
Master Thesis

A User Interface for Semantic
Full Text Search

Florian Bäurle

July 2011

University of Freiburg

Faculty of Engineering

First Reviewer: Prof. Dr. Hannah Bast
Second Reviewer: Prof. Dr. Andreas Podelski

Supervisors: Prof. Dr. Hannah Bast,
Björn Buchhold

Declaration

I hereby declare that I am the sole author and composer of this thesis and that no other
sources or learning aids, other than those listed, have been used. Furthermore, I declare
that I have acknowledged the work of others by providing detailed references of said work.
I hereby also declare that this thesis has not been prepared for another examination or
assignment, either wholly or excerpts thereof.

Place, Date Florian Bäurle

i

Abstract

We present a powerful and comfortable interactive web user interface for semantic full-text
search. It combines and extends established components of other search user interfaces -
namely keyword search, facets, proposals and breadcrumbs - in a new way. The result is a
reasonably easy to use semantic search application that assists its users in an incremental
creation of semantic queries, without requiring them to have knowledge about any special
query language or the underlying ontology.
The user interface provides only a single input field as it is also common for current
keyword search applications like Google. When something is typed, it automatically
shows different proposals for words, relations, entities, or semantic classes that are used
to build the search query. When any of the proposals is selected, it is added to the
query which is displayed as a tree in an advanced breadcrumbs panel. With the help
of the breadcrumbs panel, the query can easily be extended or changed by adding new
proposals or replacing or deleting already existing parts. The provided proposals are
context sensitive with respect to the current query to support users in the incremental
creation of meaningful queries. The hits for the current query are always automatically
displayed together with evidence why they suit to the query.
In this work we address the design decisions that were made during the implementation
of the interface application and explain its basic architecture. We also show what queries
are supported by the user interface and how it is used to create them.

ii

Zusammenfassung

Wir präsentieren eine leistungsfähige und komfortable interaktive Web-Benutzeroberfläche
für semantische Volltextsuche. Sie kombiniert und erweitert etablierte Bestandteile von
anderen Such-Benutzeroberflächen - und zwar Schlüsselwort-Suche, Facetten, Vorschläge
und Brotkrumen - auf eine neue Art und Weise. Das Ergebnis ist eine relativ einfach zu
verwendende semantische Such-Applikation, die ihre Benutzer bei der schrittweisen Erstel-
lung von semantischen Suchanfragen unterstützt, ohne dass eine spezielle Abfragesprache
oder die zugrundeliegende Ontologie bekannt sein muss.
Die Benutzeroberfläche verfügt nur über ein einziges Eingabefeld, wie es für gewöhnli-
che aktuelle Suchanwendungen wie Google ebenfalls üblich ist. Wenn etwas eingetippt
wird zeigt sie automatisch verschiedene Vorschläge für Wörter, Relationen, Entitäten
oder semantische Klassen an, welche verwendet werden, um die Suchanfrage zu erstel-
len. Wenn einer der Vorschläge ausgewählt wird, dann wird er zur Suchanfrage, die als
Baum in einem erweiterten Brotkrumen-Panel dargestellt wird, hinzugefügt. Anhand des
Brotkrumen-Panels kann die Suchanfrage leicht ergänzt oder abgeändert werden, indem
neue Vorschläge hinzugefügt oder bereits vorhandene Teile ersetzt oder entfernt werden.
Die angebotenen Vorschläge sind kontextabhängig von der aktuellen Suchanfrage, um
Benutzer bei der schrittweisen Erstellung von sinnvollen Suchanfragen zu unterstützen.
Die Treffer für die aktuelle Suchanfrage werden immer automatisch zusammen mit einem
Nachweis, weshalb sie zur Suchanfrage passen, angezeigt.
In dieser Arbeit gehen wir auf die Designentscheidungen ein, die im Laufe der Implemen-
tierung der Anwendung getroffen wurden, und erklären ihre grundlegende Architektur.
Wir zeigen auch welche Suchanfragen von der Benutzeroberfläche unterstützt werden und
wie sie benutzt wird, um diese zu erstellen.

iii

Acknowledgments

First of all I would like to thank my supervisor, Hannah Bast, who made this thesis
possible by providing the topic. Furthermore I want to thank her for the guidance and
support without which I would not have been able to complete this thesis. This also
includes the many hours of meetings we had together with Björn Buchhold to constantly
evaluate and improve the user interface application from the initial concept to its current
state. I also want to thank Björn for his constant support with the search back end and
the valuable tips he gave me. In addition, my thanks go to Andreas Podelski for taking
the role of the second reviewer.
I also want to thank Benjamin Bäurle, Tim Kraski and Gönke-Britt Hansen for investing
their time to help me a lot by reviewing this document. Another special thanks goes to
Daniel Dietsch for his advice on scientific writing and literature management.
At a personal level, I would like to thank my parents. Their steady support made every-
thing possible in the first place.

iv

Contents

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 2
1.3. Structure of the Thesis . 2

2. Related Work 3
2.1. ESTER & SUSI . 4
2.2. Faceted Wikipedia Search . 6

3. Search Content and Queries 8
3.1. Search Content . 8
3.2. Query Language . 8
3.3. Query Results . 11

4. The User Interface 14
4.1. Overview . 14
4.2. Main Features . 16

4.2.1. Interactive and Proactive . 16
4.2.2. The Proposal Boxes . 16
4.2.3. The Query Panel . 18
4.2.4. The Hits Area . 20

4.3. Advanced Features . 21
4.3.1. Bookmark and Browser History Support 22
4.3.2. Customizable Layout . 22

4.4. Usage Examples . 23
4.4.1. Building Queries . 23
4.4.2. Refining Queries . 26

5. Realization 28
5.1. Google Web Toolkit (GWT) . 28
5.2. Architecture . 30

5.2.1. Front End . 31
5.2.2. Middle End . 31
5.2.3. Back End . 33

5.3. Implementation Details . 33
5.3.1. Code Organization . 33
5.3.2. Application Workflow . 33
5.3.3. Difficulties . 34

5.4. Query Syntax . 35

6. Discussion 38
6.1. Conclusion . 38
6.2. Future Work . 38

6.2.1. Missing Features . 39

v

Contents

6.2.2. Additional Features . 39
6.2.3. User Evaluation . 40

A. Appendix: More Example Queries 41

List of Figures 43

Bibliography 45

vi

1. Introduction

1. Introduction

1.1. Motivation

Search engines like Google, Yahoo or Bing are very popular because they are easy
to use and achieve good results for everyday common search tasks. Basically they take
queries with a number of keywords and then return results that contain all or some of
these keywords. But this is also a limitation of these search engines because they can
only find documents that contain the keywords literally, or maybe also synonyms of these
keywords. They do not have the ability to understand the semantics of a query. When,
for example, searching for the keyword “scientist”, they can only find documents that
contain this word. They cannot find documents that only contain the name of a scientist,
like, for example, Albert Einstein, even if this was intended.
Let us consider a more intricate query like “Movies directed by Steven Spielberg that
are about one of the world wars”. The intention of the query could be to just find the
names of such movies or to find documents about such movies, like, for example, reviews.
Therefore a search engine must be able to understand the semantics of the query. For the
example query this means that we want to find instances of the class of movies instead of
the literal word movie. Furthermore the words “directed by” mean a relation that narrows
down the movies to those that were directed by the entity Steven Spielberg, which is an
instance of the class of directors. And at last, the movies have to be somehow related to
one of the world wars.
Apart from the previously described search engines, there also exist search engines that
can process semantic information in queries. One kind of semantic search engines is
solely focused on querying ontologies [Corby 06, Neumann 08, Broekstra 03]. Such search
engines have been tested to be quite powerful and efficient, even for large data sets, but
they are limited to the retrieval of facts from their underlying ontologies. This implies
for our example query that these search engines would only be able to provide facts like
the name, the release date, or the running time of such movies, depending on the content
of their ontologies. There are also other kinds of semantic search engines that bypass
this limitation by combining ontology and full text search in different ways [Bast 07,
Buchhold 10, Hahn 10, Waitelonis 11]. Thus they make it possible to search in document
collections using semantic queries. This allows them to provide much more types of results
than only facts, even for semantic queries. For instance reviews or trailers of movies
matching the sample query, depending on the search content of the search engines.
One challenge in the development of semantic search engines is the query creation. The
queries for these engines must be expressed in a format that enables them to under-
stand their semantic meaning, so that they are able to answer them. The probably
most intuitive and convenient way for humans to formulate queries is to express them
in natural language sentences. Unfortunately, due to the complexity and ambiguities of
natural languages, natural language processing is a very complicated and difficult task
[Di Martino 10, Gao 11]. For this reason, special query languages like Sparql1 were de-
veloped to define semantic queries for the search in ontologies. These query languages

1Sparql is a query language for the Resource Description Framework (Rdf) by the W3C. [W3C 11c]

1 / 48

1. Introduction

perform great in describing complex queries. However, you do not only need to know the
syntax of the language, but you also need to be familiar with the underlying ontologies to
be able to formulate correct queries. This is a barrier for end users which is not acceptable
if a semantic search engine is intended to be available to the masses. Hence there is a need
for comfortable user interfaces that hide these details without limiting the capabilities of
the search engines by only providing a limited set of features. In this thesis, we present a
new semantic search user interface that we developed to meet these requirements.

1.2. Contributions

This thesis only covers our new user interface for semantic search. In order to implement
and test it, we use a prototype of the semantic search engine that we are currently devel-
oping under the working title Broccoli as the back end. The prototype is basically an
extended version of Susi (see section 2.1) that has some new functionality. The back end
is necessary to get the proposals, which are used to create the queries with the user inter-
face, as well as to get the displayed results. In the future, the back end will be replaced
by a newly implemented search engine to improve the results and the query times.

1.3. Structure of the Thesis

The rest of the document is organized as follows:
• Chapter 2 shows related work and briefly points out some differences to our ap-

proach.
• In chapter 3 we explain the content in which we search and what queries are sup-

ported by the user interface.
• Chapter 4 presents the user interface. It describes its layout, what features it offers

and explains how it is used.
• Chapter 5 deals with the realization of the user interface. This includes the reasons

for choosing Google Web Toolkit as a framework, the overall architecture, and some
further implementation details.
• In chapter 6 we discuss our conclusions and possible future work.

Rdf is a standard model for data interchange on the Web by the W3C. It extends the linking structure
of the Web to use URIs to name the relationship between things as well as the two ends of the link
(this is usually referred to as a “triple”). [W3C 11b]

2 / 48

2. Related Work

2. Related Work

There already exist some other approaches for semantic search user interfaces that do
not rely on natural language processing. An add-on for DSpace2 [Koutsomitropoulos 11]
offers, for example, a user interface that assists users in the construction and submission
of queries to the DSpace ontology. The interface automatically disallows combinations
that make no sense and offers auto-completion choices for supplied input to build up
query expressions in Manchester Syntax3. The interface exposes information about the
ontology through the auto completion feature and checks for a valid syntax, but since
it just assists in building up a formal query string, at least a basic understanding of its
syntax is still required to use the application.
Other applications like SemSearch [Lei 06] or Spark [Zhou 07] take another approach
to provide semantic search user interfaces that hide the complexity of semantic search,
such as the structure of the ontology or special formal query languages, to be suitable
for ordinary end users. Their interfaces only have a single input field which they use
to automatically translate keyword queries into formal semantic query languages. This
makes them similarly easy to use as search interfaces like Google. The drawback of
this approach is that the quality of the results depends more on the query interpretation
efficiency than the ability of the users to formulate exact queries. To improve this issue,
Spark presents the users a list of possible query interpretations from which they must
choose what they meant, but the quality of this list and its ranking still remain out of
the control of the users.
Then there exist facet browsing approaches like /facet [Hildebrand 06] or Faceted
Wikipedia Search [Hahn 10]. They provide an intelligent facet navigation that adapts
to the previously selected facets, so that only relevant ones are displayed. Selecting a facet
from the navigation adds it to the list of active ones that represent the query and reduces
the result set to all items that fulfill it. Therewith users can conveniently navigate through
data collections. However this approach does not allow for complex queries because it is
not possible to model dependencies between selected facets. Contentus [Waitelonis 11]
is a search user interface that combines keyword search and semantic facet browsing. It
starts with the search for a keyword and then provides semantic facets to further restrain
the found results. The main difference to the other mentioned facet based user interfaces
is that Contentus does not only use facts of its underlying ontology, but also performs
full-text search on articles and transcripts of audio and video files. Additionally they have
a user management for their interface that makes it possible to provide personalization
features. Currently this is limited to an optional collection of personal queries, but they
plan to expand this in the future. For instance, they want to add the possibility to connect
with friends to be able to share results with them.

