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Problem Definition

Problem

Forecast the future price of an asset in a financial market.

The focus is on a new type of asset: cryptocurrencies.

Two types of approaches were applied to solve this

problem:

1 Utilizing trading strategies based on Technical Analysis.

2 Learning-based approach using a state of the art sequence

prediction model.
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Problem (2)

Complementary to the first approach, a trading system was

developed that can:

1 Run trade simulations on historic price data.

2 Launch a trading bot that trades automatically on behalf of

the user.
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Motivation

What is a Cryptocurrency?

Cryptocurrencies are a form of digital currencies.

Fairness and Legitimacy of transactions is enforced via

Cryptography.

This nullifies the need for a central authority to process and

verify the transactions.
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Trading Strategies

What is a Moving Average

Formally:

The moving average at time step t for window size N:

MAt(N) =
1

N

∑
N−1

i=0 Pt−i .

where Pt is the price of an asset at time step t.

Intuitively:

Smoothing technique.

Trend Indicator.
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Trading Strategies

Visualizing MAs

Smoothing effect of 1 hour moving average on bitcoin price

Bitcoin price data from 18th to Dec 20th 2018
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Trading Strategies

Visualizing MAs (2)

1 to 5 Hour Moving Averages
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Trading Strategies

Visualizing MAs (3)

Short and Long Moving Averages
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Trading Strategies

Cross Over Moving Average (Trend Following)

MA[short_window=60, long_window=300]

($100 - 21 Trades - $106.5)
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Trading Strategies

Cross Over Moving Average (Trend Following)

MA[short_window=60, long_window=300, filter=0.5%,

holding_period = 60]

($100 - 6 Trades - $110.2)
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Cross-validated Grid Search

How to pick the right parameters?

The performance of a strategy is dependent on parameters.

Grid search was used to find optimal trading strategies.

Return on Investment (ROI) =
Total Asset Value−Starting Capital

Starting Capital
.

The evaluation period is from March 2018 to March 2019.
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Cross-validated Grid Search

Supported Currencies and Strategies

Cryptocurrencies:

Bitcoin.

Ether.

Litecoin.

ZCash.

Dash.

TA Trading Strategies:

Crossover Moving

Average (Both forms).

Exponentially Weighted

Crossover Moving

Average (Both forms).

Bollinger Bands (Both

forms).

Relative Strength Index.
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Cross-validated Grid Search

1- Run grid search on period 1.

2- Validate top 5 strategies against other periods.
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Cross-validated Grid Search

1- Run grid search on period 2.

2- Validate top 5 strategies against other periods.
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Cross-validated Grid Search

Cross-validated Grid Search

1- Run grid search on period 3.

2- Validate top 5 strategies against other periods.
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Cross-validated Grid Search

Cross-validated Grid Search

1- Run grid search on period 4.

2- Validate top 5 strategies against other periods.
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Cross-validated Grid Search

Candidate Strategies

After performing the cross validation, strategies are chosen

based on a pre-defined criteria:

Profitability across all folds.

Highest return on investment.



21/44

Tajer

Approach

RNN Model

Overview

1 Introduction & Problem Definition

2 Approach

Data

Cross-validated Grid Search

RNN Model

3 Results & Conclusion



22/44

Tajer

Approach

RNN Model

RNN Model

Recurrent Neural Networks, a variation of Neural Networks.

Structure modified to process temporal data.

Problem formulated as a binary classification problem:

Class 0: Price stays the same or goes down.

Class 1: Price goes up.

Long Short-term Memory architecture [1] used in the

network.

Entire transactional history of currencies fed in RNN as input.

Data was resampled into 1 hour intervals.



23/44

Tajer

Approach

RNN Model
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RNN Model
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Cross-Validated Grid Search

Results (1)

Grid search approach filtered out 8 trading strategies.

2 were found for Bitcoin, 2 for Ether, 3 for Zcash and 1 for

Litecoin.

