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Abstract

Accurately predicting asset prices in a financial market is a very difficult task. This
difficulty arises from the large number of real-world factors that drive the price. Often
these factors are hard to model or follow a random behaviour. This thesis studies
the predictability of a financial market of a new type of asset, cryptocurrencies. We
employ two types of approaches to this problem, the first one is based on Technical
Analysis. We utilized an approach based on grid search and cross validation to find
the best set of parameters for the trading strategies based on technical analysis. This
approach was applied to 5 different cryptocurrencies and 7 different trading strategies.
All candidate strategies that resulted from the cross-validated grid search method
performed well on out-of-sample data, yielding positive returns. The second approach
used to tackle the problem was based on computer learning. We fitted historical
data for 5 different cryptocurrencies to a Recurrent Neural Network model that uses
the Long Short Term Memory (LSTM) architecture. The model was able to achieve
limited accuracy improvement over a random classifier by around 5% for 3 out of 5
currencies. Complementary to the first approach, we designed a trading system that
enables the user to run trading simulations on historical data, and launch a trading
bot to perform automated trading based on a selected trading strategy. By comparing
the performance of the trading bot to that of the offline trading simulations, we found

that our offline simulation is a realistic approximation to real-world live trading.
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Zusammenfassung

Die genaue Vorhersage der Vermogenspreise auf einem Finanzmarkt ist eine sehr
schwierige Aufgabe. Diese Schwierigkeit ergibt sich aus der Vielzahl von realen
Faktoren, die den Preis beeinflussen. Oft sind diese Faktoren schwer zu modellieren
oder folgen einem zufélligen Verhalten. Diese Arbeit untersucht die Vorhersagbarkeit
eines Finanzmarktes filir eine neue Art von Vermogenswerten - Kryptowdhrungen.
Wir verwenden zwei Arten von Ansétzen fiir dieses Problem, die erste basiert auf der
Technischen Analyse. Dieser Ansatz basiert auf Grid-Suche und Cross-Validierung, um
den besten Parametersatz fiir die Handelsstrategien auf der Grundlage der technischen
Analyse zu finden. Dieser Ansatz wurde auf 5 verschiedene Kryptowdhrungen und 7
verschiedene Handelsstrategien angewendet. Alle Kandidatenstrategien, die sich aus
der cross-validierten Rastersuchmethode ergaben, schnitten bei Out-of-Sample-Daten
gut ab und brachten positive Ergebnisse. Der zweite Ansatz, der zur Lésung des
Problems verwendet wurde, basierte auf Machine Learning. Wir haben historische
Daten fiir 5 verschiedene Kryptowadhrungen an ein Recurrent-Neural-Network-Modell
angepasst, das die Long Short Term Memory (LSTM) Architektur verwendet. Das
Modell konnte eine begrenzte Verbesserung der Accuracy gegeniiber einem zufélligen
Klassifizierer um etwa 5% fiir 3 von 5 Wahrungen erreichen. Ergénzend zum ersten
Ansatz haben wir ein Handelssystem entwickelt, das es dem Benutzer ermdglicht,
Handelssimulationen auf historischen Daten durchzufiihren und einen Trading-Bot zu
starten, um automatisierten Handel basierend auf einer ausgewahlten Handelsstrategie
durchzufiithren. Durch die Validierung der Leistung des Trading-Bots im Vergleich zu
den Offline-Handelssimulationen, haben wir festgestellt, dass unsere Offline-Simulation

eine realistische Annédherung an den realen Live-Handel darstellt.
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1 Introduction

In this thesis, we took on the difficult task of developing a cryptocurrency trading
system. This system is designed to shield its user from the complexity of the
cryptocurrencies and trading world. The work can be divided into two folds, the first
is comprised of the practical aspect of our work. In it we developed a trading system

that provides the following functionality to the user:

e Ability to run trade simulations on historical data to assess the profitability of

trading strategies. The results of these simulations are also presented visually.

e Automated trading via a trading bot. This bot can be preconfigured by the

user to trade according to a certain strategy.

The second fold, which is of a more theoretical nature, revolves around studying
the predictability of popular cryptocurrencies prices. These are Bitcoin, Ether,
Litecoin, Dash and Zcash. The first approach we used to study the predictability of
cryptocurrencies is based on “Technical Analysis”. Technical Analysis refers to the
task of attempting to predict the future price of an asset based on historical prices of
that asset. These types of trading strategies are commonly used by traders in many
types of financial markets (Refer to chapter 2 for more details and references). These
trading strategies are flexible in the sense that there are multiple parameters to be
tweaked. For example, the window size of a Moving Average indicator can be set to
different sizes. This can be problematic as there are many different variations used
by traders. In order to address this, we proposed a grid search approach based on

cross validation to find optimal strategies based on historical data.

The cross-validated grid search produced multiple candidate strategies which we



tested on an out-of-sample period. Simultaneously, we launched a trading bot
during this period that traded based on one of the candidate strategies. After the
period was over. We were able to run simulations to asses the profitability of the
candidate strategies. All strategies showed a positive return on investment. Naturally,
the trading bot also yielded a positive return. During this out-of-sample period,
the trading bot executed multiple transactions. After the period was finished, we
compared the execution time of these transactions to the execution time of the offline
simulation, we found that the execution times were identical. This indicates that our

offline simulation environment is a good approximation to live trading.

The second approach we used to study the predictability of cryptocurrencies
was a learning-based approach. Here we fitted historical cryptocurrency prices to
a Recurrent Neural Network which utilizes Long Short Term Memory cells. We
formulated the problem as a classification problem, where task is to predict the
market directionality. We found limited predictability for all of the cryptocurrencies,
we utilized various evaluation metrics, including hypothesis testing to ensure that

our results are statistically significant.

Using our pre-existing simulation environment, we ran trade simulation using the
signals generated from the trained LSTM model. We compared the performance of
the LSTM model to multiple baselines. The LSTM model performed well on the
test set for some of the cryptocurrencies. The cryptocurrencies where the LSTM

performed well, have a higher accuracy of prediction than those without.

1.1 Motivation

Why cryptocurrencies? To answer this question, it is essential to understand what
exactly a cryptocurrency is:

It is a digital currency, i.e., it has no physical form (notes or coins). However,
it differs from other digital currencies such as the money in a bank account or a
PayPal account. This difference lies in the necessity for a central authority to exist
. Cryptocurrencies are in essence a cleverly designed protocol. The first protocol

named Bitcoin [3] by Satoshi Nakamoto (a pseudonym) was published in 2008. This



protocol ensures decentralization using the power of mathematics, or cryptography to
be more specific. Decentralization here refers to delegating the power and authority

traditionally associated with the central institution to the protocol design.

This concept of a decentralized currency is a very powerful one. By removing the
need for a central authority, cryptocurrency holders are protected from possibly unfair
regulations enforced by a central authority such as a bank. This is especially important
if the participant is a resident of a country that’s going through a recession. In many
cases central banks enforce austerity measures that restrict an individual’s access to
their own funds. This can be seen in countries like Venezuela where cryptocurrencies
are popular [4]. Another positive aspect to cryptocurrencies is transaction times.
International transfers nowadays require a few days and are in some cases expensive.

Bitcoin transaction take on average an hour to complete and are much cheaper [5].

As innovative and fascinating as Bitcoin technology is, in this thesis we are interested
in the predictability of its price. We summarize why we chose cryptocurrencies as
the target for this thesis:

1. New Market: Cryptocurrencies are a relatively new phenomenon and are not

as extensively studied as fiat currencies or stocks.

2. Volatility: Bitcoin value is much more volatile than traditional fiat currencies.
Yermack [6] found that in 2013 the volatility of bitcoin was 142 %. Compared
to that of Euro, Yen, British Pound,and Swiss Franc which was in the range of
7 to 12 %. This volatility means that Bitcoin is a relatively risky asset. It also

means that there’s a great potential to make profit or lose a lot.

3. Transaction Fees: Transaction fees for cryptocurrencies are traditionally low.
For example Kraken [7] charges fees in the range of 0% to 0.26% per transaction
depending on the trading activity of the user. The larger the volume the cheaper

the transaction.

4. Abundance of High-Frequency Data: Many cryptocurrency exchanges
have free public APIs that allow users to query the entire transaction history

of some assets. This free access to high frequency trading data stock market is



not available in the stock market.

1.2 Thesis Layout

In chapter 2 we explain some seminal concepts in the field of financial trading and
discuss some related pieces of scientific work. In chapter 3 we describe in detail, all
the trading strategies implemented by our system. We also describe some of theory
behind our learning based approach. Chapter 4 examines the practical aspect of our
work. How the data was crawled and processed, implementation details, programming
libraries utilized, how we set up the experiments and finally the evaluation metrics
we used. Finally we present our findings in chapter 5, discuss them and conclude this

thesis.



2 Related Work

2.1 Efficient Market Hypothesis

The concept of Market Efficiency is mentioned in nearly all the literature we en-
countered while researching trading strategies. The concept was first popularized by
Eugene Fama in 1970 [8]. Fama defines an efficient market as one where the price
fully reflects all available information. This means that the price of a publicly traded
asset in an efficient market cannot be consistently predicted. An implication of this
is that the price of an asset follows a random walk process. This means that at each
time-step there is an equal chance of the price going up or down, and that each price

movement is independent from the previous price movements.
Fama describes three forms of market efficiency based on available information :
1. Weak-form : Information set only includes previous asset prices.

