
Master Thesis - Applied Computer Science
Albert-Ludwigs-Universität Freiburg im Breisgau

Contextual Sentence Decomposition
with Applications to Semantic

Full-Text Search

Elmar Haussmann

July 14th, 2011

Albert-Ludwigs-Universität Freiburg im Breisgau
Faculty of Engineering

Department of Computer Science
Supervisor Prof. Dr. Hannah Bast



Supervisor
Prof. Dr. Hannah Bast

Primary Reviewer
Prof. Dr. Hannah Bast

Secondary Reviewer
Prof. Dr. Martin Riedmiller

Date
July 14th, 2011



Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work. I hereby also declare, that my thesis has not been prepared for another
examination or assignment, either wholly or excerpts thereof.

Freiburg, July 14th, 2011
Signature





Abstract

In this thesis, we introduce and study contextual sentence decomposition, which, in-
tuitively, decomposes a given sentence into parts that semantically “belong together”.
For example, a valid decomposition of the sentence “Usable parts of rhubarb include
the edible stalks and the medicinally used roots, however its leaves are toxic” are
the sub-sentences “Usable parts of rhubarb include the edible stalks”, “Usable parts
of rhubarb include the edible stalks” and “however its leaves are toxic”.
Our motivation for this problem comes from semantic full-text search. For a query
plant edible leaves, semantic full-text search returns passages where instances of a
plant, such as “rhubarb” (and not the word “plant”), are mentioned along with the
words “edible” and “leaves”. One of the results this query might erroneously return
is the original sentence above. With contextual sentence decomposition we avoid
this false-positive, while at the same time maintaining the true factual contents of
the original sentence.
We propose two approaches for our problem, one based on a set of rules and one using
machine learning. On a manually assembled ground truth, we achieve an F-measure
of about 65 percent for the former and of 40 percent for the latter. For the semantic
full-text search based on these approaches, evaluated on the English Wikipedia (27
GB of raw text), we achieve improvements nearly doubling the F-measure for some
queries.

i



ii



Zusammenfassung

Wir präsentieren und untersuchen Contextual Sentence Decomposition. Intuitiv geht
es dabei um die Zerlegung eines Satzes in Teile, die „inhaltlich zusammengehören“.
Zum Beispiel besteht eine gültige Zerlegung des Satzes „Usable parts of rhubarb
include the edible stalks and the medicinally used roots, however its leaves are toxic“
aus den sub-sentences „Usable parts of rhubarb include the edible stalks“, „Usable
parts of rhubarb include the edible stalks“ und „however its leaves are toxic“.
Die Motivation für dieses Problem hat ihren Ursprung in der semantischen Volltext-
Suche. Für eine Anfrage plant edible leaves, zum Beispiel, findet diese Textstellen in
denen eine Pflanze, wie „rhubarb“ (und nicht das Wort „plant“), zusammen mit den
Wörtern „edible“ und „leaves“ vorkommen. Eines der Ergebnisse, das diese Anfrage
fälschlicherweise zurückgeben könnte, ist der ursprüngliche Satz oben. Mit Hilfe von
Contextual Sentence Decomposition vermeiden wir dieses false-positive und behal-
ten gleichzeitig den richtigen, faktischen Inhalt des ursprünglichen Satzes bei.
Wir präsentieren zwei Ansätze für dieses Problem, einen basierend auf einer Menge
an Regeln und einen, der maschinelles Lernen verwendet. Auf einer händisch erstell-
ten Ground Truth erzielen wir ein F-measure von 65 Prozent für den ersten, und 40
Prozent für den zweiten Ansatz. Für die auf diesen Ansätzen basierende semanti-
sche Volltext-Suche, die auf der englischen Wikipedia (27GB reiner Text) untersucht
wurde, erzielen wir eine Verbesserung, die bis zur annähernden Verdopplung des F-
measures für einige Anfragen reicht.

iii



iv



Acknowledgments

First and foremost, I want to thank my supervisor Prof. Dr. Hannah Bast for
providing me with guidance and support as well as a countless number of ideas and
suggestions throughout this thesis. Working with her is a privilege and I very much
appreciate and enjoy it. Clearly, this thesis would not have been possible without
her.
I also want to thank my colleague Björn Buchhold for the many fruitful discussions
over countless amounts of coffee. I very much enjoy our inspiring collaboration.
Furthermore, I owe my gratitude to all who helped a lot by proofreading this docu-
ment, especially Alexander Gutjahr and Björn Buchhold.
Last but not least, I want to thank my girlfriend, Simonette, who had to endure me
and my lack of time during the last months. I cannot imagine having accomplished
this without her.

v



vi



Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Text Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Semantic Role Labeling and Clause Identification . . . . . . . . . . . 7

3 Problem Definition 9
3.1 Contextual Sentence Decomposition . . . . . . . . . . . . . . . . . . . 10
3.2 Sentence Constituent Types . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Natural Language Processing Preliminaries . . . . . . . . . . . . . . . 17

4 Sentence Constituent Identification Using Rules 19
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Finding Constituent Starts . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Finding Constituent Ends . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Sentence Constituent Identification Using Machine Learning 31
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Machine Learning and Support Vector Machines . . . . . . . . 33
5.1.2 Detailed Approach . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Feature Selection and Training Classifiers . . . . . . . . . . . . . . . . 37
5.2.1 Feature Representation . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Feature Selection for Constituent Start and End Classifiers . . 37
5.2.3 Feature Selection for Constituent Classifiers . . . . . . . . . . 39
5.2.4 Generating Training Sets and Training Classifiers . . . . . . . 39

5.3 Classifier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 Analysis on Training Set . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Analysis with Linear Kernel . . . . . . . . . . . . . . . . . . . 42

vii



5.3.3 Analysis with Radial Basis Function Kernel . . . . . . . . . . 43
5.4 Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.2 Mapping to the Maximum Weight Independent Set Problem . 47
5.4.3 Solving the Maximum Weight Independent Set Problem . . . 48

5.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Semantic Wikipedia Full-Text Search 51
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Integrating with the Existing Index . . . . . . . . . . . . . . . . . . . 52
6.3 Example Queries and Results . . . . . . . . . . . . . . . . . . . . . . 55

7 Evaluation 57
7.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Sentence Constituent Identification . . . . . . . . . . . . . . . . . . . 58

7.2.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Contextual Sentence Decomposition . . . . . . . . . . . . . . . . . . . 63
7.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Search Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusion 75
8.1 Summary and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 79

viii



List of Tables

5.1 F-Score: Top Five Features for Separator Classifier . . . . . . . . . . 42
5.2 F-Score: Top Three Features for Relative Clause Start Classifier . . . 42
5.3 Weight: Top Five Features for Separator Classification . . . . . . . . 43
5.4 Weight: Top Five Features against Separator Classification . . . . . . 43
5.5 Pull: Best Support Vector in favor of a Separator Classification . . . 45
5.6 Pull: Best Support Vector against a Separator Classification . . . . . 45
5.7 Distance: Feature Vector in favor of a Separator Classification . . . . 46
5.8 Distance: Feature Vector against a Separator Classification . . . . . . 46
5.9 Training Parameters for Classifiers. . . . . . . . . . . . . . . . . . . . 50

6.1 Example Sentence in Index Format with Recognized Entities. . . . . . 53
6.2 Decomposed Example Sentence in Index Format. . . . . . . . . . . . 54

7.1 Evaluation of Sentence Constituent Identification . . . . . . . . . . . 58
7.2 Evaluation of Identified Starts and Ends of Constituents. . . . . . . . 59
7.3 Filtering Phase Classifier Performance on the Test Set . . . . . . . . . 61
7.4 Inference Phase Classifier Performance on the Test Set . . . . . . . . 62
7.5 Evaluation of Contextual Sentence Decomposition . . . . . . . . . . . 64
7.6 Jaccard distances for Results of Contextual Sentence Decomposition . 65
7.7 Queries for Search Quality Evaluation . . . . . . . . . . . . . . . . . . 68
7.8 Search Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.9 Category Based Error Analysis for Queries M1-M5 . . . . . . . . . . 72

ix





1 Introduction

In this thesis, we introduce and study the problem of contextual sentence decompo-
sition that occurs as an important sub-task of semantic full-text search. To under-
stand the problem and its motivation we first require an understanding of semantic
full-text search.
Consider the task of composing a list of all plants that have edible leaves. A usual
approach is to perform a search on a large document collection, such as the English
Wikipedia, by formulating a keyword query like plant edible leaves and returning
passages in which all the words occur. Though feasible, the results would not be
satisfying, because we are not interested in the occurrences of the mere word “plant”,
but rather we are looking for instances of it such as “rhubarb”, “lemon” or “shallot”.
For the same query, semantic full-text search is able to return sentences that contain
an instance of a plant, for example “shallot”, along with the words “edible” and
“leaves”. Figure 1.1 shows a screenshot of the query running against the semantic
full-text search engine prototype Broccoli1.
One of the results returned is “Shallot: Also a member of the onion family, the edible
portion is mainly swollen leaves with a bit of stem”, because “Shallot” represents
an instance of a plant and it occurs with the words “edible” and “leaves”.
Instead of relying only on full-text, semantic full-text search combines it with struc-
tured knowledge based on an ontology that provides information about entities and
their relations. For example, this includes the facts that “rhubarb” and “shallot” are
plants.
With the above being a satisfactory result, another result that is returned by the
query is “Usable parts of rhubarb include the edible stalks and the medicinally used
roots, however its leaves are toxic”. Clearly the words “rhubarb”, “edible” and
“leaves” occur in the same sentence, but nonetheless the result is obviously wrong
because the leaves of rhubarb are in fact toxic. One can conclude that the words
“rhubarb”, “edible” and “leaves” do not “belong together” - they are part of different
factual information and appear in different contexts. To remedy this, some under-
standing of natural language is required, namely understanding that the words of
each of the passages “Usable parts of rhubarb include the edible stalks” , “Usable parts

1Broccoli is ongoing work at the Chair for Algorithms and Data Structures of the University of
Freiburg. It is based on SUSI(Wikipedia Search Using Semantic Index Annotations) [Buchhold
(2010)] and CompleteSearch [Bast and Weber (2007)] and uses a new user interface [Baeurle
(2011)].

1



Chapter 1 Introduction

Figure 1.1: Screenshot of the semantic full-text search prototype Broccoli. The
screenshot shows the query for plants with edible leaves.

of rhubarb include the medicinally used roots” and “however its leaves are toxic” be-
long to the same context, but that besides that, no other words are part of a same
context. If the original search is restricted to each of these passages we can elimi-
nate the false result and provide a semantically just search. This thesis is concerned
with the natural language processing required for decomposing a sentence in the
just described fashion.

Consider another result that is returned by the query: “Broccoli: the edible portion
is stem tissue, flower buds, and some small leaves”. This is an acceptable result
because broccoli is indeed a plant and the words “Broccoli”, “edible” and “leaves”
appear in the same context. However, “Bananas are eaten deep fried, or steamed in
glutinous rice, which is wrapped in a banana leaf ” is not an acceptable result, because
the words “Bananas”, “eaten”2 and “leaf ” do not belong together. To provide the
intuition on the required natural language processing we can identify several parts in
the first sentence: “Broccoli: the edible portion is”, “stem tissue”, “flower buds” and
“some small leaves”. We can recombine these to the passages “Broccoli: the edible
portion is stem tissue”, “Broccoli: the edible portion is flower buds” and “Broccoli:
the edible portion is some small leaves”. For the second sentence one can then identify
the parts “Bananas are eaten”, “deep fried”, ”steamed in glutinous rice” and “which
is wrapped in a banana leaf ” and recombine these parts to the passages “Bananas are
eaten deep fried”, “Bananas are steamed in glutinous rice” and “glutinous rice, which
is wrapped in a banana leaf ”. If we then consider the results of our intuitive process
separately it becomes clear that pre-processing sentences this way and applying the

2In this case we assume that the search query was formulated in such a way that results contain
the word “edible” or the word “eaten”.

2



1.1 Contributions

same search strategy will eliminate the wrong search results but keep the correct
ones.