Trading bot was launched in the beginning of out-of-sample

period with candidate strategy to trade bitcoin.
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Results (2)

Bitcoin Parameters Average ROI

MA(Trend Following) [24h, 120h, 5%, 4.5h] 7.8%
BB(Trend Following) [2h, 0.5, 5%, 0h] 7.1%

Ether Parameters Average ROI

MA(Trend Following) [12h, 72h, 1%, 1.5h] 16.3%

MA(Trend Following) [12h, 72h, 1%, 1h] 16.5%

Litecoin Parameters Average ROI

BB(Trend Following) [120h, 1, 1%, 3h] 14.7%

Zcash Parameters Average ROI

BB(Trend Reversing) [672h, 1, 0.05%, 24h] 29.3%

BB(Trend Reversing) [336h, 2, 1%, 12h] 35.9%

BB(Trend Reversing) [336h, 1, 5%, 12h] 24.1%

Candidate Strategies Filtered Out by Cross Validation.
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Results (3)

Bitcoin Parameters Out-of-sample ROI

MA(Trend Following) [24h, 120h, 5%, 4.5h] 51.34%
BB(Trend Following) [2h, 0.5, 5%, 0h] 8.81%

Ether Parameters Out-of-sample ROI

MA(Trend Following) [12h, 72h, 1%, 1.5h] 30.36%

MA(Trend Following) [12h, 72h, 1%, 1h] 29.69%

Litecoin Parameters Out-of-sample ROI

BB(Trend Following) [120h, 1, 1%, 3h] 78%

Zcash Parameters Out-of-sample ROI

BB(Trend Reversing) [672h, 1, 0.05%, 24h] 27.2%

BB(Trend Reversing) [336h, 2, 1%, 12h] 6.58%

BB(Trend Reversing) [336h, 1, 5%, 12h] 16.68%

Out-of-Sample Performance of Candidate Strategies.



29/44

Tajer

Results & Conclusion

Cross-Validated Grid Search

Trading Bot Performance

Performance of Trading Bot. ROI: 47.7%.

MA(Trend Following)[24h,120h, 5%, 4.5h]
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RNN Model

Models

A separate model was trained for each currency.

Split into Train:Test (80:20).

Train further split into Train:Validation(90:10).
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RNN Model

Data Set Sizes

Currency Starting Date Training Set Validation Set Test Set

Bitcoin 2014-01-07 34034 3782 9454

Ethereum 2015-08-07 24023 2670 6674

Litecoin 2013-10-24 31573 3509 8771

Dash 2017-04-12 13455 1495 3738

Zcash 2016-10-29 16317 1814 4533

Number of Rows of Training, Validation and Test sets.
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RNN Model

Evaluation Metrics

Recall =
TP

TP + FN
=

Number of items of class identified

Total number of class members in test set

Precision =
TP

TP + FP
=

Number of items of class identified

Total items assigned to class

F1 Score = 2 ×
Precision × Recall

Precision + Recall
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Results

Test Set Balanced Accuracy Avg. F1
Bitcoin 54.9% 54.8%

Ether 55.2% 55.1%

Litecoin 53.6% 53.6%

Dash 50.8% 43.7%

Zcash 50.4% 46.0%

Performance of LSTM model trained with only historical prices.
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RNN Model

Trading Simulations

Simulation Rules: when the model predicts up, buy one unit

of asset and vice versa.

Compared to multiple baseline strategies:

1 Buy and Hold.

2 Replicate Last.

3 MA strategy optimized by cross validation.
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RNN Model

Bitcoin Simulation

Equity Lines of Trading Simulations on Bitcoin Data. Avg. F1 = 54.8%



37/44

Tajer

Results & Conclusion

RNN Model

Ether Simulation

Equity Lines of Trading Simulations on Ether Data. Avg. F1 = 55.1%
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RNN Model

Litecoin Simulation

Equity Lines of Trading Simulations on Litecoin Data. Avg. F1 = 53.6%
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RNN Model

Dash Simulation

Equity Lines of Trading Simulations on Dash Data. Avg. F1 = 43.7%
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Zcash Simulation

Equity Lines of Trading Simulations on Zcash Data. Avg. F1 = 46.0%
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Conclusion & Future Work

Concluding Remarks

Accurately predicting price in a financial market is a difficult

task.

Limited accuracy improvement in comparison to a random

classifier.

This limited improvement over a long term has resulted in

profitable trade simulations.

Strategies based on technical analysis are simpler than the

RNN model.

TA Strategies perform comparatively to more sophisticated

RNN model with fewer signals generated.
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Future Work

1 Investigating the effect of financial news on cryptocurrency

prices. There has been already some work in this direction for

traditional stock markets by Shumaker and Chen [2]. They

achieved 57.1% directional accuracy using this approach.

2 Experiment further with different RNN architectures and to

further tune the parameters of the model.

3 Enabling the trading bot to be able to connect to multiple

cryptocurrency exchanges.

4 Enhance the bot by implementing live trading based on the

signals generated by the LSTM model.
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Thank you for your time and attention!
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Bollinger Bands

What is it?

Calculate and upper and lower bound for the price of an

asset at a given time step.

Based on volatility of the asset.