2. Semi-weak form: Information set includes previous asset prices and publicly

available information such as news.

3. Strong-form: Information set includes previous asset prices, publicly available

information and secret information.

Weak-form efficiency indicates that using historic price data, it is impossible to predict
the future direction of an asset. This technique is commonly used by "chartists".
Chartists try to find common patterns in data that are supposed to be indicative of

future price movement as they believe these patterns are self-repeating. Chartists



often use technical indicators, such as the ones we discuss in section 3.1, to aid them
in their decision making. The semi-weak and strong form are even stricter. The
strong-form of market efficiency implies that insider trading cannot be used to beat
the market.

Whether or not stock markets or foreign currency exchanges are efficient, has
been fiercely debated by economists and statisticians. For a long time the EMH
has been widely accepted, but with time some anomalies began to be uncovered by
academics. One such example is the January Effect, Rozeff and Kinney found that
returns in January for companies listed in the New York Stock Exchange were on

average significantly higher than other months. This indicates seasonality[9] .

The January effect is not the only trend discussed in the literature. Another
notable one is the Halloween effect, represented by the market saying "Sell in May
and Go Away" . This effect implies that stock market returns are significantly lower
in the months between May and October. In comparison to the remainder of the
year. Bouman and Jacobsen found that this effect is in 36 out of the 37 different
stock market indices that they included in their study|[10].

Malkiel denies the importance of seasonal trends and effects by stating that they
are too irregular [11]. Malkiel also explains that if there are profitable seasonal effects,
their profitability will be diminished as soon as they are publicized as the market will

adjust very quickly to this new information.

A stronger case against Market Efficiency is perhaps the wide-spread use of Technical
and Fundamental analysis in both foreign exchange markets. Technical Analysis is the
use of historic stock data. For example historic prices, trading volumes and derivatives
of the two. In order to predict the direction of the price movement. Fundamental
Analysis is the use of financial information. For example quarterly earnings (stock
Trading) or Central Bank policy (foreign currency trading) in order to predict future
price movements. Technical analysis violates all forms of Market Efficiency whereas
Fundamental Analysis violates the semi-weak and strong form of market efficiency. If

a market truly is efficient then the use of such techniques is pointless.

This wide-spread use was reported by Menkhoff and Taylor [12]. They analyze a



collection of surveys which targeted foreign exchange professionals. They summarize

their findings in a set of stylized facts:

1. Almost all foreign exchange professionals use technical analysis as a tool in

decision making at least to some degree.

2. Most foreign exchange professionals use some combination of technical analysis

and fundamental analysis.

3. The relative weight given to technical analysis as opposed to fundamental

analysis rises as the trading or forecast horizon declines.

There has also been a considerable amount of literature that examines the prof-
itability of trading strategies based on technical analysis. This is more comparable to
our work. Sullivan et al. have devised a new technique for finding profitable trading
strategies from a pre-selected universe that fixes for data snooping[13|. Their tech-
nique is based on drawing multiple samples with replacement of the returns of each
strategy. Although they found statistically significant returns for the best strategy
compared to the benchmark, the results could not be reproduced on out-of-sample
data. This was the case for both criteria used for evaluating the performance of
trading strategies, Mean Return and Sharpe ratio. It was difficult for us to conduct
the same experiment on cryptocurrencies for a few reasons. Firstly, our data was
high-frequency and spans back only to 5 years max. Had we changed the frequency
to daily as is the case with the data used by Sullivan et al., we would not have had a

large enough amount of data to perform a conclusive experiment.

2.2 Efficiency of the Cryptocurrency Market

Although cryptocurrency trading exchanges are relatively new and are not as exten-
sively studied as the traditional stock or fiat currency markets, yet some literature
addressing the efficiency of Bitcoin does exist. Urquhart applied 5 different statistical
tests to assess whether the Bitcoin prices behave like a random walk [14|. The data
used was from 1/8/2010 to 31/7/2016. All tests show evidence of non efficiency in



that period. However, when the sample was split into two sub-samples. The results
of the first sub-sample (1/8/2010 — 31/7/2013) didn’t differ from the entire sample.
The second sub sample (1/8/2013 — 31/7/2016) passed only 3 out of 5 tests. This

could be an indication of Bitcoin prices becoming more efficient with time.

In a follow-up study to Urghart’s [14]|, Nadarajah and Chu have found that by
simply raising the returns on Bitcoin to the power of an odd integer, the returns
become market efficient [15]. They argue that scaling the entire time series to a
higher odd power does not lead to any information loss. Negative returns stay
negative and positive remains positive. They utilized the same set of tests as [14]
and expanded them to 8, in all cases either weak or no evidence were found against

the null hypothesis that Bitcoin price follows a random-walk pattern.

There has been, however, a considerable amount of work that is more directly
comparable one part of our work. Namely, attempting to predict the direction of
the price of cryptocurrencies using Learning-based algorithms. One such piece of
work was done by Madan et al. [16], who applied a Linear Model, Random Forest
and Support Vector Machine algorithms to assess the predictability of Bitcoin. Their
input consisted of daily bitcoin data along with other bitcoin mining related features.
They managed to reach very High accuracies of 98% and 94% percent using the
Linear model and Random Forest algorithm respectively. These high accuracy values
are attributed to an imbalanced dataset. However, when utilizing high granularity
bitcoin price data only, the accuracy dropped to the range of 50-55%. Our work
differs in that we apply our model to 5 different cryptocurrencies and we utilize a

deep learning approach based on the LSTM architecture.

Hegazy and Mumford applied 6 different learning models on historical Bitcoin
data [17]. Similar, to our work they utilized 2 different evaluation metrics, one
based on classification hits and the other based on trade simulations. In terms of
classification hits, the most successful models were Adaboost with decision trees and
decision stumps (one-level decision tree) as a base classifier yielding a correct rate
of 57.4% and 57.1% respectively, on the test set. Using the other evaluation metric,
namely, trade simulations. The most successful method by a big margin was based on
recurrent reinforcement learning. One notable difference in Hegazy and Mumford’s

work to ours is in the simulation method. During data preprocessing, after binning



the prices, the authors smooth the prices using weighted linear regression (For both
training and test set). They had done this to reduce noise in the data. Without this
smoothing, the authors claimed that the models lost their predictive power. However,
this smoothed price could in certain cases not correspond to the actual price. The
authors also acknowledge this fact. Therefore it’s not clear if the simulation results
could be applicable. We do not smooth the prices in our approach which renders it

as a more realistic trading simulation.

The academic literature also included results for other cryptocurrencies. Chen et
al. applied various learning approaches to Ether historical data with various success
[18]. Interestingly the most successful model was ARIMA, which is commonly used
for time series analysis by statisticians and economists. It achieved an accuracy of
61%. The authors also utilized an RNN model in their test. The reported a balanced
accuracy score of 52.43%. The results we achieved for the same currency were better

as will be further discussed in chapter 5.






3 Background

This section of the thesis discusses in detail the concepts we used in order to gain
insight and to attempt to leverage the cryptocurrency trading market. In section
3.1 we describe some of the trading strategies typically used by traders in Foreign
Exchange and Stock Trading market. Section 3.2 discusses the learning based
approach we applied in order to learn and consequently predict the future prices of

cryptocurrencies.

3.1 Trading Strategies from the Market

We describe, in this section, all the trading strategies implemented in our trading

system. These trading strategies are based on Technical Analysis.

3.1.1 Cross Over Moving Average

The moving average and all of its variations are some of the most popular and widely
used indicators [13]. The moving average acts as a trend indicator by calculating an
average price of an asset for a fixed window size. Comparing a MA to the price line
or to other MAs with different window sizes, can be useful in detecting trends. This
in turn can produce some useful trading signals. We can define the MA at time step

t for window size N as:

1 N-1
T N 1)
=0

11



where P; is the price of an asset at time step t. Figure 1, produced by our trading
system, visualizes equation 1. The figure also demonstrates the smoothing property
of MAs.

Figure 1: Bitcoin price from the 18th to the 20th of December 2018 along with the
1 hour MA
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The cross over MA strategy utilizes two MAs, a short (fast) one and a long (slow)
one. The short MA represents the short-term trend of the price and it should react
to price changes relatively quickly in comparison to the slower moving MA. We
demonstrated this idea visually in figure 2 The point of intersection of the slow and
fast MA could be used as an indicator of upwards and downwards price shifts. This
can be observed in figure 2. The trading strategy uses these cross-over points to

generate buy and sell signals.

More formally, let’s define a signal generating function S; that takes as input short

window s and long window [ as at time step ¢:

1 — MA(s) > MA()
S(s,) ={ —1 — MA(s) < MA(l) 2)

0 else

The formulation above can be regarded as the simple form of the cross over strategy.

We add two new parameters in order to alleviate the effects of fake signals and allow

12



Figure 2: Cross over strategy on Bitcoin with a 1 Hour and 6 Hour moving average
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the strategy more flexibility [13]. These two new parameters are percentage filter
p, and holding period h. The percentage filter specifies a threshold that should be
exceeded by a certain percentage in order to generate a signal. So if p is set to 1%,
a buy signal will only be generated if M A(s) is greater than MA(l) x 1.01 and the
opposite applies for generating a sell signal, such that M A(s) should be less than
MA(l) x 0.99. The holding period h indicates how long should a signal generating
condition (for example M A(s) > M A(l)) be valid before a signal is actually generated.