This thesis provides a definition, implementation and analysis of the intuitive process
just described. The overall process3, contextual sentence decomposition, consists of
the two tasks sentence constituent identification (SCI) to identify certain parts of
a sentence and sentence constituent recombination (SCR) to recombine these parts.
The result is then a set of sub-sentences, where each sub-sentence consists of words
originating from the same factual context and therefore represents some factual
information. By applying contextual sentence decomposition as a pre-processing
step we aim at providing the semantic full-text search capabilities described above.
To the best of our knowledge this has not been studied before.

Our goal is two-fold. On the one hand we want to find a viable and efficient approach
for an implementation. On the other hand we want to evaluate how well contextual
sentence decomposition works in terms of improving search quality. Although the
decomposition can be performed as a pre-processing step, the amount of full-text
data is huge, e.g. 27GB of raw text for the current English Wikipedia, and thus
the approach must also allow an efficient implementation. This rules out approaches
performing deep natural language processing, for example the construction complete
syntactic parse trees. The approaches we provide work on a more shallow and
efficient level of natural language processing.

The next section outlines the main contributions of this thesis and section 1.2 then
describes the structure of this thesis.

1.1 Contributions

The following are the main contributions which are part of this thesis:

• The introduction and definition of a new problem: contextual sentence de-
composition consisting of the sub-tasks sentence constituent identification and
sentence constituent recombination

• Two approaches to and implementations of SCI; one based on a set of manually
crafted rules and one based on Machine Learning techniques, utilizing Support
Vector Machines and an inference algorithm

• An implementation of SCR to perform contextual sentence decomposition by
combining it with an SCI approach from above

• The incorporation of contextual sentence decomposition into a semantic search
engine to provide semantic full-text search

3We deliberately decided to formulate CSD as a (computational) process (instead of as a problem),
and in the following also refer to it as such. The definition as a process proved to be more
intuitive and flexible.

3



Chapter 1 Introduction

• An extensive evaluation and comparison of the different approaches to SCI,
their influence on the resulting contextual sentence decomposition and overall
search quality

1.2 Thesis Structure

The rest of this thesis is structured as follows.
• Chapter 1: Introduction provided the motivation for this thesis, gave some

intuition on the tasks involved for contextual sentence decomposition and out-
lined our main contributions.
• Chapter 2: Related Work gives an overview of other work and research areas

that are in one way or another related to this thesis. We argue why other
approaches in natural language processing (by themselves) are not sufficient
for what we are trying to achieve.
• Chapter 3: Problem Definition provides a detailed problem statement in-

cluding a formal definition of contextual sentence decomposition and its sub-
tasks sentence constituent identification and sentence constituent recombina-
tion, as well as various examples.
• Chapter 4: Sentence Constituent Identification Using Rules describes

the first approach to SCI. We present some manually crafted rules and provide
pseudo-code for the relevant parts that describe their implementation on a high
level.
• Chapter 5: Sentence Constituent Identification Using Machine Learn-

ing describes the second, alternative approach to SCI. We show how Machine
Learning techniques together with an inference algorithm can be applied to
solve this problem.
• Chapter 6: Semantic Wikipedia Full Text Search provides a description of

how we integrate contextual sentence decomposition with an existing search
engine in order to obtain a fully functional semantic full-text search engine
benefiting from CSD.
• Chapter 7: Evaluation compares the two approaches to sentence constituent

identification both with respect to their direct results and their influence on the
overall results for contextual sentence decomposition. Finally we also provide
an analysis of the qualitative improvements of semantic full-text incorporating
CSD.
• Chapter 8: Discussion sums up our contributions, points out shortcomings

and outlines further research directions.

4



2 Related Work

In this chapter we introduce some work and research areas that are related to the
topics of this thesis. To the best of our knowledge the exact goal we are pursuing
is unique and not standard in natural language processing. Nonetheless, there are
some research areas that in one way or the other relate to the tasks at hand and are
worth mentioning.

2.1 Text Simplification

One of the areas closely related to contextual sentence decomposition is Text Simpli-
fication, also referred to as Syntactic Simplification. As the name implies it describes
the process of simplifying text using basically two different approaches [Siddharthan
(2003)]:
• Reducing lexical complexity, for example by exchanging infrequently used

words against well known synonyms.
An example is exchanging the word “legible” with “readable” [Siddharthan
(2003)].
• Reducing syntactical complexity, for example by splitting long sentences into

several smaller sentences that are easier to understand.
An example is simplifying “...extracted the £75 on-the-spot cash fine which
has outraged him and other clamped motorists...” to “... extracted the £75
on-the-spot cash fine. It has shocked him and other clamped motorists...” [Sid-
dharthan (2003)].

According to [Chandrasekar et al. (1996)], one of the first works dedicated to the
topic, Text Simplification is based on mainly two motivations. On the one hand the
simplified text is easier to read and understand for humans with reading disabili-
ties, such as aphasics. On the other hand it can provide a pre-processing step for
parsers, because parsing shorter sentences is computationally cheaper. The parses
of the smaller sentences can then be combined to gain the parse of the original
full sentence. Usually the result of Text Simplification is some form of a “simple
sentence” that is defined using a set of constraints. For example, an Easy Access
Sentence [Klebanov et al. (2004)] has to be grammatical, can contain only one finite
verb and must adhere to the semantics of the original sentence. This shall guarantee
that the result remains readable for humans, at the same time preserving meaning
and informational content.

5



Chapter 2 Related Work

Note that for a human the ordering of the resulting sentences plays a crucial role
because anaphoric relations between elements, or in a broader sense text cohesion,
must be preserved.
Consider the example from [Siddharthan (2003)]:

“Mr. Anthony, who runs an employment agency, decries program trading, but he
isn’t sure it should be strictly regulated.”

which is simplified to:

“Mr Anthony decries program trading. Mr Anthony runs an employment agency.
But he isn’t sure it should be strictly regulated.”

Here the simplified version does not preserve the original meaning because “it” in
the simplified sentence seems to refer to “employment agency” instead of “program
trading”. However, a re-ordering of the sentences changes this.
The idea of Text Simplification differs from contextual sentence decomposition in
the following ways. First of all we note that of course the motivation is different.
Whereas the main motivation of Text Simplification lies in really simplifying the
text for human readers our decomposition is of a rather “mechanical” nature, that
is designed to be input to a full-text search engine. We neither require the resulting
sub-sentences to be grammatically correct nor do we impose any other constraint
on the content. However, as we will see, the process is designed in a way that most
sub-sentences are in fact grammatically correct, something we gladly accept. We are
also not concerned with the order of sub-sentences and instead we assume that all
required anaphoric resolution has already taken place. Furthermore, as we will see,
we tolerate slight losses of factual information, for example in causal or temporal
dependencies.
To this respect contextual sentence decomposition is the easier task, and after all
this is the intentional result of not imposing unnecessary constraints, thus enabling
a faster and easier implementation. Nonetheless contextual sentence decomposition
considers structures the Text Simplification systems we are aware of simply ignore.
For example, the decomposition of enumerations, as in the sentence below

“Chaplin added Eric Campbell, Henry Bergman, and Albert Austin to his stock
company.”

which shall be decomposed into:
• “Chaplin added Eric Campbell to his stock company”
• “Chaplin added Henry Bergman to his stock company”
• “Chaplin added Albert Austin to his stock company”

6



2.2 Semantic Role Labeling and Clause Identification

Altogether Text Simplification is of different motivation and nature, but some of
the basics tasks performed are similar. Thus a look at the approaches of Text
Simplification might provide a direction. The main systems are based on a set of
hand-crafted rules [Siddharthan (2003)], a complete dependency parse [Klebanov
et al. (2004)] or a Lexical Tree Adjoining Grammar combined with rules [Chan-
drasekar et al. (1996)]. All of the approaches besides the set of hand-crafted rules
are computationally expensive - a burden we are not willing to take. The fact that
some rule-based systems, e.g. [Siddharthan (2003)], perform well according to their
authors, motivates devising an own set of rules.

2.2 Semantic Role Labeling and Clause Identification

Semantic Role Labeling and Clause Identification are related to this thesis because
they represent natural language processing tasks that are to some extent similar to
what we are trying to achieve with sentence constituent identification. Although
their goal is of a different nature we may benefit by including them or learn from
the way they are implemented. We provide a short description and also explain why
and to what extent they differ.

Semantic Role Labeling. The task of Semantic Role Labeling is “to recognize
arguments of verbs in a sentence, and label them with their semantic role” [Carreras
and Màrques (2004), p.1]. Each verb of a sentence has one or more arguments related
to it, also providing the semantic role of the respective arguments. For example, in
the sentence

“[A0Chaplin] added [A1Eric Campbell, Henry Bergman, and Albert Austin] [A2to
his stock company].”

the verb “added” has as arguments the subject (A0) “Chaplin”, the object (A1)
“Eric Campbell, Henry Bergman, and Albert Austin” and the indirect object (A2)
“to his stock company”. The possible argument roles of each verb are predefined.
Clearly the semantic identification of roles might provide a basis for a contextual
decomposition. However, we note that our current definition of CSD does not require
the level of detail provided by Semantic Role Labeling. Consider the in fact simple
sentence

“[A0Chaplin] added [A1Eric Campbell] [A2to his stock company] [AM−T MP in 1915].”

where additionally a temporal argument was found. Yet we do not require this
information, in fact we are fine with leaving the sentence as is. This would not
be a problem by itself, but the price to pay for such detail is processing speed.

7



Chapter 2 Related Work

Most accurate Semantic Role Labeling approaches are based on the output of a full
syntactic parse [Carreras and Màrques (2004)], which is unacceptable in terms of
processing speed for the amount of data we need to process. On the other hand
known approaches based on many shallow pre-processing steps only deliver moder-
ate performance with best F-measures below 70% [Carreras and Màrques (2004)],
and no major recent improvements have taken place. Furthermore, for the first sen-
tence above we realize that the elements of the enumeration “Eric Campbell, Henry
Bergman...” are not further distinguished - as we will see something we want to
provide. Altogether, this makes Semantic Role Labeling an interesting related work
and a possible part of future research, but it currently can not provide a basis for
contextual sentence decomposition, nor can we benefit from actual implementations
because of the required expensive pre-processing steps.

Clause Identification. We refer to Clause Identification as described in the shared
task of the Conference on Natural Language Learning of 2001 as “dividing text into
clauses” [Sang and Déjean (2001), p.1]. Roughly, clauses are word sequences which
contain a subject and a predicate that form a hierarchical structure. For example,
in the following sentence the clauses are indicated by matching brackets:

“(Coach them in (handling complaints) (so that (they can resolve problems
immediately)).)”

As we can see the clauses are type-less. The definition of clauses is detail is based
on the typed clauses of a full parse tree of the english grammar. For our concerns
it is enough to realize that the clauses do not reflect most of the sentence parts we
need to identify for CSD. For example, enumerations as in

“(Ship companies carrying bulk commodities, such as oil, grain, coal, and iron ore,
have been able (to increase their rates in the last couple of years).)”

are completely ignored, as are appositions and certain forms of relative clauses start-
ing with participles, all of which we also require. What is more interesting to us
is the type of problem solved. It is a hierarchical identification of constituents -
something we require as well, but for typed constituents as we will see. Further-
more, the machine learning based approaches presented in [Sang and Déjean (2001)]
show good performance with F-measures of around 90% for the best systems. We
can conclude that Clause Identification can also not build the basis for contextual
sentence decomposition, but that the problem solved is similar to the task at hand,
which also motivates a machine learning based approach.

8



3 Problem Definition

Having already outlined the basic motivation of this thesis, this chapter gives a more
detailed definition and description of the problem at hand and how we plan to tackle
it. We formally introduce contextual sentence decomposition and its sub-tasks but
start with an example.
We want to decompose sentences based on context of contained words. Consider
again our query for plants with edible leaves. One of the results might be the following
sentence:

“Usable parts of rhubarb include the edible stalks and the medicinally used roots,
however its leaves are toxic.”

