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Abstract

An OSM-data processing tool, which outputs RDF data, will be introduced. To
achieve that a custom parser, specialized in the way OSM-data is represented,
is used. The requirement of processing large OSM-data sets encourages the
use of on-disk processing data structures. The rules of the conversion are pre-
sented in this work. For this, the underlying structure of OSM was taken into
consideration.

The tool uses clustering and geometric analysis to infer additional data from
the input. Furthermore simplified polygons are used in order to infer spatial
relations as the containment relation. Those simplifications are computed with
a modified Ramer-Douglas-Peucker algorithm. The efficient computation of
the spatial relations is done via an RTREE and a directed acyclic graph.
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1.1 Goal

Knowledge bases are used to store complex structured and non-structured
information and reasoning can be performed on those. Queries can be per-
formed on those when using SPARQL engines. E.g. in order to find all foun-
tains in Freiburg-Altstadt the query found in Listing 1.1 can be performed.
Given former query the SPARQL engine returns 25 elements which locations
are depicted in figure 1.1.

Listing 1.1: SPARQL Query used to find all fountains inside "Altstadt" in Freiburg.
PREFIX osmnode: <https://www.openstreetmap.org/node/>
PREFIX osmway: <https://www.openstreetmap.org/way/>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
PREFIX osmt: <https://www.wiki.openstreetmap.org/wiki/key:>
PREFIX osmwiki: <https://wiki.openstreetmap.org/wiki/>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX wpd: <https://de.wikipedia.org/wiki/>
PREFIX wd: <http://www.wikidata.org/entity/>

SELECT ?osm_id ?hasgeometry WHERE {
osmrel:1960176 geof:sfContains ?osm_id .
?osm_id osmt:amenity "fountain" .

}

The entries of the knowledge base are stored in triples of subject, predicate
and object. This works tool converts triple from geodata. More specifically
from Open Street Maps (OSM). OSM is the largest geo-data set which is ac-
cesible.

The plain aim is the conversion of OSM data to ttl triples. Other subgoals
emerged throughout the process of solving the main aim. The subgoals were
the inference of new data points which are computed by combining given
data points as well as the computation of the spatial relations. The rules
of conversion are formulated with a certain desired conformity of structure
between OSM and triples in mind.

The tool of this work may be regarded as a blackbox which takes an OSM
data set as the input and a ttl file as the output. The interior of the blackbox
is being revealed in the third chapter.

To further motivate and state a possible application of this tools output, one
may consider the incorporation and linking of geographic data with a knowl-
edge base that may contain general facts from heterogeneous sources. Com-
plex queries on such a joined knowledge base as well as the visualization of
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Figure 1.1: A map showing "Altstadt" in Freiburg. The red circles denote the locations of
the returned result elements of the SPARQL query.

those become possible.

1.2 Introduction of terms

In the following, a few terms which are vital for understanding the under-
lying problems as well as related work, are being introduced. First of all,
the terms, abbreviated by OSM, RDF/TTL and WKT, that relate to the fixed
specification, defined by the goal of the thesis, are being introduced in the
following.

1.2.1 OpenStreetMap (OSM)

The OpenStreetMap (OSM) [Foundation, 2022] project was founded in 2004.
Any person can register and contribute to the OSM by adding and editing
geodata of the OSM data. The data is available under the open database
license. A usual workflow for voluntary mapper is the viewing of aerial pho-
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tographies and subsequently, the outlining of structures or landmarks that
have been recognized and the tagging of those according to OSM standards.

There are three classes of locations in OSM: nodes, ways and relations.
Nodes are the most basic OSM elements, which consist of a longitude, lati-
tude and an identifier (node ID). Ways consist of an ordered list of node IDs
and a way id. A way is a either a line or a polygon, depending whether the
the first and last node of the node list are identical, which results in an open
or closed polyline. Relations are composed of an ordered list of nodes, ways
and relations. Further context is given to any OSM element via tags. A tag
consists of a key and a value. For instance the tag name=Central Park is
used for a widely known recreation park found in Manhattan, New York that
is mapped into OSM as a way, since it consists of nodes that form a closed
polygon. Since relations may contain other relations and in contrast to the
former two OSM element types, are enforced to have at least one tag they are
the most complex of the three OSM element classes. Any item of the OSM
element list of a relation may have a role associated with it. The role inner
and outer is used to define multipolygons. The inner parts are subtracted
from the outer parts.

The OSM data set consists of more than seven billion nodes, 800 million
ways and nine million relations. More than eight million users are regis-
tered at this moment. Since the data is under open license, the data can
be modified and customized for arbitrary applications or use. Hence, for the
formerly mentioned reason and the availability, using OSM data for the input
seemed fitting.

1.2.2 Resource Description Framework (RDF)

RDF is a model of information in the form of web resources. The RDF seri-
alization format used as the output of this works tool is called Turtle (ttl). A
ttl file consists of triples in the form of: subject, predicate and object, which
are concluded by an ending "."-character. Between all of the triples terms
as well as the ending character, there is a delimiter like a space or a tab.
Furthermore prefixes can be introduced, which shorten the number of used
characters in a data entry while keeping human readability.

Consider the following statements:
Michael Jackson is the performer of the song Thriller. Queen is the performer
of the song Bohemian Rhapsody. Freddy Mercury wrote the latter song.
Those statements may be expressed in the ttl format as given by listing 1.2
and listing 1.3. Both listings model the same information, but the latter one
makes use of prefixes.
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<http://example.org/artist/Michael_Jackson> <http://example.org/relation/
performerOf>

<http://example.org/song/Thriller> .
<http://example.org/artist/Queen> <http://example.org/relation/performerOf>
<http://example.org/song/Bohemian_Rhapsody> .

<http://example.org/song/Bohemian_Rhapsody> <http://example.org/relation/writtenBy>
<http://example.org/artist/Freddy_Mercury> .

Listing 1.2: Content of a simple ttl file without prefixes.

@prefix artist: <http://example.org/artist/> .
@prefix relation: <http://example.org/relation/> .
@prefix song: <http://example.org/song/> .

artist:Michael_Jackson relation:performs song:Thriller .
artist:Queen relation:performs song:Bohemian_Rhapsody .
song:Bohemian_Rhapsody relation:writtenBy artist:Freddy_Mercury .

Listing 1.3: Content of a simple ttl file with prefixes.