In the literature, we found that, the cross over moving average strategy is often
presented in the above form i.e. a trend following strategy. If the short MA overtakes
the long one, a signal is generated. In this case the bet, is on the continuance of
this trend. Hence the name trend-following. However, a contrarian form is also less
frequently used. Pavlov et al found that contrarian MA strategies are significantly
more profitable than trend-following ones on the Australian stock market [19]. Our
trading system allows for the use of both trend-following and reversing forms of

strategies for evaluating or trading.

There are numerous ways of calculating the average for the Moving Average
indicator. One alternative method is calculating a exponentially weighted average

that places greater importance on recent prices than more distant ones. This variation

13



is also available for use in our trading system. We calculate the exponential moving

average at time step ¢t with window size N as :

N-1
Zi:() wi Py

EMAy(N) = SN=T,
=0 t

7 (3)

Where w; are the exponentially smoothed weights. These weights are defined as

w; = (1 — )" where « is the smoothing factor. a’s value is set to NLH for a window
of size N in practice. This is the convention we also follow in our trading system

implementation.

3.1.2 Bollinger Bands

Another commonly used trading indicator are Bollinger Bands, Here an upper and
lower band are used within which the price should remain. We calculate these bands
based on the previous volatility of the price. It is assumed that price should remain
within these bands and a "breakout" from these bands, indicates a new trend that
could be leveraged. As originally presented by Bollinger in 1992 [20], when the price
touches the upper band, it is overbought. This means that its only a temporary
increase in price and the price should eventually revert back to normal. The same
can be said about the lower band corresponding to oversold conditions, such that
crossing this lower band indicates a temporary drop and the price will revert back to
normal. Bollinger Bands as originally presented [20] are a trend reversing strategy.

Figure 3 produced by our trading system demonstrates the strategy visually.

To compute the upper and lower bands we use the standard deviation o; for a time

step . It is defined as :

N-1

e S (P~ MAY? (@
=0

gt =

14



Figure 3: Bollinger Bands in action on Bitcoin data from the 3rd to the 11th of
April 2019
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The upper and lower bands are then computed as :

UB = MA; + (QUZdth X O't)

)
LB = MAt — (wzdth X O't) ( )

In the original work by Bollinger the width is fixed to 2. We leave it as a variable
here to allow greater flexibility. We define a signal generating function that takes as

input a window size N and width as :

1 — P, < LB,
St(N, ’U)Zdth) = -1 — P >UB; (6)

0 else

Similar to the cross over strategy described in the previous section, we introduce
two other parameters a percentage filter p and holding period h. Although originally
presented as a trend reversing strategy, there’s literature that provides evidence of
the profitable use of Bollinger Bands as a trend following strategy [21]. Our trading

system allows the use of Bollinger Bands in both variations.

15



3.1.3 Relative Strength Index

The Relative Strength Index, often abbreviated as RSI, was first introduced by J.
Welles Wilder [22]. It is used to measure the momentum of a price, is it also called
the Momentum Relative Strength Index. Momentum here refers to the rate of change
of a price. To calculate the RSI, we first need to calculate the sequence C' which

contain all the price changes in a given window N:
Co={Pu— P} (7)

We calculate two subsequences out of C, C; and C_ to represent the sequence of

gains (where there’s a positive change) and losses respectively.

Ci=Cso={xeC|z>0}

(8)
C_.=Cop={xeC|z<0}

The relative strength RS of an asset at time step ¢ is simply the average gain divided
by the average loss for a given window N:
_

RS = 5 (9)

Finally the RSI, is scaled to the range 0 to a 100 such that :

100

RSI, =100 — ——
¢ 1+ RS,

(10)

Weller also defines an oversold and an overbought line which act as an indication
of when to buy and sell respectively. Thus, in this respect RSI is a trend-reversing

strategy. We define a signal generating function as :

1 — RSI; <50 —of fset
S¢(N,width) = ¢ —1 — RSI; > 50+ of fset (11)

0 else
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Figure 4: RSI trading strategy with a window size of 60 and offset of 25

Similar to the aforementioned strategies, here also we introduce percentage filter
p and holding period h. In total, our RSI trading strategy takes as input four
parameters: window size N, offset (the distance to the oversold and overbought line
from 50), percentage filter p and holding period h. Figure 4 demonstrates the idea
behind RSI visually.

3.2 Learning Based Approach

As a part of this thesis, we utilized a Recurrent Neural Network (RNN) for predicting
the future direction a price will take at each time step. In this section we describe the
learning techniques used in detail. The goal of this approach is to uncover patterns
in the historical price data. If such patterns exist, a learning based model should
be able to learn them. Armed with this trained model it is possible to leverage this

predictability to achieve a profit.
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3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) can be defined as a computing system, the design
of which is very loosely based on that of the neurons in our brains. As the name
suggests, they’re composed of interconnected neurons. The architecture of an ANN
can be used for various types of ML tasks such as classification, regression and many

others, by simply altering the structure of the network.

Figure 5: ANN Architecture. Source : "Neural Networks and Deep Learning" by
Michael Nielsen [1]

hidden layers

output layver

input layer

We will start by defining the smallest component in an ANN, the artificial neuron.
An artificial neuron takes multiple values x; as input, multiplies them to corresponding
weights for each input, offsetting them with a bias producing the output. If a neuron
has j inputs, we can represent the output z of a neuron as : z = Zj wjz; +b. We
can vectorize the notation by representing the weights and inputs as one dimensional
vectors to simplify the notation : w -z 4+ b. An activation function, (sometimes
referred to as Transfer functions), is usually used in tandem with neurons such that,
the output is passed to this function. The activation functions usually chosen are
non-linear. In an ANN, neurons are usually stacked vertically in layers as seen in

figure 5. A neural network produces an output by performing a forward pass. A
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forward pass is essentially passing the input vector x as input to the first layer then
passing the output of that operation to the second layer and so on until reaching the

final output layer.

By combining the vector of weights for each node in the first hidden layer such that
they’re concatenated together vertically together to form a matrix W. The out put
of hidden layer one can be represented as : W'z + b. Building up on that logic, the
dimensionality of matrix W can always be presented in the form (Number of inputs
from previous layer x Size of hidden layer). ANNs tend to perform best with a large

number of hidden layers, these type of networks are called Deep Neural Networks.

3.2.2 Activation & Loss Functions
Learning Process

So far we have only discussed the flow of information in one direction in a network, the
forward direction. Yet the question remaining is how do networks learn? It is useful
to define a Cost or Loss function. The purpose of this function is to quantify how well
the output of the network is in comparison to a training example. We measure this
by comparing to the actual labels present in a training set. In a regression problem,
Mean Squared Error is often used as a loss function. For n training examples, where
7 is the output of the neural network and y is the actual label from the training set,
MSE is:

Luse =+ 3y~ )’ (12)

Please note the equation 12 assumes that the output ¢ is a one real number, which
would work fine if the dimensionality of the output layer of the neural network is 1.

However, if not, then the notation would be adjusted slightly.

Alternatively, for classification problems where a soft max layer is used (see equation
18), the output of the network is a probability distribution over the classes. In this

setting, cross entropy is often used. In a binary classification problem cross entropy
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can be defined as :

n

1 . N
LCrossEntropy = _ﬁ Z [y lny + (1 - y) ln(l - y)] (13)

7

By computing a loss function, the problem of learning the weights and biases
becomes that of numerical optimization. By minimizing a loss function we are able
to find weights and biases that reduce the error on the training set, thus producing
better predictions. One way to do this is by using Gradient Descent. Using the
notation defined in [1], with a loss function L that takes as input a weight w and bias

b. We can approximate the relation between L, w and b as:

oL oL

The update rules for minimizing the cost function using gradient descent are :

, oL
W= W =wW—1n5—
oL

Where 7 is the learning rate. In practice, the number of training examples can be
very large (this is particularly true for ANNs). It would be very slow to compute
the gradient for all n training examples, and then updating the weights after each
computation. Alternatively, Stochastic Gradient Descent is used instead [23|, SGD
calculates the gradient for a randomly chosen batch that contains a fixed number of

training samples, and updates are then carried out accordingly.

At first glance, it’s not obvious how to apply gradient descent, or any optimization
algorithm, on a neural network because of the shape of ANNs. In the formula above
we only discussed the weights and biases of the final output layer of the network.
The weights and biases in previous layers also need to be updated. In order to carry
this out, the Backpropogation algorithm is used. The use of BP for neural networks
was first popularized by Rumelhart et al [24]. BP makes use of the chain rule, which

offers a method of calculating the derivative of composite function. The output of one
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path in a network from the input layer to the output layer is in essence a composite
function. BP is a systematic way of calculating the derivatives of the loss function
with respect to the output nodes of all layers and in turn the weights and biases.
To train a network, BP is used in tandem with an optimization algorithm like SGD,
to iteratively find gradients and update the weights until convergence or a certain

threshold is met.

Activation Functions

ANNs make use of activation functions for the following reasons:

1. To introduce non-linearity to the output of the neurons. If all outputs of the
neurons are linear, then all hidden layers in the network could be represented
as a single hidden layer. This greatly diminishes the ability of ANNs to learn

more complicated functions.

