Contextual Sentence Decomposition with Applications to Semantic Full-Text Search

Elmar Haussmann August 9th, 2011

A THE STATE OF THE

Albert-Ludwigs-Universität Freiburg

Agenda

- Motivation and Problem Definition
- Rule based Approach
- Machine Learning based Approach
- Evaluation
- Conclusion

Agenda

- Motivation and Problem Definition
- Rule based Approach
- Machine Learning based Approach
- Evaluation
- Conclusion

 To understand the motivation for Contextual Sentence Decomposition (CSD) we must understand the idea of Semantic Full-Text Search

 To understand the motivation for Contextual Sentence Decomposition (CSD) we must understand the idea of Semantic Full-Text Search

Example Query

plant edible leaves

Result Sentence

 Many false-positives caused by words, appearing in same sentence, but part of a different context

Result Sentence

- Many false-positives caused by words, appearing in same sentence, but part of a different context
- Apply natural language processing to decompose sentence based on context and search resulting "sentences" independently

Result Sentence

Original Sentence

Original Sentence

The usable parts of rhubarb are the medicinally used roots and the edible stalks, however its leaves are toxic.

Decomposed Sentence

- The usable parts of rhubarb are the medicinally used roots
- The usable parts of rhubarb are the edible stalks
- its leaves are toxic

Problem Definition

Contextual Sentence Decomposition

Contextual Sentence Decomposition (CSD) is the process of performing

- Sentence Constituent Identification (SCI) followed by
- 2. Sentence Constituent Recombination (SCR)

Sentence Constituent Identification

Identify specific parts of sentence

- Identify specific parts of sentence
- Differentiate 4 types of constituents

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses Albert Einstein, who was born in Ulm, ...

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses Albert Einstein, who was born in Ulm, ...
 - Appositions

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses Albert Einstein, who was born in Ulm, ...
 - Appositions Albert Einstein, a well-known scientist, ...

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses Albert Einstein, who was born in Ulm, ...
 - Appositions Albert Einstein, a well-known scientist, ...
 - List items

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses Albert Einstein, who was born in Ulm, ...
 - Appositions Albert Einstein, a well-known scientist, ...
 - List items

 Albert Einstein published papers on Brownian motion, the photelectric effect and special relativity.

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses Albert Einstein, who was born in Ulm, ...
 - Appositions Albert Einstein, a well-known scientist, ...
 - List items

 Albert Einstein published papers on Brownian motion, the photelectric effect and special relativity.
 - Separators

- Identify specific parts of sentence
- Differentiate 4 types of constituents
 - Relative clauses Albert Einstein, who was born in Ulm, ...
 - Appositions Albert Einstein, a well-known scientist, ...
 - List items

 Albert Einstein published papers on Brownian motion, the photelectric effect and special relativity.
 - Separators

 Albert Einstein was recognized as a leading scientist and in 1921 he received the Nobel Prize in Physics.

Original Sentence with Identified Constituents

The usable parts of rhubarb are the medicinally used roots and the edible stalks, however its leaves are toxic.

list item separator

Sentence Constituent Recombination

 Recombine identified constituents into subsentences

- Recombine identified constituents into subsentences
 - Split sentences at separators

- Recombine identified constituents into subsentences
 - Split sentences at separators
 - Attach relative clauses and appositions to noun (-phrase) they describe

- Recombine identified constituents into subsentences
 - Split sentences at separators
 - Attach relative clauses and appositions to noun (-phrase) they describe
 - Apply "distributive law" to list items

Original Sentence

Original Sentence

The usable parts of rhubarb are the medicinally used roots and the edible stalks, however its leaves are toxic.

Decomposed Sentence

- its leaves are toxic
- The usable parts of rhubarb are the medicinally used roots
- The usable parts of rhubarb are the edible stalks

Remarks

 Given identified constituents, recombination comparably simple - identification challenging part

- Given identified constituents, recombination comparably simple - identification challenging part
- Constituents possibly nested, e.g. relative clause can contain enumeration etc.