2DSpace is a digital repository system that captures, stores, indexes, preserves and redistributes re-
search material in digital formats. It can be used for a variety of digital archiving needs ranging from
institutional repositories to learning object repositories or electronic records management, and more.
DSpace is freely available as open source software. [DSpace 11]

3The Manchester Syntax is a syntax which is designed for writing Owl class expressions [CO-ODE 11].
The Owl Web Ontology Language is an ontology language for the semantic web by the W3C
[W3C 11a].

3 / 48

2. Related Work

A further different approach is pursued by Ester [Bast 07]. Ester also uses an ontology
for the semantic information but utilizes it to provide semantic full-text search on the
English Wikipedia. The user interface for the search has a single keyword input field.
Semantic information is handled by automatically detecting semantic classes for entered
keywords and providing different proposal boxes that help to disambiguate classes and
offer specific entities of these classes to refine the query.
The following sections of this chapter describe those user interfaces that we found to be
most relevant with respect to our new implementation in more detail. We also address
differences to the approach of this thesis.

2.1. ESTER & SUSI

The user interfaces of Ester [Bast 07] and Susi [Buchhold 10] are probably the most
similar related work to this thesis, as they were designed for the same type of semantic full-
text search. Strictly speaking, the new user interface that we present was even designed
for the further development of their search engines.
Ester is a search engine that combines full-text and ontology search using only two
basic operations: prefix search and joins. This allows for very fast query processing and
a fully interactive and proactive user interface, which is very similar to the interface of
Susi that is shown in figure 1 and explained in more detail at the end of this section.
As a proof of concept, Ester was applied to the English Wikipedia combined with the
Yago4 ontology. Its user interface is proactive in the way that it automatically reacts on
user input using JavaScript, without needing the user to press a search button. Ester
uses this to automatically detect semantic classes when they are typed into its input field.
Therefore it checks after every keystroke if the last prefix of the query string matches
a class name, and if more than one class matches, it displays a small box on the left-
hand side with proposals for all matching classes. These proposals can then be clicked to
replace the prefix in the query string with the class name. Below this box there is a second
proposal box that displays instances of the last class in the query string which can be
clicked to restrain the query to a single entity instead of the complete class. On the right-
hand side Ester displays the results to the current query. Those are also automatically
updated when the query string is changed to always show the results to the current query.
Ester has no special breadcrumbs panel or anything similar that provides the user with
a visual aid how the query string is actually exactly handled. Entered keywords can be
interpreted as semantic classes or simple word occurrences without a visible difference in
the user interface. Furthermore, the mentioned proposal boxes for available classes or
entities only display results for the last keyword that was appended to the query string.
This makes query refinements quite cumbersome and unintuitive because the order of the
keywords in the query string has to be changed if users want proposals for other parts of
the query. These are usability issues that are addressed by the new user interface which
is presented in this thesis.
Susi [Buchhold 10] can basically be considered as a successor of Ester. It aims for the
same results, combining full-text and ontology search, and using the same combination

4Yago is a huge semantic knowledge base, derived from Wikipedia and WordNet. [MPII 11]

4 / 48

2. Related Work

A

B

C

D

Figure 1: Example screenshot for the user interface of Susi. TheAmarks the input field.
Classes are automatically detected for the last input word. Since the proposal boxes
below the input field always display proposals for the last prefix in the query string,
the entity proposal box, which is marked by B, shows instances for the automatically
detected movie class. The C marks the query string that the user interface generates
to get the results. As can be seen, the movie class is represented by a very long obscure
word. Classes and Entities can also be defined manually in the query string by using
such special words. The hits are displayed together with evidence on the right-hand
side as marked by D.

of the English Wikipedia and Yago. We do not want to go into detail about all the
differences between Susi and Ester as these are not relevant here. The main difference
is that Susi further reduced the needed operations to prefix search only, to be even faster
than Ester. This is achieved by limiting the relations to the taxonomy of the classes
and entities of the ontology. Another relevant difference is that Susi treats each sentence
of a Wikipedia article as a separate document instead of treating the whole article as a
single document. This is done to improve the precision. As already stated in section 1.2,
a modified version of Susi is currently used as a prototype for the back end of the new
user interface, so this document handling reflects in the results of later examples. For
testing, Susi provides a user interface that is very similar to that of Ester and has the
same drawbacks. Figure 1 shows a screenshot of the interface. Since it is not possible
to formulate the sample query from the introduction with it, the query in the screenshot
only tries to find movies about one of the world wars. Neither Ester nor Susi support the
precise creation of more complex queries that would require a combination of relations
and full-text. Even if they would support more complex queries, it would require a quite
obscure syntax to express them in the single input field. Building slightly more complex

5 / 48

2. Related Work

queries than the one in the screenshot is already very user unfriendly because of the
needed obscure words (e.g. the string for the word class marked by the C in figure 1) to
describe further classes or entities.

2.2. Faceted Wikipedia Search

Faceted Wikipedia Search [Hahn 10] is a sophisticated search user interface to query
the DBpedia5 ontology. It is actually one of the few state of the art user interfaces we
found. It has an appealing professional design and does not appear overloaded. For this
reason, the layout of our new user interface is loosely oriented on that design. But even
though their layout is basically similar, they fairly differ in their functionality. While our
user interface is designed for semantic full-text search, Faceted Wikipedia Search is
designed as a facet browser. Figure 2 shows a screenshot of the interface trying to find
results for the example query of the introduction, what is only conditionally working.
With the help of the available facets one can easily query movies that were directed by
Steven Spielberg, but there is no facet type that can be used to limit these movies to
those that are about one of the world wars. Using the keyword search function to only
get world war movies only yields very few results because the words “world war” do not
appear in many article abstracts.
Using the Faceted Wikipedia Search user interface, queries are constructed by se-
lecting facets from the boxes on the left-hand side of the interface. The types of available
facets intelligently adapt to the previously selected ones. Nevertheless, it can be cumber-
some to find the desired type because not all of the usually many available facet types are
displayed by default. To add more, a user has to click a separate button. To avoid this
we limit the number of proposal boxes in our application to just four, which are always
displayed. Additionally, each facet type has its own input field to search for a certain
facet of that type. Our approach gets along with only a single input field that is used
to filter all of our proposal boxes. Their application also provides an input field for text
search, but it is only used for a simple keyword search in the abstracts of the Wikipedia
articles that are selected through the facets and not even in their full text. The Faceted
Wikipedia Search application does not show evidence for the returned results. It just
presents a list of Wikipedia articles that are directly chosen through the selected facets.
Our full-text search user interface shows evidence so that the users are able to comprehend
why the results were returned. Another difference is that our interface is more interactive
and gives more feedback to the user. When the query is changed, for example by adding
a new facet, their user interface does not respond until it is reloaded with the new re-
sults. This can be confusing because query changes for their search currently take several
seconds in which it is not signaled to the user that the application is working. Our user
interface displays loading animations to signal its state to the user whenever it is loading
new data asynchronously to not block the application. Another similarity is their bread-
crumbs display. The Faceted Wikipedia Search user interface has a panel that shows

5DBpedia is a community effort to extract structured information from Wikipedia and to make this
information available on the Web. It allows you to ask sophisticated queries against Wikipedia, and
to link other data sets on the Web to Wikipedia data. [DBpedia 11]

6 / 48

2. Related Work

A B

C

D

Figure 2: Example screenshot for the Faceted Wikipedia Search user interface. The
A marks the boxes with the available facet types. From these, concrete facets can either
be directly selected or manually entered through the input fields. Selecting a facet adds
it to the breadcrumbs panel which is marked by B. It displays the selected filters that
form the query. The input field that is marked by C can be used to add an additional
keyword search filter for the article abstracts. The D marks the displayed resulting
Wikipedia articles.

all selected facets and allows to delete them independently from each other. We also have
a breadcrumbs panel in our interface. The main difference is that our breadcrumbs are
not independent from each other, but they form a tree that depicts the meaning of the
created query. Accordingly, our breadcrumbs panel offers more sophisticated refinement
possibilities for the query than just removing single parts. The last thing to mention is
that their application displays an image of the Wikipedia articles in the results, if pos-
sible. Since our application currently also searches in Wikipedia articles, we also added
such image thumbnails to the results in our user interface, because they are a great help
in the evaluation of the results.

7 / 48

3. Search Content and Queries

3. Search Content and Queries

In the previous chapters we presented a motivation why further research in the area of
semantic search user interfaces is needed and we presented some related work that was
already done. Before we go into details about the functionality and implementation of
our new user interface, this chapter explains the search content and the query language
for which our application was designed. Hildebrand et al. [Hildebrand 07] have already
analyzed that these have a substantial impact on the design of the user interface for a
search engine.

3.1. Search Content

Every search engine is designed for searching in a special type of data. We call this type
of data the search content. Some engines are designed for searching in websites, others
search for facts in ontologies, find information about scientific papers, or are built to
search the contents of a library, just to name a few examples. The search content has
a crucial impact on the user interfaces for search engines because it dictates the kind
of information that needs to be displayed to the user. Furthermore, the possibilities to
navigate through the results or for query refinements also depend on it.
For a concrete example of the impact of the search content one can compare the user
interfaces of the Google web search6 and the earlier mentioned Contentus. The
structure of the Google user interface is quite simple. It only has one keyword input
field and a list of results that contains links to the found websites together with a small
text excerpt as evidence. In contrast to that, the Contentus user interface is far more
complex. It was designed for the search in archives of museums and libraries that contain
books, images, tapes and films. Accordingly, its user interface does not only have a single
input field, but also a multitude of selectable facets that are displayed in an additional
breadcrumbs panel when they are activated. The results do not only show a small text
excerpt as evidence, but offer special views that allow to navigate through found videos
or audio files. Additionally, the results can be further explored, for instance, via the use
of displayed related entities that are obtained through an underlying ontology.
Our new user interface is designed for a semantic full-text search engine which searches
in a text collection that is linked with an ontology. The back end prototype that is
currently used for the user interface uses the English Wikipedia as text collection and
Yago as linked ontology, like already pointed out in section 2.1. Consequently, our new
user interface needs to be able to display facts from an ontology as well as text documents
for the results. How this is done is shown in chapter 4.

3.2. Query Language

The query language describes the type of information that is needed to define a query for
the search engine and how it is structured. The queries that can be created with our new

6http://www.google.com/

8 / 48

http://www.google.com/

3. Search Content and Queries

user interface can be described as trees. Hence we define the set of possible query trees
with a regular tree grammar, based on [Mani 03].
A regular tree grammar is a 4-tuple G = (N, T, S, P), where:
• N is a finite set of non-terminals,
• T is a finite set of terminals,
• S is a set of start symbols, where S ⊂ N ,
• P is a finite set of production rules of the form X → a [RE], where X ∈ N , a ∈ T ,

and RE is a regular expression over N .

The nodes of our query trees can have 6 different types: class, entity, cooccurrence (abbr.:
coocc), relation, value and word. The different types of nodes denote the following values:
Class A semantic class from the ontology.
Entity An instance of a class from the ontology.
Coocc The cooccurrence of a class or entity with other classes, entities or words.
Relation A relation between classes or entities that is defined in the ontology.
Value A numerical value, e.g. a date, from the ontology.
Word A combination of letters that form a single or multiple words.