1.2.3 Well-Known Text (WKT)

In order to store an OSM elements geometry inside a triples object, Well-
known text (WKT) strings are used. Neglecting the coordinate reference sys-
tem in the following. Using WKT one can express a point in space as POINT
(30 10). A point is visualized in the left-most graph of Figure 1.2. An open
polyline for instance can in WKT be expressed as LINESTRING (30 10, 10 30,
40 40). An open polyline is visualized in the second left-most graph of Figure
1.2 .A closed polyline in WKT can be expressed as POLYGON ((30 10, 40 40,
20 40, 10 20, 30 10)). A closed polyline is visualized in the center graph of
Figure 1.2. A closed polyline with an inner polyline, which gets substracted,
expressed using WKT may be written like POLYGON ((35 10, 45 45, 15 40,
10 20, 35 10),(20 30, 35 35, 30 20, 20 30)). Each coordinate sequence that
comes after the first one, substracts from the initial coordinate sequence. A
closed polyline with an inner polyline is visualized in the second right-most
graph of Figure 1.2. In a WKT string the former mentioned WKT objects
can be grouped via geometric collections. GEOMETRYCOLLECTION (POINT
(40 10), LINESTRING (10 10, 20 20, 10 40), POLYGON ((40 40, 20 45, 45
30, 40 40))) is an instance for a geometric collection in WKT. A geometric
collection is visualized in the right-most graph of Figure 1.2.

For the sake of visualizing WKT geometries, in Figure 1.2 drawings of the de-
picted examples for the different geometry types are presented. Other WKT
geometry types exist, but these are the ones used by the tool. Decisions
about the conversion rules of the OSM geometries were made based on the
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Figure 1.2: Examples of the WKT section are drawn here. Instances of a point, an open
polyline, a closed polyline, a closed polyline with an inner polyline as well as a geometric
collection is denoted from left to right.

• •

geometry types of WKT. The location of an OSM node is translated to a WKT
point. The geometry of an OSM way with an open polyline is translated to
a WKT linestring. The geometry of an OSM way with a closed polyline, po-
tentially with several inner polygons, is translated to a WKT polygon. Since
an OSM relation conceptually a grouping of OSM nodes, ways and relations,
the WKT geometric collection is for OSM relations, since the WKT geometric
collection does also group the other WKT primitives.

To give more contex of how the WKT string is written into a ttl file, view
the following line of listing 1.4. The prefixes for the ttl file were omitted.

Listing 1.4: An OSM element’s geometry expressed as a single ttl triple.
osmrel:13038953 geo:hasGeometry "GEOMETRYCOLLECTION(POINT(7.986672 48.506398),

POINT(7.989988 48.502834), LINESTRING(7.986689 48.506284,7.986729
48.506251,7.987331 48.505752,7.987984 48.505333,7.988140 48.505199,7.988266
48.505046,7.988351 48.504922,7.988450 48.504726,7.988661 48.504433,7.988891
48.504216,7.988844 48.504160,7.989198 48.503798,7.989576 48.503397,7.990016
48.502844))"^^geo:wktLiteral .

1.3 Tools and data structures in
application

Relevant tools, data structures and their purpose for this works tool is intro-
duced in this section.

1.3.1 Libosmium

The OSM data set is parsed via the libosmium library. The library is spe-
cialized on dealing with large OSM data sets, which do not fit into memory.
Hence, the parser is used as an event-based parser, which means, the parser
does process each OSM element as it is read on-the-fly rather than preload-
ing all of the OSM elements into memory. Via libosmium, this works tool
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parses a .pbf tool with threading enabled. Using.pbf files, Google’s protocol
buffer, shrinks the data set to a fraction of the original size. The OSM data
set of the globe is called planet.osm. The uncompressed size is larger than
1500 GB, whereas the size of the pbf-compressed data set of the globe has
a size of about 60 GB. A custom parser was developed for this works tool,
but the parser was not able to parse .pbf files, which is why ultimately, the li-
bosmium parser was chosen. Reading the input by using libosmium requires
the implementation of an osmium-handler interface. Functions for dealing
with OSM nodes, OSM ways and OSM relations are required to be defined.

1.3.2 STXXL and boost::geometry

Since the available memory is not large enough to store the geometrical data
of planet.osm the question arises of how to resolve the geometries of the
OSM data set. To tackle this problem, STXXL was chosen to store the geo-
metrical data. STXXL is a library which provides the functionality of storing
into external memory. They implement containers and algorithms similar to
standard template library (STL), which are being stored on to disk. In or-
der to compute spatial relations as the intersection and the containment, the
geometries are converted to classes of boost::geometry. Boost::geometry im-
plements the computation of those mentioned spatial relations between two
geometries.

1.3.3 RTree

A spatial index is used for an efficient lookup of OSM elements and their
geometries. The Boost implementation of the RTree is used as the spatial
index. The RTree uses a tree data structure, which groups objects within a
local vicinity with a minimum bounding rectangle within the hierarchy of the
tree. The Boost implementation of the RTree is in use. The documentation of
Boosts RTree refer to [Leutenegger et al., 1997] and [García R et al., 1998]
for bulk insertion. They claim the packing algorithm, which is used for bulk
insertion, increases the performance of the RTree for the generation as well
as the querying.

1.3.4 Directed Acyclic Graph

A graph in general is defined by its vertices and edges. Each edge connects
two vertices. The edges of a directed graph are not bidirectional. An directed
acyclicgraph is a directed graph with the condition of any vertex not being
visited after the vertex occured in a path for each path that can be traversed.
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Hence, paths with loops are not possible for a directed acyclic graph.
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2.1 YAGO and YAGO2

This section is about another known knowledge base.

YAGO2[Hoffart et al., 2013] is a knowledge base which is derived from pro-
cessing a combination of Wikipedia, WordNet [Miller, 1995] and GeoNames
data as a gazetteer. Wikipedia is a crowdsourced portal that provides infor-
mation via Wikipedia articles. Wikipedia articles are converted to entities in
YAGO. WordNet is a lexical database, which contains a taxonomy of nouns.
GeoNames purpose is to store geographical entities. The data is stored as
triples. These triples consist of subject, predicate and objects. Hence, it is
analogous to RDF.

WordNet is used for classification of statements given by Wikipedia and GeoN-
ames. GeoNames data can have links to wikipedia entities, which, when
mapped, can be used to add geographical information to entities that were
found before. YAGO2 extends the predecessor YAGO[Suchanek et al., 2007]
by focusing on the spatial and temporal context. E.g. the lifespan of entities,
facts or events is given by certain predicates like "wasCreatedOnDate", if it is
given. An entity is a spatial entity if the entity has a real world location that
is not volatile. Per spatial entity YAGO2 does not store polygons, instead one
pair of coordinates is stored. Since locations are extracted from wikipedia
there is less of an emphasis on the spatial information in contrast to a data
set that focuses on geometric data.

In contrast to YAGO/YAGO2 this works tool does not cross match data be-
tween different tools, the tool has a focus on processing geometries and an
RDF conversion that is close to OSM’s data structure.

2.2 LinkedGeoData

This section is about another project which also does the OSM-data to
RDF-data conversion.

This tool by Stadler et al. [Stadler et al., 2012] also converts OSM
data to an RDF format. They map OSM nodes and ways to RDF by
generating URIs in the form of lgd:node<id> as well as lgd:way<id>.
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The nodes that a way refers to are given with lgd:way<id>/nodes.
They state, that they try to evoke a conversion, which will have a
structure which is similar to the OSM structure. Furthermore in-
stance matching is done, in order to link elements of different RDF
knowledge bases. They store the geometry of a way as a literal.