- Given identified constituents, recombination comparably simple - identification challenging part
- Constituents possibly nested, e.g. relative clause can contain enumeration etc.
- Resulting sub-sentences often grammatically correct but not require to be

- Given identified constituents, recombination comparably simple - identification challenging part
- Constituents possibly nested, e.g. relative clause can contain enumeration etc.
- Resulting sub-sentences often grammatically correct but not require to be
- References within a sentence have to be resolved beforehand

Agenda

- Motivation and Problem Definition
- Rule based Approach
- Machine Learning based Approach
- Evaluation
- Conclusion

Rule based Approach

Idea

 Devise hand-crafted rules by closely inspecting sentence structure

Idea

 Devise hand-crafted rules by closely inspecting sentence structure

Sentence containing Relative Clause

Koffi Annan, who is the current U.N. Secretary General, has spent much of his tenure working to promote peace in the Third World.

Idea

 Devise hand-crafted rules by closely inspecting sentence structure

Sentence containing Relative Clause

Koffi Annan, who is the current U.N. Secretary General, has spent much of his tenure working to promote peace in the Third World.

 Example: relative clause is set off by comma, starts with word ,,who" and extends to the next comma

Basic Approach

Identify "stop-words"

Basic Approach

Identify "stop-words"

Original Sentence with marked Stop-words

Basic Approach

Identify ,,stop-words"

Original Sentence with marked Stop-words

The usable parts of rhubarb are the medicinally used roots and the edible stalks, however its leaves are toxic.

 For each marked word decide if and which constituent it starts

Basic Approach

Identify "stop-words"

Original Sentence with marked Stop-words

- For each marked word decide if and which constituent it starts
- Determine corresponding constituent ends

Determine Constituent Starts

Original Sentence with Identified Stop-words

Determine Constituent Starts

If a verb follows but a noun preceds it:
 separator

Original Sentence with Identified Separator

Determine Constituent Starts

- If a verb follows but a noun preceeds it:
 - separator
- If it is no relative clause or apposition:
 next word list item start

Original Sentence with Identified List Item Start

Determine Constituent Starts

- If a verb follows but a noun preceds it:
 - separator
- If it is no relative clause or apposition:
 next word list item start
- First list item starts at noun-phrase preceding already discovered list item start

Original Sentence with all Identified List Item Starts

Determine Constituent Ends

For each start assign a matching end

Original Sentence with all Identified List Item Starts

Determine Constituent Ends

- For each start assign a matching end
- A list item extends to the next constituent start or the sentence end

Original Sentence with Identified Constituents

Natural Language is Tricky

Natural Language is Tricky

Difficult Sentence

Panofsky was known to be friends with Wolfgang Pauli, one of the main contributors to quantum physics and atomic theory, as well as Albert Einstein, born in Ulm and famous for his discovery of the law of the photoelectric effect and theories of relativity.

Natural Language is Tricky

Difficult Sentence

Panofsky was known to be friends with Wolfgang Pauli, one of the main contributors to quantum physics and atomic theory, as well as Albert Einstein, born in Ulm and famous for his discovery of the law of the photoelectric effect and theories of relativity.

Natural Language is Tricky

Difficult Sentence

Panofsky was known to be friends with Wolfgang Pauli, one of the main contributors to quantum physics and atomic theory, as well as Albert Einstein, born in Ulm and famous for his discovery of the law of the photoelectric effect and theories of relativity.

- Problems:
 - Apposition similar to an element of enumeration

Natural Language is Tricky

Difficult Sentence

Panofsky was known to be friends with Wolfgang Pauli, one of the main contributors to quantum physics and atomic theory, as well as Albert Einstein, born in Ulm and famous for his discovery of the law of the photoelectric effect and theories of relativity.