So we define the tuples of our regular tree grammar as:
N = {CLASS ,ENTITY ,COOCC ,RELATION ,VALUE ,WORD}
T = Classes∪Entities∪{occurs-with}∪Relations∪Values∪Words, where Classes, Entities,
Relations, Values and Words respectively denote the sets of possible class, entity, relation,
value and word nodes, and the element occurs-with denotes a cooccurrence node.
S = {CLASS ,ENTITY ,WORD}
P : CLASS → class [(COOCC |RELATION)∗]

ENTITY → entity [(COOCC |RELATION)∗]
COOCC → occurs-with [WORD (CLASS |ENTITY |WORD)∗]

RELATION → relation [CLASS |ENTITY |VALUE]
VALUE → value [ε]
WORD → word [ε] ,

where class ∈ Classes, entity ∈ Entities, relation ∈ Relations, value ∈ Values and word ∈
Words.

A production rule X → a [RE] denotes that the non-terminal X can generate a subtree
with a as the root and with children that match RE . This means that class and entity
nodes can either be leaves or that they can form a subtree with an arbitrary number of
cooccurrence and relation children. A cooccurrence node always creates a subtree, since

9 / 48

3. Search Content and Queries

it must have at least one word child7 and can have arbitrary further class, entity, or word
child nodes. Note that all child nodes of a cooccurrence node must occur together in
the same document with the parent node. If this is not desired, one can add multiple
different cooccurrence nodes to the parent node, these are then independent of each other.
Relation nodes also always create a subtree since they must have exactly one class, entity,
or value node as their target child. Value and word nodes cannot have any children and
thus may only occur as leaves.
The set of trees that can be generated from any start symbol forms the language generated
by a regular tree grammar. So we can write our query language as:

L = {t | t is a tree that was generated with G}

Let us have a look at an example. In the introduction we mentioned the following sample
query:

Example Query 1. “Movies directed by Steven Spielberg that are about one of the world
wars”

We want to search for the class of movies, so we take it as the root. Then we narrow it
down by adding the directed-by relation and set the entity Steven_Spielberg as its target.
Furthermore we only want to get movies about one of the world wars, so we further narrow
down the movie class by adding that it must co-occur with the words world war. This
is possible because we linked the ontology with a text collection for our search content.
When we supply our tree grammar only with the identified concrete terminal values we
get the grammar G1 = {N, T1, S, P1}, with:
T1 = {CLASS:movie,ENTITY:Steven_Spielberg, occurs-with,RELATION:directed-by,

WORD:world war}

P1 : CLASS → CLASS:movie [(COOCC |RELATION)∗]
ENTITY → ENTITY:Steven_Spielberg [(COOCC |RELATION)∗]
COOCC → occurs-with [WORD (CLASS |ENTITY |WORD)∗]

RELATION → RELATION:directed-by [CLASS |ENTITY |VALUE]
WORD →WORD:world war [ε]

Using grammar G1 we can generate the tree in figure 3, which expresses the example
query number 1.
Our query tree grammar allows a word node as the root, though a word node can only
be a leaf and must not have any children. This is allowed to also enable normal keyword
search over the text collection of the search content. Thus, queries with only a word

7The reason that a cooccurrence node must have at least one word child node is a restriction of the
current back end prototype. Due to its implementation, it needs at least one word to be able to handle
a cooccurrence efficiently. This restriction is currently acceptable because the cooccurrence of two
things mostly has a certain connection. This connection can be expressed by the needed word. This
restriction might be lifted in the future when the back end gets replaced by a new implementation.

10 / 48

3. Search Content and Queries

CLASS:movie

RELATION:directed-by

ENTITY:Steven_Spielberg

occurs-with

WORD:world war

Figure 3: Sample query tree for the query “Movies directed by Steven Spielberg that are
about one of the world wars”.

node as the root express a keyword search for the words that form the word node. Since
the used search engine is using prefix search (see section 2.1), it is not only possible to
search for full words but also for word prefixes. This is denoted by adding a *-symbol to
the end of a word. For example searching for the word play* does not only find hits for
occurrences of play, but also for played, player, playing and so on.
With the combination of full-text and ontology search, it is also possible to simulate
relations through the cooccurrence with words. This can be helpful for cases where the
desired relation is either not contained in the ontology or when it is poorly maintained.
Consider for instance the query:

Example Query 2. “Animals that eat green plants”

There is currently no eats relation for the animal class in our ontology, so we simulate
it through the cooccurrence with the word eat* and the class of plants. There is also no
has-color relation for the plant class, so we just narrow it down by requiring it to co-occur
with the word green. Supplying our tree grammar again with only these concrete terminal
values we get the grammar G2 = {N, T2, S, P2}, with:
T2 = {CLASS:animal,CLASS:plant, occurs-with,WORD:eat*,WORD:green}
P2 : CLASS → CLASS:animal [(COOCC |RELATION)∗]

CLASS → CLASS:plant [(COOCC |RELATION)∗]
ENTITY → ε

COOCC → occurs-with [WORD (CLASS |ENTITY |WORD)∗]
RELATION → ε

WORD →WORD:eat* [ε]
WORD →WORD:green[ε]

Using grammar G2 we can, for example, generate the tree in figure 4 to express example
query number 2.

3.3. Query Results

Our user interface requires two different types of results for a query. It needs lists of
proposals of the possible nodes for the query tree, so that users can build them, as well

11 / 48

3. Search Content and Queries

CLASS:animal

occurs-with

WORD:eat* CLASS:plant

occurs-with

WORD:green

Figure 4: Sample query tree for the query “Animals that eat green plants”.

as hits to the query that are displayed to the users as results. How these two results are
utilized by the user interface is explained in chapter 4.
The proposals are basically simple lists of classes, entities, relations, or words that can
either be added to a selected node in the query tree or replace it. For the root node of
example query number 1 such lists could look like this:
Entity proposals:

ENTITY:Saving_Private_Ryan

ENTITY:Empire_of_the_Sun_(film)

ENTITY:Schindler’s_List

ENTITY:1941_(film)

...

Relation proposals:
RELATION:directed-by

RELATION:created-by

...

Due to the combination of full-text and ontology search, the hits to our queries can consist
of two different types, namely facts from the ontology and documents from the text
collection. The hits are always returned for the root node of the query tree. Considering
example query number 1 again, we can get the following hits with the current prototype
of our search engine:
Ontology facts:

Saving Private Ryan is-a: movie

Steven Spielberg directed Saving Private Ryan

Empire Of The Sun Film is a: movie

12 / 48

3. Search Content and Queries

Steven Spielberg directed Empire Of The Sun Film

Schindler’s List is a: movie

Steven Spielberg directed Schindler’s List

...

Documents:
Saving Private Ryan [2]: Saving Private Ryan is a 1998 American war film

set during the invasion of Normandy in World War II

Saving Private Ryan [113]: For years now, I’ve been looking for the right
World War II story to shoot, and when Robert Rodat wrote Saving
Private Ryan, I found it

Empire of the Sun (film) [141]: Other topics that Spielberg previously
dealt with, and are presented in Empire of the Sun, include a child
being separated from his parents (The Sugarland Express, Close
Encounters of the Third Kind, E.T. the Extra-Terrestrial, and
Poltergeist) and World War II (Schindler’s List, Saving Private
Ryan, Close Encounters of the Third Kind, 1941, and Raiders of the
Lost Ark)

Empire of the Sun (film) [6]: Spielberg was attracted to directing the film
because of a personal connection to Leans films and World War II
topics

List of historical drama films [570]: Schindler’s List (German
industrialist Oskar Schindler’s assistance to keep Jewish people
from being interred in concentration camps during World War II)

11572 Schindler [3]: According to the Jet Propulsion Laboratory database,
the asteroid was named after Oskar Schindler, whose actions during
World War II were featured in Steven Spielberg’s film Schindler’s
List

...

As mentioned in section 2.1, the current prototype of the search engine treats each sentence
of a Wikipedia article as a separate document. This is why the here listed documents
consist of the name of the corresponding Wikipedia article, the number of the sentence
that represents the document and the sentence itself.

13 / 48

4. The User Interface

4. The User Interface

This chapter presents our new semantic search user interface. It allows users to find
information using semantic queries of the form that was defined in the previous chapter.
Therefore, it offers a comfortable way to incrementally create such queries and displays
the hits to the query in a well-arranged way.
At first we show the layout of the application with the help of a screenshot. Then we
explain the main elements of the user interface. We also address some advanced features
that were added to further improve the usability of the application. At the end we
demonstrate how the application is used with our previous query examples.

4.1. Overview

Figure 5 shows a screenshot of our user interface to give an overview of the application.
The main elements of the interface are:

1. Input Field: The single input field of the user interface. Here the users enter what
they are searching for. Upon typing, the proposal boxes automatically adapt their
content to the entered prefix. Alternatively, it can also be used to add custom
words directly to the query by pressing the enter key. So pressing the enter key has
practically the same effect as clicking on a word proposal.

2. Proposal Boxes: The four proposal boxes are the key element why the user does not
need any knowledge of the underlying ontology. Each proposal box has its own color
that represents the type of data it provides. They show possible selection options for
the user that depend on the current query and the prefix that was entered into the
input field. The search query is incrementally created by selecting single proposals
from these boxes. They are explained in more detail in subsection 4.2.2.

3. Query Panel: This is our extended breadcrumbs panel. It displays the current query
as a tree as defined in section 3.2. The nodes of the tree are colored in the same
manner as the proposal boxes, according to the type of information they represent.
The breadcrumbs panel cannot only be used to delete certain nodes of the query
tree again, but it provides more advanced query refinement features. Single nodes
can be selected and can thus be replaced or further restricted by adding relations.
For more details see subsection 4.2.3.

4. Hits Area: Here the hits to the query are displayed. Except for normal keyword
search, the hits get grouped by their corresponding entities. Since the search content
is currently the English Wikipedia, each group contains a link to the corresponding
Wikipedia article and an image from the article, if there is one. Every hit is ac-
companied by an excerpt as evidence, in which all words that match the query are
highlighted. See subsection 4.2.4 for more information.

Resnick and Vaughan [Resnick 06] propose some best practices specifically for search user
interface design. With the presented elements of our interface and their functionality we
fulfill the following of these best practices:

14 / 48

4. The User Interface

1
2

3

4

Figure 5: Screenshot of our user interface for example query number 1. It gives an
overview of its main elements, which are the single input field (1), the proposal boxes
(2), the query panel (3) and the hits area (4). The input field filters the proposal
boxes by typing in a keyword. The proposal boxes offer the parts to build the query
tree, which is displayed in the query panel. The hits area always shows the hits for the
root node of the query tree, grouped by possible entities.

• “In the result descriptions, show the keywords in context”:
All words that match the query are highlighted in the excerpts of the hits.
• “Organize large sets of results into categories”:

The hits get grouped by their corresponding entities.
• “On the results page, provide the original query in a format that can be
edited”:
The query panel always shows the current query together with the hits and it pro-
vides possibilities to alter the query.
• “The user interface should facilitate iterative searching by supporting the
modification of queries”:
The query panel and the proposal boxes enable iterative searching and query refine-
ments.

15 / 48

4. The User Interface

4.2. Main Features

Our search user interface has some features that are crucial for its functionality. These
include the previously presented main elements and the way they are working together to
build a query and to display the results. This section covers these main elements of our
search interface and their features in detail.

4.2.1. Interactive and Proactive

Our search user interface is a rich internet application that uses JavaScript and Ajax
to provide an interactive and proactive user experience. Hence the absence of any kind
of search button in figure 5. When the user enters text into the input field, the user
interface automatically sends a query to the back end and displays the corresponding
proposals. Figure 6 shows an example for this procedure. The hits area has nearly the
same interactive behavior. It has the same loading icon in the upper right corner and
as soon as the query is changed in a way that alters the hits, the new hits are loaded
asynchronously and are displayed automatically. Old hits to the previous query are also
grayed out while new hits are loading to denote that they do not belong to the current
query.
The interactivity of our user interface is not limited to the display of proposals and hits.
The process of the incremental query creation is also completely interactive and requires
not a single complete reload of the page. The proposals in the proposal boxes can be
clicked, what adds them to the query. Accordingly, the query tree in the query panel is
automatically adapted as the query gets refined. The complete functionality of the query
panel is explained in subsection 4.2.3.
By default, only a limited number of proposals and hits are displayed for each box, even
if there are more available, to keep the required bandwidth low. The reloading of more
is automatically done by the user interface if needed, the user does not have to press any
button. When the user scrolls to the end of a proposal box or the hits, and there are
more proposals or hits available, the interface creates a query for more, sends it to the
back end and appends the results as soon as they are available. To signal the automatic
reloading to the user, the icons in the top right corner are animated in the same way as
when new proposals or hits are loaded. For the hits, there is even an additional loading
bar at the bottom to indicate a reload, because the one on the top is probably not visible
anymore when the page is scrolled down. In contrast to the loading of new proposals or
hits, the currently displayed lists are not grayed out while a reload is in process because
the displayed lists stay valid.