This works tool stores the geometry of tagged nodes, all ways and
more than 99% of the relations in the form of WKT string literals. The
geometry is given explicitly instead of the OSM element references.
Although no instance matching is perfomed by this works tool, tags
like wikidata=Q154797 or wikipedia=Deutscher_Bundestag will be
translated to objects wd:Q154797 and wpd:Deutscher_Bundestag, with
the prefix wd: for <http://www.wikidata.org/entity/> andwpd: for
<https://de.wikipedia.org/wiki/>.

2.3 TripleGeo

This tool also performs the geodata to RDF conversion. Also a lot of
geometrical computations are involved which are interesting in the context
if this work.

It is claimed, that the tool TripleGeo by Patroumpas et al.
[Patroumpas et al., 2014] does extract geospatial features from various
sources, access geometries and attributes from standard geographic formats
or common data base management systems(e.g. shapefiles or PostGIS). It
is capable to recognize points, linestrings, multi-linestrings, polygons and
multi-polygons. Furthermore reprojection between coordinate reference sys-
tems is possible, before triples can be exported into notations as RDF/XML.

This works tool is also able to recognize those geometries with the
addition of arbitrary groupings of the same geometries as long as the source
OSM element, from which certain triples are derived, is not a relation that
contains further relations. OSM relations that consist of one or more OSM
relations make up less than one percent of all OSM relations.
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2.4 OSCAR

This tool is about querying spatial relations using a custom spatial index.

This tool by Bahrdt et al. [Bahrdt et al., 2017] is capable of text search as
well as querying spatial relations like "north of" or "near". A cell arrangement
is infered by an OSM dataset. For each of these cells, all tags of the OSM
elements that are contained by the cell are being linked to the cell. Then the
cells and the individual tagged nodes are linked. In order to refine the cells,
a triangulated mesh via delaunay triangulation and merging of triangles is
computed. They have a live web app [Foundation, ], which one can query
for text search. In contrast to this, this works tool outputs a precomputed
dataset.

2.5 OSM2RDF/OSM2TTL

This section is about a tool which also uses an RTree in combination with a
directed acyclic graph in order to infer spatial relations.

The tool OSM2RDF by Bast et al. [Bast et al., 2021], formerly known
as osm2ttl, converts most information of a given OpenStreetMap (OSM)
dataset into Resource Description Framework (RDF) triples. Such a triple
consists of a subject, a predicate and an object. For the RDF conversion,
the geometries of the OSM elements are converted to well-known-text
(WKT) strings. A possible application for this knowledge base consisting
of those triples may be the combining of RDF datasets and querying
the knowledge base with a tool like QLEVER [Bast and Buchhold, 2017].

Furthemore OSM2RDF computes certain spatial relationships between
certain OSM Elements. For instance whether an OSM Element geograph-
ically resides within or intersects with certain (multi)polygons. Also the
geometries of OSM elements, which do not depict a single point, are
required to be resolved, since only references to other OSM elements,
which compose the geometry, are given, instead of their explicit geometry.

Spatial relations like the intersection or the containment are also to
be inferred by comparing the geometries of the OSM elements. In order to
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compute those spatial relations efficiently, a combination of an RTree and a
directed acyclic graph (DAG) is used. If for an OSM element the containment
relation was computed wrt. a certain one, the DAG provides the contain-
ment relations, which were already computed for that certain OSM element.
Hence those precomputed spatial relations infer the spatial relations for the
source element, additional containment checks can be omitted. OSM2RDF
applies transitive reduction to the DAG, which is not done for this works tool.

OSM2RDF as well as this works tool uses libosmium for parsing the OSM
dataset, as well as the geometry and the RTree implementations by boost.

The tool of this work also uses the approach of combining the RTree
with a DAG. In order to enhance the efficiency, two kinds of simplified
geometries are being additionally stored for certain OSM elements. Here
the term simplified geometry signifies a geometry with a reduced number
of points. Thus spatial relation checks take less runtime. The two kinds of
simplified geometries are an over- and an underestimation of the former
geometry. More of this is being explained in the next chapter. In comparison
to OSM2RDF this works tool uses stxxl as "external" memory in order to
store and resolve the geometries of the OSM elements afterwards.
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3.1 Program flow of the applica-
tion

In the following the program flow of this works tool is presented. The pro-
gram sequence of this works tool is divided into notable computation steps.
If a part of the program is labeled with , data is written to the outputfile.
If a part of the program is labeled with , considerable amounts of data, for
data, which is used in other computation steps, are stored into memory. Con-
siderable amounts of data in this context means, that aggregated data like
the computation of statistics is excluded. If a part of the program is labeled
with , data is stored into external memory.

1. Write tags of OSM elements and location of OSM nodes

2. Compute statistics

3. Compute boundaries

4. Generate RTree

5. Generate directed acyclic graph

6. Store geometrical data of OSM elements and compute spatial relations
for OSM nodes

7. Compute geometries of OSM ways

8. Generate new ways by clustering fragmented ways

9. Write geometries of OSM ways and their spatial relations

10. Compute geometries of OSM relations

11. Write geometries of OSM relations and their spatial relations

The OSM data set is read by using libosmium. Reading a data set as big
as planet.osm, if in .pbf format, is done in less than five minutes, if no or
hardly any data is written or stored. This is noticeably faster than the overall
runtime of the program, which is why several reading passes on the data are
performed.
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3.1.1 Write tags of OSM elements and location of OSM
nodes

In this part of the program, the first reading pass occurs. For each parsed
OSM element, the OSM tags are converted to triples. If the parsed OSM
element is an OSM node, the location of the node is converted to a triple
as well. The triples are written to the output file after the ttl prefixes are
written. The used prefixes are found in listing 3.1.
@prefix osmnode: <https://www.openstreetmap.org/node/> .
@prefix osmway: <https://www.openstreetmap.org/way/> .
@prefix osmrel: <https://www.openstreetmap.org/relation/> .
@prefix osmt: <https://www.wiki.openstreetmap.org/wiki/key:> .
@prefix osmwiki: <https://wiki.openstreetmap.org/wiki/> .
@prefix geof: <http://www.opengis.net/def/function/geosparql/> .
@prefix geo: <http://www.opengis.net/ont/geosparql#> .
@prefix wpd: <https://de.wikipedia.org/wiki/> .
@prefix wd: <http://www.wikidata.org/entity/> .

Listing 3.1: The used prefixes for the ttl file.

As an example of a typical conversion, the triple
osmrel:62718 osmt:name "Bremen" . is generated when converting

the OSM tag name=Bremen from the OSM relation, which has the ID
62718. The key is included in the triples predicate in combination with the
osmt prefix. The value of the tag translates to the object of the triple, which
is a string literal in the former example.

In certain circumstances, the conversion is done differently. Those
other cases of conversion and their rules are defined in the following:

• if the value of an OSM tag starts with http or www while the key of the
tag does not contain the string note, the object of the triple is enclosed
with < and >, which states, that the object is a URL.