- Problems:
 - Apposition similar to an element of enumeration

Natural Language is Tricky

Difficult Sentence

Panofsky was known to be friends with Wolfgang Pauli, one of the main contributors to quantum physics and atomic theory, as well as Albert Einstein, born in Ulm and famous for his discovery of the law of the photoelectric effect and theories of relativity.

- Apposition similar to an element of enumeration
- Relative clause contains enumeration and starts in reduced form

Natural Language is Tricky

Difficult Sentence

Panofsky was known to be friends with Wolfgang Pauli, one of the main contributors to quantum physics and atomic theory, as well as Albert Einstein, born in Ulm and famous for his discovery of the law of the photoelectric effect and theories of relativity.

- Apposition similar to an element of enumeration
- Relative clause contains enumeration and starts in reduced form

Natural Language is Tricky

Difficult Sentence

Panofsky was known to be friends with Wolfgang Pauli, one of the main contributors to quantum physics and atomic theory, as well as Albert Einstein, born in Ulm and famous for his discovery of the law of the photoelectric effect and theories of relativity.

- Apposition similar to an element of enumeration
- Relative clause contains enumeration and starts in reduced form

Agenda

- Motivation and Problem Definition
- Rule based Approach
- Machine Learning based Approach
- Evaluation
- Conclusion

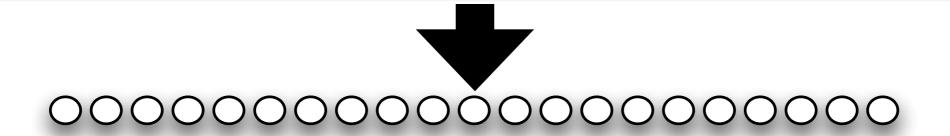
Idea

- Use supervised learning to train classifiers that identify the start and end of constituents
- Train Support Vector Machines for each constituent start and end

Idea

- Use supervised learning to train classifiers that identify the start and end of constituents
- Train Support Vector Machines for each constituent start and end

Original Sentence



Basic Approach

Apply classifiers in turn to each word

- Apply classifiers in turn to each word
- Ideally this would already give a correct solution

- Apply classifiers in turn to each word
- Ideally this would already give a correct solution
 - I. Apply separator classifier O

- Apply classifiers in turn to each word
- Ideally this would already give a correct solution
 - I. Apply separator classifier

 O
 - 000000000000000000
 - 2. Apply list item start classifier O

- Apply classifiers in turn to each word
- Ideally this would already give a correct solution
 - I. Apply separator classifier

 O
 - 000000000000000000
 - 2. Apply list item start classifier O

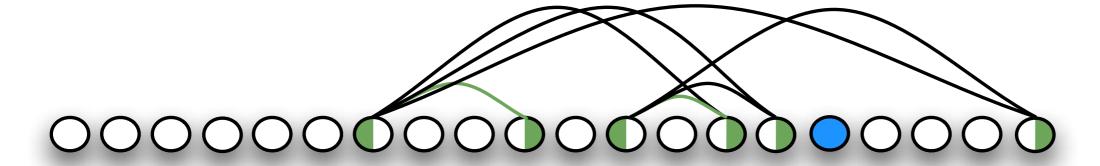
 - 3. Apply list item end classifier •

However classifiers are not perfect

- However classifiers are not perfect
- Some additional ends and beginnings might be identified

- However classifiers are not perfect
- Some additional ends and beginnings might be identified
- Decisions are local and do not consider admissible constituent structure

- However classifiers are not perfect
- Some additional ends and beginnings might be identified
- Decisions are local and do not consider admissible constituent structure



• Train classifiers that identify whether a span of the sentence denotes a valid constituent