2. To scale the output of a neuron to a certain range such as -1 to 1 or 0 to 1,
depending on the activation functions. This ensures a more stable learning

process.

One of the most commonly used activation functions is the Sigmoid (o) activation
function, using the notation from the previous section where z is the output of a

neuron, a sigmoid function applies the following to each neuron:

1

R — 16
1+4+e* (16)

o(z)

Another commonly used activation function, which is also sigmoidal in shape, is

the tanh function. It is defined as:

(e~ )

tanh(z) = Exe)

(17)
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Figure 6: Commonly Used Sigmoidal Activation Function. Figures created using
Wolfram Alpha [25].

For classification problems, the final layer of the network is often set as a Softmax
Layer. This is a layer where all the neuron output is passed through a softmax
function. The softmax function differs from others discussed so far as it takes as input
the output of all the neurons present in the final layer. It scales the output of all the
neurons to a value between 0 and 1, such that the sum of all these outputs adds up
to 1. In effect we end up with a probability distribution over all the possible classes.

The softmax output for neuron j in a final layer with /N nodes can be defined as

SoftMax(z;) = ;i (18)

D iy €7
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Finally, we define the Rectified Linear Unit activation function or Relu for short as:

f(2) = 0 forz<0 (19)

z forz>0

3.2.3 Neural Networks with Time Series Data

Time series data refers to sequence data with temporality. Traditional ANNs are
not designed for learning from this kind of data. Although, it’s possible to do so, by
feeding in each point in time separately. This proves to be inefficient as the network
will not be able learn any dependencies between the different points in time. A
variation of ANNs called Recurrent Neural Networks, are designed specifically for
this purpose. RNNs allow information from neurons to persist from one input in
time x; to the next z;11. This can be thought of as multiple copies of the same
ANN arranged in sequence but of course with a new set of parameters to connect the
neurons from one point in time to the next. Figure 7 shows the fundamental structure
of an RNN where z; represents the time-dependent input and A can be thought of as
a node. The figure demonstrates the important property of RNNs, that the output is
not only fed further into the network like a traditional ANNs. It’s also fed to a copy
of the ANN that takes in the next input z;y1. One issue that arises with the use of
RNNs is their inability to learn long-term dependencies because gradients tend to
grow exponentially or vanish. Bengio et al showed through a group of experiments
why this is the case [26].

7
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Figure 7: RNN "unrolled". Figure source : [2]
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To address this issue, Hochreiter and Schmidhuber created a new RNN architecture
called Long Short Term Memory [27]. LSTMs address the gradient problem by
introducing gate units that control the flow of information within and between layers.
They referred to these gate units together as a memory cell. Figure 8 shows the shape
of this cell.

® ® 63

t I8
A fi-ag, A

| I
& ® &)

Figure 8: LSTM memory cell. Figure source : [2]

An LSTM cell is composed of 3 gate units. Each one of these gates has a unique
role in the cell. The horizontal line at the top of the cell represents the flow of
information between LSTM cells. This represents the selective memory in the LSTM
cell. Using the notation followed in [2], this information flow between cells is stored
in the Cell State Cy. The cell states can be modified at two gates. The first is the
forget gate:

fo = o(Wylze, he1] + by)

(20)
Ci= fioCi

x; is the input vector whereas h;_1 is the hidden state from the previous cell. If x;
is of dimensionality (m x 1) and hy is n x 1, then [z, hy—1] is a vertically concatenated
vector of the two with dimensionality ((m +n) x 1). Wy is the weight matrix of the
forget gate it is of the dimensionality (NumberofNeurons x (m+n)). Equation (20)
is identical to that of a hidden layer in an ANN with a sigmoid activation function.
It is also important to note that, Numberof Neurons is the same for all layers in an
LSTM cell, and that the cell state and hidden state share the same dimensionality.
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The output of the first equation in 20 is a vector of dimensionality (Numberof Neurons
x1). The sigmoid function ensures that the vector values are in range 0 to 1. When
this vector is passed through the forget gate, each value determines which values
to attain (closer to 1), and which to discard (closer to 0). The actual dropping of
values occurs in the second equation in 20. The o in the second equation represents
a Hadamard product. A hadamard product is a special multiplication between two
matrices of the same dimensionality. Each value is multiplied with the corresponding
(same index) value in the other matrix. Thus, by learning the suitable weights the
LSTM architecture allows an RNN to have selective memory, by dropping unuseful

information.

The second gate that changes the cell state C is the input gate,. It is composed of
two layers, a sigmoid and a tanh layer. The sigmoid layer behaves similarly as the
forget gate as weights associated with this layer determine which values are affected
in the cell state. However, unlike the forget gate, the sigmoid layer here determines
which new values are input to the cell state C; as opposed to which values are dropped.
Finally, the tanh layer creates the new candidate values Cy. The operations of the

input layer can be represented as:

it = o(Wilze, he—1] + bi)
Cy = tanh(W,[zs, hy_1] + be)
ét =10 ét
Ci=C+ ét

The final gate, called the output gate, controls the output of the cell. Similar to
previous gates a sigmoid layer is used to determine which elements of the cell state CY

are going to effect the output of the cell. The operations behind the output gate are :

o = o(Wo[zg, hy—1] + bo)
Ct = tanh(C}) (22)
ht = 0t © Ct

RNNSs are trained with a variation of the backpropagation algorithm called back-
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propagation through time [28]. BPTT is very similar to standard BP and relies on
the same principles such such as the chain rule. It is altered to consider the structure
of RNNs [29].
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4 Experiments

4.1 Trading System Overview

4.1.1 System Layout

Our trading system is designed to shield the user from the complex world of trading.
It offers a smooth user interface that allows the user to run trade simulations on
historic cryptocurrency data and launch a trading bot that trades automatically in
the background for the user. The trading system currently supports five different

cryptocurrencies :

1. Bitcoin [3] : The first ever cryptocurrency launched in 2011 anonymously. It has
since grew to be the largest cryptocurrnecy in terms of market capitalization.

It has a very active open-source community.

2. Ethereum [30]: Released in 2015. As of the time of writing, it has the second

largest market capitalization after Bitcoin.

3. Litecoin [31]: Released in 2011, it is based on the Bitcoin protocol with minor

alterations claiming to improve Bitcoin.
4. Dash [32]: Released in 2015. It is also based on the Bitcoin protocol.

5. Zcash [33]: Marketed at release in 2016 as an alternative to Bitcoin that provides

more privacy.
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The output of trade simulations is also presented visually. These trade simulations
can be ran with any of the strategies detailed in section 3.1. Before running a trade
simulation, the user needs to set a few global parameters that are applicable to all

simulations and not specific to one. These include :

e Starting Capital : Amount to invest in USD.

e Evaluation Period : The time during which to run simulations.

e Data Origin : If the historic data is stored on disk or should be queried live.

The user is then required to set the parameters associated with each strategy. These
parameters are also described in more detail in section 3.1. After settling on a
promising strategy, the user then has the option to proceed to test this strategy in
practice on real data. Our trading system is designed to work in tandem with the

Kraken cryptocurrency exchange [7].

4.1.2 Exchanges and Live Trading

A cryptocurrency exchange is an online platform that allows users to trade cryptocur-
rencies in exchange for other cryptocurrencies or traditional fiat currencies(USD etc).
As with any regular exchange, there are buyers (bidders) and sellers (askers). In order
to buy a cryptocurrency, an exchange user should first create an order. An order is
simply an instruction to buy or sell a certain cryptocurrency. There are numerous
type of orders with varying levels of complexity. Two very commonly used types are
Market and Limit orders.

A limit order allows the users to specify the highest price they’re willing to pay
to buy (hence the name limit). The order will only be executed if the price moves
favourably (price goes down if buying). The opposite applies for selling. The user
sets the lowest price they would sell for. When using a limit order, there’s a chance
that the order never (or only partially) gets executed. The execution depends on how

favourable the market conditions are on the limit order. However, an advantage of
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using this sort of order is that, it is likely that a better price could be secured than a
Market order.

A Market order is designed to be fulfilled very quickly. However, as a trade off to
this speed of execution, the order does not allow the user to specify the exact price
at which to buy or sell. The price is determined as the average of the bid and ask
price of the market. The order may not be executed at the best possible price but it

will get executed quickly.

We motivate our choice of Kraken on the following basis :

e Founded in 2011, it is one of the oldest and largest cryptocurrency exchanges

in terms of trade volume [34].

e [t has a comprehensive well-documented API that covers a wide range of
functionality from querying historical data to generating trade orders. This

functionality is vital to our trading system.

e It supports 20 cryptocurrencies with low trading fees of 0.16%, if creating a new
order that is not immediately fulfilled (limit order and its variations), and 0.26%
if using market orders. The trading fees decrease with higher trade activity. It

is possible to reach 0% trading fees with high trading volumes.

e [t has the highest and second highest trading volume for trading pairs Ethereum/Euro
and Bitcoin/Euro respectively [34]. This means that there’s a large number
of people trading cryptocurrencies with Euros. This ensures that trade orders

generated by our trading system are likely to be executed quickly.

e [t offers multiple methods of securing user accounts such as Two-factor Authen-

tication and a Global Settings Lock.