• if any data from a tag, which is included in a triple is going to be percent
encoded. This means the object of the triple is not a literal.

• if the OSM key contains the string wikidata and not note and the
OSM value has the structure of Q...(multiple instances starting with Q
are possible), then for each instance of the value generates a triple.

Continuing with the former example, the triple
osmrel:62718 osmt:wikidata wd:Q1209 . is generated from the

OSM tag wikidata=Q1209 .

• if the OSM key contains the string wikipedia
and not note, then a triple is generated.
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Continuing with the former example, the triple
osmrel:62718 osmt:wikipedia wpd:de%3AFreie_Hansestadt_Bremen .

is generated from the OSM tag wikipedia=de: Freie_Hansestadt_Bremen .
The percent-encoding rule is applied in this example as well.

• if the key of the OSM tag, which is going to be converted, is is_in, several
triples are created for the comma-separated split of the value of the OSM
tag.

For this part of the program, if the OSM element that is parsed,
is an OSM node, the location is also written to the output file.
A possible triple would be osmnode:20982927 geo:hasGeometry

"POINT(8.807165 53.075820)"ˆˆgeo:wktLiteral . , which has been
derived from an OSM node. The introduced WKT-string are used in order to
express the geometries.

3.1.2 Compute statistics

Another parsing pass is done in this part of the program. This part does
compute statistics regarding the OSM data set. The number of OSM nodes,
ways and relations, relations, which contain relations, relations, which do
not contain relations as well as the number of multipolygon=yes tagged
are computed in this program part. The maximum ID of the set of OSM
ways is also stored, since it will be used as the starting index for the newly
generated clustered-ways in subsection 3.1.8.

3.1.3 Compute boundaries

Before the majority of the OSM geometries is computed, a specific small
subset, along with their geometry, is processed. For planet.osm, the
small subset contains 600 000 OSM relations. Those specific relations
are tagged with boundary=administrative and type=boundary . The
geometry of a relation, which is tagged with the formerly mentioned
tags, consists of one or multiple polygons. Throughout the rest of the
work, the formerly mentioned tagged OSM relations are defined as bound-
aries. Their geometry depicts an area. Since the subset is small enough, the
data that is computed and stored this part of the program is done in memory.

Listing 3.2 depicts a basic struct, which is used to store the loca-
tions of the OSM nodes. Listing 3.3 depicts a struct, which is used
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to store the references of an arbitrary OSM way. Listing 3.4 depicts a
struct, which is used to store the location of an arbitrary OSM way. A
comment refers to the statement below the comment. The comment
states the data type as well as the purpose of the struct’s members.

Listing 3.2: Struct used to store the location of an OSM node.
// name of the struct
nodecoord {

// long integer, denotes an ID of a an OSM node
ID
// type double, denotes longitude of an OSM node
lon
// type double, denotes latitude of an OSM node
lat

}

Listing 3.3: Struct used to store the references of an OSM way.
// name of the struct
wayref {

// long integer, denotes the ID of the OSM way
ID
// integer, stores the order of the OSM node refID does refer to
order
// long integer, denotes the ID of the refered OSM node
refID
// integer, encoding of the name of the OSM way
nameID
// bool, the value is true, if the element contains a polygon
isPolygon
// bool, true, if the OSM way is tagged
hastag

}

Listing 3.4: Struct used to store the location of an OSM way.
// name of the struct
waycoord {

// long integer, denotes the ID of the OSM way
ID
// integer, stores the order of the OSM node refID does refer to
order
// double, used to store the longitude of the refered OSM element
lon
// double, used to store the latitude of the refered OSM element
lat
// integer, encoding of the name of the OSM way
nameID
// bool, the value is true, if the element contains a polygon
isPolygon
// bool, true, if the OSM way is tagged
hastag

}

The first parsing run is used to store the IDs of the boundaries as well as the
types and IDs of their references associated to them. The second parsing run

17



is used to store the IDs of OSM ways, which occur in the stored references of
the first parsing run. Along with the IDs of the OSM ways, their associated
references are stored. Hence, the third parsing run in this part of the
program, stores the IDs of the formerly referenced OSM nodes and their
coordinates via instances of the previously defined nodecoord struct. The ID
references of the OSM relations and ways are resolved by replacing the refer-
ences with the actual coordinates. Thus, the geometries can be constructed.

In the following, the vector of type nodecoord, which stores the IDs
and locations of the OSM nodes, is defined as nodecoords. The vector of
type wayref, which stores the IDs and references of the OSM ways is defined
as wayrefs. The entries of nodecoords are sorted by ID and the entries of
wayrefs are sorted by refID. Now, using the merging algorithm(shown in
1), the vector containing the locations of the OSM ways, defined as wayrefs
is filled.

Algorithm 1 Merge nodecoords and wayrefs to waycoords

// initialize iterator
currentnode← nodecoords.begin()
// initialize iterator
currentwayref← wayrefs.begin()
while neither currentnode nor currentwayref reached the end do

if currentnode.ID = currentwayref.refID then
// copy all common members of currentwayref, except the refID
// instead add lat and lon members from currentnode
tempway← initWaycoord(currentnode, currentwayref)
// append to the waycoord container
waycoord.add(tempway)
// increment the iterator
next(currentwayref)

else
// increment the iterator
next(currentnode)

end if
end while

Consider the example of a rudimentary OSM data set containing the OSM
nodes with ID 1, 2 and 3 as well as an OSM way with the ID 1, which spans
a polygon defined by the OSM nodes. The referenced IDs occur in ascending
order. The OSM way with an ID of 1 references OSM nodes with IDs 1 and
2, in that specific order. The entries of the vectors nodecoords and wayrefs
after the parsing passes of this program part can be depicted in listing 3.5
and 3.6.

Listing 3.5: Entries of the nodecoords vector for the trivial example.
ID:1 lon:1.0 lat:1.0
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ID:2 lon:2.0 lat:1.0
ID:3 lon:1.5 lat:1.5

Other parts of the program make use of the members nameID, isPolygon and
hastag, while this one does not.

Listing 3.6: Entries of the wayrefs vector for the trivial example.
ID:1 order:1 refID:1 nameID:1 isPolygon:false hastag:true
ID:1 order:4 refID:1 nameID:1 isPolygon:false hastag:true
ID:1 order:2 refID:2 nameID:1 isPolygon:false hastag:true
ID:1 order:3 refID:3 nameID:1 isPolygon:false hastag:true

The entries of this rudimentary example are already sorted by ID and if pos-
sible by refID. Before applying the merging algorithm, nodecoords is sorted
by ID and wayrefs is sorted by refID. Then the entries of vector waycoords
are found in listing 3.7.