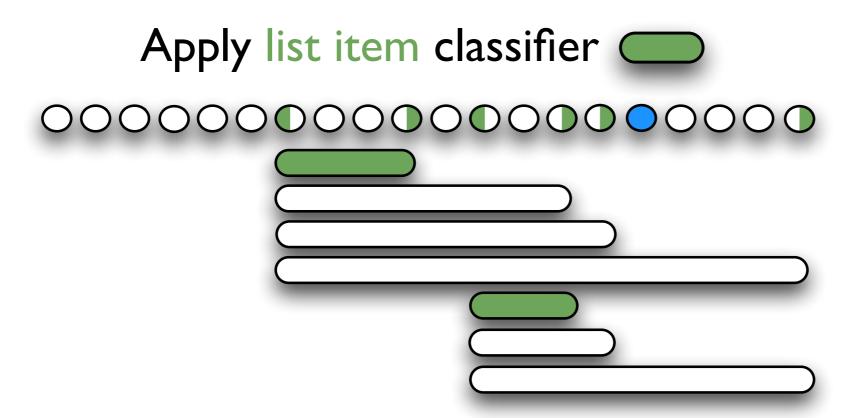
 Train classifiers that identify whether a span of the sentence denotes a valid constituent

Apply list item classifier

 Train classifiers that identify whether a span of the sentence denotes a valid constituent

Apply list item classifier

 Train classifiers that identify whether a span of the sentence denotes a valid constituent



Still, identified constituents might overlap

 Train classifiers that identify whether a span of the sentence denotes a valid constituent

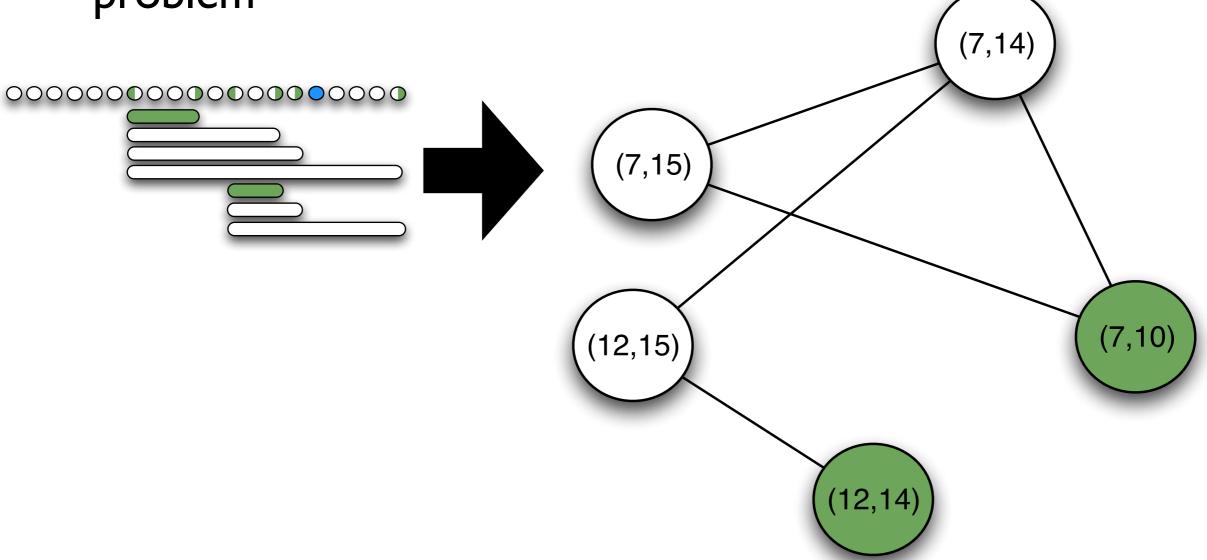
Apply list item classifier

- Still, identified constituents might overlap
- Structural constraints must be satisfied