This obviously wrong result is caused by the fact that “rhubarb”4, “edible” and
“leaves” appear in the same sentence. What we therefore want to achieve is a
decomposition of this sentence into groups of words that “belong together”:
• “Usable parts of rhubarb include the edible stalks”

• “Usable parts of rhubarb include the medicinally used roots”

• “however its leaves are toxic”

The above shall be the result of contextual sentence decomposition: a set of sub-
sentences that result from a decomposition based on the context of words within
the sentence. Words of the same context in the original sentence result in the same
sub-sentence. The words “rhubarb”, “edible” and “leaves” now no longer appear in
the same sub-sentence and consequently searching each sub-sentence independently
in the same fashion as before will eliminate the wrong result. This allows semantic
full-text search adhering to the factual content of the original sentence.
We can achieve the decomposition by using operations only on the syntactic level.
For this we first identify certain parts of a sentence and then recombine the parts
into sub-sentences using simple operations. For example, in our sentence from above
we can identify that “the edible stalks” and “the medicinally used roots” are part
of an enumeration and that “however its leaves are toxic” is another self-sufficient
sentence. By combining each of the enumeration parts with its beginning to create a

4We can assume the knowledge about rhubarb being a plant is incorporated into the search
engine - an assumption that holds for the actual search engine we use with contextual sentence
decomposition.

9



Chapter 3 Problem Definition

sub-sentence and creating a sub-sentence from the self-sufficient, contained sentence
we achieve the desired decomposition.
We call the first phase of this process sentence constituent identification (SCI) and
use it to identify typed constituents on the syntactic level. Using a set of operations
we then recombine the identified constituents into sub-sentences in the sentence
constituent recombination (SCR) phase. These are the two building blocks that
make up contextual sentence decomposition.
The rest of this chapter is organized as follows. The next section gives a detailed
definition of contextual sentence decomposition. This includes the definition of
sentence constituent identification as well as sentence constituent recombination.
We then present the set of sentence constituent types in detail in section 3.2. The
final section provides some preliminaries of natural language processing required for
understanding the remaining parts of this thesis.

3.1 Contextual Sentence Decomposition

We provide a definition of the overall process of contextual sentence decomposi-
tion by formally defining its sub-processes sentence constituent identification and
sentence constituent recombination.
Contextual sentence decomposition is the result of first applying sentence constituent
identification, followed by sentence constituent recombination. SCI differentiates
between three basic constituent types, and we describe their notions using examples.
A relative clause constituent Ri has an attachment ai it closer describes. For exam-
ple, in the following sentence

“Chaplin, who was born in London on the 16th of April 1889 , grew up in
Lambeth.”

the attachment a1 “Chaplin” is described by the relative clause constituent R1 “who
was born in London on the 16th of April 1889”. The i-th enumeration in a sentence
is described by list item constituents Lij and the words following and preceding it:
the list contexts ci−1 and ci. For example, in the following sentence

“Chaplin added Eric Campbel, Henry Bergman and Albert Austin to his stock
company.”

the list context c0, “Chaplin added” is followed by the enumeration consisting of list
items L11, “Eric Campbel”, L12, “Henry Bergman” and L13, “Albert Austin” and a
final list context c2, “to his stock company”. Of course, a sentence can have more
than one enumeration.

10



3.1 Contextual Sentence Decomposition

The last constituent type is a separator constituent, which splits a sentence into
self-sufficient parts. For example, the sentence

“While in Prague he met Albert Einstein for the first time and afterwards they
remained close friends.”

can be split into self-sufficient parts “While in Prague he met Albert Einstein for
the first time” and “afterwards they remained close friends” . We can describe this
using an enumeration consisting of the list items L11, “While in Prague...”, and
L12,”afterwards they...” and empty list contexts.

Definition 1. Given a sentence S, one level of sentence constituent identifica-
tion (1-level SCI) yields r relative clause constituents R1, ..., Rr and their attach-
ments a1, ..., ar, where r ≥0, as well as l enumerations consisting of the list items
L11...L1m1 , ..., Ll1...Llml

and their list contexts c0, ..., cl, where l ≥0. A complete sen-
tence constituent identification (SCI) of S recursively applies 1-level SCI to each Ri

and each Ljk.

Remark. Note that all Ri are substrings of S whereas c0L11...L1m1 ...cm−1Llml
cm is a

subsequence. The two are disjoint, i.e. the exact words at their position that make
up Ri are not part of the subsequence, however, the corresponding attachments, ai,
are.

Example 1. Consider the sentence “Chaplin, who added Eric Campbell , Henry
Bergman, and Albert Austin to his stock company, was born in London on the 16th
of April 1889.”. SCI identifies the relative clause constituent R1, ”who added Eric
Campbell, Henry Bergman, and Albert Austin to his stock company”, and its attach-
ment a1, “Chaplin”. On the contained level of R1 it identifies one enumeration con-
sisting of the list item constituents L11, “Eric Campbell”, L12, “Henry Bergman”,
L13, “Albert Austin” with the list contexts c0, “who added” and c1, “to his stock
company”.

Example 2. Consider the (fictitious) sentence “The contemporary scientists Stephen
Hawking, Richard Dawkins and Anthony James Legget were invited to the Nobel
Prize award ceremonies and the Pulitzer Prize award ceremonies”. SCI identifies
two enumerations. The first one consists of the list item constituents L11, “Stephen
Hawking”, L12, “Richarrd Dawkins”, L13, “Anthony James Legget” and the list con-
text c0, “The contemporary scientists”. The second one consists of the list items
L21, “Nobel Prize award ceremonies”, L21, “Pulitzer Prize award ceremonies” and
the list context c1, “were invited to”.

11



Chapter 3 Problem Definition

We can now define sentence constituent recombination.

Definition 2. Given a sentence S, let R1, ..., Rr, a1, ..., ar, L11...L1m1 , ..., Ll1...Llml
,

c0, ..., cl be r relative clause constituents, their attachments, l enumerations, their list
contexts, respectively, of one level of SCI. Then sentence constituent recombination
(SCR) computes the sub-sentences as SCR(S) = SCRR(S) ∪ SCRL(S), where
SCRR(S) and SCRL(S) are defined as follows. For r = 0, SCRR(S) = ∅ and for
l = 0, SCRL(S) = {c0}. For r > 0 or l > 0:

SCRR(S) = { aisi : si ∈ SCRL(Ri)} ∪
⋃

1≤i≤r

SCRR(Ri) ∪
l⋃

j=1

mj⋃
k=1

SCRR(Ljk)

SCRL(S) = { cos1c1...cm−1smcm : ∀i, 1 ≤ i ≤ l ∃j, 1 ≤ kj ≤ mi, si ∈ SCRL(Likj
)}

We illustrate the definition continuing with the examples from above.

Example 3. For the sentence of example 1 above, after performing SCI as de-
scribed, the sub-sentences are computed as follows. SCRR(R1) attaches the results
of SCRL(R1) to a1, “Chaplin”. On the contained level, R1 consists of a list enu-
meration with list items L11,L12,L13 and list contexts c0 and c1. Because these list
items are not further nested, the recursive applications of SCRL on the single list
items result in exactly the sequences of words they are made up of. These are then
combined to the sequences c0L11c1, c0L12c1, c0L13c1 and each of it is attached to a1
resulting in the following sub-sentences:

• “Chaplin who added Eric Campbell to his stock company”
• “Chaplin who added Henry Bergman to his stock company”
• “Chaplin who added Albert Austin to his stock company”

Furthermore the extraction of list items on the highest level SCRL(S) returns c0,
which as previously noted, does contain the relative clause constituents and therefore
corresponds to the last sub-sentence:
• “Chaplin was born in London on the 16th of April 1889”

Example 4. For the sentence of example 2 above, after performing SCI as de-
scribed, the sub-sentences are computed as follows. The sentence does not contain
any relative clause constituents, therefore SCRR(S) results in the empty set. The
recursive applications of SCRL on the list items L11, L12,L13,L21 andL22 result in
exactly the sequence of words they are made up of. The enumeration L11, L12,L13
with its list context c0 and the enumeration L21,L22 with list context c1 are therefore
combined to c0L11c1L21, c0L12c1L21, c0L13c1L21, c0L11c1L22, c0L12c1L22, c0L13c1L22,
which are the desired the sub-sentences:

• “The contemporary scientists Stephen Hawking were invited to the Nobel Prize
award ceremonies”

12



3.1 Contextual Sentence Decomposition

• “The contemporary scientists Richard Dawkins were invited to the Nobel Prize
award ceremonies”

• “The contemporary scientists Anthony James Legget were invited to the Nobel
Prize award ceremonies”

• “The contemporary scientists Stephen Hawking were invited to the Pulitzer
Prize award ceremonies”

• “The contemporary scientists Richard Dawkinswere invited to the Pulitzer Prize
award ceremonies”

• “The contemporary scientists Anthony James Legget were invited to the Pulitzer
Prize award ceremonies”

This concludes the definition of SCI and SCR with the introduction of a more
intuitive notation. To denote a sentence with identified constituents to the reader a
notation using brackets is more convenient. For example, the sentence with identified
constituents from example 1 above, can be described as follows:

“Chaplin, (RELwho added (LIT Eric Campbell)LIT , (LIT Henry Bergman)LIT , and
(LIT Albert Austin)LIT to his stock company)REL, was born in London on the 16th

of April 1889.”

Matching brackets identify the constituent and the subscript gives the constituent
type. This is the notation we follow throughout this thesis.

We conclude the problem definition with some remarks about contextual sentence
decomposition.

Due to the detail of our definition no further description of an SCR implementation
is required. The central problem of CSD is therefore the task of SCI: identifying
constituents and a corresponding structure that properly reflects the constituents
and their context in the sentence. Because it was irrelevant to the definition, we have
only considered one type of relative clause constituent so far. There is another type
of relative clause constituent: the apposition constituent. All constituent types are
described in detail in the next section. Furthermore, the definition of SCI includes
the identification of attachments for relative clauses. We note that our approaches
do not explicitly identify those, but use a simple heuristic, attaching relative clauses
to the closest noun that precedes them.

The resulting sub-sentences, as formally defined above, are sequences, however, for
the intended use in semantic full-text search we only require the sub-sentences to
be multi-sets. We do not require them to be grammatically correct (although this is
actually the case for most of them) and the order of words within a sub-sentence is
irrelevant as well. However, frequencies of words may be relevant for search internal
ranking.

13



Chapter 3 Problem Definition

The process of CSD is designed to avoid adding factual information that was not
present in the original sentence. More importantly however, we also have to avoid
losing factual information due to the decomposition. Consider the following sen-
tence:

“While in Prague Paul Ehrenfest met Albert Einstein for the first time and
afterwards they remained close friends.”

There are two obvious sub-sentences that can be extracted:

• “While in Prague Paul Ehrenfest met Albert Einstein for the first time”

• “afterwards they remained close friends.”

To avoid losing information we assume that all references, also called “anaphora”,
within the sentence were resolved beforehand. In the example above this means that
it is known that “they” in the second sub-sentence refers to “Paul Ehrenfest” and
“Albert Einstein”. Therefore, each sub-sentence can be considered independently
and is self-sufficient, even after decomposition. However, in the above sentence
another piece of information got lost during decomposition. The temporal relation
that Paul Ehrenfest and Albert Einstein remained friends after they met in Prague
is no longer present when considering each sub-sentence independently. However, we
argue that this is impractical to avoid with reasonable effort and also unnecessary
for our intended use. Because the sub-sentences are intended for use in semantic
full-text search one must take one step back and realize that formulating a query
for such a fact is a hard task in the first place. This would be asking for queries like
“What happened after Paul Ehrenfest met Albert Einstein in Prague for the first
time?” or “After what did they remain close friends?”. Given these are questions
that, from our experience, hardly occur and are hard to formulate, we can safely
accept the loss of these temporal or causal relations. Besides those temporal or
causal relations all the relevant information should, of course, be preserved during
decomposition.