Listing 3.7: Entries of the waycoords vector for the trivial example.
ID:1 order:1 lon:1.0 lat:1.0 nameID:1 isPolygon:false hastag:true
ID:1 order:4 lon:1.0 lat:1.0 nameID:1 isPolygon:false hastag:true
ID:1 order:2 lon:2.0 lat:1.0 nameID:1 isPolygon:false hastag:true
ID:1 order:3 lon:1.5 lat:1.5 nameID:1 isPolygon:false hastag:true

If the geometries of the OSM ways, contained in waycoords, are to be assem-
bled, waycoords needs to be sorted primarily by ID and secondarily by order.
The structs, which are used to store OSM relations are found in listings 3.8
and 3.9 .Resolving the structs for the OSM relations adds another layer via
a suborder member which is considered similiar to the order member one
level further. Conceptually, the assembly of geometries of OSM relations is
done in the same way via sorting and merging. Since the merging algorithm
for relcoords is simliar to the previousley mentioned merging algorithm for
waycoords, it is not stated.

Listing 3.8: Struct used to store references of an OSM relation.
// name of the struct
relref {

// long integer, denotes the ID of the OSM way
ID
// integer, stores the order of the OSM node refID does refer to
order
// long integer, denotes the ID of the refered OSM node
refID
// type encodes whether the reference is an OSM node, way or relation
type
// encodes the role of the reference: inner, outer and so on
role
// integer, encoding of the name of the OSM way
nameID
// bool, the value is true, if the element contains a polygon
hastag

}
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Listing 3.9: Struct used to store locations of OSM relations.
// name of the struct
relcoord {

// long integer, denotes the ID of the OSM way
ID
// integer, stores the order of the OSM node refID does refer to
order
// layer of order when dereferencing OSM elements
suborder
// double, used to store longitude
lon
// double, used to store latitude
lat
// type encodes whether the reference is an OSM node, way or relation
type
// encodes the role of the reference: inner, outer and so on
role
// integer, encoding of the name of the OSM way
nameID
// bool, the value is true, if the element contains a polygon
hastag

}

When the geometries of the boundaries are fully resolved, they are stored
in an own container and used in the next part of the program. Based on the
geometry of a boundary, if possible, two additional simplified geometries
are computed and stored together with the original geometry. One of the
simplifications is an overestimation, i.e. the original geometry does not
overshoot the overestimation and is contained in it. The other simplification
is an underestimation, i.e. the underestimation does not overshoot the orig-
inal geometry. Hence, if any geometry is compared to a boundary geometry,
then in some cases, the spatial relation can be implied, by comparison with
the simplified polygons. If a geometry is not inside the overestimation, it
cannot be inside the original geometry and is rejected. If a geometry is
inside the underestimation, then it has to be within the original geometry.
Since the spatial comparison of polygon benefits from a reduction of the
number of points, the effect of this approach is being evaluated in chapter
4. A possible over- and underestimation in relation to the source polygon is
skteched in 3.1.

The simplification algorithm is a variation of the Ramer-Douglas-Peucker
algorithm [Douglas and Peucker, 1973] [Ramer, 1972]. The used simplifi-
cation algorithm has an input parameter, which defines whether the output
polygon is an underestimation or an overestimation. The applied simpli-
fication may output a polygon, which does self-intersect. Hence, a post
processing step is performed, which is an attempt to repair self-intersections,
which might occur. The reparation attempt, in case of the overestimation,
is achieved by computing the unified area of the original geometry and the
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Figure 3.1: Sketching of over- and underestimation. The dotted line denotes the overes-
timation. The underestimation is denoted as the polygon filled with the dashes pattern.
The actual polygon is denoted by a black continuous line.

simplified one. The reparation attempt, in case of the underestimation, is
achieved by computing the intersected area of the original geometry and
the simplified one.

Overestimation-Polygon

A parameter called epsilon is used in the simplification algorithm. The
procedure for computing the overestimation is denoted in 2. For the sake
of clarity and simplicity, some input parameters and repetitive validation
and correction commands of lesser significance, were not displayed in the
algorithm.

In case the given geometry has a low number of points(fewer than 30
points), the bounding box is returned as the overestimation-polygon. The
value of 0.013 for epsilon was found experimentally. This value is the only
one used for as epsilon when computing the overestimation-polygon. If
the simplification returns a self intersected or in another sense broken
geometry, a reparation attempt is performed, by trying to unify the source
geometry as well as the simplified one. The simplified geometry does not
to be valid for this, it is attempted non the less. If the number of points of
the unified geometry is too low compared to the simplified geometry, the
union is rejected and the simplified geometry is further processed. In order
to process it, points occuring in segments between the self intersections are
removed, then another simplification algorithm with the same epsilon value
is applied. In the end, before using the computed geometry, it is checked
for validity, if it is not valid, the trivial case of a bounding box is used instead.
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Algorithm 2 Procedure of computing overestimation.

// given to the procedure
inputGeometry
// passed as reference, this is the geometry that is being returned
outputGeometry
// numberOfPoints() computes the number of points occuring in the geometry
if numberOfPoints(inputGeometry) = 0 then
// premature exit of the procedure
return

end if
if numberOfPoints(inputGeometry) < 30 then
// envelope() returns the bounding box of the passed geometry
outputGeometry← envelope(inputGeometry)
// premature exit of the procedure
return

end if
// initialize the epsilon parameter used for the polygon-simplification
epsilon← 0.013
// the simplification algorithm is based on the douglas-peucker algorithm
// the first parameter is the source geometry which needs to be simplified
// the second parameter is the geometry that is generated and passed as reference
// the third parameter is the epsilon parameter which controls the amount of simplification
// the fourth parameter controls whether to compute the over- or underestimation
// it is set to true for the overestimation and false for the underestimation
simplifyPolygon(inputGeometry, outputGeometry, epsilon, true)
// coveredBy() checks if first geometry is inside second one
// valid() checks if geometry can be safeley used for further processing
if not coveredBy(inputGeometry, outputGeometry) or not valid(outputGeometry) then
// union() merges the given geometries and returns the new one
unionPoly← union(inputGeometry, outputGeometry)
if numberOfPoints(unionPoly) < 0.5 * numberOfPoints(outputGeometry) then
// resolveintersection() removes points between intersecting segments
resolveintersection(outputGeometry)
simplifyPolygon(outputGeometry, outputGeometry, epsilon, true)

else
outputGeometry← unionPoly

end if
end if
if not valid(outputGeometry) then

outputGeometry← envelope(inputGeometry)
end if
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Underestimation-Polygon

The polygon-simplification method for the underestimation uses local
optimization within a specified range wrt. the epsilon parameter. The
procedure is denoted in 3. Several steps of lesser significance are omitted
for the sake of simplicity.