Reduce to the maximum weight independent set problem

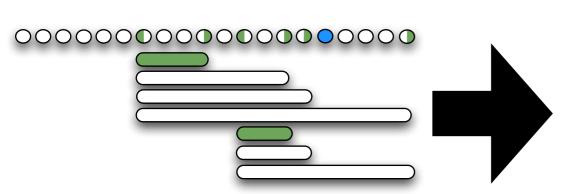
Reduce to the maximum weight independent set

problem

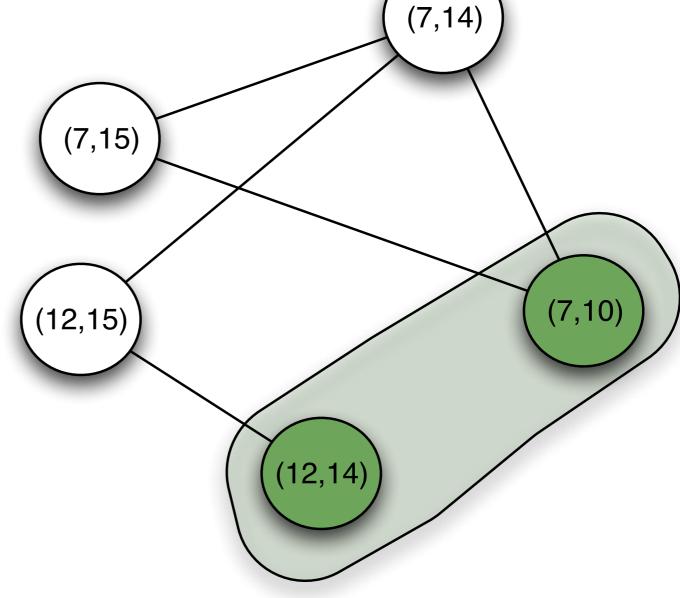


Reduce to the maximum weight independent set

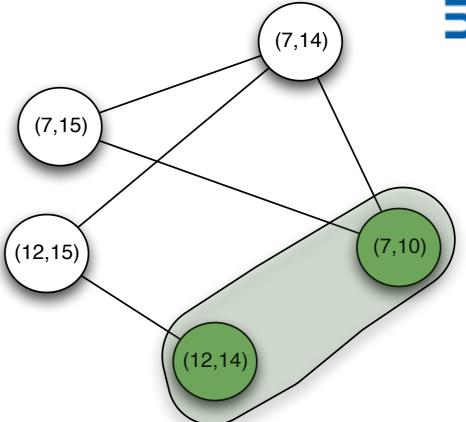
problem



Determine MWIS
 using enumeration
 or greedy
 approach for large
 problem sizes



Final result adheres to structural constraints

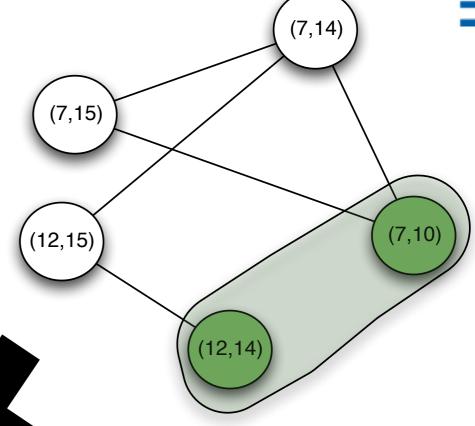


- Final result adheres to structural constraints
- More resistant to wrong "local" classifications



Final result adheres to structural constraints

 More resistant to wrong "local" classifications



Original Sentence with Identified Constituents

The usable parts of rhubarb are the medicinally used roots and the edible stalks, however its leaves are toxic.