Our trading system makes use of Market orders. The reason, as explained above, is
the speed of execution. Although the system is able to handle situations where the

trading order execution is delayed or never carried out, it is still in our best interest
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for the order to execute as soon as a trading signal is generated. This is because
the implemented trading strategies are dependent on trend. Slower executions in an

up-ward market could be costly.

Kraken offers a REST API that accepts two types of HT'TP requests namely
POST and GET. There are two types of requests that can be sent to the API,
private and public. Public requests can be initiated by anyone. They return publicly
available data such as historic prices, server time and supported cryptocurrencies.
We use public requests to retrieve latest market prices from the Kraken API and
private requests are used to check balances and generate trade orders. Due to the
sensitive nature of private requests, it is important that they utilize secure encryption
techniques such that the content is not compromised. For example when a trade
order is generated from a trading system, how can the exchange be sure that it was
indeed the rightful user and not a malicious third party? In order to send private
API requests to Kraken, a secret key needs to be generated. This key is then used to
digitally sign the API requests. This scheme is widely used in security protocols to

ensure the authenticity of the sender.

4.1.3 Implementation Details

The functionality of the trading system is captured with 4 classes. In this section
we briefly describe these classes and how they interact with each other. The trading
system was written in Python 3.6. It is designed as a web application. The front end
was developed using HTML, CSS and Javascript. All the charts were generated using
the charting library Plotly [35]. An object-oriented approach was used during the
design of the the application. Below is a list of the Python classes created for the

system:

app.py : The main file used to launch the application. The web app was developed
using the Tornado and Flask web frameworks. It handles all the client side requests,

queries the relevant classes and sends the results back to the client.

evaluator.py This class includes functionality for running simulations on data. It

is heavily reliant on Pandas [36] and Numpy [37]. Pandas offers a wide range of
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statistical and data analysis tools helpful for working with financial data. It offers
some of the functionality of the R programming language in Python, most notably a
DataFrame object. This object allows users to store indexed data in a 2D tabular
format. Another notable asset of the Pandas library is that, it offers fast flexible

methods for reading and writing to CSV files. Table 1 shows the running times of our

Average Evaluation Running Time in Seconds
Strategy 1 Month | 6 1 Year
Months
Cross Over Moving Average 0.0693 0.170 0.256196
Exponential Moving Average 0.0673 0.197 0.323787
Bollinger Bands 0.0378 0.099 0.149742
Relative Strength Index 0.0558 0.163422 | 0.294710

Table 1: Average Running Time of Evaluation for Each Strategy.

simulation algorithm on different lengths of time. This average was taken from 100
trials on a machine with 6 gigabytes of RAM and Intel core i5 processor. The input
data simulated on, had a granularity of 1 minute. 1 Month of such data is around
44640 rows, 6 Months 262800 and a year’s worth of data is around 525600.

trading _bot.py : This is the class responsible for live trading. It is run in the back-
ground, when a trading bot instance is launched. It does not affect the performance

of the rest of the application. Algorithm 1 demonstrates how the trading bot behaves.
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Algorithm 1 Execution flow of Trading Bot
iteration = 1

number_ of transactions = 0
pending order = False

while bot is running do
Retrieve Latest Market Price

Update Price History
if Warm up time is over then
if pending order = True then

if order is closed then
| number of transactions += 1

else if order is expired then
| pending order = False
else
| pass
else
Calculate Technical Indicators

if signal is generated then
Create market order

pending order = True
iteration +=1
end

Before the bot can actually begin to generate trade orders, it needs to have collected
enough data to be able to able to generate trade signals. Therefore, we defined a
warm up period. Naturally this warm up time is linked to the parameters of the
trading strategy. For example, in the MA trading strategy the warm-up time is set
to be the size time as the short window. For the other strategies, the warm up time

is set to be the same as the window size.

util.py - Utility class, as the name suggests is utilized by all other classes. It
contains all the methods used to communicate with API, perform dataset updates

and data retrieval for evaluation.
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4.2 Dataset

The quality of the data collected in any piece of scientific work is of extreme importance.
Data collection and preprocessing is a vital step in any experiment and should not be
taken lightly. The historic data for Bitcoin was collected from Bitcoincharts [38]. The
website offers complete trade history for bitcoin for many exchanges. We chose data
from Kraken for reasons we highlighted in section 4.1.2. This complete trade history
comes in the form of a csv with 3 columns; timestamp, price and volume. Each row

contains a completed trade (a fulfilled order). The data goes back to January 2014.

For the other cryptocurrencies, the data wasn’t as readily available. Kraken,
however, offers an API that allows the download of a limited amount of rows of
trade history. To obtain the entire history, we wrote a Python script that repetitively

queried the API to download the entire history.

Raw trades history still cannot be used for evaluation because the granularity is
too high and/or irregular. To make the data uniform, it was resampled into 1 minute
bins. The price for each bin was the average price for all the transaction that occurred
in that minute, while the trade volumes were naturally aggregated. Table 2 illustrates

information about the data.

Cryptocurrency || Starting Date | Min Price (USD) | Max Price (USD)
Bitcoin 2014-01-07 175 19654.6
Ethereum 2015-08-07 0.345005 1441.39
Litecoin 2013-10-24 0.88536 367.74
Dash 2017-04-12 56.3359 1579.85
Zcash 2016-10-29 26.4332 799.4485

Table 2: Descriptive Statistics on Pre-processed Data

At some intervals, particularly in the the beginning (as the currency was first
introduced to the exchange), there are extended periods of time where no transactions
took place. These periods go beyond 1 minute. Naturally, after the data was processed
this will lead to some missing minutes (rows). However, before the data is input into

the simulation algorithm, the price is fed forward, ie. the missing rows (minutes) are
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also included and their price value is taken from the latest existing minute. This
is a reasonable assumption to make because if the currency was not traded for a
period of time, the price will stay constant. In fact, if there are price changes, this
will increase the amount of transactions as it will attract traders wanting to leverage

these changes.

Figure 9 visually demonstrates what the processed data looks like. The data is
from the starting date shown in table 2 until the end of April 2019. It is also worth
mentioning that, the script for downloading the dataset was modified and offered
as a feature in the trading system. This feature allows the user to update the local

cryptocurrency datasets with the click of a button.
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Figure 9: Historical Price Data After Being Processed for All Currencies.
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4.3 Evaluations

4.3.1 Grid Search Approach to Find Optimal Trading Strategy

We highlighted in section 3.1 all the trading strategies based on technical analysis
that our system utilizes. These strategies are dependent on a set of parameters.
These parameters define the rules that generate these signals. Variations of these
strategies with different parameters are used by traders. In order to find an optimal
set of parameters we opted for an exhaustive grid search approach. Grid Search is
an approach typically used to find optimal hyperparameters for a Machine Learning
model. All possible combinations of hyperparameters from a pre-defined space are
trained with the model. The performance of the model is gauged by a pre-defined
evaluation metric. The performance of the optimal hyperparameter set is typically
also evaluated on a held-out set of data. This is done to avoid overfitting. Please
note we were only able to run a grid search based approach due to the fast run time
of our simulation algorithm. (Refer to table 1 for more details). Otherwise, a more

efficient hyperparameter optimization method would have been utilized.

The choice of parameters space for our trading strategies is vital to the validity
of the experiments. A problem that could arise from such a brute-force approach is
data snooping. Sullivan et al [13| describes the problem as follows: "Data Snooping
occurs when a given set of data is used more than once for purposes of inference or
model selection. When such data reuse occurs, there is always the possibility that any
satisfactory results obtained may simply be due to chance rather than to any merit
inherent in the method yielding the results.”. They address this issue by applying a
bootstrapping-based approach called White’s Reality Check [39].

The parameter space they defined is suited for low-frequency traditional stock
market data. This is not suited for high frequency data. We expanded the parameter
space as described in 6. As we found no similar pieces of work applied to high-
frequency data. We defined this space ourselves. In order to alleviate the effects of
data snooping, the parameter space was defined before the evaluation took place and
has not been modified. We performed the grid search on one year of historic data

with granularity of 5 mins. We divided the year into four subperiods :
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Parameter

Range (In hours for time parameters)

Short Window Size
Long Window Size
Percentage Filter
Holding Period

{1,2,3,6, 12, 24, 36, 48, 72, 96, 120, 144, 168}
{12, 24, 48, 72, 120, 168, 240, 336, 672}
{0, 0.05, 0.1, 0.5, 1, 5}
{0,0.25,05, 1, 1,2, 2,3, 4,6, 12, 24}

Table 3: Parameter Space for Cross Over MA strategy (Both Variations)

Total Number of Combinations : 8424

Parameter

Range (In hours for time parameters)

Window Size || {1, 2, 3, 6, 12, 24, 36, 48, 72, 96, 120, 144, 168, 240, 336, 672}

Band Width
Percentage Filter
Holding Period

{0.5,1,1.5,2,3}
{0, 0.05, 0.1, 0.5, 1, 5}
{0,0.25, 05,1, 1,2, 2, 3, 4, 6, 12, 24}

Table 4: Parameter Space for Bollinger Bands Strategy)
Total Number of Combinations : 5760

Parameter

Range (In hours for time parameters)

Window Size {1, 2, 3, 6, 12, 24, 36, 48, 72, 96, 120, 144, 168, 240, 336, 672}

Width Offset
Percentage Filter
Holding Period

{10, 15, 20, 25, 30, 35, 40, 45}
{0, 0.05, 0.1, 0.5, 1, 5}
{0,0.25,05, 1,1, 2,2, 3, 4, 6, 12, 24}

Table 5: Parameter Space for Relative Strength Index Strategy)
Total Number of Combinations : 9216

Table 6: Parameter Space for Trading Strategies
Total Number of Combinations for All Trading Strategies : 23400
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Subperiod 1 :From 2018-03-01 to 2018-05-31.