A final subtle detail to note is that the process of contextual sentence decomposition
deliberately does not define the exact extent of decomposition. It could for example
be argued whether the sub-sentence “Chaplin was born in London on the 16th of
April 1889” should be split further into “Chaplin was born in London” and “Chaplin
was born on the 16th of April 1889”. It is indeed an open question to which extent
this is reasonable for semantic full-text search, but the definition plays to our advan-
tage. The degree of freedom allows us to experiment with different strategies and by
adapting the SCI and SCR phrases we are free to do so in a later implementation.

What remains open is a detailed description of the different constituent types. This
is provided in the next section.

14



3.2 Sentence Constituent Types

3.2 Sentence Constituent Types

In the following we describe four different constituent types used in contextual sen-
tence decomposition and give their grammatical or semantic relations. For illustra-
tion purposes an example is provide with each type.

Relative Clause Constituent. As the name implies a relative clause constituent
resembles a relative clause and we refer to it as a constituent of type REL.

“Chaplin, (RELwho was born in London on the 16th of April 1889)REL, grew up in
Lambeth.”

It is recombined by attaching it to the noun it describes, resulting in:
• “Chaplin who was born in London on the 16th of April 1889”
• “Chaplin grew up in Lambeth”

The relative clause constituent can be a relative clause in any form: restrictive or
non-restrictive, reduced or not reduced. All relative clauses provide information
about the noun or noun-phrase they refer to. In the case of restrictive relative
clauses they more closely identify what they refer to as in “The house that collapsed
was sold”. The restrictive relative clause “that collapsed” identifies the house that
was sold. Non-restrictive relative clauses only provide additional information and
are enclosed by commas whereas restrictive relative clauses are not. Both relative
clause types can be in reduced form by removing the relative pronoun as in “The
house providing shelter collapsed”, with “that provides shelter” being the original re-
strictive relative clause, or “The houses, shining with new paint, were demolished”,
with “which were shining with new paint” being the original non-restrictive rela-
tive clause. The current SCI implementations only consider non-restrictive relative
clauses.

Apposition Constituent. An apposition constituent resembles some apposition
in the sentence and we refer to it as a constituent of type RELA.

“His father was Hermann Einstein , (RELA a salesman and engineer)RELA.”

It is recombined by attaching it to the noun it describes, resulting:
• “His father was Hermann Einstein”
• “Hermann Einstein a salesman and engineer”

Here a “a salesman and engineer” is the apposition and also said to be in apposition
with “Hermann Einstein”. An apposition is in its nature similar to a relative clause,
hence the similar name RELA. It offers additional information or identifies the

15



Chapter 3 Problem Definition

usually preceding noun or noun-phrase. In contrast to a relative clause there is
usually a “is-a” relation between an apposition and whatever it modifies. Therefore,
one can replace the apposition and noun or noun-phrase it modifies and the sentence
remains grammatically correct. Like relative clauses, appositions occur restrictive,
as in “My friend Tom bought me an ice”, with “Tom” being the apposition, or
non-restrictive as in “The burden fell on Tony Blair, the prime minister”, with “the
prime minister” being the apposition.

List Item Constituent. In contrast to the constituents seen so far the list item
constituent has no directly assignable grammatical element. We use it to identify
the parts of a list or enumeration and refer to it as a constituent of type LIT (for
list item). Consider our example from the beginning:

“Chaplin added (LIT Eric Campbell )LIT , (LIT Henry Bergman )LIT , and (LIT

Albert Austin )LIT to his stock company.”

It is recombined by a “multiplication” as previously defined, resulting in:
• “Chaplin added Eric Campbell to his stock company.”
• “Chaplin added Henry Bergman to his stock company.”
• “Chaplin added Albert Austin to his stock company.”

Obviously this is an enumeration of people Charlie Chaplin added to his stock
company, and each person has been identified in form of a list item constituent.
Note that an enumeration is made up of list items and that a sentence can contain
several enumerations.

Separator Constituent. The separator constituent identifies a word that splits
a sentence into two self-sufficient sentences. We refer to it as a constituent of type
SEP. It represents a special case because it spans only one word and can not contain
other constituents.

“While in Prague he met Albert Einstein for the first time (SEP and )SEP

afterwards they remained close friends.”

It is recombined by independently considering the self-sufficient sentences:
• “While in Prague he met Albert Einstein for the first time”
• “afterwards they remained close friends.”

This example creates two self-sufficient sentences that can be analyzed indepen-
dently. No other constituent is allowed to span over a SEP-constituent and thus
it is a good strategy to first identify the SEP-constituents and afterwards continue
with identification of the other constituents in the resulting sentences.

16



3.3 Natural Language Processing Preliminaries

3.3 Natural Language Processing Preliminaries

This section provides some preliminaries of natural language processing, namely
part-of-speech tagging as well as text chunking, which are required and applied
throughout the rest of this thesis. Both provide only a partial analysis of a sen-
tence, and especially text chunking is often described as an instance of shallow or
partial parsing. In contrast to full parsing, shallow parsing does not provide the
complete syntactic structure of a sentence, but works on a lower, coarser level. Be-
cause it does not have to disambiguate between all syntactic elements of a sentence
it is faster, but also less expressive.

Part-of-speech Tagging. Each word in the english language can be assigned a
category such as noun, verb, preposition or adjective. This category is also referred
to as a word’s part-of-speech (POS). Each word category can be abbreviated using
a so called tag and POS-tagging is the task of assigning each word one of those
tags. For example the sentence “While in Prague he met Albert Einstein for the
first time.” can be tagged in the following way:

“While in Prague he met Albert Einstein for the first time”
IN IN NP PP VBD NP NP IN DT JJ NN

where each word’s part-of-speech tag is given below the word. The tag NP stands
for a proper noun, IN for a preposition, VBD for a verb in past tense, NN for a
singular noun, JJ for an adjective and DT for a determiner. This is of course only
a small subset of the possible tags. A description of common tags can be found in
[Marcus et al. (1993)].

Note that a word’s part-of-speech depends on the context it is used in. For example,
the word “run” which is typically used as a verb can also take the role of a noun,
for example in “The last evaluation run was not successful.”. The set of all possible
tags is often called the tagset. Different tagsets exist but for the english language
the tagset of the Penn Treebank Project5, consisting of 48 different tags, is often
used.

The task of POS-tagging is performed by a POS-tagger and a large number of
different approaches and POS-taggers exist. A well-known rule based POS-tagger
is the Brill tagger [Brill (1992)]. For our implementation tasks we used TreeTagger
[Schmid (1994)], a probabilistic tagger based on decision trees, which was trained
on the Penn tagset. The accuracy of the respective POS-taggers reported by [Brill
(1992)] and [Schmid (1994)] is well above 95% so one could consider POS-tagging
a solved problem. In any case we can safely assume the results to be correct in the
context of our task.

5http://www.cis.upenn.edu/~treebank/

17



Chapter 3 Problem Definition

Text Chunking. Text chunking is the task of “dividing a text into phrases in such
a way that syntactically related words become member of the same phrase” [Tjong
Kim Sang and Buchholz (2000)]. For example, our sentence from above can be
divided into:

(SBARWhile)SBAR (P P in)P P (NP Prague)NP (NP he)NP (V P met)V P (NP Albert
Einstein)NP (P P for)P P (NP the first time )NP .

where NP denotes a noun phrase, VP a verb phrase, PP a prepositional phrase and
SBAR the begin of a subordinated clause. The resulting chunks may not overlap
and each word is assigned a chunk type, i.e. the assignment is not sparse. For a
list of chunk types we refer to [Tjong Kim Sang and Buchholz (2000)] but we note
that according to them usually more than 90% of all chunk types observed are noun,
verb or prepositional phrases.
The terms text chunking and syntactic chunking are often used equivalently. Text
chunking is an intermediary step to a full-parse, therefore an instance of shallow
parsing, that provides us with a coarser grained sequential sentence structure. A
text chunk can be seen as a unit and as such the constituents defined by sentence
constituent identification never split chunks but only properly embed them. This is
a great aid for any implementation of sentence constituent identification.
Text chunking was the shared task of the Conference on Computational Natural
Language Learning6 in 2000. [Tjong Kim Sang and Buchholz (2000)] provides a
detailed description of the task as well as results. A large training set was provided
and 11 systems competed against each other. Results showing F-scores far above
90% allow us to rely on the accuracy for our approaches. The input of a text
chunker has to be POS-tagged, suggesting a pipelined approach where as a first step
POS-tagging is followed by text chunking. In our implementation tasks we used
YamCha [Kudoh and Matsumoto (2000)], an approach utilizing Support Vector
Machines, due to its fast performance and high accuracy.

6http://www.cnts.ua.ac.be/conll2000/

18



4 Sentence Constituent
Identification Using Rules

In the previous chapter we outlined the basic problem setting of this thesis and we
also introduced the process of sentence constituent identification (SCI). With SCI
being the challenging part of contextual sentence decomposition (CSD) this chapter
now describes the first of two approaches, which is based on a set of rules.
The chapter is structured as follows: The next introductory section provides some
preliminaries and conventions. In section 4.2 we introduce our rules to identify the
start of constituents followed by a section describing rules to determine their end.
Results and a comparison to the Machine Learning based approach are provided in
chapter 7.

4.1 Preliminaries

Consider the following sentence:

“Kofi Annan, who is the current U.N. Secretary General , has spent much of his
tenure working to promote peace in the Third World.”

What we want to achieve is an identification of the sentence constituents, as defined
in the previous chapter. In this case the result must simply be the following:

“Kofi Annan, (REL who is the current U.N. Secretary General )REL , has spent
much of his tenure working to promote peace in the Third World.”

A first trivial observation is that the relative clause starts with the word “who”
preceded by a comma and extends to the next comma. This simple rule can then
be used as the basis for a set of more elaborate rules to recognize relative clause
constituents. Of course, a complete set of rules also has to account for possibly
embedded constituents. By carefully observing syntactic and semantic relations
within a sentence we developed such a set of rules and present them in this chapter
in form of algorithms written in pseudocode. The main advantages of a rule based
approach are the possibility of fast rule evaluation and the comprehensibility of the
rules and, therefore, also the final results.

19



Chapter 4 Sentence Constituent Identification Using Rules

To allow the definition and implementation of efficient rules and to keep the ruleset
small, we require that the input has part-of-speech as well as text chunking tags
assigned. These were already described in the preliminaries section 3.3. The benefit
of this is best explained with our example above, where we already saw an instance
of a simple rule: a relative clause constituent starts with a comma, followed by the
word “who”, and extends to the next comma. Of course, one can create the same
rule for a relative clause starting with “which”, ”what” and so on. This results in
an unmanageable amount of rules and it is thus preferable to move to a level that
abstracts from the lexical items. Therefore, we make use of part-of-speech (POS)
tags, which assign each word a category. We can now formulate more generic rules
of the following form: a relative clause constituent starts with a comma, followed
by a word with POS-tag WDT7, and extends to the next comma. Text chunking
already provides us with a good notion of “belonging together”. Consider the text
chunking result of our example sentence:

“(NP Kofi Annan NP ) , (NP who NP )(V P is V P )(NP the current U.N. Secretary
General NP ) , (V P has spent V P ) (ADV P much ADV P ) (P P of P P ) (NP his tenure

NP )(V P working to promote V P )(NP peace NP )(P P in P P )(V P the Third World NP ).”

where “NP” denotes a noun phrase, “VP” a verb phrase, “PP” a prepositional
phrase and “ADVP” an adverbial phrase. An obvious thing to note is that SCI
never identifies constituents that split a phrase, or the other way round, phrases are
always properly embedded in constituents. This reduces the amount of positions we
can start or end a constituent, something an implementation can utilize.
To keep the pseudocode representing the rules readable, we use a set of conventions
and helper functions. First of all we apply some marking to the list of phrases. The
markers RELSTART, LITSTART or RELASTART mean the apparent start of a
relative, list item or appositive constituent. We implicitly keep two lists of phrases:
one of all phrases and one containing only the marked phrases. Figure 4.1 shows
the functions and conventions used within the pseudocode.

7The POS-tag WDT stands for “which determiners”: words like, which, who or whose etc.