Starting with a value of 0.00000001 for epsilon for the simplification.
In 6 equidistant steps until the approximate value of 0.013 for epsilon the
simplified geometries are scored and compared. If a concurrent score is
decreasing, the optimization is stopped prematurely. The local maximum
is returned if the geometry is valid. If it is not valid, a reparation attempt
is performed by intersecting the non-valid simplification with the source
geometry, in order to remove occuring self-intersections. In general using an
operation as the union or the intersection of geometries is not guaranteed
to work properly for non-valid geometries. Nontheless, via trial and error,
this approach has the desired outcome of repairing the geometry in many
cases. The score is computed with the following formula:

pointTerm(A, B) = 1− (
numberO f Points(B)
numberO f Points(A)

)

areaTerm(A, B) = (
area(B)
area(A)

)

score(A, B) = 0.4 ∗ pointTerm(A, B) + 0.6 ∗ areaTerm(A, B)

For the application, A is the source geometry and B is the simplfiied geometry.
The function numberOfPoints(A) computes the number of points for geome-
try A. The function area(A) computes the area for geometry A. A high score
is achieved for a combination of a high point reduction as well as preserving
a lot of the source area.

3.1.4 Generate RTree

After the assembly of the geometries of boundaries, these geometries are
stored in an in-memory container. This container is passed to an RTree boost
implementation, which is why the assembled geometries are stored using
boost::geometry. The RTree is a spatial index which computes spatial rela-
tions for bounding boxes of geometrical elements. In this context the RTree
is used to fetch boundaries. We defined Boundaries as OSM relations, which
have certain tags like type=boundary , that might have a certain spatial
relationship to a geometry used in a query. After all boundaries were com-
puted, the container containing all boundaries is passed to the RTree for
initialization.The RTree is kept in-memory.
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Algorithm 3 Procedure of computing overestimation.

// given to the procedure
inputGeometry
// passed as reference, this is the geometry that is being returned
outputGeometry
// numberOfPoints() computes the number of points occuring in the geometry
if numberOfPoints(inputGeometry) < 30 then
// premature exit of the procedure
return

end if
// initialize the epsilon parameter used for the polygon-simplification
currentepsilon← 0.00000001
// upper boundary for epsilon
maxepsilon← 0.013
deltaepsilon← (maxepsilon - currentepsilon) / 6
// keep track of last score in order to compute the difference
lastscore← -1000000
// keep track of best score so far
bestscore← -1000000
// score for the currentepsilon
currentscore← -1000000
// remember best geometry so far
bestGeometry
while currentepsilon < maxepsilon do
// initialize Geometry
currentGeometry
// view simplifyPolygon() comments at the overestimation algorithm
simplifyPolygon(inputGeometry, currentGeometry, epsilon, false)
// compute the score based on
// ...the areas of the source and the target geometry
// ...the points of the source and the target geometry
currentscore← score(inputGeometry, currentGeometry)
if numberOfPoints(currentGeometry) < 7 then
// too less points, exit
abort()

end if
if currentscore > bestscore then

bestscore← currentscore
bestGeometry← currentGeometry

end if
if currentscore >= lastscore then

lastscore← currentscore
else

breakWhile
end if
epsilon← epsilon + deltaepsilon

end while
// if bestpoly is not valid, try to repair bestpoly once more
...
if valid(bestpoly) then

outputGeometry← bestpoly
end if
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3.1.5 Generate directed acyclic graph

For the generation of the directed acyclic graph, a similar algorithm as the
one called Create DAG from [Bast et al., 2021] is used. This tools approach
has the modification of using simplified polygons to imply spatial relations.
The DAG is used for transitive comparisons. For example if the containment
relation is computed for the structure called Big Ben in London then the RTree
will return a group of possible candidates. But the spatial relations between
London and England was already computed. Hence the DAG can be queried
for this and we can apply transitive inference to find that Big Ben is also
contained in England. Thus explicit spatial comparisons between London,
England or any previously computed boundary are omitted. The algorithm
is depicted in algorithm 4. The evaluation of using simplified polygons, in
order to reduce runtime is found in 4. The DAG is stored in-memory as well,
since only mappings of IDs to other IDs, which are bounded by boundaries,
are stored.

3.1.6 Store geometrical data of OSM elements and com-
pute spatial relations for OSM nodes

The used structures were introduced earlier in listings 3.2 , 3.3, 3.4, 3.8
and 3.9. Throughout the first pass of this part of the program locations
of all OSM nodes via the nodecoord struct, geometrical references of OSM
ways via the wayref struct and geometrical references of OSM relations
via the relref struct, are stored. The number of entries of wayrefs that are
computed, is so large, that the used memory would not be able to fit them
all. This is why STXXL is used. We can use containers and algorithms similar
to STL, but the elements are stored on disk(external memory). Sorting is
possible, which is handy, since the algorithms like the merging rely heavily
on sorting. The structs, which are used for the STXXL containers, need to be
plain old data(POD). One cannot use dynamic vectors as the struct members.

When the locations of the nodes are stored, they are also converted to
boost::geometry objects and their spatial relations against boundaries are
computed.

3.1.7 Compute geometries of OSM ways

Then, nodecoords and wayrefs are merged to waycoords as presented in sub-
chapter 3.1.3 of the current chapter. Prior to that, the nodecoords are sorted
by ID and wayrefs are sorted by refID(in ascending order). For this part of
the program the container of the nodecoords, wayrefs and the generated
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Algorithm 4 Generate DAG

// sorts the vector of boundaries by area in ascending order
sortByArea(boundaries)
for boundary from boundaries do
// initialize skiplist, in order to remember which IDs were already processed
skiplist()
// returns the result vector from querying the RTree for elements, that are within
candidates← RTreeWithinQuery(boundary)
// this function sorts the vector of candidates by area in ascending order
sortByArea(candidates)
for c from candidates do

if c is not in skiplist then
// RTree returns also simplified geometries
if boundary is within underestimation(c) then
// add the edge between the input params to DAG
addEdge(boundary, c)
// add c to skiplist, as it has been processed
skiplist.append(c)
// traverse DAG to find successors and return as a vector
succs← successor(c)
// add successors to skiplist, as they have been processed
skiplist.insert(succs)

else
// RTree returns also simplified geometries
if boundary is within overestimation(c) then

if boundary is within c then
// add the edge between the input params to DAG
addEdge(boundary, c)
// add c to skiplist, as it has been processed
skiplist.append(c)
// traverse DAG to find successors and return as a vector
succs← successor(c)
// add successors to skiplist, as they have been processed
skiplist.insert(succs)

end if
end if

end if
end if

end for
end for
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Algorithm 5 Compute spatial relations for any geometry

// the given geometry of an OSM element
geometryElement
// initialize skiplist, in order to remember which IDs were already processed
skiplist()
// returns the result vector from querying the RTree for elements, that intersect with input
candidates← RTreeIntersectsWithQuery(geometryElement)
// this function sorts the vector of candidates by area in ascending order
sortByArea(candidates)
for c from candidates do

if c is not in skiplist then
// RTree returns also simplified geometries
if geometryElement is within underestimation(c) then
// traverse DAG to find successors(including c) and return as a vector
succs← successor(c)
for succ from succs do
// write succ intersects c and vice versa and...
// ...write succ within c and ...
// ...write c contains the succ
writeFourRelations(succ, c)

end for
// add successors to skiplist, as they have been processed
skiplist.insert(succs)

else
// RTree returns also simplified geometries
if geometryElement is within overestimation(c) then

if geometryElement is within c then
// traverse DAG to find successors and return as a vector
succs← successor(c)
for succ from succs do
// write succ intersects c and vice versa and...
// ...write succ within c and ...
// ...write c contains the succ
writeFourRelations(succ, c)

end for
// add successors to skiplist, as they have been processed
skiplist.insert(succs)

end if
end if

end if
end if

end for
for c from candidates do

if c is not in skiplist then
if geometryElement intersects c then
// writes: c intersects geometryElement and vice versa
writeIntersectsRelations(geometryElement, c)

end if
end if

end for
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waycoords are STXXL vectors, since they too large to fit into memory.