Agenda

- Motivation and Problem Definition
- Rule based Approach
- Machine Learning based Approach
- Evaluation
- Conclusion

Evaluation of the different approaches on three levels

- Evaluation of the different approaches on three levels
 - I. Compare identification using a ground truth

- Evaluation of the different approaches on three levels
 - 1. Compare identification using a ground truth
 - 2. Compare resulting decomposition using a ground truth

- Evaluation of the different approaches on three levels
 - 1. Compare identification using a ground truth
 - 2. Compare resulting decomposition using a ground truth
 - 3. Evaluate influence on search quality by integrating with a search engine

I. Identification of Constituents

- Main problem for ML approach: classifier performance, too many false-positive/ negative classifications (e.g. F-measure for relative clause start 87% vs. 57% for list item start)
- Main problem for rule based approach: recognition of embedded structures, and complex long sentences

I. Identification of Constituents

	Rule based	ML based
F-measure	63.6%	47.4%

- Main problem for ML approach: classifier performance, too many false-positive/ negative classifications (e.g. F-measure for relative clause start 87% vs. 57% for list item start)
- Main problem for rule based approach: recognition of embedded structures, and complex long sentences

I. Identification of Constituents

	Rule based	ML based
F-measure	63.6%	47.4%

 Main problem for ML approach: classifier performance, too many false-positive/ negative classifications (e.g. F-measure for relative clause start 87% vs. 57% for list item start)

I. Identification of Constituents

	Rule based	ML based
F-measure	63.6%	47.4%

- Main problem for ML approach: classifier performance, too many false-positive/ negative classifications (e.g. F-measure for relative clause start 87% vs. 57% for list item start)
- Main problem for rule based approach: recognition of embedded structures, and complex long sentences

2. Resulting Decomposition

2. Resulting Decomposition

	Rule based	ML based
F-measure	64.5%	41.8%

2. Resulting Decomposition

	Rule based	ML based
F-measure	64.5%	41.8%

2. Resulting Decomposition

	Rule based	ML based
F-measure	64.5%	41.8%

3. Search Quality

Rule based approach

2. Resulting Decomposition

	Rule based	ML based
F-measure	64.5%	41.8%

- Rule based approach
 - Average relative increase in precision 35.15%

2. Resulting Decomposition

	Rule based	ML based
F-measure	64.5%	41.8%

- Rule based approach
 - Average relative increase in precision 35.15%
 - Absolute F-measure increase between 0.8% and 14%

3. Search Quality

Machine Learning approach

- Machine Learning approach
 - Average relative increase in precision 8.6%, absolute F-measure increase between 0.3% and 5%

- Machine Learning approach
 - Average relative increase in precision 8.6%, absolute F-measure increase between 0.3% and 5%
 - Decrease in precision and F-measure for 3 of 10 queries

Agenda

- Motivation and Problem Definition
- Rule based Approach
- Machine Learning based Approach
- Evaluation
- Conclusion

 Contextual Sentence Decomposition integral part of Semantic Full-Text Search

- Contextual Sentence Decomposition integral part of Semantic Full-Text Search
- Rule based approach viable, clear improvement

- Contextual Sentence Decomposition integral part of Semantic Full-Text Search
- Rule based approach viable, clear improvement
- Machine Learning based approach viable, currently less effective

- Contextual Sentence Decomposition integral part of Semantic Full-Text Search
- Rule based approach viable, clear improvement
- Machine Learning based approach viable, currently less effective
- A set of promising future work includes:

- Contextual Sentence Decomposition integral part of Semantic Full-Text Search
- Rule based approach viable, clear improvement
- Machine Learning based approach viable, currently less effective
- A set of promising future work includes:
 - Larger training set for ML approach, better feature selection and parameter tuning

- Contextual Sentence Decomposition integral part of Semantic Full-Text Search
- Rule based approach viable, clear improvement
- Machine Learning based approach viable, currently less effective
- A set of promising future work includes:
 - Larger training set for ML approach, better feature selection and parameter tuning
 - Further improvements of rules

- Contextual Sentence Decomposition integral part of Semantic Full-Text Search
- Rule based approach viable, clear improvement
- Machine Learning based approach viable, currently less effective
- A set of promising future work includes:
 - Larger training set for ML approach, better feature selection and parameter tuning
 - Further improvements of rules
 - Hybrid approach combining effective rules with ML classifiers