Subperiod 2 :From 2018-06-01 to 2018-08-31.

Subperiod 3 :From 2018-09-01 to 2018-11-30.

Subperiod 4 :From 2018-12-01 to 2018-02-28.

The evaluation metric we utilized was the return on investment(ROI)(adjusted for

transaction fees) after the simulation for a subperiod was finished.

Cend - Cstart

ROI =
Cstart

(23)
Where C; is the total capital (cash + asset value) at a certain time period ¢. For each
subperiod a grid search was performed to find the top 5 most profitable parameter
combinations. These combinations were then cross validated against all the other

subperiods. We defined the following criteria for then choosing promising strategies :

o A strategy (hyperparameter combination) needs to be profitable across all

subperiods.
e [f the first criteria is fulfilled then filter based on highest ROI.

This approach was applied to 5 different currencies for seven different types of
trading strategies. The reason why it’s 7 and not only 4 is because we also ran the
grid search on the contrarian form of some strategies as explained in section 3.1.
Figure 10 shows demonstrates this idea visually for one fold, this process is then

repeated for all subperiods, except of course, the out-of-sample period.
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Figure 10: Cross Validated Grid Search for 1 Fold on Historic Bitcoin Price Data.

The results of this approach will be discussed in chapter 5.

4.3.2 Learning Based Approach for Evaluating Market Predictability

Data Preprocessing

In order to assess the predictability of cryptocurrency historic prices, we defined it
as a binary classification problem. If the price goes up from one time step to the
next then it is of class 1, if it stays the same or goes down then it is class 0. The
transformation of raw transaction data to uniform data was described in section 4.2.
We considered the entire trading history of 5 cryptocurrencies from when they started
trading in Kraken API until 31/05/2019. The data frequency was then decreased
from 1 minute to 1 hour. This was a reasonable frequency as increasing it further
would render using it in a practical scenario more difficult. Conversely, lowering the
frequency would reduce the amount of data significantly to the point where it would
not be sufficient for neural network training. Figure 11 shows the class distributions

for the data used in our learning approach.
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Figure 11: Class Distributions After Data Splitting. Figure generated using Mat-
plotlib [40]

RNN models take as input a sequence. Therefore we need to define a specific
sequence length. We set this to 12 hours. As input to our network we not only

considered the price but also technical indicators :

1. Short Moving Average (Window size of Sequence Length).
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2. Long Moving Average (Window size of Sequence Lengthx2).

3. Relative Strength Index (Window size of Sequence Length) .

4. Upper and Lower Bollinger Bands (Window size of Sequence Length).

In chapter 5 we compare the performance of the network with and without these

technical indicators as input.

It is standard practice to scale to the range (-1,1) the input data to ANNs and
other MLL models. This is called as standardization. According to LeCun et al it
leads to faster convergence [41]. We standardized the data by subtracting the mean

and dividing by the standard deviation as follows :

7 = (24)

As shown in table 2, the prices vary heavily from the earlier days of Bitcoin to
its current prices. Therefore, instead of scaling down the training set using the
global mean and standard deviation, we only considered mean and standard deviation
within a certain window size. This window size for standardization was set to the
same value as the sequence length. After preprocessing, the dataset was split into
a training,validation and test set. The data was split 80:20 between train and test.
Then the training set was then further split into a training and a validation set with
a 80:20 ratio.
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Figure 12: Data Preprocessing Steps in a Flow Diagram.
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Network Architecture

We used the Keras [42] API to train and deploy the model with Tensorflow [43] as
a backend. Neural Networks although extremely powerful, require a large number
of hyperparameters to tune. Therefore, devising a network architecture is by no
means a trivial task. Moreover, there are no clearly defined rules for computing these
hyperparameters. Instead there are a group of heuristics largely dependent on trial
and error. There’s still a great room for optimisation and tuning to be done to our
model. ANNs have shown excellent results in particular when coupled with deep
learning. A network is said to be deep when there is a large number of hidden layers
between the input and output network. Deeper architectures are where ANNs excel
as it allows them to learn more complicated features and dependencies in the input.
We opted for a stacked LSTM architecture as demonstrated in figure 13. "Stacking"
LSTMs vertically is in a sense equivalent to adding more hidden layers to a traditional

ANN.

input: | (8, 11, 2)
output: | (8, 11, 2)

Istm_1_input: InputLayer

input: (8,11, 2)
Istm_1: LSTM

output: | (8, 11, 16)

input: | (8, 11, 16)
Istm_2: LSTM

output: | (8, 11, 16)

y

input: 8,11, 16
Istm_3: LSTM P ( )

output: (8, 16)

y

input: | (8, 16)

dense_1: Dense
output: | (8,2)

Figure 13: RNN Input and Output shapes

30 Epochs of training were used to train the network. With a tolerance of 20.
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This means that the training is halted if there’s no improvement in the Loss of
the validation set for 20 epochs. The validation set is used here to make sure that
our model doesn’t overfit to the training set. Cross Entropy (Refer to equation 13)
was used as a loss function, as is common in classification problems. The Adam
algorithm [44| for updating weights was used instead of SGD as it performed better.
A batch size of 8 was used for training. The neuron size of the LSTM cell was set
to 16. These choices are based simply on trial and error. Increasing the neuron
size or stacking more LSTM cells did not provide an increase in accuracy. However
deeper architectures with more neurons tended to overfit to the training data after
some epochs. The model learned the specific patterns special to the training set but
performed poorly on the validation set. The addition of dropout [45] layers although

reduced the overfitting it did not show any improvement on the validation accuracy.

4.3.3 Evaluation Metrics

This section describes the evaluation metrics we used to evaluate the predictive power

of our Learning Model.

Accuracy
Ground Truth
Positive Negative
Prediction Positive TruePositive | FalsePositive
Negative | FalseNegative | TrueNegative

Table 7: Confusion Matrix Layout

A confusion Matrix, as shown in table 7, will be useful for us as we describe
the evaluation metrics we used. The first and simplest metric we used is Accuracy.
Intuitively, accuracy is the rate of correct predictions over the total number of

predictions. Using our confusion matrix we define it as :

TP+ TN
TP+TN+FP+FN'

Accuracy = (25)

44



One problem with Accuracy as measure of the predictive power of a model is that, it
is not fair in the case of an imbalanced class distribution. If, for example, the test set
has a much larger amount of one class relative to the other, and a model is biased to
produce a class over the other, accuracy can be deceptively high. Thus, accuracy in

this case is not indicative of the predictive power of the model on two or more classes.

Precision, Recall and F1 Score

Unlike accuracy, which does not change depending on which class is considered as

positive or negative, recall and Precision differ for each class. Recall is defined as :

TP
Recall = —————. 26
T TPIFN (26)
Precision is defined as : Tp
Precision = TP+ FP (27)

F1 Score is a weighted mean of Precision and Recall:

Precision x Recall
Fl1=2 . 28
% Precision + Recall (28)

Balanced Accuracy

Balanced Accuracy takes into account class imbalance by taking the average of the
recall for each class. Balanced accuracy for our binary classification problem is

formulated as :
Recally + Recally

2

(29)

BalancedAccuracy =

Where Recally is the recall for class 0.
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Binomial Test of Significance

Hypothesis tests are statistical tests used to examine two opposite statements and
determine which one is better supported by the data available. The statement which
we assume to be true unless inferred otherwise, is called the Null Hypothesis. The

opposing statement is called the alternative hypothesis.

In order to assess the likelihood that the null hypothesis is true, we repetitively
draw samples and see how often the property that’s being evaluated occurs. By
drawing a large enough number of samples, it is possible to generate a probability
distribution that tells us how likely a certain property occurs. Naturally the higher
the number of samples drawn, the more realistic a distribution is. The number of
samples drawn, is also commonly referred to as number of trials, we will refer to it as

N.

Using this distribution we can obtain the likelihood of obtaining effects at least as
extreme or more, given the input data. This likelihood is often referred to as p-value.
If this p-value is equal to or lower than a pre-specified significance level, then the Null
hypothesis can be rejected. This significance level is often set to 5% or 1% in practice.
The p-value represents the likelihood of an effect occurring if the null hypothesis is

true. It does not represent the probability that the null hypothesis is true.

In order to see if the LSTM classifier predictions are statistically significant, we
perform a hypothesis test. We define the null hypothesis as : the classifier is no better
than a random classifier generating signals. In our binary classification problem, a
random classifier has a 50% chance of producing a correct classification. Thus we
define a binomial distribution with number of trials N set to the total number of
our examples in our test set and the probability of success p as 0.5 (as is the case
with a random classifier). We then take the p-value associated with the number of
predictions hits of the LSTM model (ie TP+ T'N) from this Binomial distribution. If
the P-value is below a pre-specified confidence level, then we reject the null hypothesis
and conclude that our model is better than a random classifier. In this case, the
p-value tells us the likelihood that a random classifier would obtain the same number
of hits on the test set.
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5 Results and Conclusion

In this chapter we demonstrate and discuss the results of the experiments and

evaluations applied to cryptocurrency financial data.