4.2.2. The Proposal Boxes

One goal for the user interface was that users do not need to have any knowledge about the
underlying ontology. This is achieved through the four different proposal boxes. There is
basically one for each kind of query tree node as defined in section 3.2, when cooccurrence
is considered as a special kind of relation and values are considered to be special entities.

16 / 48

4. The User Interface

a) b)

c) d)

Figure 6: Example for the proactive handling of user input and interactive display of
proposals. Our user interface does not have a search button because input is processed
automatically. Part a) shows the initial state of the input field and word proposal box
with focus on the input field. As soon as something is typed, the interface updates
itself by loading appropriate proposals. This is indicated by an animated loading icon
in the upper right corner of the boxes as shown in part b). When the new proposals
are loaded, the animated icon is stopped and they are displayed as in part c). Typing
something new into the input field updates the interface again. While it is updating,
already displayed proposals are grayed out to indicate that they cannot be selected
anymore. This is depicted in part d).

So there is one proposal box for words, one for relations, one for entities and one for
classes from which the user can choose for the query creation. We assigned a different
color to each of the boxes. This enables us to give the user an obvious visual cue which
node of the query tree in the query display belongs to which type, because they inherit
the color from the proposal box in which they appeared. Classes are currently denoted
by red, entities are blue, relations are green and words are colored yellow.
The proposals that are presented in the boxes are context sensitive to the current query.
This makes it easier for users to create meaningful queries that return any hits. Addition-
ally, each proposal displays the number of hits it generates in the current context. These
are the numbers in parentheses after each proposal that can be seen for example in figure
6. The input field can be used to filter the content of all proposal boxes via the entered
prefix. When the user clicks on one of the proposals it is added to the query. The type
of refinement to the query that is invoked by adding a proposal depends on the current

17 / 48

4. The User Interface

query and the type of the added proposal and is explained in detail in subsection 4.2.3.
Even though it causes different changes, the displayed proposals can always be selected.
If a certain type of proposal cannot be added to the current query, then no proposals of
that type are shown.
Our proposals are similar to facets like they are used, for instance, in Faceted Wikipedia
Search. But since the proposals can be used to build complex query trees with depen-
dencies, they provide much more possibilities than normal facets.

4.2.3. The Query Panel

The query panel is our advanced breadcrumbs display. Since our queries are trees, our
interface displays the current query in this special panel instead of showing it in the input
field. Showing it there would require a special syntax which a user would need to learn and
which would not be as easy to read. This differs from many other search user interfaces
like those from Google or Ester which use their input fields to show the query because
it directly equals the input. Other search applications like Contentus or Faceted
Wikipedia Search also have breadcrumb displays for their facets, but they only show
the selected facets and do not offer any functionality besides the possibility to remove or
deactivate single facets again. That is why we denoted our query panel as an advanced
breadcrumbs display because it offers much more functionality. Figure 7 shows the query
panel for a possible formulation of example query number 2. As already mentioned, the
colors of the nodes are the same as the colors of the proposal boxes and denote their type,
so that no prefix is needed to be able to distinguish them as in the sample trees in figures
3 and 4.

A
B C

C

Figure 7: The query panel displaying a possible formulation of the example query “An-
imals that eat green plants” in our user interface. The A marks the root node of the
query tree which is always displayed in the top left corner. The B marks the active
node of the query tree. It can be distinguished from the other nodes by its broader
border and bold font. The +-buttons that are marked by C belong to the cooccurrence
nodes and can be used to add further co-occurring nodes.

The A in the figure marks the root node of the query tree. The hits in the hits area
always display the results for the root node. Thus the hits area displays hits for animals
for this query. If the user wants to get hits for another node of the query, he can double-
click it in the query tree to re-sort it, so that this node becomes the root. The hits will
then automatically update to the results of the new root node. Due to the query tree

18 / 48

4. The User Interface

definition, this is only possible for class and entity nodes because these are the only ones
that are allowed to be the root8.
The node that is marked with B in figure 7 is the active node of the query tree. There
is always exactly one active node in the query panel. The active node is the node on
which query refinements will apply when a proposal is clicked. Accordingly, the proposal
boxes always contain proposals for the active node. Table 1 lists all possible changes
that are carried out when the different types of proposals are clicked, depending on the
currently active node. The empty cells denote that these combinations are not possible.
The active node is changed by clicking onto another node with the mouse. This node will
then become active and the proposals automatically reload to adapt themselves. When a
new class node is added, it is automatically set active to support a fast query generation.
Note that only class, entity and word nodes can be active since the other nodes can not
be refined directly.
For the cases where cooccurrence relations are added automatically (see table 1), the
required word child node is always directly appended. When a cooccurrence relation is
added manually by clicking onto the occurs-with relation in the relation proposal box,
a special WORD placeholder node is added as the needed child node. This placeholder
node must then be replaced by a real word node to activate the cooccurrence relation.
Subsection 4.4.1 explains how this is done in the query creation of example query number
2.
Each node in the query tree has its own remove button on its right-hand side. When
this button is clicked, the node is removed from the tree. Since the nodes depend on
each other, this removes the complete sub-tree of the node. Since relations always need a
target node as a child, removing the child node of a relation leads to the removal of the
whole relation. The same applies to cooccurrence nodes, they always need at least one
word node as a child, so they are also removed if all of their children are removed. To
enable a more convenient query refinement, there exists a special feature for the removal
of the source or target of a relation. A click on the remove button of such a node resets
the node to the base source or target type of the relation, only a second click will remove
the node completely from the tree. Subsection 4.4.2 gives an example for this refinement
feature.
The +-buttons that are marked by C in figure 7 are a special feature of the cooccurrence
nodes they belong to. They can be used to add a new child to their cooccurrence nodes.
When such a button is clicked, a special ANYTHING placeholder is added to the cooc-
currence node’s children. This placeholder can then be replaced by any class, entity, or
word node from the proposal boxes. An example for how this is done is contained in the
query creation of example query number 2 in subsection 4.4.1.

8Except for word nodes, but they can only be the root for the special case of keyword only search where
no other nodes can occur. For these cases, the only word node is automatically the root node and
any re-sorting is not possible.

19 / 48

4. The User Interface

Active Node Type
Se

le
ct
ed

P
ro
po

sa
l
T
yp

e

No active
node

Class Entity Word

Class Added as root
node.

Replaces the
active node.

Replaces the
active node.

Replaces the
active node
and adds it as
child with a
cooccurrence
relation.

Entity Added as root
node.

Replaces the
active node.

Replaces the
active node.

Replaces the
active node
and adds it as
child with a
cooccurrence
relation.

Relation Added as child
to the active
node together
with its target
class node.

Added as child
to the active
node together
with its target
class node.

Word Added as root
node.

Added as child
to the active
node with a
cooccurrence
relation.

Added as child
to the active
node with a
cooccurrence
relation.

Replaces the
active node.

Table 1: All possible query refinements that are applied when a proposal is selected,
depending on the active node in the query panel.

4.2.4. The Hits Area

The hits for the current search query are automatically displayed in the hits area of our
user interface. The displayed hits always refer to the root node of the query tree. Except
for normal keyword search, the hits are always grouped by entities. Figure 8 shows such
a hit group of the example query number 2.
The A in the figure marks the name of the entity that forms the hit group. Since the
current back end prototype searches in the English Wikipedia, the group name contains
a link to the corresponding Wikipedia article. From subsection 3.3 we know that the hits
contain ontology facts and text documents. Facts of the used Yago ontology, in the figure
marked by B, are always displayed first. Then there follow the document hits, marked
by C. The current back end treats sentences of Wikipedia articles as documents. Thus
a document hit consists of the name of the Wikipedia article and the sentence number
as a heading that is linked to the article, and the sentence itself as an excerpt. All parts

20 / 48

4. The User Interface

A
B
C

C

D

Figure 8: One hit group for our example query “Animals that eat green plants”. The A
marks the name of the entity that forms the hit group. The hits for one group consist
of ontology facts and documents. Ontology facts, marked by B, are always displayed
first. Then there follow the document hits, marked by C. The parts of the excerpts
that are highlighted with a bold font match parts of the query tree as evidence. The
D marks an optional image for the group.

of the ontology facts and the document excerpts that match a node of the query tree are
highlighted with a bold font, so users can directly see why these hits were returned. By
default, only a few hits are displayed for every entity group (currently the ontology facts
and two document hits). If the users want to see more hits for one of the entities, they can
select the root as the active node in the query panel and replace it by the desired entity
by choosing it from the entity proposal box. Then only hits for this entity are displayed.
Finally, the D in the figure marks an image for the group. The image is directly obtained
from the Wikipedia article that is linked with the group. When an article does not contain
an image, the thumbnail is omitted.
For keyword-only search the hits are not grouped. This means that the hits panel only
shows a list with the document hits. Each document hit has the same form as the
document hits in the hit groups, consisting of the article name, sentence number and an
excerpt. Additionally, the interface displays an image for each document hit if one is
available, instead of only one image for the whole group.
Ali et al. [Ali 09] identified that visual cues, as an addition to text, are a great help
for users to find results faster and to find overall better results. We have lots of visual
cues in our interface: The colored query tree, hit groups, highlighted keywords and image
thumbnails. The purpose of all of these is to assist users in finding the desired information
as fast as possible.

4.3. Advanced Features

Besides the main features that were presented in the previous chapter, our search interface
also has some advanced features that are not that obvious. However, these features
contribute a great deal to the usability and comfort of the user interface.

21 / 48

4. The User Interface

4.3.1. Bookmark and Browser History Support

The use of JavaScript and Ajax enables websites to be interactive web applications. But
in comparison to traditional websites, there are also some drawbacks. The interactivity
is achieved through the modification of the DOM of a single page instead of loading
completely new pages from the server. Hence the address bar of the browser does not
change and does not represent the current state of the website. As a consequence, the
current state of the application cannot be bookmarked because the URL always points to
its initial state. Furthermore the history mechanism of a browser, which usually enables
to navigate through the last visited pages with the back and forward buttons, also has no
effect. These issues are also described by Holzinger et al. [Holzinger 10]. Of course there is
a workaround for those problems. By setting the anchor tag of the URL via JavaScript, a
web application can add state information to the URL. Thus the possibility to bookmark
the current state and the functionality of the browser history can be re-enabled.
Our user interface uses the anchor tag to store its state. Therefore, users can bookmark
queries or can send links of their queries to other people. The browser history is also
fully functional and can be used like an undo mechanism as they are commonly known
from desktop applications. The back button reverts the last change that was made to the
query, while the forward button redoes it again accordingly.

4.3.2. Customizable Layout

For the convenience of our interface, its layout can be customized by adjusting the size
of its components. Figure 9 shows a sample customization of the interface displaying our
example query number 2.
Each proposal box can be collapsed by clicking onto its name, when it is currently not
needed, to provide more space for the other proposal boxes. Another click opens the
box again to its previous size. The A marks the collapsed proposal boxes in the figure.
Additionally, each proposal box can also be independently re-sized by dragging its bottom
line with the mouse to the desired size. When the mouse cursor hovers over the bottom
line of a proposal box, it changes to an arrow to indicate this functionality. The B
marks re-sized proposal boxes, the relations box was sized down and the entities box was
enlarged. The last customization option is a horizontal splitter between the input field
and proposal boxes on the left and the query panel and hits area on the right. By dragging
it, the width of the left and right elements can be changed. When the mouse cursor is
moved in between them, it changes to an arrow and a line occurs to indicate that it can
be dragged. This is shown in the figure by C.
These customizations allow to adapt the interface to different screen resolutions and op-
timize the utilization of the available space. The layout settings are also stored in the
URL, so they can, for instance, be saved in a bookmark and do not have to be reapplied
manually every time the application is accessed.