20



4.2 Finding Constituent Starts

phrases Is the sequential list of phrases of the sentence
we are currently processing.

phrase matches postag Y Is true, if the regular expression pattern in Y
matches the POS-tags of the sentence starting
at phrase.

nextMarkedPhrase(phrase) Returns the phrase following phrase in the
list of marked phrases.

previousMarkedPhrase(phrase) Returns the phrase preceding phrase in the
list of marked phrases.

nextPhrase(phrase) Returns the phrase following phrase in the
list of phrases.

enumerationEnd(phrase) Returns true, if the phrase consists of a word
with POS-tag CC or if the phrase is of the
type CONJP. These typically introduce ends
of enumerations (“The meal includes pepper,
salt as well as peanuts.” etc.).

Figure 4.1: Functions and conventions for pseudocode.

4.2 Finding Constituent Starts

It is effective to begin with the identification of constituent starts because they
appear in an environment that is easier distinguishable and more characteristic than
that of their ends. The following rules and algorithms build on each other and are
therefore designed to be executed in sequence.

Algorithm 4.1 Identifying Non-restrictive Relative Clause Starts
1: for phrase in phrases do
2: if previousPhrase(phrase) = "," then
3: if phrase matches postag "(IN WDT|WDT|VBN|VBG).*" then
4: mark phrase as RELSTART
5: mark previousPhrase(phrase) as IGNORE
6: end if
7: end if
8: end for

Identifying non-restrictive relative clause starts. As we have seen in the previ-
ous section, identifying the beginning of non-restrictive relative clauses is not that
complicated. Therefore, we start by applying algorithm 4.1 to the sentence.

21



Chapter 4 Sentence Constituent Identification Using Rules

Non-restrictive relative clauses are enclosed in commas (line 2) and start with words
like “who”, “which” or “what”, but can also start with verbs, e.g., in a participle
form (VBG) as in “Globe Managing Manager Thomas Culvoy, bending to the will of
his troops, scrapped the new drawings.” (line 3). Furthermore they may start with
a preposition followed by a which-determiner as in “The CFTC plans to curb dual
trading on commodities markets, in which traders buy and sell both for their own
account and for clients.”. We mark a matching phrase with RELSTART. Because
the comma in front of a relative clause is no longer relevant in further considerations
we mark it as IGNORE.

Algorithm 4.2 Coloring Decision Points
1: for phrase in list of unmarked phrases do
2: if phrase = "," then
3: if nextPhrase(phrase) matches postag "CC" or nextPhrase(phrase) is type

CONJP then
4: mark nextPhrase(phrase) as RED
5: else
6: mark phrase as RED
7: end if
8: else
9: if phrase matches postag "CC" or phrase is type CONJP then

10: mark phrase as RED
11: end if
12: else
13: if phrase is type VP then
14: mark phrase as VIO
15: end if
16: end if
17: end for

Coloring decision points. Having identified commas belonging to relative clauses
has reduced the amount of remaining points we need to make decisions for. Algo-
rithm 4.2 colors the remaining decision points in red (RED), and, to aid further
decisions, verb-phrases in violet (VIO).
The remaining decision points include all remaining commas as well as phrases
consisting of coordinating conjunctions (CC), which resemble words like “and”, “or”
and “but”. These are typical points that separate a sentence or appear at the end of
an enumeration. Conjunctive phrases (CONJP), e.g. “as well as”, have an identical
function and are also marked RED (line 10). Lines 3 and 5 are responsible for the
cases where the current phrase is a comma. If the following phrase is a coordinating
conjunction or similar we mark it and ignore the comma (line 4), otherwise we simply
mark the comma (line 6). This way we avoid marking two consecutive phrases as
RED . Furthermore, as a helper, we mark verb-phrases in violet (VIO) (line 14).

22



4.2 Finding Constituent Starts

Algorithm 4.3 Evaluating Decision Points
1: for phrase in list of marked phrases do
2: if phrase is marked RED then
3: # If next color is VIO, but there is some phrase in-between mark as SEP
4: if nextMarkedPhrase(phrase) is marked VIO

and nextPhrase(phrase) != nextMarkedPhrase(phrase) then
5: mark phrase as SEP
6: end if
7: else
8: mark phrase as LITSTART
9: end if

10: end for

Evaluating decision points. We now iterate through the list of all phrases marked
RED and make a decision for them as described in algorithm 4.3.

All phrases marked RED are changed to a separator constituent, if the following
marker is VIO (verb-phrase), but only if the verb-phrase is not the directly following
phrase (line 5). To illustrate this consider the example sentence “While in Prague he
met Albert Einstein for the first time and afterwards they remained close friends.”.
The “and” would be marked as a separator constituent, because the next marked
phrase “remained” is VIO, but it does not directly follow. This is based on the
observation that a separator needs to split into self-sufficient sentences, which always
contain a verb phrase. On the other hand they also need a subject, which usually
precedes the verb-phrase, and, as a consequence, the verb-phrase can not directly
follow the separator. If we cannot ensure we are dealing with a relative clause or
separator constituent we mark it as the beginning of a list item (line 8). Note that
we have already marked the relative clause constituents in a previous step. In the
end this will result in the sentence “Chaplin added Eric Campbell, Henry Bergman,
and Albert Austin to his stock company.” where the first comma and the “and”
were marked RED, to be changed to “Chaplin added Eric Campbell (LIT , Henry
Bergman , (LIT and Albert Austin to his stock company.”.

Correction Run. We have now marked relative clause, separator and list item con-
stituents. However, in the previous step we deliberately marked everything as list
item start that we could safely identify as relative clause or separator constituent
start. Thus we have one more set of rules presented in algorithm 4.4 that corrects
list item start marks to either an appositive constituent start or a helper marker
CLOSE. Note that switching between list item and appositive constituents is rea-
sonable even on a grammatical level, because their structure is indeed very similar.
Both usually only consist of noun-phrases and are distinguishable only in the im-
mediate context they appear in the sentence. Compare the sentence “One of the
contemporary scientists, Stephen Hawking, made a remarkable contribution.” with

23



Chapter 4 Sentence Constituent Identification Using Rules

Algorithm 4.4 Correcting List Items
1: listOpen← false
2: for phrase in reversed list of marked phrases do
3: # Not a correct ending of an enumeration
4: if not listOpen and phrase is-marked LITSTART

and not enumerationEnd(phrase) then
5: # This is a typical continuation of an intermitted clause
6: if nextPhrase(phrase) is type VP

and not nextPhrase(phrase) matches postag "(VBG|VBN)" then
7: mark phrase as CLOSE
8: # If it is no continuation it is an appositive
9: else

10: mark phrase as RELASTART
11: end if
12: else
13: # Correct ending of an enumeration
14: if not listOpen and phrase is marked LITSTART

and enumerationEnd(phrase) then
15: listOpen← true
16: end if
17: else
18: # Now the enumeration is finished
19: if listOpen and not phrase is marked LITSTART then
20: listOpen← false
21: end if
22: end if
23: # Default: consume the list item
24: end for

“Some contemporary scientists include Stephen Hawking , Richard Dawkins and No-
bel prize-winner Anthony James Leggett.”. In the first “Stephen Hawking” appears
as the appositive whereas in the second it is a list item.

In detail algorithm 4.4 works as follows. We move backwards through all marked
phrases. If a phrase is marked as a list item start and no enumeration has been
started so far we check if this last list item is introduced by an acceptable construc-
tion. This is the case if it starts with a coordinating conjunction (CC), like “and”
or “or”, as in “Tom likes chicken, beef and pork.” or it starts with a conjunctive
phrase (CONJP), as in “Tom likes chicken, beef as well as pork.”. In this case we
remember that we opened a list (line 15). If the list is not correctly ended we check
if a verb-phrase in a certain form directly follows, which might indicate the contin-
uation after an intermitted constituent. If this is the case we use our helper marker
CLOSE and move on (line 7). If it is no continuation we revert the phrase to an
apposition constituent start (line 10). For example, in “He was born in Birmingham

24



4.2 Finding Constituent Starts

in 1921 and is the father of Sir Tim Berners-Lee , the inventor of the World Wide
Web.” the comma will be marked as as list item start first, because no verb-phrase
followed for a separator, but will then be reverted to an apposition constituent start.
Note that exchanging the comma against the word “and” would result in a correct
enumeration and we would not revert to an apposition. If we are inside a correct
list enumeration and another constituent marker appears we end the list (line 20).
If we are inside a list and see a list item we consume it (line 23).

Algorithm 4.5 Finding First List Item of Enumerations
1: for phrase in list of marked phrases do
2: if phrase is marked LITSTART

and not previousMarkedPhrase(phrase) is marked LITSTART then
3: if phrase is type VP then
4: mark first verb-phrase after previousMarkedPhrase(phrase) as LIT-

START
5: end if
6: else
7: mark last noun-phrase after previousMarkedPhrase(phrase) as LITSTART
8: end if
9: end for

Finding missing List Items. The previous identification of list item starts missed
an important thing about enumerations: we have yet to discover the start of the first
list item. For the sentence “Chaplin added Eric Campbell (LIT , Henry Bergman ,
(LIT and Albert Austin to his stock company.” we have only marked two of the three
list item constituent beginnings. “Eric Campbell” still has to be marked. Although,
fixing this is based on a simple rule, we provide it in algorithm 4.5 for completeness.

We search for the first item of an enumeration in front of the currently first list item
(line 2). We then have two possibilities. Either we are in an enumeration of verbs
(line 3) and thus mark the first verb-phrase after the previous marked phrase, or
we are in a common enumeration (line 5) and thus mark the last noun-phrase after
the previous marked phrase. For example, in “He was born in Birmingham in 1921
and is the father of Sir Tim Berners-Lee” this will result in “He (LIT was born in
Birmingham in 1921 and (LIT is the father of Sir Tim Berners-Lee”, which is what
we call an enumeration of verbs. For our example “Chaplin added Eric Campbell
(LIT , Henry Bergman, (LIT and Albert Austin to his stock company.” the result will
be “Chaplin added (LIT Eric Campbell (LIT , Henry Bergman, (LIT and Albert Austin
to his stock company.”

25



Chapter 4 Sentence Constituent Identification Using Rules

4.3 Finding Constituent Ends

Algorithm 4.6 uses some simple heuristics to find constituent ends we describe in
the following.
The basic principle is to iterate through all phrases, observe and remember the
constituent start markers and assign constituent end markers for them at the ap-
propriate words. Whenever we observe a constituent start marker we push it onto
a stack to keep track of the open constituents. Depending on the sentence struc-
ture and markers, we then close all or only particular constituent types at certain
positions, which also allows embedding of certain constituents.

Algorithm 4.6 Finding Constituent Ends
1: listOpen← false
2: # Nothing
3: for phrase in phrases do
4: if phrase is marked SEP or CLOSE then
5: pop and close all open constituents at phrase
6: end if
7: if phrase is marked RELSTART then
8: if a relative clause is already opened then
9: if phrase matches postag "CC WD(T|P).* then

10: pop and close open REL constituent at phrase
11: end if
12: pop and close open LIT constituent at phrase
13: pop and close open RELA constituent at phrase
14: push new REL constituent start at phrase
15: end if
16: end if
17: if phrase is marked LITSTART then
18: pop and close open LIT constituent at phrase
19: pop and close open RELA constituent at phrase
20: push new LIT constituent start at phrase
21: end if
22: if phrase is marked RELASTART then
23: pop and close open LIT constituent at phrase
24: pop and close open RELA constituent at phrase
25: push new RELA constituent start at phrase
26: end if
27: end for
28: close all open constituents

In detail algorithm 4.6 works as follows. The sentence end, a separator constituent
or a CLOSE marker will end all open constituents, so we insert corresponding con-

26



4.4 Examples

stituent end markers and remove their beginning markers from the stack (line 5
and 24). If we observe a new relative clause constituent start (line 7) and another
relative clause constituent has already been opened (line 8), we check if the new one
starts with a coordinating conjunction followed by a which determiner (line 9). To
illustrate this situation consider the example sentence “The inquiry also will cover
the actions of Charles Keating Jr., who is chairman of American Continental Corp.
, Lincoln ’s parent, and who contributed heavily to several U.S. senators.” where
“and who contributed [...]” is the relative clause we are currently looking at that
matches these POS-tags. This is an indication that it attaches to the same noun as
the already opened relative clause. Therefore, we close the last open relative clause
constituent (line 10) and treat it as any other new beginning of a relative clause
(line 14). This will create two independent relative clauses that the SCR-phase then
needs to attach to the same noun. An alternative approach would have been to
merge the two relative clauses and treat them as one, as Siddharthan does in [Sid-
dharthan (2003)]. This would however result in less powerful contextual sentence
decomposition because we would identify only one relative clause constituent, which
would then also result in only one sub-sentence. The remaining cases are simple.
Whenever a new list item or appositive constituent starts we close all opened ones
and start a new constituent (line 20, line 25). All constituents end, when a separator
constituent or a CLOSE marker is observed. Overall, this results in the possibility
of embedding list item and appositive constituents in relative clauses. However, list
items and appositive constituents never embed other constituents. In practice, in-
deed, appositions almost never embed one of the other constituents. However, more
complicated sentences can embed constituents within a list item. This is a current
limitation of the rule based approach.