5.1 Grid Search Approach

The cross validation grid search approach filtered out a total of 8 candidate strategies.
2 were found for Bitcoin, 2 for Ether, 3 for Zcash and 1 for Litecoin. Table 8 defines
the order of parameters used. For example MA[1h,4h,2%,0.5h] indicates a cross-over
moving average with a short window of 1 hour, long window of 4 hours, 2% percentage
filter and a waiting period of half an hour. Table 13 demonstrates these strategies

per currency.

Strategy Parameter 1 Parameter 2 Parameter 3 Parameter 4

MA Short Window Size | Long Window Size % Filter Holding Period
EWMA || Short Window Size | Long Window Size % Filter Holding Period
BB Window Size Band Width % Filter Holding Period
RSI Window Size Width Offset % Filter Holding Period

Table 8: Parameters Associated with Each Trading Strategy.

The grid search resulted in no promising strategies for Dash and strategies with a
very high ROI for Zcash. One explanation for this discrepancy could be that, they
are some of the two least traded currencies on Kraken. This is significant because
the raw transaction data that we used for our experiments was crawled from Kraken.

Therefore it is highly possible that the data may not be an accurate reflection of the
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Strategy Parameters Average ROI | Out-of-sample ROI
MA (Trend Following) | [24h, 120h, 5%, 4.5h] 7.8% 51.34%
BB(Trend Following) [2h, 0.5, 5%, Oh] 7.1% 8.81%

Table 9: Bitcoin Candidate Strategies

Strategy Parameters Average ROI | Out-of-sample ROI
MA (Trend Following) | [12h, 72h, 1%, 1.5h] 16.3% 30.36%
MA (Trend Following) | [12h, 72h, 1%, 1h] 16.5% 29.69%

Table 10: Ether Candidate Strategies

Strategy

Parameters

Average ROI

Out-of-sample ROI

BB(Trend Following)

[120L, 1, 1%, 3h]

14.7%

78%

Table 11: Litecoin Candidate Strategies

Strategy Parameters Average ROI | Out-of-sample ROI
BB(Trend Reversing) | [672h, 1, 0.05%, 24h] 29.3% 27.2%
BB(Trend Reversing) | [336h, 2, 1%, 12h] 35.9% 6.58%
BB(Trend Reversing) | [336h, 1, 5%, 12h] 24.1% 16.68%

Table 12: ZCash Candidate Strategies

Table 13: Strategies filtered out by cross-validated gridsearch

actual trading price of an asset. The results produced for the other cryptocurrencies
are more dependable. They are the most popular assets on Kraken. The statistics
detailing the trading volumes of these currencies on Kraken was obtained from

coinmarketcap.com [34].

Another interesting remark is that the promising strategies for Bitcoin, Ether and
Litecoin, are all trend following. This indicates that it is perhaps more lucrative for
traders to adapt trend following positions rather than trend reversing ones. Although,
we included the RSI strategy and the exponentially weighted MA in our evaluation,
no strategy passed our defined criteria. This is an indication that the simple MA and

BB have a better predictive power than the other strategies.
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To further evaluate the predictive power of these candidate trading strategies, they
were evaluated on an out-of-sample subperiod. It was interesting for us to see how
these strategies will perform on completely new data. This out-of sample-period
directly followed the subperiods used for the grid search evaluation method. It
started from the 1st of March and ended on the 31st of May 2019. Similar to the
cross-validation folds, it is 3 months in total. The results of this test are demonstrated
in table 13.

Initially, it seems that all the strategies perform exceptionally well on the out-of-
sample data. However, upon a closer examination of figures 14, 15 and 16, it appears
all the cryptocurrencies we considered, experience a sudden sharp increase in price.
Although, this is not an uncommon occurrence in the cryptocurrency market, it does
mean however, that the candidate strategies will under perform in comparison to a

buy and hold strategy in this period.
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Figure 14: Performance of optimized strategies on out-of-sample Bitcoin data

50



Evaluation1

—— Short MAVG
—— Long MAVG

@ BuySignals

@ sell signals
—— Price
—— Total Asset Value

Price

Mar 3 Mar 17 Mar 31 Apr 14 Apr 28 May 12 May 26

Date

(a) Ether: MA(Trend Following)[12h, 72h, 1%, 1.5h]

Evaluation1

Price

Mar 17 Mar 31 Apr 14 Apr 28 May 12 May 26

Date

(b) Litecoin: BB(Trend Following)[120h, 1, 1%, 3h]

Figure 15: Performance of optimized strategies on out-of-sample Ether and Litecoin
data
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5.1.1 Live Trading Bot

One of the goals we set initially was to develop a trading bot that’s able to trade
cryptocurrencies based on a pre-defined strategy. In order to ensure that our bot
traded as expected, we launched it at the beginning of the out-of-sample subperiod.
The trading bot was configured to trade with the strategy MA(Trend Following)[24h,
120h, 5%, 4.5h]. The reason we chose this particular strategy over others, although
others were more profitable as seen in table 13, was because it was the most profitable
Bitcoin strategy. Bitcoin has the advantage of being the most actively traded
cryptocurrency on Kraken. Thus picking the strategy that performed well on Bitcoin,
was a safer choice as it meant a higher chance of the bot orders getting executed

quickly.

Evaluation1

—— short MAVG
— Long MAVG
@ Buy Signals
@ sell sionals

8000

7000

6000

Price

5000

4000

3000 Mar 3 Mar 17 Mar 31 Apr 14 Apr 28 May 12 May 26

2019
Date

(a) Bitcoin

Figure 17: Performance of Trading Bot during Live Simulation
MA (Trend Following)[24h, 120h, 5%, 4.5h]

We launched the bot for around 3 months (the same size of the cross validation
folds used to find the optimal strategy). Figure 17 visualizes this trading run. The
data used to plot the graph was obtained from the logs produced by the bot during
the simulation. This log file was then passed as input to our simulation environment.

Three trades were executed by the bot during this run. By comparing the execution
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Type | Trading Bot (Live) Offline Simulation

Buy | Apr 2718 :20CEST | Apr 2"18:20CEST
Sell | May 1804 : 30CEST | May 1804 : 30CEST
Buy | May 27*15 : 55CEST | May 2715 : 55CEST

Table 14: Execution Time of Trade Orders

time of all the trade orders executed by the bot to that of the trade orders produced by
our simulation environment (which was ran after the bot finished trading), we found
that all orders were initiated at the same time. This indicates that our simulation
environment is a very good approximation of real-life automated trading. Another
note-worthy observation is that, the market orders initiated by the bot were executed
almost immediately. This enabled the bot to leverage the fast changing market
conditions to induce a profit. The ROI for the live trading run was 47.7% (adjusted

for transaction fees), the amount initially invested was 50 euros.

Please note that the slight difference between the offline simulation result and the
live trading run, demonstrated in figures 14 and 17 and the different ROI, is due to
the fact that our offline simulation was based on local data crawled from Kraken API
in USD. Whereas our trading bot traded in Euros. Another difference is that our
local datasets were processed differently, this is described in more detail in section
4.2. The bot updates its internal trade price history by taking the average of the
Ask and Bid price. As this is how the price is set by the Kraken trading engine for a

market order.

5.2 Learning Based Approach

5.2.1 Model Performance

In order to evaluate the predictive power of the LSTM model, we used multiple
evaluation metrics described in section 4.3.3. We trained 2 models for each currency.
The first model was trained with only the price information as input, whereas in the
second model we fed in TA indicators such as MAs, RSI and Bollinger Bands as well.

The reasoning behind this, is to see if including these indicators would improve the
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Test Set Accuracy Balanced Accuracy Avg. Precision Avg. F1

Bitcoin 54.9% 54.9% 54.9% 54.8%
Ether 55.4% 55.2% 55.3% 55.1%
Litecoin 53.6% 53.6% 53.6% 53.6%
Dash 53.7% 50.8% 51.9% 43.7%
Zcash 54.2% 50.4% 50.8% 46.0%

Table 15: Performance of LSTM model trained with only historical prices

Test Set Accuracy Balanced Accuracy Avg. Precision Avg. F1

Bitcoin 54.3% 54.3% 54.3% 54.3%
Ether 53.6% 53.4% 53.5% 53.2%
Litecoin 53.4% 53.0% 53.4% 52.1%
Dash 51.6% 50.8% 50.9% 50.6%
Zcash 53.8% 50.7% 51.0% 48.0%

Table 16: Performance of LSTM model trained with historical prices + technical
indicators

prediction accuracy of the model. Table 15 demonstrates the performance of the
model trained only with price information. The precision and F1 score shown in table
15 is the average of the precision and F1 for each class (each class being considered
the positive class). Balanced Accuracy is just the average recall. It is clear that the
LSTM model does have limited predictive power, particularly for Bitcoin, Ether and
Litecoin. The values for Accuracy and Balanced accuracy are very close. This is
because the test set for these currencies are evenly distributed as shown in figure 11.
The predictive power drops significantly for Dash and Zcash. This could be related

to the low trading volumes of these two currencies on Kraken.