22 / 48

4. The User Interface

A

A

B

B

C

Figure 9: Layout customization example of the user interface for sample query number
2. The A marks collapsed proposal boxes. The B marks proposal boxes that were
re-sized to be smaller or bigger. The draggable horizontal splitter that separates the
left and right parts of the user interface is marked by C.

4.4. Usage Examples

The previous sections of this chapter explained how our user interface works and covered
all of its features in detail. Now we show how it is used to find the desired information
using our example queries. This does not only include how new queries are incrementally
built, but also how queries can be refined to improve or change the results.
We claim that it is a strength of search engines like Google or our own, that the real
intellectual work to formulate a query, which results in finding the desired information,
is left to the users. We just try to make it as easy as possible for them. The following
examples show how we try to achieve this.

4.4.1. Building Queries

This section shows how completely new queries are built. We start with our example
query number 1, which was “Movies directed by Steven Spielberg that are about one of
the world wars”. Figure 10 shows the evolution of the example query in the incremental
creation process of the user interface with screenshots of the query panel.
The query panel is initially empty as in part a) of the figure. We want to search for
the class of movies, so we start by typing “movie” into the input field. Upon typing, the

23 / 48

4. The User Interface

a) b)

c) d)

e) f)

Figure 10: Possible evolution of the example query “Movies directed by Steven Spielberg
that are about one of the world wars” in the incremental creation process of the user
interface. The single steps are explained in detail in subsection 4.4.1.

interface automatically starts to give proposals, thus we can already see the movie class
at the top of the class proposal box after we typed the prefix “movi”. We add it to the
query by clicking on it with the mouse to obtain part b). The hits area now already
shows movies, but we only want to get movies that were directed by Steven Spielberg.
Since the movie class node was automatically selected as the active node, the proposal
boxes already display proposals for it. So to achieve this, we can directly select the
directed(reversed) relation9 from the relation proposals. This appends it to the movie
class node and also automatically adds the target class director and makes it the new
active node as in part c). Because the director class is now active, the entity proposals
now show different directors. To search for the entity Steven Spielberg we can directly
scroll down the proposal box until we find it, or we can at first type a prefix of “Steven”
into the input field to filter it. When we found it we select it to replace the director class
in the query, as in part d). The hits area now shows movies that were directed by Steven
Spielberg, but we are still missing the fact that we only want to get movies of him that
are about one of the world wars. So we need to further narrow down the movie class by
requiring a cooccurrence with the words world war for it. Therefore, we have to, at first,
make it the active node again by clicking on it as in part e). We could now choose the
occurs-with relation from the proposals, but this is explained later in the second example.
For now we just type the words world war into the input field and press the enter key.
This automatically adds them to the movie class with a cooccurrence relation as in part
f). This completes the example query and the hits now show results for movies that were

9In our ontology we only have the relation “CLASS:director RELATION:directed CLASS:movie”.
To visualize it the other way round in the user interface, we display it there as “CLASS:movie
RELATION:directed(reversed) CLASS:director”. So the reversed directed relation basically equals
the directed by relation.

24 / 48

4. The User Interface

directed by Steven Spielberg and that are about one of the world wars.
Now we show how example query number 2, which was “Animals that eat green plants”,
can be built. Figure 11 shows once more the incremental construction of the query with
screenshots.

a) b)

c) d)

e) f)

g)

Figure 11: Possible evolution of the example query “Animals that eat green plants” in
the incremental creation process of the user interface. The single steps are explained
in detail in subsection 4.4.1.

We start again with an empty query panel as in part a) of the figure. We want to search
for animals, so we enter “animal” or a prefix of it into the input field and choose the
animal class from the proposals to get part b). The hits now show results for all kinds
of animals, but we want to find hits for animals that eat plants so we enter “eat” into
the input field. Now we see that there is no relation for eat in the relation proposal box,
so we have to express the relation with a cooccurrence. Therefore we append a *-symbol
in the input field to search for the prefix “eat*” and again just press the enter key to
automatically add the word node eat* to the animal class with a cooccurrence relation
as in part c). The resulting animals should eat plants, so we need to add the class of
plants to our simulated eat-relation. To do this we click on the +-button that is located
next to the eat* word node in the query panel. This adds an ANYTHING placeholder
to the occurs-with node as in part d) and activates it. Now we can enter “plant” into the
input field and select the plant class from the proposals to replace the ANYTHING node
as in part e). Now we are only missing the fact that we just want green plants. Since

25 / 48

4. The User Interface

the plant class node is already active, we see in the relation proposal box that there is
no has-color relation or anything similar, so we express this with a cooccurrence again.
This time we select the occurs-with from the relation proposals. This appends it to the
plant node and also adds a WORD placeholder for the word node that is required for
each cooccurrence as in part f). The placeholder for the word node is already active, so
we can directly enter “green” into the input field and press the enter key or select the
corresponding word proposal to replace the placeholder node by the word node green as
in part g). This completes the example query. The hits now show results for animals that
eat green plants.

4.4.2. Refining Queries

When searching for information, it can be very helpful to be able to search in an ex-
ploratory manner to find the query that leads to the desired results. Therefore, a search
user interface must provide the possibility to refine queries. In this section we handle the
refining possibilities of our interface.
Replacing class or entity nodes: Class and entity nodes in the query tree can be re-

placed by other classes or entities. A simple click on another class or entity proposal
replaces the currently active class or entity node. Thus we can, for instance, easily
search only for mammals that eat green plants, by replacing the animal class of
example query number 2 with the mammal class.

Changing a word node: The content of word nodes can be changed easily. Therefore a
word node has to be clicked to mark it as active. The input field is automatically
filled with the current value of the word node. The new value for the word node can
then be entered into the input field and a click on a word proposal or pressing the
enter key changes the value of the word node accordingly. We could, for example,
come up with the idea that a simulated feeds-on relation would suit better for
example query number 2 than the eats relation. To change that we just have to
replace the value of the eat* word node to feed* on. This might lead to more
accurate results.

Removing nodes: It is possible to remove sub-trees from the query with the remove
button of the nodes in the query panel. Thus the query number 1 could, for instance,
easily be changed to general movies about one of the world wars, by removing the
directed(reversed) relation. For nodes that are the source or target of a relation,
the remove button has the additional functionality to reset the node to the default
source or target of the relation before it is removed. By using this, the query can
easily be changed to search for world war movies of other directors. Removing
the entity Steven Spielberg resets the node back to the director class node. When
selected, it can be changed to another director through the entity proposal box, for
example to Clint Eastwood, to only find world war movies from him.

Getting more hits for one hit group: The hit groups of the results only show a limited
number of results per entity group. If more results for one entity are desired, the
root of the query tree has to be replaced by this entity. Then all hits for this entity

26 / 48

4. The User Interface

are displayed. Example query number 1 returns, for instance, Saving Private Ryan
as a world war film of Steven Spielberg, but only a few document hits that concern
it. By replacing the root node with the entity Saving Private Ryan, one can browse
all document hits for it.

Expanding the query: Expanding the query is of course also a possible refinement. By
appending any relations, the returned results can always be further limited. Since
this is already heavily used in the query creation, we do not give another specific
example here.

Permuting the query: After a user has created the example query number 2 to find hits
for animals which eat green plants, he could be interested in browsing the green
plants that are eaten by animals. Such query permutations are very easy with our
user interface. A simple double-click onto the plant class node in the query panel
re-sorts the query tree, so that the plant class node becomes the root. Since the hits
are always displayed for the root, the hits area then shows the results for the query
“Green plants that are eaten by animals”. Figure 12 shows the resorted query tree
for this query permutation.

Figure 12: The query panel displaying a possible formulation of the query “Green plants
that are eaten by animals”, which is a permutation of example query number 2. It was
created by resorting the original query tree so that the plant class node is the root
instead of the animal class node.

27 / 48

5. Realization

5. Realization

This chapter covers some aspects of the realization of the user interface. At first we
motivate our decision to use Google Web Toolkit as a framework. Then we explain the
three-tier architecture of the interface application, before we go into detail about the
implementation by describing the workflow of its classes and the difficulties that had to
be resolved. At the end we show the query syntax that we use to communicate between
the interface application and the search back end.

5.1. Google Web Toolkit (GWT)

Nowadays there exist several different technologies for the development of rich internet
applications. JavaScript (including Ajax) and Adobe Flash count probably to the most
popular ones. Some developers are still arguing which of these technologies is the best,
while some came to the conclusion that each of them has its right to exist and that they
can even be combined. They all have different advantages and drawbacks and thus are
suited better for some tasks and worse for others, even though it is possible to realize a
wide set of different applications with all of them [Lee-Delisle 11]. We wanted our search
interface to be close to normal websites and to have a similar look and feel as established
web search engines like Google. So we came to the decision to use JavaScript and Ajax
for our application.
Large-scale rich internet applications are usually not developed in plain JavaScript any-
more. Not just the programming of low level basic functionality, like finding and manip-
ulating HTML elements or event handling, is very tedious, the browser incompatibilities
are also a big issue. There are lots of small differences between all the major browsers,
their different versions, and the way they interpret certain commands or display certain
elements. These have to be taken into account to support all of them. For these reasons,
JavaScript frameworks and libraries, which provide comfortable APIs and cross-browser
support have been developed. There are not only APIs that provide convenient abstrac-
tions for low level basic functionality, but also for advanced features like animations or
even complete widgets like Date Pickers or Tab Bars. Thanks to their cross browser sup-
port, developers do not have to worry about the browser quirks anymore, because the
frameworks and libraries take care of them.
One of the most popular JavaScript libraries, if not the most popular one10, is jQuery11. It
offers easy HTML document traversing, event handling, animation and Ajax interaction.
Using jQuery, we built an early prototype for our user interface. The goal of this prototype
was to get familiar with the functionality of jQuery and to be able to test if the concept of
our interface is working. We began, for example, only with a single box for all proposals,
but the now used basic layout crystallized already after a few iterations. Figure 13 shows
a screenshot of an advanced version of the jQuery prototype that used a mock server to
retrieve the displayed sample data.
10http://w3techs.com/technologies/overview/javascript_library/all and http://trends.

builtwith.com/javascript
11http://jquery.com/

28 / 48

http://w3techs.com/technologies/overview/javascript_library/all
http://trends.builtwith.com/javascript
http://trends.builtwith.com/javascript
http://jquery.com/

5. Realization

Figure 13: Screenshot of a prototype of the user interface that was implemented with
jQuery and a mock server.

With its provided functionality jQuery made it easy to rapidly create the prototype to
be able to test the usability of our planned user interface. But the development also
revealed the consequences of JavaScript not being a true object oriented language. The
code base got quite complex pretty fast and was much more difficult to maintain than
we were used to from other programming languages and their established object oriented
design principles.
Google Web Toolkit12 (GWT) is a framework for JavaScript, but it takes a different
approach than most other available JavaScript frameworks. Using GWT, you do not
program your application in JavaScript but in Java. The compiler of the GWT SDK
translates the Java code into JavaScript that can then be deployed and run in a browser.
Thus one can use the full power of established Java IDEs, including their debuggers for
runtime debugging, to program JavaScript applications in an object oriented program-
ming language. Google even provides a plugin for Eclipse that adds direct support for
12http://code.google.com/webtoolkit/

29 / 48

http://code.google.com/webtoolkit/

5. Realization

GWT. Besides object oriented programming, the concept of GWT has some more ben-
efits, including code optimization at compile time, cross-browser support by generating
different JavaScript files for different browsers, and a shared code base between the client
and an optional server application. The separation in different files automatically speeds
up the loading of the applications because only the necessary code is downloaded. Since
the client side code for GWT applications is programmed in Java, all code that does
not use specific GWT features can be reused on the server side of the application if it
is also programmed in Java. For this case, GWT even provides a special asynchronous
communication mechanism called GWT RPC13. It allows to directly pass Java objects
back and forth between the client and the server over HTTP. Moreover the GWT SDK
also offers a multitude of built in functions and an extensive user interface library that
provides various different widgets. So, overall, GWT offers some nice features. Thus we
also wanted to give it a try and reimplemented our prototype in GWT.
Through the development of the prototypes we learned that both, jQuery and GWT, offer
by far enough functionality for our needs. And though there also exist powerful IDEs that
support JavaScript development in general, including some with special jQuery support,
we came to the decision to use GWT for our user interface. The key factor for our decision
was the ability to program in a true object oriented language. We also need a middle-
end server application that handles the communication between the user interface and the
search back end. Thus another aspect in favor of GWT was the possibility of sharing code
between the client and server and the convenient GWT RPC communication mechanism.

