example take multiple features of the context

and the suggestion into account and calculate a weighted average over them. In general, the

quality of a given rating function highly depends on the structure of the knowledge base and on

the type of queries a “typical” user wants to formulate on this knowledge base. This relation

between specific knowledge bases and suitable rating functions for autocompletion on them could

be an interesting subject for further research.

49

http://qlever.cs.uni-freiburg.de

More Efficient Pattern Compression

In section 5.3 we have described QLever’s pattern compression and our parallel implementation of

this mechanism, which plays an important role in autocompletion for predicates. This compression

is currently based on a very simple approach, which always takes the set of all predicates of an

entity as a pattern. This works well in practice for the knowledge bases we tested, but is far

from perfect. Especially it performs poorly if no pair of entities have exactly the same pattern,

but if there are great overlaps between the patterns. This compression of predicate patterns

could be formalized as a combinatorial problem to evaluate more sophisticated approaches and

their implications on the memory usage and speed for the practical application of the pattern

compression inside QLever.

Further Improvements For QLever

From its start as a combined SPARQL + Text engine with a big emphasis on the full text features,

QLever has come a long way and is to our knowledge currently the fastest existing SPARQL engine

for complex queries on large knowledge bases like Wikidata. However, QLever still is missing

several features of the SPARQL standard, like UPDATE clauses. Additionally there are some

types of queries where other engines like Blazegraph or Virtuoso currently outperform QLever.

This mostly includes “simple” queries which don’t require ordering the result and which limit the

number of desired results. Here QLever, due to the full materialization of all intermediate results,

is sometimes slower than other engines which are able to compute results “one by one” (see section

5.1 for details). A next step here would be implementing the full SPARQL standard in QLever

and systematically assessing and mitigating QLever’s current performance issues.

8 Acknowledgements

I want to thank Prof. Dr. Hannah Bast and Theresa Klumpp for the long and insightful discussions

on the theoretical and practical aspects of SPARQL autocompletion. I want to thank Prof. Dr.

Fang Wei-Kleiner who agreed to act as a second reviewer for this thesis. I want to thank my dear

wife Regina and my parents for their continuous support during my prolonged years of university

studies.

50

References

[1] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. “A comparative survey of recent

natural language interfaces for databases”. In: VLDB J. 28.5 (2019), pp. 793–819.

[2] Oszkár Ambrus, Knud Möller, and Siegfried Handschuh. “Konduit vqb: a visual query

builder for sparql on the social semantic desktop”. In: Workshop on visual interfaces to

the social and semantic web. 2010.

[3] Marcelo Arenas et al. “Faceted search over RDF-based knowledge graphs”. In: J. Web Se-

mant. 37-38 (2016), pp. 55–74.

[4] Konstantine Arkoudas and Mohamed Yahya. “Semantically Driven Auto-completion”. In:

Proceedings of the 28th ACM International Conference on Information and Knowledge Man-

agement, CIKM 2019, Beijing, China, November 3-7, 2019. ACM, 2019, pp. 2693–2701. doi:

10.1145/3357384.3357811. url: https://doi.org/10.1145/3357384.3357811.

[5] Hannah Bast and Björn Buchhold. “QLever: A Query Engine for Efficient SPARQL+Text

Search”. In: CIKM. ACM, 2017, pp. 647–656.

[6] Hannah Bast and Elmar Haussmann. “More accurate question answering on freebase”. In:

Proceedings of the 24th ACM International on Conference on Information and Knowledge

Management. 2015, pp. 1431–1440.

[7] Hannah Bast et al. “Broccoli: Semantic full-text search at your fingertips”. In: arXiv preprint

arXiv:1207.2615 (2012).

[8] Hannah Bast et al. “Easy access to the Freebase dataset”. In: WWW (Companion Volume).

ACM, 2014, pp. 95–98.

[9] Hannah Bast et al. Efficient SPARQL Autocompletion via SPARQL. 2021. arXiv: 2104.

14595 [cs.DB].

[10] Blazegraph. https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf,

retrieved 30.01.2021. Wikidata setup: https://www.mediawiki.org/wiki/Wikidata_

Query_Service/User_Manual.