Comparing Tables 15 and 16, it is clear there’s no significant improvement when
adding TA indicators. In fact the balanced accuracy is lower or the same when
including technical indicators as input to the network. This is by no means conclusive
evidence that Technical Analysis tools have no predictive power. There could be
multiple reasons for this lack of improvement. Firstly, it could be that network
architecture needs to be changed to be able to learn better using multiple sequences
(price + TA indicators). As previously mentioned, tuning ANNS is very hard as there’s
a large number of hyperparameters to be optimized. The second reason involves the

hyperparameter selection for our Technical Analysis trading strategies. These include
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window size, band width, holding period etc. The window size for these strategies
was set 12. The holding period and percentage filter was set to 0. This setting limited
the predictive power and flexibility of TA trading strategies.

Although it would be interesting to include some of the optimized trading strategies
from section 5.1 as input to the network and assess the performance afterwards,
there are some obstacles. Firstly the grid search to find these optimal strategy was
performed on high-frequency 5 minute time interval data whereas the LSTM model

was trained on 60 minute interval data.

Another aspect to consider is the signal generating frequency of the two approaches.
In the grid search approach, trading fees were included in the search therefore
strategies which produce many signals were penalized and had a lower adjusted return
on investment. Thus, the optimized strategies tended to have stricter conditions

which did not produce a large amount of signals.

The training setting for the LSTM model is, however, different. The task was to
predict the market directionality, whether the prices are going up or down. Thus it is
possible (although not likely), that the model would generate a signal for each time
step ie., if the model prediction constantly alternates between 1 (up) and 0 (down).
Therefore, it is not clear if these optimized strategies would improve the predictive
power of the LSTM model.

We performed a binomial test of significance to ensure that the limited predictive
power of the LSTM model is statistically significant according to a certain confidence
level. The number of trials was set to the total size of the test set. Table 17
demonstrates these values. All the results are significant at the 5% significance level.

At the 1%, all but one model performs significantly better than random.
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Models trained with only historical price data P-value

Bitcoin 2.9¢-19%
Ether 1.4e-16%
Litecoin 2.0e-9%
Dash 6.4e-04%
Zcash 1.4e-06%

Models trained with prices 4+ technical indicators P-value

Bitcoin 6.7¢-15%
Ether 2.0e-07%
Litecoin 9.8e-09%
Dash 4%

Zcash 2.0e-05%

Table 17: P-values resulting from binomial test applied to LSTM predictions

5.2.2 Trading Simulations

To further evaluate the predictive power of the LSTM model, we conducted trading
simulations based on the signals generated by the model. The simulations were
performed on the test set. The simulation rules are as follows, the starting capital
is the price of the currency at the first time step of the evaluation. If the model
predicts that the market price will go up, then a buy signal is generated and the
starting capital will be used to buy the currency. If a sell signal is generated all
currency is sold for the current price. We compared the LSTM model against multiple
baseline strategies, the first is simply a Buy and Hold strategy, at the beginning of
the simulation one unit of currency is purchased. The second is the 'Replicate Last’
strategy, in this strategy, if the market price went up in the last time step then a buy
signal is generated and vice versa, it is a simple trend following strategy. The third
baseline is a MA strategy, where the parameters were optimised using the grid search
cross validation approach described in the section 4.3.1. The cross validation period
was the year previous to the beginning of the test set. 4 cross validation folds were
used, where each fold is around 3 months of data. Multiple successful strategies were

found for Bitcoin, Ether and Litecoin. However, none were found for Dash and Zcash.
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The results of these simulations are shown in figures 18 and 19. These figures
demonstrate the development of the equity line for the duration of the test set.
The equity line represents the total value of assets (cash and cryptocurrency value).
The trades performed during this period affect the equity line. It is important
to mention that the equity line does not reflect the trading fees imposed by such
trades. The LSTM model was trained with the purpose of generating a prediction
for each time step, this leads to a larger number of signals compared to the grid
search approach which takes into account transaction fees. Naturally, this makes
the grid search approach biased towards trading strategies with stricter conditions.
Some cryptocurrency exchanges allow for trading without transaction fees when
trading with large sums of currencies. Table 18 shows the number of trades for each

simulation.
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Figure 18: Equity line of a trading simulation on Bitcoin, Ether and Litecoin test
sets.



Examining figure 18 more closely, a theme present in all currencies, is the LSTM
model and MA strategy outperforming the two remaining baselines. The Replicate
Last strategy performs very poorly for Bitcoin and Litecoin. The equity for the
Replicate Last strategy is negative at some points, the simulation environment allows

for borrowing money that is not available, hence the negative equity.

—LST™M
— Buy And Hold
Replicate Last Time Step

(a) Dash

—LST™
— Buy And Hold
Replicate Last Time Step

Mar2019 arzots wayzo

(b) Zcash

Figure 19: Equity line of a trading simulation on Dash and ZCash test sets.

Figure 19 shows the equity lines for the remaining two currencies we performed

evaluations on, Dash and Zcash. The equity line for the LSTM model remains fairly
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constant for Dash throughout the length of the simulation. It appears that the
signals generated from the LSTM model aren’t able to capitalize on the market price
increases. The same can be seen for Zcash. Although the line is not as constant, it

under performs compared to the baselines.

Table 15 shows that Zcash and Dash have significantly lower balanced accuracies
than Bitcoin, Ether and Litecoin. This could be the reason that the equity line
generated by LSTM model signals performed much better on the first Bitcoin, Dash

and Litecoin in comparison to Dash and Zcash.

Currency LSTM Moving Average Buy and Hold Replicate Last

Bitcoin 3778 70 1 5157
Ether 2766 66 1 3559
Litecoin 2502 55 1 4740
Dash 528 - 1 1905
Zcash 860 - 1 2313

Table 18: Number of signals generated for each simulation

To further confirm that the results of the simulation are significant and not born
by chance, 9 other LSTM models were trained on bitcoin data and the signals they
produced were passed to the simulation environment. The results of this simulation

are presented in figure 20.
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Figure 20: Equity line of a trading simulation on Bitcoin with multiple LSTM
models.

The balanced accuracies the for 9 trained models on the test set had a standard
deviation of 0.4%.

5.3 Concluding Remarks and Future Work

Financial markets price predictions is not a trivial task. There have been numerous
attempts to do so but with very limited success. This difficulty arises from the difficulty
of encapsulating all market dynamics and capturing the interactions between them
within one model. We employed two different techniques to perform this task on
a relatively new market, the cryptocurrency market. The first, based on Technical
Analysis tools, yielded good results on an out-of-sample test set. Yet it under
performed compared to a Buy and Hold strategy as the market was doing well during
this period. However, we were able to gauge the performance of our trading bot
which was launched at the beginning of this period. We were able to conclude from
the bot performance that our offline simulation environment is a good approximation

to real world trading.
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The second approach which we employed, based on Machine Learning, has shown
limited predictive power of around 5% balanced accuracy improvement compared
to a random classifier for 3 out of 5 currencies, namely Bitcoin, Ether and Litecoin.
By running trade simulations on the test set, which was about a year in length. We
observed that the LSTM model performed very well on the 3 currencies with limited
predictive power. As for the other currencies, namely Dash and Zcash, the LSTM

model under performs compared to the baselines.

We compared the LSTM model to multiple baselines, one of which was the grid
search cross validation approach based on Technical Analysis. The grid search
approach performed well (relative to the other baselines) on the test set. The test set
was much longer than the previous out-of-sample period. Thus the good performance
of the approach cannot be attributed to the a period where the market was performing

particularly well.

We summarize the main contributions of this thesis as follows:

1. An application with a GUI that enables the user to perform realistic trade

simulations offline and update local historical price data.

2. A trading bot that can be configured via the GUI, to trade automatically for
the user in the background. Using this we were able to validate our simulation

environment by comparing its performance to that of the trading bot.

3. A cross-validated grid search approach which has performed well on out-of-

sample data for multiple cryptocurrencies.

4. An extensive analysis of the predictability of multiple cryptocurrencies using a

learning-based approach.

At the end of this thesis, we find that there are some remaining routes which can

be explored. These are:

1. Investigating the effect of financial news on cryptocurrency prices. If some
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degree of correlation is present, then it would be interesting to see if including
this as input to our RNN model would offer any improvement in the directional
accuracy. There has been already some work in this direction for traditional
stock markets. Shumaker and Chen investigate the effect of using 3 different
textual analysis techniques in combination with historical market prices to
predict the price 20 minutes after an article is released [46]. They achieved

57.1% directional accuracy using this approach.

. Experiment further with different RNN architectures and to further tune the

parameters of the model. There are many variations of LSTM cells, an example
would be Gated Recurrent Units as proposed by Cho et al. [47]. It would be
interesting to see if there is a significant improvement in accuracy with these

modifications.

. Enabling the trading bot to be able to connect to multiple cryptocurrency

exchanges as opposed to just Kraken. This would allow for more freedom when

it comes to the choice of exchange.

. Enhance the bot by implementing live trading based on the signals generated

by the LSTM model. So far the trading bot supports only trading strategies
based on Technical Analysis. It would be interesting to see how the bot will
perform in this setting on a live environment, particularly because the LSTM

model tends to produce a higher number of signals than the TA approach.
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