5.2. Architecture

In web development, three-tier client-server architectures are quite common. The first
tier is the content that is rendered in the browser on the client side. The second tier
is the middle end server application that communicates with the client and creates the
content for it. And the third tier is a back end database on the server side that is
accessed by the server application to create the content [Wikipedia 11]. Traditional web
applications trigger a HTTP request to the web server for every change. The server then
processes the request and sends a new HTML page to the client. Each request locks up
the client application until the page is updated. Ajax based web applications work a bit
different. They have a JavaScript based engine that runs on the client’s browser. The
engine intercepts user inputs, displays requested data, and handles interactions on the
client side. If the engine needs more data, it asynchronously requests it from the web
server, letting the user continue to interact with the application [Paulson 05].
Our user interface is realized with a similar three-tier architecture, using Ajax on the
client side for the asynchronous loading of new content. Figure 14 shows our architecture
and how the different layers interact with each other. The following sections explain the
front end, the middle end, and the back end and their communication in more detail.

13Remote Procedure Call

30 / 48

5. Realization

Browser Client

Server-Side Systems

HTTP Transport

JavaScript Application (Front End)

GWT Ajax Engine

Java Servlet (Middle End)

Search Server (Back End)

Search Query XML Result

GWT RPC Request

GWT RPC Response

Figure 14: The three-tier client server architecture of the user interface application. The
front end runs on the client side in the browser, while the middle end and back end run
both on the server side.

5.2.1. Front End

The front end is the main part of the user interface application. It is the interactive
JavaScript application that runs, embedded in a host page, in the client’s browser. The
JavaScript is generated from Java code by the GWT compiler and includes an Ajax
engine from the GWT framework. This engine handles the GWT RPCs that are used
by the application to communicate with the middle end for requesting new data. Using
this mechanism, the front end application is able to directly call service methods of the
middle end java servlet. Furthermore, Java objects can be passed to and retrieved from
the server for the communication. The mechanism takes care of low-level details like the
serialization of the objects for the transmission.

5.2.2. Middle End

The middle end is a Java servlet that runs on a Tomcat server and is also part of the
user interface application. It uses the same data classes for the internal representation
of the query and the hits as the front end application which is also programmed in Java.

31 / 48

5. Realization

Furthermore it provides remote service methods that are called by the user interface
through the GWT RPC mechanism to query the results. So the middle end and front
end are basically tightly coupled and their combination forms the complete user interface
application. The main function of the middle end application is to act as a bridge between
the front end application and the search back end server. There are several reasons why
the user interface is not directly communicating with the search back end. First of all,
this allows for an interface separation between them, so the JavaScript application itself is
independent from the query interface of the back end. Furthermore, the current back end
prototype uses HTTP to communicate, but it only implements a minimal portion of the
protocol. That means that is has, for example, no support for different transfer modes or
cookies and so on. Thus it is inappropriate for the direct communication over the world
wide web and should only be queried over the internal network. Another reason is the
Same Origin Policy14 of JavaScript. Ajax calls are only allowed to the same host of which
the page that contains the application was downloaded from, so a web server is definitely
needed in-between. Besides, this allows for a more complex middle-end application that
does not just forward the communication, but that further processes the queries and the
results. Therefore, the client can be relieved from the parsing of queries and results to
translate them into the required formats and the data that is transmitted over the web
can be reduced to a minimum in an optimized format.
When our middle end application is queried from the user interface for data, it retrieves
a Java object that represents a search query in the user interface application. This object
is translated into a query for the back end, using the required query syntax that is shown
in subsection 5.4. The search query is then sent to the back end, which returns a XML
document that contains the results. The middle end parses this XML result, validates it
for compliance using a XML schema file and creates a Java object from it that contains
all needed information. This resulting object is then returned to the front end, which can
directly work with the Java object and display its content.
In addition to serving as a bridge between the front end and the back end, the middle
end fulfills another function in our application. As already mentioned, the images that
are displayed together with the hits are directly obtained from their respective Wikipedia
articles. Due to the Same Origin Policy of JavaScript, the JavaScript application cannot
query the MediaWiki API of Wikipedia15 itself to get these images. Thus we added a
second remote service to our middle end application for this purpose. To display the
images together with the results, the front end calls this service supplying the name of
the desired article. The service then queries the MediaWiki API to generate the URL for
a thumb with a certain maximal width for the first image that is used in the article, if it
has any images at all. This URL is returned to the front end which uses it to display the
image.

14The Same Origin Policy states that JavaScript code running on a web page may not interact with
any resource not originating from the same web site. The reason this security policy exists is to
prevent malicious web coders from creating pages that steal web users’ information or compromise
their privacy. [GoogleCode 11]

15http://de.wikipedia.org/w/api.php

32 / 48

http://de.wikipedia.org/w/api.php

5. Realization

5.2.3. Back End

The back end is the underlying search engine. As already mentioned, it is currently only
a prototype. A new engine is currently in development. For this thesis, only the search
content, the possible queries, and the results of the back end (see chapter 3) are important.
Apart from that it is enough to know that the middle end application sends search queries
to the back end (for the syntax see subsection 5.4), which returns the results in a XML
document as described in the previous section.

5.3. Implementation Details

This section gives an overview of the implementation of the user interface application
with GWT. It shows how the code is organized, explains the workflow of the application
and mentions some difficulties that occurred during the implementation.

5.3.1. Code Organization

The user interface application, consisting of the front end JavaScript application and the
middle end Java servlet, was implemented using a single GWT Java project. The code of
the user interface application is structured into the following packages:
Client: The client package comprises the classes for the front end JavaScript applica-

tion. It mostly contains classes for the different user interface components, but also
some classes for debug functionality and some utility classes for advanced layout
calculations.

Shared: The package shared contains all classes that are used by the front end client
application as well as the middle end server application. It consists of all the classes
that are used for the data management of the proposals, the query and the hits
throughout both.

Server: The server package consists of the classes for the middle end Java servlet. It
contains classes for its remote services, a class for the translation of the query
object to a query string for the back end, and a SAX parser that creates a result
object from the result XML of the back end.

5.3.2. Application Workflow

Now that we gave an overview of the organization of the code, we can give a rough
insight into the workflow of the user interface application. At first, the browser of a user
needs to download the host page and the embedded JavaScript application. The entry
point of the JavaScript application is then the Broccoli class in the client package. It
is responsible for building up the user interface in its onModuleLoad() method. This
is done by creating instances of the classes for the different user interface elements that
are located in the client.ui package, laying them out to each other and registering event
handlers to be able to react on user input. The Broccoli class is in general the main

33 / 48

5. Realization

controller of the front end application. It handles most of the events that are fired by the
single interface elements, creates the query tree by maintaining an instance of the Query
class of the shared package, initiates the GWT RPCs to the middle end and handles the
asynchronous arrival of the results in the form of BackendResult objects from the shared
package. Once the application is initialized, the main workflow of the application that is
repeated for every change that is invoked by any user interaction is the following:

1. When the user enters something into the input field or clicks a proposal or modifies
the query, the according interface elements signal this by firing corresponding events.

2. The Broccoli class registered to these events in the beginning, hence it gets notified
of the user actions. It handles the events by adjusting its Query object to the change
(e.g. by adding or removing a node).

3. Depending on the type of change that was invoked by the event, the Broccoli class
decides if it is enough to update the proposals or if the hits also have to be renewed.

4. Then it notifies the user interface elements that new data is loaded and initiates
an asynchronous GWT RPC to the middle end to get the new proposals for the
changed query and, if necessary, a second one to get the new hits.

5. On the middle end Java servlet, the queryBackend(...) method of the
SearchServiceImpl class is invoked by the GWT RPCs together with the cur-
rent Query object, and additional information parameters that define which results
should be returned.

6. The method creates an appropriate query string for the back end from the Query
object and the desired result information using the QueryTranslator class.

7. This query string is sent to the back end and the XML result which it returns is
thereupon parsed and validated by the BackendXMLParser class, which creates a
BackendResult object from the contained information.

8. This result object is then returned to the front end application.
9. When the front end application receives the result object, it checks its content and

passes the contained data to the proposal panels or the hits box respectively, so that
they can update themselves to show the new data.

5.3.3. Difficulties

The only difficulties we encountered during the implementation concerned the dynamic
layout of the application. The resizing capabilities for the customizable layout (see sub-
section 4.3.2) were actually quite tricky. The resizing was implemented so that it works
independently from the CSS styles that are applied to the elements. The problem here
was that the height and width that can be read from the single widget elements contain
the padding of the element, but when they are set, the padding is added to the set value
again, so a read and set increases the size if the element has some padding. Since GWT
does not provide functionality to read single style properties like the padding or the width
of the border, we had to add own native JavaScript code to be able to read such prop-
erties so that we could correctly resize the elements. Another difficulty was to get all

34 / 48

5. Realization

elements to adapt to size changes of other elements. When for example the horizontal
splitter between the input field and the proposal boxes on the left and the query panel
and the hits area on the right is moved, and thus the dimensions of the left and right
part change, the contained proposal boxes and the other elements must be notified of this
change so that they can also adapt to the size change. The same holds for the query panel
which resizes itself so that it is always big enough to fully contain the displayed query
tree. Thus if it resizes itself, the hits area and the horizontal splitter have to adapt as well
and with that also the proposal boxes and so forth. Another tricky implementation was
the display of the query tree in general. To be able to draw it, we need to measure the
dimensions of the single nodes, which vary depending on their arbitrary content, before
we can position them in the query panel. But since elements can only be measured while
they are displayed somewhere on the page, we needed to implement the WidgetMetric
utility class to be able to measure the dimensions. This class basically temporarily adds
them to a hidden panel in order to measure them.
Another difficulty that did not directly concern the layout, but that is a consequence of
the customizable layout, was the saving of a user defined layout in the URL hash. When
the hash is changed to store the current settings, this automatically adds a new entry
in the GWT history mechanism. By default GWT does not provide the functionality
to modify a history entry, but only to add new ones or to navigate through the existing
ones. But we did not want new history entries for any layout changes, so that the history
can only be used to undo or redo changes to the query. We are convinced that it would
be quite inconvenient for users if they would have to undo several layout changes at first
before they can finally undo the last query change. So we had to implement an own native
JavaScript function to modify the current history entry that works on all current major
browsers. Using this function, it is now possible to just add the layout information to the
current URL hash without creating new history entries.

5.4. Query Syntax

This section describes the syntax of the search queries that the user interface applica-
tion sends to the search back end to get the displayed results. In subsection 5.2.2 we
already mentioned that the back end uses a minimal version of the HTTP protocol for
the communication. So a query is sent to the back end with a HTTP GET request, where
the query is encoded in the query string of the requested URL. The query string has the
following syntax:

s=...&query=...&prefix=...