[11] Kurt D. Bollacker et al. “Freebase: a collaboratively created graph database for structuring

human knowledge”. In: SIGMOD Conference. ACM, 2008, pp. 1247–1250.

[12] Stéphane Campinas. “Live SPARQL Auto-Completion”. In: ISWC Posters & Demos. Vol. 1272.

CEUR Workshop Proceedings. 2014, pp. 477–480. url: https://pdfs.semanticscholar.

org/2628/15d156def72810bad221d1f2db1799f12daf.pdf.

[13] Stéphane Campinas et al. “Introducing RDF Graph Summary with Application to Assisted

SPARQL Formulation”. In: DEXA Workshops. IEEE Computer Society, 2012, pp. 261–266.

url: http://www.renaud.delbru.fr/doc/pub/webs2012-sparqled.pdf.

[14] Ju Fan, Guoliang Li, and Lizhu Zhou. “Interactive SQL query suggestion: Making databases

user-friendly”. In: Proceedings of the 27th International Conference on Data Engineering,

ICDE 2011, April 11-16, 2011, Hannover, Germany. IEEE Computer Society, 2011, pp. 351–

362. doi: 10.1109/ICDE.2011.5767843. url: https://doi.org/10.1109/ICDE.2011.

5767843.

51

https://doi.org/10.1145/3357384.3357811
https://doi.org/10.1145/3357384.3357811
https://arxiv.org/abs/2104.14595
https://arxiv.org/abs/2104.14595
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual
https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual
https://pdfs.semanticscholar.org/2628/15d156def72810bad221d1f2db1799f12daf.pdf
https://pdfs.semanticscholar.org/2628/15d156def72810bad221d1f2db1799f12daf.pdf
http://www.renaud.delbru.fr/doc/pub/webs2012-sparqled.pdf
https://doi.org/10.1109/ICDE.2011.5767843
https://doi.org/10.1109/ICDE.2011.5767843
https://doi.org/10.1109/ICDE.2011.5767843

[15] Sébastien Ferré. “Sparklis: An expressive query builder for SPARQL endpoints with guidance

in natural language”. In: Semantic Web 8.3 (2017), pp. 405–418.

[16] Marie Le Guilly, Jean-Marc Petit, and Vasile-Marian Scuturici. “SQL Query Completion for

Data Exploration”. In: CoRR abs/1802.02872 (2018). url: http://arxiv.org/abs/1802.

02872.

[17] Mustafa Jarrar and Marios D. Dikaiakos. “A Query Formulation Language for the Data

Web”. In: IEEE Trans. Knowl. Data Eng. 24.5 (2012), pp. 783–798. url: http://linc.

ucy.ac.cy/publications/pdfs/2012-TKDE-mashQL.pdf.

[18] Johannes Kalmbach. “Efficient and Effective Search on Wikidata Using the QLever Engine”.

Bachelor’s Thesis. University of Freiburg, 2018.

[19] Nodira Khoussainova et al. “SnipSuggest: Context-Aware Autocompletion for SQL”. In:

Proc. VLDB Endow. 4.1 (2010), pp. 22–33. doi: 10.14778/1880172.1880175. url: http:

//www.vldb.org/pvldb/vol4/p22-khoussainova.pdf.

[20] Mikko Koho, Erkki Heino, and Eero Hyvönen. “SPARQL Faceter - Client-side Faceted Search

Based on SPARQL”. In: ESWC. Vol. 1615. CEUR Workshop Proceedings. CEUR-WS.org,

2016.

[21] Kasjen Kramer, Renata Queiroz Dividino, and Gerd Gröner. “SPACE: SPARQL Index for

Efficient Autocompletion”. In: ISWC Posters & Demos. 2013, pp. 157–160. url: http:

//ceur-ws.org/Vol-1035/iswc2013_demo_40.pdf.