Having assigned a constituent end to each constituent start concludes the rule based
approach of sentence constituent identification.

4.4 Examples

To illustrate the rules we apply them on two examples.

Throughout the examples, a word marked as the start or end of a constituent is
identified with the corresponding bracket immediately before respectively after the
word. This follows the notation already introduced in the problem definition chapter.
All other marks are given as subscript of the marked word. Note that a comma is
treated as any other word.

The first sentence we consider is:

“Camphauser Straße expressway , which leads to the B 268 and the B 51, was
destroyed.”

27



Chapter 4 Sentence Constituent Identification Using Rules

Algorithm 4.1 is applied first and identifies the start of a relative clause:

“Camphauser Straße expressway ,IGNORE (RELwhich leads to the B 268 and the B
51 , was destroyed.”

Next, according to algorithm 4.2, decision points are marked RED and verb phrases
VIO:

“Camphauser Straße expressway ,IGNORE (RELwhich leadsV IO to the B 268
andRED the B 51 ,RED was destroyedV IO.”

Now, the decision points are evaluated by applying algorithm 4.3:

“Camphauser Straße expressway ,IGNORE (RELwhich leadsV IO to the B 268
(LIT and the B 51 (LIT , was destroyedV IO.”

This caused some wrong decisions and algorithm 4.4 is supposed to repair them:

“Camphauser Straße expressway ,IGNORE (RELwhich leadsV IO to the B 268
(LIT and the B 51 ,CLOSE was destroyedV IO.”

This corrected the errors and algorithm 4.5 now adds the missing list item con-
stituents at the start of the enumeration:

“Camphauser Straße expressway ,IGNORE (REL which leadsV IO to the (LIT B 268
(LIT and the B 51 ,CLOSE was destroyedV IO.”

With the help of the CLOSE marker the ends of each opened constituent are deter-
mined by algorithm 4.6:

“Camphauser Straße expressway ,IGNORE (RELwhich leadsV IO to the (LIT B
268)LIT (LIT and the B 51)LIT )REL ,CLOSE was destroyedV IO.”

Ignoring the superflous marks gives the following final and correct result:

“Camphauser Straße expressway ,IGNORE (RELwhich leads to the (LIT B 268)LIT

(LIT and the B 51)LIT )REL , was destroyed.”

28



4.4 Examples

The next sentence we consider is:

“The original fortress, known as Gyel-khar-tse , was attributed to Pelkhor-tsen, son
of the anti-Buddhist king Langdharma , who probably reigned from 838 to 841 CE.”

Now, algorithm 4.1 identifies the start of two relative clauses:

“The original fortress ,IGNORE (RELknown as Gyel-khar-tse, was attributed to
Pelkhor-tsen , son of the anti-Buddhist king Langdharma ,IGNORE (RELwho

probably reigned from 838 to 841 CE.”
Algorithm 4.2 marks decision points and verb phrases:

“The original fortress ,IGNORE (RELknownV IO as Gyel-khar-tse ,RED was
attributedV IO to Pelkhor-tsen ,RED son of the anti-Buddhist king Langdharma

,IGNORE (RELwho probably reignedV IO from 838 to 841 CE.”
As before, the decision points are evaluated by applying 4.3:

“The original fortress ,IGNORE (RELknownV IO as Gyel-khar-tse (LIT , was
attributedV IO to Pelkhor-tsen (LIT , son of the anti-Buddhist king Langdharma

,IGNORE (RELwho probably reignedV IO from 838 to 841 CE.”
Again, no seperators were found, but the points were reverted to list item starts.
Algorithm 4.4 is supposed to repair this:

“The original fortress ,IGNORE (RELknownV IO as Gyel-khar-tse ,CLOSE was
attributedV IO to Pelkhor-tsen (RELA, son of the anti-Buddhist king Langdharma

,IGNORE (RELwho probably reignedV IO from 838 to 841 CE.”
The list item was reverted to an apposition constituent. No further list item starts
exist and algorithm 4.5 therefore doesn’t change anything:

“The original fortress ,IGNORE (RELknownV IO as Gyel-khar-tse ,CLOSE was
attributedV IO to Pelkhor-tsen (RELA, son of the anti-Buddhist king Langdharma

,IGNORE (RELwho probably reignedV IO from 838 to 841 CE.”
All that remains is to identify constituents ends with algorithm 4.6:

“The original fortress ,IGNORE (RELknownV IO as Gyel-khar-tse)REL ,CLOSE was
attributedV IO to Pelkhor-tsen (RELA, son of the anti-Buddhist king

Langdharma)RELA ,IGNORE (RELwho probably reignedV IO from 838 to 841
CE.)RELA”

29



Chapter 4 Sentence Constituent Identification Using Rules

The final result is then given by:

“The original fortress ,(RELknown as Gyel-khar-tse)REL , was attributed to
Pelkhor-tsen (RELA, son of the anti-Buddhist king Langdharma)RELA , (RELwho

probably reigned from 838 to 841 CE.)REL”

Note that this final result is slightly wrong. The last relative clause constituent
should be embedded into the previous apposition constituent, because it refers to
“anti-Buddhist king Langdharma”. This nicely illustrates that a weakness of the rule
based approach is the identification of embedded structures.

30



5 Sentence Constituent
Identification Using Machine
Learning

The previous chapter introduced some hand-crafted rules for sentence constituent
identification (SCI). Hand-crafted rules are easy to comprehend and usually so are
their final results. However, the more rules there are, the more difficult it becomes
to manage and develop them. One must be careful not to create contradictions
and the interaction of different rules is sometimes not easy to understand. In this
chapter we present another approach to SCI based on supervised machine learning.
Instead of using hand-crafted rules we train machine learning classifiers to identify
possible starts and ends of constituents and use an inference algorithm to obtain a
solution.
This chapter is organized as follows. In section 5.1 we provide an intuitive overview
and introduce machine learning to an extent that is required to understand the rest
of this chapter. We also give a detailed description of the approach. In section 5.1.1
the exact input for our classifiers and the way we train them is described. To select
the best features for our classifiers and to obtain an understanding of how they work
we used a set of different methods that are described in section 5.3. In section 5.4
the inference algorithm we use to find an optimal solution is described. Throughout
the chapter we restrain from details that are implementation specific and provide
those in the final section. Results and a comparison to the rule based approach
outlined in chapter 4 can be found in chapter 7.

5.1 Overview

Machine learning has become an integral part of natural language processing. We
do not further elaborate on the historic reasons and refer the interested reader to
[Marquez and Salgado (2000)] which gives a good overview of the topic. For us it
is important to realize that current state-of-the-art systems achieve good results by
applying machine learning to tasks similar to ours, for example the task of clause
identification, as presented in chapter 2.2. We are therefore keen to evaluate and
compare an SCI approach based on machine learning with the rule-based approach
of the previous chapter.

31



Chapter 5 Sentence Constituent Identification Using Machine Learning

Instead of using hand-crafted rules we apply proven machine learning techniques to
train classifiers that help us to identify possible sentence constituents. A classifier
tries to predict a certain class for an observation, for example, whether a certain
word in a sentence starts a list item constituent or not. Consider the following
sentence:

“Having received the appointment on the recommendation of Truman aide Donald
Dawson, Whitehair was seen as a political appointment and was unpopular with the

admirals of the United States Navy.”

Given we have some trained machine learning classifiers that tell us at which word
certain types of constituents might start or end, applying those to the sentence
might give the following, partially incorrect result:

“Having received (LIT the appointment on the recommendation of Truman aide
Donald Dawson (SEP , )SEP Whitehair (LIT was seen as a political appointment)LIT

and (LIT was unpopular with the admirals of the United States Navy )LIT .”

In general, we assume it is impossible to train classifiers that are always correct.
Therefore, we treat the results of the classifiers as suggestions. This is a good
starting point but there are still a number of different ways we can incorporate
these suggestions into a final solution. We could arbitrarily ignore one or more of
them - they are suggestions after all. Furthermore, the final set of constituents
still needs to adhere to some structural constraints. The identified constituents are
allowed to embed but must never overlap. We can therefore design an algorithm that
identifies all admissible constituent sets from the suggestions and selects an optimal
solution. The optimal solution should then coincide with the correct solution:

“Having received the appointment on the recommendation of Truman aide Donald
Dawson (SEP , )SEP Whitehair (LIT was seen as a political appointment )LIT and

(LIT was unpopular with the admirals of the United States Navy )LIT .”

We can structure this approach into two phases. The first one is a filtering phase
that identifies possible constituent starts and ends. The second phase applies an
inference algorithm to select an optimal solution adhering to the structural con-
straints. We point out that the idea of filtering and inference is not new, but has
been applied previously for similar problems, e.g. the task of clause identification
[Carreras (2005)].
We next provide a short introduction to the machine learning techniques and foun-
dations that matter here. For a detailed description and holistic background we
refer the reader to one of the many and easily found detailed descriptions of Sup-
port Vector Machines (SVM), for example [Burges (1999)]. Having introduced the
machine learning background we then complete this introductory section by giving
a more detailed description of our approach.

32



5.1 Overview

5.1.1 Machine Learning and Support Vector Machines

In general machine learning can broadly be classified into three categories: super-
vised, unsupervised and reinforcement learning. Unsupervised learning is concerned
with finding anomalies or hidden regularities in data and group together similar
classes, often called Clustering. In contrast to supervised learning it requires no
training data, that consists of data samples with a correct solution, often called
label, assigned. Supervised learning is concerned with finding the answer or label to
a question for which example instances are provided in the training data. A promi-
nent example is the task of classification, i.e. given a description of an example
without correct label decide to which of two or more classes it belongs, even (and
especially) if the exact example was never seen before. Reinforcement learning is
concerned with how an agent has to react in certain situations in order to maximize
a reward it receives. This process can be performed on-line (learning by doing) and
a prominent example is “learning to balance a pole”.
From the above it should be clear that only supervised learning is of interest to our
task. A large number supervised learning methods exist in this area and we refer
to [Carreras (2005)] for a good overview, especially for natural language processing.
One of the most prominent methods are Support Vector Machines (SVM). In nat-
ural language processing, features8 are constructed from words or other syntactic
structures. These are numerous, but when looking at a certain instance most of
them are empty. SVMs have the advantage of providing good performance in these
high-dimensional, sparse feature spaces common in NLP, even when there are few
training examples [Joachims (1998)]. Furthermore it is a proven method used in a
large number of different applications. Libraries for implementation are freely avail-
able. The following is a short and shallow description, but holds in general and is
not specific to our actual implementation.
We start by formulating the problem to be solved. We want to induce a function h
mapping from an input space X to an output space Y .

h : X → Y

For example, X could be the set of all possible words and the surroundings9 they
appear in and Y = {+1,−1} indicates whether the word starts a list item constituent
or not. This is a typical binary classification problem (as apposed to multi-class
classification where |Y | > 2) and consequently an SVM providing this function is
also called binary classifier. For Support Vector Machines the input is a vector in
Rd also called feature vector. The training data of size n, used for learning a SVM,

8In machine learning a feature represents an attribute or characteristic of some instance. For
example, features of a tree might be its size, width, height, number of leaves, color of leaves
etc.