Additionally, a number of options can be added to define the number of certain proposals
or the hits that should be returned, for example &nofclasses=10. The s parameter
defines the query tree from the user interface as a list of tuples, delimited by semicolons.
The query parameter defines which part of the query tree in s is searched for. The prefix
parameter contains the content of the input field of the user interface and is thus used to
filter the proposals or to get hits for keyword only search. The s parameter must always

35 / 48

5. Realization

be existent, but it can be empty. If s is empty, the query parameter must be omitted,
else it must be present. The prefix parameter is optional, except when s is empty, then
it must be present and must contain a value.
Let’s have a closer look on how the tuples that form the query tree for the parameter s
are composed. Not each type of node that we defined in section 3.2 is expressed through a
separate tuple, basically a tuple always defines a relation with its source and target nodes.
Therefore most of the tuples are actually triples, only the cooccurrence relations are an
exception because they can have more than one target and thus are defined by n-tuples
with n ≥ 3. So there is one tuple for each relation and one for each cooccurrence. The
class and entity nodes of the user interface are practically just abbreviations for special
relations. They are only displayed as one node in the user interface for the convenience
of the users. In full length they can be expressed as “node is-a CLASS” and “node
equals ENTITY” respectively. By writing them like this, the class and entity nodes can
be referenced by other relations to, for instance, denote that a certain class node is
restricted by another relation. That is why class and entity nodes are also defined by
triples. Applying this, we get the following rules to express a query tree in tuples:
Class nodes: $number is-a CLASS:name ,

e.g. $1 is-a CLASS:movie

Entity nodes: $number equals ENTITY:name ,
e.g. $2 equals ENTITY:Steven_Spielberg

Relation nodes:

• Target is a class or entity node: $sourcenumber relationname $targetnumber ,
e.g. $2 directed $1 16

• Target is a value node: $sourcenumber relationname VALUE:value ,
e.g. $1 born-on-date VALUE:1889-04-20

Cooccurrence nodes: $number occurs-with word ($number | word)*,
e.g. $2 occurs-with green, or $1 occurs-with eat* $2

Each class and entity node is defined by its own number that must be unique in the set
of triples that defines the query tree. These numbers are then referenced for relation and
cooccurrence nodes. The query parameter in the query string must contain the number
of the class or entity node which is searched for, so it must actually be the number of the
root node.
This yields the following query string for example query number 1:

$1 is-a CLASS:movie;$2 equals ENTITY:Steven_Spielberg;$2 directed $1;$1
occurs-with world war&query=$1

16For example query number 1 we used “CLASS:movie RELATION:directed(reversed)
ENTITY:Steven_Spielberg” in our user interface though our ontology, as stated earlier, only
has the relation “CLASS:director RELATION:directed CLASS:movie”. Reversed relations are only
displayed by the interface to visualize relations the other way round. For the back end they are
translated into the original relations by just swapping the source and target variables as in this
example.

36 / 48

5. Realization

And this query string for example query number 2:
s=$1 is-a CLASS:animal;$2 is-a CLASS:plant;$2 occurs-with green;$1
occurs-with eat* $2&query=$1

37 / 48

6. Discussion

6. Discussion

This chapter concludes the work done for our new semantic search user interface. Ad-
ditionally we discuss some possible future work. This includes some features the user
interface is currently missing because there was no time left to implement them, as well
as features that could be nice to have to further improve its comfort and usability.

6.1. Conclusion

We have presented our new user interface for semantic full-text search. With its inter-
activity and proactivity, it provides a reasonably easy way for users to create semantic
search queries. We showed that the queries can be displayed as trees, where the different
nodes and their order form the desired semantic information. To incrementally build such
a query tree, users only have to type prefixes of the classes, entities, relations or words
they want to search for, to automatically get lists of proposals for possible tree nodes that
can be clicked to add them to the tree. Through the help of this proposal mechanism,
the users do not need to know anything about the used ontology because they can just
search for available terms. Since the proposals are context sensitive to the current query,
they additionally assist users in building meaningful queries that actually create any hits
for the underlying search content. As hits, the user interface presents ontology facts and
documents with excerpts as evidence, so that the users can easily comprehend why their
query returned these results. If they did not find what they intended to get, or if they
want to search for similar things, the interface provides extensive possibilities to refine
their queries.
Throughout this thesis we explained everything about the user interface application. From
the search content and the query language it was designed for, to the features and the
usage of the interface, up to its architecture and implementation with GWT. Wherever
it was practical, we used our two example queries to demonstrate certain aspects in
detail. Additionally, appendix A shows some more example queries together with possible
realizations with our user interface.

6.2. Future Work

This thesis presents the current state of the user interface application which is already
fully functional and can be used to perform a multitude of different kinds of semantic
search queries. Nevertheless we are aware that not all kinds of queries that one could
think of are possible yet. There are still some elements missing in the query creation
that have to be added in the future. Furthermore there are some additional features that
proved to be valuable for the usability of other search user interfaces that also could be
added to our interface. An evaluation of the user interface, for example in the form of
a user study, could identify additional weak spots in our interface application that could
be tweaked to improve the overall user experience. The following sections handle these
aspects in more detail and give concrete examples.

38 / 48

6. Discussion

6.2.1. Missing Features

Common kinds of queries can search for facts like “rivers that are longer than 50 kilome-
ters” or “music albums that were released between 1980 and 1990”. In section 3.2 we also
defined value nodes for our query language. But these values can currently only be used
for simple facts like “born-on-date 1889-04-20”. It is not yet possible to define any kind
of ranges for values. We will have to analyze what kinds of values and ranges are possible
and then think of a good way how these could be defined in our user interface to support
such kinds of queries in the future.
Another feature that our user interface does not support yet is the intersection or union of
classes. Thus searching, for instance, for “people who are both actors and politicians” or
“people who are either actors or politicians” is currently not directly possible. Thanks to
the full-text search, these operations can be simulated again with cooccurrence as shown
in figure 15, but this is not intuitive and cumbersome and might lead to lots of false
positives. Therefore we need to add them as a direct feature, but we will have to test how
this can be integrated nicely into our user interface.

a) b)

Figure 15: Examples for how the intersection a) or union b) of classes could be simulated
with the current user interface.

6.2.2. Additional Features

Error correction is a very handy feature of many state of the art search interfaces. When
you, for example, accidentally type “scietist” into the Google web search, it will auto-
matically correct your search query to “scientist”. This feature can not just help with
typos, but also when a user does not know how to spell a word correctly, because the
search engine then can propose the correct spelling and thus help the user in finding the
desired results. Proposing synonyms to an entered keyword can help users in a similar
way. In our interface, error correction and synonym proposals could assist users in finding
the correct classes or relations or entities that they need for their queries more easily.
Therefore this should be considered for future versions of the user interface.
Personalization features, like, for instance, those of Contentus, could also be considered
as an extension for our application. Providing the possibility to, for example, create a
personal collection of queries, could have several uses. It could be valuable for users to be
able to keep different queries while doing an exploratory search, so that they can easily
compare them in the end. Besides this, such a collection could also be used to improve
the ranking of certain proposals and hits for single users by analyzing the saved queries
and thus guessing what might be more relevant for this user.

39 / 48

6. Discussion

As soon as our user interface and the underlying search engine have reached a state
that allows to publicize a prototype, the user interface should be extended with some
help functionality. Providing some introductory sentences and clickable links to example
queries like the Faceted Wikipedia Search interface could make the access to the
interface much easier for people that are not yet familiar with its handling. Thanks to the
interactivity of our application, it would even be possible to add an interactive tutorial
mode in which the user is guided step by step through the creation of a sample query,
including tooltips with descriptions for each individual step.

6.2.3. User Evaluation

Performing user evaluations is an established method to analyze user interfaces concerning
their usability. They can be of great help in finding the shortcomings of an application,
both in their layout as well as their functionality, that cause problems to the users. But
they also work the other way round and can make it possible to identify features that are
a great advantage to the users. We did not carry out a user evaluation for our new search
interface yet, but this should definitely be addressed in the future. The difficulty with
user studies is that there are lots of different possible methods how they can be performed,
including but not limited to automatic logging of user actions, carrying out surveys or
just observing users while they are using the interface. From those, one must choose the
right ones that provide the desired results. This is a problem that was analyzed by Hoeber
[Hoeber 09]. They surveyed the evaluation methods that were used by numerous visual
web search interfaces in recent years and propose a stepped evaluation and refinement
model for the systematic study and enhancement of such interfaces. This model could,
for example, be used as a base for an extensive user evaluation process.
User Evaluations can also be used to compare different user interfaces with each other. The
challenge here is to evaluate them in a way that allows an objective comparison based on
the obtained results. Due to the differences between most semantic search user interfaces
concerning their underlying search content and their query languages and, therewith, their
designs and functionality, this is a nontrivial undertaking. Hoeber and Yang [Hoeber 07]
reviewed the methods that were used in such user evaluations and they provide a summary
of issues that have to be taken into account when such user studies are performed. Another
interesting work in this domain was presented by Wrigley et al. [Wrigley 10]. In their
paper, they describe the Semantic Evaluation At Large Scale (SEALS) EU project, which
aims at developing a new research infrastructure dedicated to the evaluation of semantic
web technologies. The SEALS project provides a systematic methodology to test semantic
search tools both automatically and interactively with human users. This allows them to
test functional performance measures like precision and recall, as well as usability issues,
such as ease of use and comprehensibility of the query language. So when it comes to
comparing our user interface to other semantic search user interfaces, the SEALS project
should be given a closer look.

40 / 48

A. Appendix: More Example Queries

A. Appendix: More Example Queries

Here we list some more queries and how they could be formulated with our user interface,
to provide more examples for possible queries:

• German formula one drivers:

• Friends of Albert Einstein:

• Actors that played in The Lord of the Rings:

• Game programmers:

• Plants with edible leaves:

41 / 48

A. Appendix: More Example Queries

• Sorting algorithms:

• Hormones that play a role for blood sugar:

• Politicians that died of a heart attack:

• Athletes with known drug abuse:

• Buildings that were destroyed in terrorist attacks:

• South Park Christmas episodes:

42 / 48

List of Figures

List of Figures
1. Example screenshot for the user interface of Susi. The A marks the input

field. Classes are automatically detected for the last input word. Since the
proposal boxes below the input field always display proposals for the last
prefix in the query string, the entity proposal box, which is marked by B,
shows instances for the automatically detected movie class. The C marks
the query string that the user interface generates to get the results. As
can be seen, the movie class is represented by a very long obscure word.
Classes and Entities can also be defined manually in the query string by
using such special words. The hits are displayed together with evidence on
the right-hand side as marked by D. 5

2. Example screenshot for the Faceted Wikipedia Search user interface.
TheAmarks the boxes with the available facet types. From these, concrete
facets can either be directly selected or manually entered through the input
fields. Selecting a facet adds it to the breadcrumbs panel which is marked
by B. It displays the selected filters that form the query. The input field
that is marked by C can be used to add an additional keyword search filter
for the article abstracts. The D marks the displayed resulting Wikipedia
articles. 7

3. Sample query tree for the query “Movies directed by Steven Spielberg that
are about one of the world wars”. 11

4. Sample query tree for the query “Animals that eat green plants”. 12
5. Screenshot of our user interface for example query number 1. It gives an

overview of its main elements, which are the single input field (1), the
proposal boxes (2), the query panel (3) and the hits area (4). The input
field filters the proposal boxes by typing in a keyword. The proposal boxes
offer the parts to build the query tree, which is displayed in the query
panel. The hits area always shows the hits for the root node of the query
tree, grouped by possible entities. 15

6. Example for the proactive handling of user input and interactive display
of proposals. Our user interface does not have a search button because
input is processed automatically. Part a) shows the initial state of the
input field and word proposal box with focus on the input field. As soon
as something is typed, the interface updates itself by loading appropriate
proposals. This is indicated by an animated loading icon in the upper
right corner of the boxes as shown in part b). When the new proposals
are loaded, the animated icon is stopped and they are displayed as in part
c). Typing something new into the input field updates the interface again.
While it is updating, already displayed proposals are grayed out to indicate
that they cannot be selected anymore. This is depicted in part d). 17

43 / 48

List of Figures

7. The query panel displaying a possible formulation of the example query
“Animals that eat green plants” in our user interface. The A marks the
root node of the query tree which is always displayed in the top left corner.
The B marks the active node of the query tree. It can be distinguished
from the other nodes by its broader border and bold font. The +-buttons
that are marked by C belong to the cooccurrence nodes and can be used
to add further co-occurring nodes. 18

8. One hit group for our example query “Animals that eat green plants”. The
A marks the name of the entity that forms the hit group. The hits for one
group consist of ontology facts and documents. Ontology facts, marked by
B, are always displayed first. Then there follow the document hits, marked
by C. The parts of the excerpts that are highlighted with a bold font match
parts of the query tree as evidence. The D marks an optional image for
the group. 21

9. Layout customization example of the user interface for sample query num-
ber 2. TheAmarks collapsed proposal boxes. The Bmarks proposal boxes
that were re-sized to be smaller or bigger. The draggable horizontal splitter
that separates the left and right parts of the user interface is marked by C. 23

10. Possible evolution of the example query “Movies directed by Steven Spiel-
berg that are about one of the world wars” in the incremental creation
process of the user interface. The single steps are explained in detail in
subsection 4.4.1. 24

11. Possible evolution of the example query “Animals that eat green plants”
in the incremental creation process of the user interface. The single steps
are explained in detail in subsection 4.4.1. 25

12. The query panel displaying a possible formulation of the query “Green
plants that are eaten by animals”, which is a permutation of example query
number 2. It was created by resorting the original query tree so that the
plant class node is the root instead of the animal class node. 27

13. Screenshot of a prototype of the user interface that was implemented with
jQuery and a mock server. 29

14. The three-tier client server architecture of the user interface application.
The front end runs on the client side in the browser, while the middle end
and back end run both on the server side. 31

15. Examples for how the intersection a) or union b) of classes could be sim-
ulated with the current user interface. 39

44 / 48

Bibliography

Bibliography

[Ali 09] Hilal Ali, Falk Scholer, James A. Thom & Mingfang Wu. User
interaction with novel web search interfaces. In Proceedings of
the 21st Annual Conference of the Australian Computer-Human
Interaction Special Interest Group: Design: Open 24/7, OZCHI
’09, pages 301–304, New York, NY, USA, 2009. ACM.