3.1.8 Generate new ways by clustering fragmented ways

In general, a street or a path in the real world is not found as a whole inside
an OSM data set. Instead the street or path is represented as several OSM
ways, which fragments the street or path as a whole. An example for this,
would be the Kaiser-Joseph-Straße in the old town of Freiburg. More than
ten OSM ways are used to describe this street. Hence, with this part of the
program, the computation of streets and paths as a whole is attempted. We
define the newly generated OSM elements as wayclusters.This part of the
implementation is roughly divided into the following steps:

• Sort wayrefs by nameID and refID

• Find the connected components

• Intersect tags for connected components

• Resolve connected components

• Write connected components

First of all, the wayrefs vector is sorted by the refID and nameID. Then, the
wayrefs vector is traversed and if for different consecutive entries with the
same refID different IDs are found, the mapping of those links is stored in
memory. We define a closed group of those mappings as a connected com-
ponent. Those mappings are stored in-memory. Using those mappings, the
OSM data set is parsed again, in order to write the tags. If for a connected
component all OSM ways were parsed, only the common tags of those OSM
ways are written to the output file. Furthermore, triples for each fragment
which is contained by a waycluster. The geometry is assembled by traversing
the waycoords vector, while checking whether the stored mappings contain
the ID of the current entry.

3.1.9 Write geometries of OSM ways and their spatial re-
lations

In order to assemble the entries of waycoords to actual geometries, the con-
tainer holding all waycoords is sorted primarily by ID, secondarily by order.
The sorted container of waycoords is traversed. Blocks of the same ID are
read and concatenated to the geometry. If the first and last entry of the block
have the same longitude and latitude, the geometry is a closed polyline,
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else an open polyline. Triples containing the geometry as WKT strings, in
this case POLYGON or LINESTRING respectively, are written to the output file.

Furthermore, for each assembled geometry, the algorithm 5 is applied to, in
order to write the spatial relations to the output file. The algorithm attempts
to infer the spatial relationship by computing the containment relation for
the given geometry wrt. the underestimation of a proposed query result
of the RTree. If the spatial relationship could not be infered, then proceed
by computing the containment relation for the given geometry wrt. the
overestimation. If the containment relation could not be disqualified, only
then use the actual polygon, in order to infer the spatial relation.

3.1.10 Compute geometries of OSM relations

Analogously, relcoords are similarly computed as waycoords are computed.
The type member of the relref struct is used to distinguish whether the ref-
erence is an OSM node, way or relation. References to other OSM rela-
tions are neglected, since the number of OSM relations, which refer to other
ones makes up less than 1% of the OSM data set. Not all relrefs/relco-
ords are processed in one processing sequence. The processing sequence
is applied on two sets of relrefs/relcoords of about similiar size. The tag
type=multipolygon is used to discriminate into the two sets. The set of

OSM relations with the given tag and the set of OSM relations without the
given tag. This has a positive effect on the sorting parts.

3.1.11 Write geometries of OSM relations and their spatial
relations

Prior to traversing the relcoord vectors, they are sorted by ID, order and
suborder. Blocks of entries with the same ID are assembled to geometries.
Those are converted to WKT strings and written to the output file. Addition-
aly, the fully assembled geometry undergoes the algorithm 5, in order to
write spatial relations to the output file.
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further attempted approaches.
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4.1 Evaluation Setup

4.1.1 Static grid

The application of a static grid, in order to perform local lookup of geome-
tries, was examined in the scope of this work. By static grid, the division of
the local plane into cells is meant, for which the cells have the same constant
dimensions. Although the implementation is easy to realize, the approach is
inefficient for the following reasons:

• Not using hierarchy when storing local vicinities of OSM elements.

• The approach is not sparse, in the sense that the encoding of the cells
describes each cell of the grid. A vast amount of cells will have no OSM
elements assigned to it.

Hence, this approach was rejected and an RTree, which solves those two
problems, is used instead.

4.1.2 Simplified polygons

This subchapter covers the evaluation of the application of simplified poly-
gons in order to estimate polygon comparisons. The following data sets were
used: Freiburg, BaWü(Baden-Württemberg), Germany, Europe and also the
Planet dataset. They are listed in ascending order. Furthermore, each of the
listed datasets is contained in their next larger succeeding dataset.

Table 4.1: Statistics on usage of simplfied polygons.

Freiburg BaWü Germany Europe Planet

Accepts via
underestima-
tion

1035909 2976069 19637209 - -

Rejections via
overestima-
tion

1964445 9108820 59858222 - -

Regular ac-
cepts/rejec-
tions

251566 1219006 13687931 - -
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Relative cov-
erage by sim-
plifications

92.26% 90.84% 85.31% - -

The statistic of the employed simplified polygons used to infer spatial
relations is found in table Table 4.1. The remaining cases, when the
simplification did not suffice to infer the spatial relation, are counted as
well. The header lists the datasets at hand. The kinds of statistics used are
found in the first column. The occurences were computed and assigned
to the table wrt. to the kind of statistic and the used dataset. If a large
proportion of the spatial relations, given as in the last row of the earlier
mentioned table, suffices for an application, one might consider working
only with simplified polygons.

The relative coverage, given by the simplifications, seems to decline,
if a dataset from a bigger geographical extract is used. The elicited effect
here is a growing proportion of boundaries with a low amount of points,
since the boundaries with less than 30 points are not simplified.

An example of the simplified polygons together with their source polygon
is sketched in Figure 3.1. The dotted line in the sketch denotes the over-
estimation. If any geometry is not contained in the overestimation, the
geometry cannot be found inside the source polygon. The underestimation
is denoted as the polygon filled with the dashed pattern. If any geometry
is not contained in the underestimation, the geometry has to be inside the
source polygon. As for the datasets at hand, about 10% of the elements,
which are to be compared, is within the area given by the geometrical
difference of the overestimation and the underestimation.

Statistics were only recorded for counting whether an OSM element is
accepted/rejected due to a simplification or not. Other ways of measuring
the effect of using simplified polygons to estimate spatial relations may be
of interest as well. For instance, comparing the runtime as well the net
area of OSM that is lost when only relying on simplified polygons, were not
examined in the scope of this work.
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Table 4.2: Statistics on usage of simplfied polygons.