9This refers to the environment of a word within a sentence, i.e. surrounding words and their
grammatical forms etc.

33



Chapter 5 Sentence Constituent Identification Using Machine Learning

consists of tuples (ri, yi) for i = 1...n and ri ∈ Rd, yi ∈ Y = {+1,−1}. Mapping
from the actual words and their surroundings in X to a feature vector in Rd is
described in the next section. For now we just assume there is a feature extraction
function ϕ : X → Rd that, given a word and surrounding it occurs in, extracts
information and maps it to Rd. A Support Vector Machine then tries to find a
separating hyperplane in Rd where ideally, on each side only vectors belonging to
the class +1, −1, respectively, lie. For predicting the class of an unseen example
it is then just a matter of finding its representation in Rd by applying ϕ and then
determining on which side of the hyperplane the resulting vector lies. Figure 5.1
shows an example of a hyperplane separating instances of two classes.

SUPPORT VECTOR MACHINES 129

-b
|w|

w

Origin

Margin

H1

H2

Figure 5. Linear separating hyperplanes for the separable case. The support vectors are circled.

xi · w+ b ≥ +1 for yi = +1 (10)
xi · w+ b ≤ −1 for yi = −1 (11)

These can be combined into one set of inequalities:

yi(xi · w+ b) − 1 ≥ 0 ∀i (12)

Now consider the points for which the equality in Eq. (10) holds (requiring that there
exists such a point is equivalent to choosing a scale for w and b). These points lie on the
hyperplaneH1 : xi ·w+ b = 1 with normal w and perpendicular distance from the origin
|1 − b|/‖w‖. Similarly, the points for which the equality in Eq. (11) holds lie on the
hyperplane H2 : xi · w+ b = −1, with normal again w, and perpendicular distance from
the origin | − 1 − b|/‖w‖. Hence d+ = d− = 1/‖w‖ and the margin is simply 2/‖w‖.
Note that H1 and H2 are parallel (they have the same normal) and that no training points
fall between them. Thus we can find the pair of hyperplanes which gives the maximum
margin by minimizing ‖w‖2, subject to constraints (12).
Thus we expect the solution for a typical two dimensional case to have the form shown in

Figure 5. Those training points for which the equality in Eq. (12) holds (i.e. those which
wind up lying on one of the hyperplanes H1, H2), and whose removal would change the
solution found, are called support vectors; they are indicated in Figure 5 by the extra circles.
We will now switch to a Lagrangian formulation of the problem. There are two reasons

for doing this. The first is that the constraints (12) will be replaced by constraints on the
Lagrange multipliers themselves, which will be much easier to handle. The second is that
in this reformulation of the problem, the training data will only appear (in the actual training
and test algorithms) in the form of dot products between vectors. This is a crucial property
which will allow us to generalize the procedure to the nonlinear case (Section 4).
Thus, we introduce positive Lagrange multipliers αi, i = 1, · · · , l, one for each of the

inequality constraints (12). Recall that the rule is that for constraints of the form ci ≥ 0, the
constraint equations are multiplied by positive Lagrange multipliers and subtracted from

Figure 5.1: SVM hyperplane for linearly separable case, from [Burges (1999), p.9].
The hyperplane splits the space, separating between the classes of black and white
instances with maximum margin. Support vectors are circled.

The hyperplane is computed based on a set of constraints to create a maximum
margin between the two classes, that is: maximizing the minimal distance to all
close vectors. It is the fact that the hyperplane can be described using a small
set of the training vectors, the so called support vectors, that is responsible for
the name Support Vector Machine. Of course, there are cases where data is not
linearly separable. Intuitively, for example, if we cannot split the classes using a
line in the two dimensional case, as shown in figure 5.1, but would need a circle.
SVMs can then apply so called kernel functions, which implicitly compute the dot
product of feature vectors in a higher-dimensional space, where they are possibly
linearly separable [Burges (1999)]. This happens without ever explicitly computing
the mapping and is therefore efficient. We say the dot product of a support vector
xi and a candidate x in a space H, that is mapped to by Φ : X → H, is given by
a function K(xi, x) =< Φ(x1), Φ(x) >. In the linear case the function K is the dot
product of the two vectors K(xi, x) =< xi, x > whereas for the common Gaussian
radial basis function (RBF) it is a kernel function K(xi, x) = e−γ||xi−x||2 for a selected
parameter γ. We do not further consider the RBF kernel here but come back to it
in section 5.3.

34



5.1 Overview

The previously mentioned hyperplane is computed by solving a set of optimization
problems we do not consider here. The result of training a Support Vector Machine
then consists of a set of support vectors that have parameters assigned and without
further ado we present a final equation (stemming from the dual-notation used by
SVMs) used to classify a feature vector x:

h(x) = sgn(∑m
i=1 αiγiK(xi, x) + b)

Each of the support vectors i = 1...m has real-valued parameters αi and γi assigned.
The bias b is another computed parameter of the hyperplane. Taking the sign of
the sum then intuitively decides on which side of the hyperplane the vector lies and
provides the final result. This concludes our very short introduction.

5.1.2 Detailed Approach

Using the knowledge about machine learning we can now outline the approach in
more detail. For this we recall that in chapter 3, we defined four different types
of constituents: relative clause, apposition, list item and separator constituents.
Besides the separator constituent, which consists of only one word, all can span
several words. We therefore train seven constituent start and end classifiers to
recognize possible beginnings and endings of our constituent types:
• classifiers cREL( and cREL) for identifying the possible start respectively end of

a relative clause constituent
• classifiers cRELA( and cRELA) for identifying the possible start respectively end

of an apposition constituent
• classifiers cLIT ( and cLIT ) for identifying the possible start respectively end of

a list item constituent
• classifier cSEP for identifying a possible separator constituent

Each of the SVMs is a binary classifier of the form c : Rd → {+1,−1} predicting to
which respective class a provided feature vector belongs. For example, the classifier
cLIT ( predicts whether it represents a list item constituent start or not. As we did
for for the rule based approach, we also assume our text has part-of-speech as well
a text chunking tags assigned. We then iteratively apply one of the classifiers on
all feature vectors extracted from the first and last word of each text chunk of a
sentence using some feature extraction function ϕw : Xw → Rd. Here Xw is the
set of all possible words and their surrounding within a sentence they appear in.
Restricting ourselves to the first and last word of each text chunk is reasonable. As
we outlined in chapter 4, constituents only properly embed text chunks and never
split them. So the only feasible start and end points of a constituent are the first
or last word of each text chunk. We apply the classifiers in increasing order of
difficulty: cSEP , cREL(, cREL), cRELA(cRELA), cLIT (, cLIT ). The results of a classifier

35



Chapter 5 Sentence Constituent Identification Using Machine Learning

are always provided as part of the features input to its following classifiers. This
is reasonable because, for example, identifying separators works better, as we will
see in the evaluation. Having identified a word as a separator at the first iteration
gives the following classifiers a good clue that the same word does not start another
constituent.
Because we assume achieving perfect, error-less classifiers is unrealistic we treat the
results as indications or suggestions. A hypothetical result of applying our classifiers
might be the following set where we denote that the word at position i has been
classified as a possible start of constituent type k with sk,i , and analogously for the
end ek,i

{sLIT,1, sLIT,4,sREL,6,eLIT,8,eREL,10}

These now provide a set of possible constituents we can form from these suggestions,
where a constituent of type x is a pair (si, ej)x with i ≤ j:

{(s1, e10)REL, (s6, e10)REL, (s4, e8)LIT}

We say two constituents c = (s1, e1)x and d = (s2, e2)x overlap iff s1 < s2 ≤ e1 < e2
or s2 < s1 ≤ e2 < e1, and we denote it by c ∼ d. For our task, the constituents are
not allowed to overlap, however they may embed. The final result is therefore part
of the subset of structurally possible constituents, adhering to this constraint. In
our example this is one of the following:

{}, {(s1, e10)REL}, {(s4, e8)LIT}, {(s6, e10)REL},
{(s1,, e10,)REL, (s,4, e,8)LIT}, {(s1,, e10,)REL, (s,6, e10)REL}

We can see that the possible start or end of a constituent does not exactly say
how many constituents start or end there, it may be several. Using the constraints
an inference algorithm can, based on the suggestions, decide which solutions are
admissible. It then selects an optimal one, ideally coinciding with the correct one.
To allow the inference of an optimal solution we train three constituent classifiers:
• cREL: identifying whether we have a relative clause constituent at hand
• cRELA: identifying whether we have a apposition constituent at hand
• cLIT : identifying whether we have a list item constituent at hand

In contrast to the previous classifiers we are no longer classifying single words but
a whole span of words that make up the constituent. Therefore, in the mapping
h : Xc → Y , Xc denotes the set of pairs of words (start and end of a constituent)
and their environments. The feature extraction function ϕc : Xc → Rd works
accordingly.
The inference algorithm used applies a mapping to the maximum weight independent
set problem. We construct a graph where each node corresponds to a constituent

36



5.2 Feature Selection and Training Classifiers

and has a weight assigned based on the outcome of the constituent classifiers. An
edge between two nodes is inserted for all pairs of constituents that overlap. As a
result the independent set with maximum weight consists of constituents that do
not overlap, and whose sum of weights is maximum, and should therefore closely
resemble the correct solution. The inference algorithm is described in detail in
section 5.4.

5.2 Feature Selection and Training Classifiers

This section describes the features extracted for each of the classifiers. We start
by describing how, in general, features are represented and then provide the exact
features used for identifying constituent start and ends followed by the features ex-
tracted for recognizing complete constituents. The last part of this section describes
how the training set is generated as well as how the classifiers are trained.

5.2.1 Feature Representation

Features describe characteristics and attributes of some instance. In general features
are represented in Rd for Support Vector Machines and each of the d dimensions of a
feature vector corresponds to one feature. Only real-valued features are used which
requires transforming string based or categorial properties to a numerical domain.
We use binary valued features. Each feature indicates whether a certain property
is present in the instance or not. For example, a feature might be the property of a
tree indicating whether it is evergreen or not. A fir would have a feature value of 0,
opposed to an oak tree with a feature value of 1. Moving to the domain of natural
language processing a feature might be whether the word we are looking at has the
part-of-speech tag “DT” (a determiner), and another feature might be whether the
next word has the POS-tag “NN” (a noun) and so on. Depending on the amount
of information or properties that are represented as features this results in a very
high-dimensional feature space. In addition the resulting feature vectors are sparse.
Only a small amount of features has a non-trivial value because a lot of the features
exclude each other or are simply not present. As we will see SVMs are capable of
handling such situations well.

5.2.2 Feature Selection for Constituent Start and End Classifiers

Constituent start and end classifiers are used to classify a word in a sentence. To
provide the classifiers with a feature vector we extract information from the immedi-
ate surrounding of the word10. Figure 5.2 shows a graphical example with windows
10This is in essence the function ϕw : Xw → Rd of section 5.1.2.

37



Chapter 5 Sentence Constituent Identification Using Machine Learning

centered around the currently classified word “a”. Note that each window can have
a different size on each level of abstraction. Using the feature window we try to
capture the function of the word in the sentence. Instead of using all possible fea-
tures we can think of we restrict ourselves to reasonable choices to keep the number
of features as small as possible. For a sentence consisting of a sequence of n words
[w1, ..., wn], we use the following windows for the j-th word wj of a sentence:

• word window with half-size 4: for [wj+i]i=4
i=−4 the word if it is contained in

{including, such as, as well as, and, or, but, thus, however, that, who, which,
whose, after, before}.