[22] Jens Lehmann and Lorenz Bühmann. “AutoSPARQL: Let Users Query Your Knowledge

Base”. In: The Semantic Web: Research and Applications - 8th Extended Semantic Web

Conference, ESWC 2011, Heraklion, Crete, Greece, May 29-June 2, 2011, Proceedings, Part

I. Vol. 6643. Lecture Notes in Computer Science. Springer, 2011, pp. 63–79. doi: 10.1007/

978-3-642-21034-1_5. url: https://doi.org/10.1007/978-3-642-21034-1%5C_5.

[23] Eyal Oren, Renaud Delbru, and Stefan Decker. “Extending Faceted Navigation for RDF

Data”. In: International Semantic Web Conference. Vol. 4273. Lecture Notes in Computer

Science. Springer, 2006, pp. 559–572.

[24] Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz. “Towards a theory of natural lan-

guage interfaces to databases”. In: IUI. ACM, 2003, pp. 149–157.

[25] Karima Rafes et al. “Designing Scientific SPARQL Queries Using Autocompletion by Snip-

pets”. In: eScience. IEEE Computer Society, 2018, pp. 234–244.

[26] Thibault Sellam and Martin L. Kersten. “Meet Charles, big data query advisor”. In: CIDR

2013, Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,

January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013. url: http://cidrdb.org/

cidr2013/Papers/CIDR13%5C_Paper94.pdf.

[27] Zhao Sun et al. “Efficient Subgraph Matching on Billion Node Graphs”. In: PVLDB 5.9

(2012), pp. 788–799. url: http://vldb.org/pvldb/vol5/p788_zhaosun_vldb2012.pdf.

[28] OpenLink Virtuoso. http : / / docs . openlinksw . com, retrieved 30.01.2021. RDF Index

Scheme: http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme.

52

http://arxiv.org/abs/1802.02872
http://arxiv.org/abs/1802.02872
http://linc.ucy.ac.cy/publications/pdfs/2012-TKDE-mashQL.pdf
http://linc.ucy.ac.cy/publications/pdfs/2012-TKDE-mashQL.pdf
https://doi.org/10.14778/1880172.1880175
http://www.vldb.org/pvldb/vol4/p22-khoussainova.pdf
http://www.vldb.org/pvldb/vol4/p22-khoussainova.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_40.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_40.pdf
https://doi.org/10.1007/978-3-642-21034-1_5
https://doi.org/10.1007/978-3-642-21034-1_5
https://doi.org/10.1007/978-3-642-21034-1%5C_5
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper94.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper94.pdf
http://vldb.org/pvldb/vol5/p788_zhaosun_vldb2012.pdf
http://docs.openlinksw.com
http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme

[29] Denny Vrandecic and Markus Krötzsch. “Wikidata: a free collaborative knowledgebase”. In:

Commun. ACM 57.10 (2014), pp. 78–85.

[30] Wikidata Query Service (WDQS). https://query.wikidata.org. Example queries re-

trieved on 23.10.2020.

53

https://query.wikidata.org

Rastatt, August 2, 2021

	Preliminaries
	The Resource Description Framework
	The SPARQL Query Language
	Real-World Knowledge Bases
	Motivation: Formulating Proper Queries is Hard

	Problem Definition
	The SPARQL Autocompletion via SPARQL Problem
	Examples
	Discussion
	Contributions

	Related Work
	Autocompletion (AC) Queries
	Calculating the Context
	AC Queries for Subjects
	AC Queries for Predicates
	AC Queries for Objects
	Adapting AC Templates
	Agnostic and Unranked AC Queries
	Semi-Sensitive AC Queries
	Mixed Autocompletion
	Adapting AC Query Templates to Complex SPARQL Constructs

	Technical Contributions
	Basic Architecture of QLever, Blazegraph and Virtuoso
	Efficient Prefix Filtering
	Efficient Predicate Completion Using Patterns
	Caching of Subresults
	Description of QLever's Cache
	Comparison to Blazegraph and Virtuoso
	Improvements for QLever's caching
	Conclusion

	Implementation of a Memory Limit for QLever
	Implementation of a Timeout for QLever

	Evaluation
	Tuning AC Queries
	SPARQL Engines and Hardware
	Autocompletion Queries
	Evaluation Metrics
	Results

	Conclusion
	Acknowledgements
	References