[Bast 07] Holger Bast, Alexandru Chitea, Fabian Suchanek & Ingmar We-
ber. ESTER: efficient search on text, entities, and relations. In
Proceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information retrieval,
SIGIR ’07, pages 671–678, New York, NY, USA, 2007. ACM.

[Broekstra 03] Jeen Broekstra, Arjohn Kampman & Frank van Harmelen.
Sesame: An Architecture for Storin gand Querying RDF Data
and Schema Information. In Spinning the Semantic Web, pages
197–222, 2003.

[Buchhold 10] Björn Buchhold. Susi: Wikipedia search using semantic index
annotations. Master’s thesis, University of Freiburg, 2010.

[CO-ODE 11] CO-ODE. The Manchester OWL Syntax. http://www.co-ode.
org/resources/reference/manchester_syntax/, June 2011.

[Corby 06] O. Corby, R. Dieng-Kuntz, F. Gandon & C. Faron-Zucker.
Searching the semantic Web: approximate query processing based
on ontologies. Intelligent Systems, IEEE, vol. 21, no. 1, pages 20
– 27, jan.-feb. 2006.

[DBpedia 11] DBpedia. About. http://wiki.dbpedia.org/About, June 2011.
[Di Martino 10] Beniamino Di Martino. An Approach to Semantic Information

Retrieval Based on Natural Language Query Understanding. In
Florian Daniel & Federico Facca, editeurs, Current Trends in Web
Engineering, volume 6385 of Lecture Notes in Computer Science,
pages 211–222. Springer Berlin / Heidelberg, 2010. 10.1007/978-
3-642-16985-4_19.

[DSpace 11] DSpace. End User Faq. https://wiki.duraspace.org/
display/DSPACE/EndUserFaq, June 2011.

[Gao 11] Mingxia Gao, Jiming Liu, Ning Zhong, Furong Chen & Chunnian
Liu. SEMANTIC MAPPING FROM NATURAL LANGUAGE
QUESTIONS TO OWL QUERIES. Computational Intelligence,
vol. 27, no. 2, pages 280–314, 2011.

[GoogleCode 11] GoogleCode. Communicate with a Server - FAQ - What
is the Same Origin Policy, and how does it affect GWT?
http://code.google.com/intl/de-DE/webtoolkit/doc/
latest/FAQ_Server.html#What_is_the_Same_Origin_
Policy,_and_how_does_it_affect_GWT?, June 2011.

45 / 48

http://www.co-ode.org/resources/reference/manchester_syntax/
http://www.co-ode.org/resources/reference/manchester_syntax/
http://wiki.dbpedia.org/About
https://wiki.duraspace.org/display/DSPACE/EndUserFaq
https://wiki.duraspace.org/display/DSPACE/EndUserFaq
http://code.google.com/intl/de-DE/webtoolkit/doc/latest/FAQ_Server.html#What_is_the_Same_Origin_Policy,_and_how_does_it_affect_GWT?
http://code.google.com/intl/de-DE/webtoolkit/doc/latest/FAQ_Server.html#What_is_the_Same_Origin_Policy,_and_how_does_it_affect_GWT?
http://code.google.com/intl/de-DE/webtoolkit/doc/latest/FAQ_Server.html#What_is_the_Same_Origin_Policy,_and_how_does_it_affect_GWT?

Bibliography

[Hahn 10] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Chris-
tian Herta, Scott Robinson, Michaela Bürgle, Holger Düwiger &
Ulrich Scheel. Faceted Wikipedia Search. In Wil Aalst, John My-
lopoulos, Michael Rosemann, Michael J. Shaw, Clemens Szyper-
ski, Witold Abramowicz & Robert Tolksdorf, editeurs, Business
Information Systems, volume 47 of Lecture Notes in Business
Information Processing, pages 1–11. Springer Berlin Heidelberg,
2010. 10.1007/978-3-642-12814-1_1.

[Hildebrand 06] Michiel Hildebrand, Jacco van Ossenbruggen & Lynda Hardman.
/facet: A Browser for Heterogeneous Semantic Web Reposito-
ries. In Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Mike Uschold & Lora Aroyo, edi-
teurs, The Semantic Web - ISWC 2006, volume 4273 of Lecture
Notes in Computer Science, pages 272–285. Springer Berlin /
Heidelberg, 2006. 10.1007/11926078_20.

[Hildebrand 07] Michiel Hildebrand, Jacco van Ossenbruggen & Lynda Hard-
man. An Analysis of Search-based User Interaction on the Se-
mantic Web. Rapport technique E0706, CWI. Information Sys-
tems [INS], 2007.

[Hoeber 07] O. Hoeber & Xue Dong Yang. User-Oriented Evaluation Methods
for Interactive Web Search Interfaces. In Web Intelligence and
Intelligent Agent Technology Workshops, 2007 IEEE/WIC/ACM
International Conferences on, pages 239 –243, nov. 2007.

[Hoeber 09] O. Hoeber. User Evaluation Methods for Visual Web Search In-
terfaces. In Information Visualisation, 2009 13th International
Conference, pages 139 –145, july 2009.

[Holzinger 10] A. Holzinger, S. Mayr, W. Slany & M. Debevc. The influence of
AJAX on Web usability. In e-Business (ICE-B), Proceedings of
the 2010 International Conference on, pages 1 –4, july 2010.

[Koutsomitropoulos 11] Dimitrios Koutsomitropoulos, Ricardo Borillo Domenech &
Georgia Solomou. A Structured Semantic Query Interface for
Reasoning-Based Search and Retrieval. In Grigoris Antoniou,
Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plex-
ousakis, Pieter De Leenheer & Jeff Pan, editeurs, The Semantic
Web: Research and Applications, volume 6643 of Lecture Notes
in Computer Science, pages 17–31. Springer Berlin / Heidelberg,
2011. 10.1007/978-3-642-21034-1_2.

[Lee-Delisle 11] Seb Lee-Delisle. HTML5 vs Flash - the af-
termath. http://sebleedelisle.com/2011/01/
html5-vs-flash-the-aftermath/, June 2011.

[Lei 06] Yuangui Lei, Victoria Uren & Enrico Motta. SemSearch: A
Search Engine for the Semantic Web. In Steffen Staab & Vojtech

46 / 48

http://sebleedelisle.com/2011/01/html5-vs-flash-the-aftermath/
http://sebleedelisle.com/2011/01/html5-vs-flash-the-aftermath/

Bibliography

Svátek, editeurs, Managing Knowledge in a World of Networks,
volume 4248 of Lecture Notes in Computer Science, pages 238–
245. Springer Berlin / Heidelberg, 2006. 10.1007/11891451_22.

[Mani 03] Murali Mani & Dongwon Lee. XML to Relational Conversion
Using Theory of Regular Tree Grammars. In Stéphane Bressan,
Mong Lee, Akmal Chaudhri, Jeffrey Yu & Zoé Lacroix, editeurs,
Efficiency and Effectiveness of XML Tools and Techniques and
Data Integration over the Web, volume 2590 of Lecture Notes in
Computer Science, pages 81–103. Springer Berlin / Heidelberg,
2003. 10.1007/3-540-36556-7_6.

[MPII 11] MPII. YAGO. http://www.mpi-inf.mpg.de/yago-naga/, June
2011.

[Neumann 08] Thomas Neumann & Gerhard Weikum. RDF-3X: a RISC-style
engine for RDF. Proc. VLDB Endow., vol. 1, pages 647–659,
August 2008.

[Paulson 05] L.D. Paulson. Building rich web applications with Ajax. Com-
puter, vol. 38, no. 10, pages 14 – 17, oct. 2005.

[Resnick 06] Marc L. Resnick & Misha W. Vaughan. Best practices and future
visions for search user interfaces. Journal of the American Soci-
ety for Information Science and Technology, vol. 57, no. 6, pages
781–787, 2006.

[W3C 11a] W3C. OWL 2 Web Ontology Language. http://www.w3.org/
TR/owl2-overview/, June 2011.

[W3C 11b] W3C. Resource Description Framework (RDF). http://www.
w3.org/RDF/, June 2011.

[W3C 11c] W3C. SPARQL Query Language for RDF. http://www.w3.org/
TR/rdf-sparql-query/, June 2011.

[Waitelonis 11] Jörg Waitelonis, Johannes P. Osterhoff & Harald Sack. More
than the Sum of its Parts: CONTENTUS – A Semantic Mul-
timodal Search User Interface. In Proceedings of Workshop on
Visual Interfaces to the Social and Semantic Web (VISSW), Co-
located with ACM IUI 2011, Feb 13, 2011, Palo Alto, US, CEUR
Workshop Proceedings, volume 694, 2011.

[Wikipedia 11] Wikipedia. Multitier architecture. http://en.wikipedia.org/
wiki/Multitier_architecture, June 2011.

[Wrigley 10] Stuart N. Wrigley, Dorothee Reinhard, Khadija Elbedweihy,
Abraham Bernstein & Fabio Ciravegna. Methodology and cam-
paign design for the evaluation of semantic search tools. In Pro-
ceedings of the 3rd International Semantic Search Workshop,
SEMSEARCH ’10, pages 10:1–10:10, New York, NY, USA, 2010.
ACM.

47 / 48

http://www.mpi-inf.mpg.de/yago-naga/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Multitier_architecture

Bibliography

[Zhou 07] Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang & Yong Yu.
SPARK: Adapting Keyword Query to Semantic Search. In Karl
Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il
Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana May-
nard, Riichiro Mizoguchi, Guus Schreiber & Philippe Cudré-
Mauroux, editeurs, The Semantic Web, volume 4825 of Lecture
Notes in Computer Science, pages 694–707. Springer Berlin /
Heidelberg, 2007. 10.1007/978-3-540-76298-0_50.

48 / 48

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of the Thesis

	2 Related Work
	2.1 ESTER & SUSI
	2.2 Faceted Wikipedia Search

	3 Search Content and Queries
	3.1 Search Content
	3.2 Query Language
	3.3 Query Results

	4 The User Interface
	4.1 Overview
	4.2 Main Features
	4.2.1 Interactive and Proactive
	4.2.2 The Proposal Boxes
	4.2.3 The Query Panel
	4.2.4 The Hits Area

	4.3 Advanced Features
	4.3.1 Bookmark and Browser History Support
	4.3.2 Customizable Layout

	4.4 Usage Examples
	4.4.1 Building Queries
	4.4.2 Refining Queries

	5 Realization
	5.1 Google Web Toolkit (GWT)
	5.2 Architecture
	5.2.1 Front End
	5.2.2 Middle End
	5.2.3 Back End

	5.3 Implementation Details
	5.3.1 Code Organization
	5.3.2 Application Workflow
	5.3.3 Difficulties

	5.4 Query Syntax

	6 Discussion
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Missing Features
	6.2.2 Additional Features
	6.2.3 User Evaluation

	A Appendix: More Example Queries
	List of Figures
	Bibliography