Freiburg BaWü Germany Europe Planet

# boundaries 868 3011 27085 327347 -

# computed
overestima-
tions

682 2673 26186 326640 -

# repairs for
overestima-
tion

35 124 1104 11841 -

# computed
underestima-
tions

675 2622 25497 296726 -

# repairs for
underestima-
tion

59 318 2791 24932 -

averaged
point reduc-
tion for over-
estimations

82.4% 81.6% 76% 74.1% -

averaged
point reduc-
tion for un-
derestimation

76% 74.79% 69.45% 71.8% -
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In this work, boundaries were defined as relations, which represent ter-
ritories. Certain combination of tags are assigned to those. The spatial
relations of a certain OSM element are computed wrt. those boundaries.
Considering column 2 of Table 4.2, denoting the Baden-Württemberg data
set in Germany, the statistics have the following meaning. Out of 3011
computed boundaries, for 2673 of those, overestimations were computed
and 2622 underestimations respectively. The amount of cases, for which
the reparation step was needed is also given in the table.

At last, the arithmetic mean of all relative point reduction computa-
tions, is given for both simplifications. For the dataset we are considering,
this means, that on average 81.6% less points are found in the overestima-
tions. This means for the mentioned dataset 100% - 81.6% = 18.4% of the
total amount of points of the boundaries is used for the overestimations.
Considering the relative coverage of simplifications in Table 4.1 the total
number of points can be reduced to a fraction.

4.2 Runtime of the program
parts

In this section, the net runtimes as well as the runtimes of the individual
parts are being revealed.

Table 4.3: Runtime statistics of the program and the parts wrt. the datasets. The datasets
marked with * were processed by skipping the computation of spatial relations except for
the DAG.

Freiburg BaWü Germany *Europe Planet

Printing tags 3min 12min 88min 678min -

Compute
boundaries

5s 34s 9min 86min -

Create RTree
and DAG

6s 1min43s 58min 373min -
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Store and
process OSM
nodes

4min 24min 828min 22min -

Compute
nameclusters

13s 1min23s 14min30s 264min -

Process and
print OSM
ways

7min41s 64min 2458min 325min -

Process and
print OSM
relations

10min 79min 1741min 276min -

Net runtime 23min 184min 5237min 2021min -

The given net runtime in Table 4.3 is the true time measured outside the
application. The measured times for the other program parts are measured
inside the application. The real duration of the parts measured inside the
application is at least as long as the measured time, which is why they can
be used as estimates. The program parts which denote the processing of the
OSM elements include the computation of spatial relations. The datasets
marked with "*" were run without computing the spatial relations. This is
done since an unfeasible run time is expected.

As seen in Figure 4.1, the runtime is more than linear wrt. the number of
input elements. Comparing the runtime of the program parts(Table 4.3),
which process the OSM elements for the europe dataset, which skips the
spatial relations, to the runs, which do not skip the spatial relations, query-
ing the RTree as well as comparing the geometries and writing the spatial
relations is the major bottleneck. In general
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Figure 4.1: Plot runtimes for Freiburg (FR), Baden-Württemberg (BW) and Germany
(DE). The horizontal axis denotes the runtime in minutes. The vertical axis denotes the
number of OSM elements in the input data set in millions. The blue curve shows, the data
is not linear. The red line shows the linear function based on the first two data points.
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5.1 Summary

An OSM dataset is being read in. On-disk memory is used in order to re-
solve the geometries wrt. the OSM structure. Boundaries are specific OSM
relations, which have certain tags and denote an administrative boundary.
Spatial relations between boundaries were precomputed. Simplified poly-
gons which overestimate and underestimate the area of a boundary were
computed for the boundaries. Those are used to avoid spatial comparison
with the source polygon which on average contains many times over the
number points than a simplified one. Nameclusters are newly generated ele-
ments, which are derived by combining the geometry of ways with the same
name, that also share same nodes. Nameclusters are also computed. All the
data is converted to RDF (ttl) format.

5.2 Findings

The computation of the spatial relations is one of the major bottlenecks. The
use of a spatial index, custom serialization and algorithms solve the given
problem in a feasible runtime. Using simplified polygons for boundaries is
a way to drastically reduce the number points which need to be regarded
for computing spatial relations. If for the data set of Germany about 85%
of the boundaries (those OSM elements against which the spatial contain-
ment relationship is checked) are sufficient to be considered, then only the
simplified polygons need to be considered instead of the former ones. Ad-
ditionaly, new OSM elements can be inferred by geometrically unification of
OSM ways with same "name" tags, if they share the same coordinates in their
geometry. The newly generated OSM elements denote entire streets in their
whole geometric extent instead of a fragment.

5.3 Future Works

This section is about approaches and ideas, which came up while working
on the thesis, which were not examined in the scope of the work but might
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be of acadamic interest and might warrant further investigation.

5.3.1 Batch queries

The number of RTree queries can be reduced. Using efficient data structures,
in order to process groups of OSM elements at the same time. Eventually,
the sought spatial relations are computed for each OSM element of the
group of OSM elements.

A possible approach for this might be the following: Mapping coordi-
nates to a single integer, which is used as a key for groups of OSM elements.
The mapping could have a resolution of 0.01° degree, which translates to
about 1.11km. When OSM elements and their geometry is being processed,
they can be added to the value of the map by calculating the corresponding
key via the mapping function. Periodically, after a set amount of additions,
for each key and value pair of the map, they can be checked whether the
size of the group of OSM elements has changed since the last time the set
amount of additions occured. If the difference of the group size is zero,
then a batch query for the group of OSM elements can be applied. An
increased amount of co-occurence of locally close OSM elements is used
as an assumption with this approach in mind. The mapping and their
resolution described in the latter uses a fixed grid approach for the heuristic.

5.3.2 Parallel processing

A reduction in runtime may be achieved by parallel spatial comparisons, the
generation of string as well as writing output to dedicated files per thread
and merge the outputs at the end.

5.3.3 Evaluation of epsilon parameter in simplification al-
gorithm

Further examination of the epsilon parameter for the simplification algo-
rithm can be done in order to find better fits for the simplified polygon or
in order to reduce the range of possible epsilon values, which are relevant.
Also, research on whether the modified Douglas-Peucker algorithm has a
monotonous relation between the epsilon value and the area of the result-
ing polygon, might be of interest. In [Friedrich et al., 2019] the parameter
of the ramer-douglas-peucker algorithm is analyzed as well as a modified
version of the algorithm with a changing epsilon value is introduced.
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5.3.4 More spatial relations

This works tool only computes the active and passive containment as well as
the intersection as spatial relations. If for any OSM element the maximum
and minimum coordinates values are provided as an RDF triple, an RDF
query engine could index those values, in order to compare the coordinates.
Hence, relative direction queries between OSM elements, as well as distance
queries might be possible.

5.3.5 Comparison of implementations

Comparing the used approach to the implementation which does not use
simplified polygons as well as an implementation which only uses simplified
polygons raises theoretic questions which were not yet explored.
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