Thank you

Backup

Identification Results

Type	SCI	True	False-Neg	False-Pos	Precision	Recall	F-measure
REL	RULE-SCI	16	7	2	88.9%	69.6%	78%
	ML-SCI	13	10	4	76.5%	56.5%	65%
RELA	RULE-SCI	2	3	7	22.2%	40%	28.6%
	ML-SCI	3	2	13	18.8%	60%	28.6%
LIT	RULE-SCI	41	36	24	63.1%	53.2%	57.7%
	ML-SCI	24	53	24	50%	31.2%	38.4%
SEP	RULE-SCI	23	2	14	62.2%	92.5%	$\boxed{74.2\%}$
	ML-SCI	15	10	6	71.4%	60%	65.2%
TOTAL	RULE-SCI	82	48	47	63,6%	63,1%	63,3%
	ML-SCI	55	75	47	53,9%	42,3%	47,4%

Table 7.1: Evaluation of sentence constituent identification. Results for the rule based SCI (RULE-SCI) and machine learning based SCI (ML-SCI) are shown. Matched constituents must have same start and end.

Identification Begin/End Results

Type	SCI	True	False-Neg	False-Pos	Precision	Recall	F-measure
REL(RULE-SCI	18	5	0	100%	78.3%	87.8%
	ML-SCI	16	7	1	94.1%	69.6%	80%
REL)	RULE-SCI	16	7	2	88.9%	69.6%	78.0%
	ML-SCI	13	10	4	76.5%	56.2%	64.8%
RELA(RULE-SCI	3	2	6	33.3%	60%	42.9%
	ML-SCI	5	0	11	31.3%	100%	47.7%
RELA)	RULE-SCI	2	3	7	22.2%	40%	28.6%
	ML-SCI	3	2	13	18.8%	60%	28.6%
LIT(RULE-SCI	48	29	17	73.8%	62.3%	67.6%
	ML-SCI	32	45	16	66.7%	41.6%	51.2%
LIT)	RULE-SCI	50	27	15	76.9%	64.9%	70.4%
	ML-SCI	31	46	17	64.6%	40.3%	49.6%
SEP	RULE-SCI	23	2	14	62.2%	92.5%	74.2%
	ML-SCI	15	10	6	71.4%	60%	65.2%
TOTAL	RULE-SCI	160	75	61	72,4%	68,1%	70,2%
	ML-SCI	115	120	45	71,9%	48,9%	58,2%

Table 7.2: Results for the evaluations of identified starts and ends of constituents. The results for the rule based SCI (RULE-SCI) and machine learning based SCI (ML-SCI) are shown. For ML-SCI this represents the final result after inference and not an intermediate classification.

Begin/End Classifier Performance

Type	True	False-Neg	False-Pos	Precision	Recall	F-measure	Accuracy
REL(18	5	1	94.7%	78.3%	85.7%	99.5%
REL)	16	7	44	26.7%	69.6%	38.6%	95.5%
RELA(5	0	16	23.8%	100%	38.4%	98.7%
RELA)	3	2	5	37.5%	60%	46.2%	99.4%
LIT(39	36	22	63.9%	52%	57.3%	95.1%
LIT)	53	22	5	91.4%	70.7%	79.7%	97.8%

Table 7.3: Filtering phase classifier performance on the test set. For each constituent type we show the number of constituent starts and ends correctly identified, missed and erroneously identified. Accuracy in the last column is based on all 1189 instances of words classified.

Constituent Classifier Performance

Type	True	False-Pos	False-Neg	Precision	Recall	F-measure	Accuracy
REL	14	19	9	42.4%	60.9%	50%	87.4%
RELA	2	5	3	28.6%	40%	33.3%	96.4%
LIT	57	18	20	76%	74%	75%	82.9%

Table 7.4: Inference phase classifier performance on the test set. Accuracy in the last column is based on all 222 instances of constituents classified.