Assumes that the price should always be within these

bounds.

Input

BB(window_size, width)
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Formally

Standard Deviation

Standard deviation at a given time step is :

St(N) =
√

1

N−1

∑
N−1

i=0 (Pt−i −MAt)2

where Pt is the price at time step t .

Upper and Lower Bounds

Upper Bound is : MAt(N) + (width × St)

Lower Bound is : MAt(N) − (width × St)
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Bollinger Bands

Visually

Bollinger Bands strategy on Bitcoin data from 3 Apr to 12 Apr 2019
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Cross-Validated Grid Search

Parameter Space MA Strategies

Parameter Range (In hours for time parameters)

Short Window Size {1, 2, 3, 6, 12, 24, 36, 48, 72, 96, 120, 144, 168}

Long Window Size {12, 24, 48, 72, 120, 168, 240, 336, 672}

Percentage Filter {0, 0.05, 0.1, 0.5, 1, 5}

Holding Period {0, 0.25, 0.5, 1, 1, 2, 2, 3, 4, 6, 12, 24}

Total Number of Combinations : 8424
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Cross-Validated Grid Search

Parameter Space for BB Strategy (Both Variations)

Parameter Range (In hours for time parameters)

Window Size {1, 2, 3, 6, 12, 24, 36, 48, 72, 96, 120, 144, 168, 240, 336, 672}

Band Width {0.5,1,1.5,2,3}

Percentage Filter {0, 0.05, 0.1, 0.5, 1, 5}

Holding Period {0, 0.25, 0.5, 1, 1, 2, 2, 3, 4, 6, 12, 24}

Total Number of Combinations : 5760
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Cross-Validated Grid Search

Parameter Space for RSI Strategy

Parameter Range (In hours for time parameters)

Window Size {1, 2, 3, 6, 12, 24, 36, 48, 72, 96, 120, 144, 168, 240, 336, 672}

Width Offset {10, 15, 20, 25, 30, 35, 40, 45}

Percentage Filter {0, 0.05, 0.1, 0.5, 1, 5}

Holding Period {0, 0.25, 0.5, 1, 1, 2, 2, 3, 4, 6, 12, 24}

Total Number of Combinations : 9216

Total Number of Combinations for All Trading Strategies : 23400
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Grid Search Candidate Strategies

Trade Simulation of Candidate Strategy Bitcoin (1)

MA(Trend Following)[24h, 120h, 5%, 4.5h]
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Grid Search Candidate Strategies

Trade Simulation of Candidate Strategy Ether

MA(Trend Following)[12h, 72h, 1%, 1.5h]
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Grid Search Candidate Strategies

Trade Simulation of Candidate Strategy Litecoin

BB(Trend Following)[120h, 1, 1%, 3h]
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Grid Search Candidate Strategies

Trade Simulation of Candidate Strategy Zcash

BB(Trend Reversing)[672h, 1, 0.05%, 24h]
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Grid Search Candidate Strategies

Order Initiation Times

Type Trading Bot (Live) Offline Simulation

Buy Apr 2nd18 : 20CEST Apr 2nd18 : 20CEST

Sell May 18th04 : 30CEST May 18th04 : 30CEST

Buy May 27th15 : 55CEST May 27th15 : 55CEST
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RNN Model

Bitcoin Class Distributions
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RNN Model

Ether Class Distributions
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RNN Model

Litecoin Class Distributions
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RNN Model

Dash Class Distributions
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RNN Model

Zcash Class Distributions
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RNN Model

RNN Model with TA

Test Set Balanced Accuracy Avg. F1
Bitcoin 54.3% 54.3%

Ether 53.4% 53.2%

Litecoin 53.0% 52.1%

Dash 50.8% 50.6%

Zcash 50.7% 48.0%

Performance of LSTM model trained with historical prices + technical
indicators
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RNN Model Positive Class

Test Set Recall Precision F1
Bitcoin 57.9% 54.9% 56.4%

Ether 48.9% 54.3% 51.5%

Litecoin 55.9% 52.3% 54.1%

Dash 12.4% 45.5% 19%

Zcash 17.1% 45.6% 24.9%

Performance of LSTM model trained with only historical prices.



63/44

Tajer

Backup Slides

RNN Model

Multiple Bitcoin Models
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RNN Model

Number of Transactions

Currency LSTM Moving Average Buy and Hold Replicate Last
Bitcoin 3778 70 1 5157

Ether 2766 66 1 3559

Litecoin 2502 55 1 4740

Dash 528 - 1 1905

Zcash 860 - 1 2313

Number of signals generated for each simulation
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