Evaluation

Decomposition Results

	True	False-Pos	False-Neg	Precision	Recall	F-measure
ML-CD	56	63	93	47%	37.6%	41.8%
RULE-CD	98	57	51	63.4%	65.8%	64.5%

Table 7.5: Results for the evaluation of contextual sentence decomposition using the Machine Learning (ML-CD) and Rule Based (RULE-CD) sentence constituent identification.

Evaluation

Evaluation Search Queries

ID	Query
A1	drug = died/death = :e:entity:[]:person:*
A2	united = states = elected = :e:entity:[]:president:*
A3	english = :e:entity:[]:sovereign:*
A4	political =: e:entity: p[]: writer:*
A5	computer = :e:entity:[]:scientist:*
$\overline{M1}$	edible = leaf/leaves = :e:entity:[]:plant*
M2	friend*=:ee:entity:alberteinstein:*=:e:entity:[]:person:*
M3	blood = sugar/glucose/:e:entity:[]:monosaccharide:*
	=:e:entity:[]:hormone:*
M4	die*/death=:ee:entity:diabetes:*=:e:entity:[]:politician:*
M5	disqualif*=doping=:e:entity:[]:athlete:*

Table 7.7: Queries for search quality evaluation. The prefix M indicates evaluation using a manually generated ground truth, and analogously the prefix A evaluation against an automatically generated ground truth. For brevity the queries have been shortened. The full queries can be found in the appendix.

Evaluation

Excerpt of Query Results

Query	Index	True	False-Neg	False-Pos	Precision	Recall	F-measure
A3	BASE	48	11	1409	3.29%	81.36%	4.37%
	ML-CD	48	11	1262	3.66%	81.36%	7.01%
	RULE-CD	47	12	1103	4.09%	79.66%	7.78%
M4	BASE	21	0	7	75%	100%	85.71%
	ML-CD	20	1	4	83.33%	95.23%	88.89%
	RULE-CD	19	2	1	95%	90.48%	92.68%
TOTAL	BASE	519	201	18731	2,7%	72,1%	5,2%
A1-A5	ML-CD	498	222	16546	2,9%	69,2%	5,6%
	RULE-CD	484	236	14654	3,2%	64,7%	6,1%
TOTAL	BASE	160	0	173	48%	100%	64,9%
M1-M5	ML-CD	136	24	131	50,9%	85%	63,7%
	RULE-CD	116	44	49	70,3%	72,5%	71,4%

Mapping to the maximum weight independent set problem

Build a graph

- Build a graph
- Insert node for each span

- Build a graph
- Insert node for each span
- Insert edge betweens spans that overlap or start at same word

- Build a graph
- Insert node for each span
- Insert edge betweens spans that overlap or start at same word
- Assign high weight if span was correctly classified

Difficult Sentence

Woodwards hypothesis is related to Dennis William Sciama's formulation of Mach's principle, a rather vague concept propounded by the philosopher Ernst Mach, which Albert Einstein viewed as something along the lines of "inertia originates in a kind of interaction between bodies"

- Problem: embedded relative clauses
- need to know what they attach to in order to embed correctly

Difficult Sentence

Harrison asserts the existence of female trinities, discusses the Horae as chronological symbols representing the phases of the Moon and goes on to equate the Horae with the Seasons, the Graces and the Fatesand the three seasons of the ancient Greek year, and notes that "The matriarchal goddess may well have reflected the three stages of a woman's life."

Problem: embedded list items

Difficult Sentence

The shooting left Jack with a lot of resentment towards people who dealt with drugs and caused him to let an innocent man fall to his death

Problem: list items start with verbs

Difficult Sentence

Four popular cocktails that require the use of a muddler are the Old-Fashioned made with whiskey, the mojito made with light rum, the caipirinha made with cachaca and the mint julep made with Bourbon Whiskey.

 Problem: list items contain verb phrases and look like the start of a new self-sufficient sentence