• POS-tag window with half-size 4: for [wj+i]i=4
i=−4 the POS-tag

• text chunk window with half-size 4: for [wj+i]i=4
i=−4 the type of text chunk

• constituent tag window with half-size 6: for [wj+i]i=6
i=−6: the constituent tag,

if it is non-trivial (i.e. not “*”)

These feature windows worked best in our evaluations. However, they are not as-
sumed to be optimal and only represent a first result. Instead of using any observed
word in the word window we restrict ourselves to a set of words to reduce the num-
ber of resulting features. The depicted set of words included represents an initial
choice of words that seemed reasonable, for example those that start an enumeration
“including”, “such as” or those that end one “and”, “as well as”. However, further
evaluation is necessary to conclude how important they actually are.

Consider the sentence shown in figure 5.2 centered at the word “a” . One of the
features extracted would be “the POS-tag of the word two to the right is CC”,
another one “the text chunk type two to the left is NP” and yet another one “the
word two to the right is and”. Each of the features would have an index in the
feature vector and if the respective feature is present for an instance the value in
the vector would be 1 and 0 else.

S

P

N

B

His father was Hermann Einstein , a salesman and engineer

PP$ NN VBD NP NP , DT NN CC NN

B-NP I-NP B-VP B-NP I-NP O B-NP I-NP I-NP I-NP

* * * * * * RELA( * * RELA)

Figure 5.2: The feature extraction windows is marked blue and centered at the
word “a”. The first row shows the words, the second one the part-of-speech tags,
the third one the text chunking tags in B-I-O notation and the last one the tags
for sentence constituents.

38



5.2 Feature Selection and Training Classifiers

5.2.3 Feature Selection for Constituent Classifiers

Constituent classifiers are applied to complete constituents. Constituents represent
a span of a sentence given by the start and end of the constituent. To determine
whether a given span denotes a valid constituent we use the start and end word as
well as the span itself to extract features11. The same feature windows as in the
previous subsection are used to extract features from the first and last word. Of
course, the features for start and end word must be distinguishable, i.e. the features
“the start word has POS-tag DT” and “the end word has POS-tag DT” denote two
different features.
Furthermore we extract a pattern of text chunk tags between the two words. We
only consider the tags if they are in the set {NP, VP, SBAR, ADJP, O, PP, ADVP}.
This is again based on initial evaluations. An inclusion of additional tags or, for
example, POS-tags in the patterns resulted in decreased classifier performance. The
tags in the pattern are delimited by the ’+’ character, for example the pattern
“PP+NP” denotes that the constituent consisted of a prepositional phrase followed
by a verb phrase. Since all features are binary each observed pattern will be repre-
sented by a different feature.
Consider the sentence shown in figure 5.2 and assume we classify the span between
the words “was” and “engineer” to find out if it represents a list item. The features
would consist of the pattern of that span, “VP+NP+O+NP”, as well as a feature
extraction window centered at “was” and “engineer”.
The intuition behind this is that a certain constituent type often consists of a certain
pattern. For example, list items often only consist of noun phrases, as do appositions.
Relative clause consistent however often contain a verb which helps to distinguish
them. The features extracted from the start and end word can provide further
characteristics.

5.2.4 Generating Training Sets and Training Classifiers

For training the classifiers we have manually annotated a ground truth of 200 sen-
tences (4296 words) with golden constituent starts and ends. The sentences have
been carefully selected from the English Wikipedia in terms of the constituents they
contain, to provide a good training set. They are annotated with part-of-speech
tags, text chunking tags and a set of tags for identifying constituent start and ends
corresponding to their name. The part-of-speech and text chunking tags have been
automatically provided by respective tools, i.e. TreeTagger and YamCha as intro-
duced in chapter 3.3.
Figure 5.2 already showed an example of a sentence in the ground truth. Creating
the actual training set used to train the classifiers is then straightforward.
11This is in essence the function ϕc : Xc → Rd presented in the section 5.1.2.

39



Chapter 5 Sentence Constituent Identification Using Machine Learning

For each constituent start and end classifier we extract the features of each first and
last word of a text chunk in the ground truth sentences from left to right. We assign
the label +1 if the respective word starts or ends the constituent and -1 else wise.
Together with the extracted feature vector this is a learning instance and overall we
obtain about 4296 learning instances. During feature extraction we must account for
the order the classifiers will be applied later. Because the features cover constituent
tags it is possible that the output of a previous classifier shows up as the input to
another classifier12 and the classifiers must therefore also be trained accordingly.
For the constituent classifiers we proceed similarly. For each constituent classifier
we select the matching constituents from the ground truth, extract the features as
previously described and assign the label +1 to obtain a positive learning example.
To create negative examples we construct “false” constituents from the possible com-
binations of all golden constituent starts and ends within a sentence (that resemble
no constituent of the type we are training for).
The classifiers are all using the RBF-Kernel and we perform a grid search for the
best kernel parameter γ and misclassification cost C using 5-fold cross validation on
the training set. The learning module gets as input a file containing the training
set and outputs a model file that contains resulting support vectors and parameters
which are needed for classification. For further details we refer to the last section of
this chapter.

5.3 Classifier Analysis

In this section we analyze our classifiers in order to obtain an understanding of the
influence different features have on the decisions. By applying a trained SVM to a
feature vector we can get a prediction to which class it belongs, e.g. whether the
word we are looking at starts a list item constituent or not. However, the rationale
behind the classification is hidden in the mathematical computations and we cannot
directly comprehend what caused or influenced the decision. We therefore present
a set of methods that allow some insight on the influence of features in this section.
This also helped in selecting the final selection of features we used. For each method
we provide a few example results, however the methods are of course applicable to all
classifiers. The focus lies on the presentation of methods and not the interpretation
of results. With the large amount of features and classifiers this is out of the scope
of this thesis.
An important factor is what type of kernel is applied because, as we will see, for
the linear kernel the question can easily be answered but for the RBF-Kernel it is
disproportionately more difficult. However, we start with a method that can be
performed before even training the classifiers and is thus independent of the used
12As a matter of fact, because the constituent window spans previous constituent tags, the decision

of a classifier can be part of the same classifiers input in the classification of a following word.

40



5.3 Classifier Analysis

kernel. The following sub-sections then deal with the classifiers using the linear and
RBF-Kernel respectively.

5.3.1 Analysis on Training Set

This method simply analyzes the learning instances in the training set, even before
any training occurs. We use the following computation suggested in [wei Chen
(2005)] to produce the so-called F-Score for a feature i:

F (i) ≡

(
x̄(+)

i − x̄i
)2

+
(
x̄(−)

i − x̄i
)2

1
n+−1

n+∑
k=1

(
x

(+)
k,i − x̄(+)

i

)2
+ 1

n− − 1

n−∑
k=1

(
x

(−)
k,i − x̄(−)

i

)2

Remember that each feature vector of the training set is in Rd so the i-th feature
occurs in the i-th row of the vector and that furthermore each vector has a label in
Y = {+1,−1} assigned to specify its class. Now for the i-th feature x̄i, x̄(+)

i , x̄(−)
i

define the overall average value, average value of the positive instances and average
value of the negative instances. In addition x

(+)
k,i is the value of the i-th feature in

the k-th positive instance and likewise x
(−)
k,i is the value of the i-th feature in the

k-the negative instance.
In the numerator we measure the discrimination of the average value of positive and
negative instances against the overall average. Intuitively if the feature only appears
in either the positive or the negative instances this will result in a large value. In the
denominator we measure the discrimination within each of the sets in form of their
variance. A feature value that is constant within the positive or negative instances
results in a small value. In total a feature that only appears in either the positive or
negative instances and has a constant value therein will achieve a large F-score and
it is intuitively comprehensible that this feature is a good indicator for the respective
class.
Table 5.1 and 5.2 show the top five features for the separator classifier and the
relative clause constituent start classifier.
We shortly explain the illustration. Index denotes the position in the feature vector
and description provides a textual translation of the feature. The description is
split into three parts by a colon. The first part identifies the type of window, i.e.
“ww” for word window, “cw” for chunk window and “pw” for POS-tag window. The
second part gives a relative position. For example, for the POS-tag window 0 for
the current word, 1 for the next word and -1 for the previous word in the sentence.
The last part denotes the actual observation at that position, e.g. “but” if the word
occurs or “VP” if there is a verb phrase at that position. For the translation of all
tags we refer to the work cited in the introduction of text chunking and POS-tagging
in chapter 3.3.

41



Chapter 5 Sentence Constituent Identification Using Machine Learning

Index Description
475 ww:0:but
105 cw:0:O
123 pw:0:CC
20 cw:2:VP
342 cw:0:SBAR

Table 5.1: The top five features for
the separator classifier according to
F-Score.

Index Description
256 ww:0:which
185 pw:-1:,
252 pw:0:WDT
420 ww:0:including
134 cw:-1:O

Table 5.2: The top five features for
the relative clause start classifier
according to F-Score.

What we can for example see is that a good indication for the separator constituent
classifier is if the current word is “but” and it is followed by a verb phrase but
not immediately, e.g. in “... but he went home”. Good indications for the relative
clause constituent start classifiers are whether the current word is “which”, and the
previous POS-tag was a comma. for example in “The car, which is green”.

5.3.2 Analysis with Linear Kernel

Although we do not use the linear kernel in our implementation13 we shortly show
how we can determine relevant features in this case. Remember that the classifica-
tion works as follows:

c(x) = sgn(∑m
i=1 αiγiK(xi, x) + b)

and that i = 1...m ranges over the support vectors and all corresponding αi, γi are a
result of the training. Furthermore, the linear kernel is defined as the dot product:
K(xi, x) = xi · x. Therefore, the following holds:

c(x) = sgn(∑m
i=1 αiγix

T
i x + b)

c(x) = sgn(∑m
i=1(αiγix

T
i )x + b)

We can now calculate ∑m
i=1(αiγixi) to obtain a weight vector w. In fact, we now

have a trivial decision function for classification:

c(x) = sgn(wT x + b)

where a hyperplane can be described by a vector w normal to it and its distance to
the origin is influenced by b. So by calculating w and comparing its values we can
conclude on the relative importance of features.

42



5.3 Classifier Analysis

Weight Index Description
0.91 20 cw:2:VP
0.7 105 cw:0:O
0.64 102 pw:1:VBZ
0.63 19 cw:1:NP
0.59 342 cw:0:SBAR

Table 5.3: The top five features in
favor of a classification as a sep-
arator classifier according to their
weight.

Weight Index Description
0.81 152 pw:-2:IN
0.66 85 cw:1:O
0.57 257 pw:3:NN
0.55 53 cw:2:O
0.52 18 cw:0:VP

Table 5.4: The top five features
against classification as a separator
classifier according to their weight.

Table 5.3 and 5.4 show the top five features in favor and against a classification as
separator constituent according to their weight.
The description of the illustration can be taken from the previous section and we
leave the detailed interpretation to the reader. However, we note that some of the
features of the previous tables 5.1 and 5.2 for the F-Score based analysis reappear.

5.3.3 Analysis with Radial Basis Function Kernel

Unfortunately the analysis for the RBF-Kernel can not be performed in the same
way as for the linear kernel. The kernel computes a dot product in an implicitly
mapped features space and even if we were able to compute a weight vector, as for
the linear kernel, it would be in the mapped feature space, where we are unable to
interpret it.
We therefore follow two different approaches. On the one hand we try to find the
most influential support vectors for a decision as described in [Barbella et al. (2009)].
This allows the intuition to say that a learning instance, or rather its feature vector,
was classified a certain way because it is very similar to these support vectors.
Especially the RBF-Kernel allows this intuition. On the other hand we try to find
a feature vector in the training set with maximum distance from all support vectors
in order to argue that it is a very good example of that class. Both methods do
not allow a direct conclusion on relative importance of features, because they only
compare complete vectors. Nonetheless this allows a valuable insight on the decisions
made.
We remember that the final classification was based on the following function:

c(x) = sgn(∑m
i=1 αiγiK(xi, x) + b)

13Of course, we experimented with the linear kernel during development.

43



Chapter 5 Sentence Constituent Identification Using Machine Learning

It is now easy to see that the i-th support vector contributes exactly:

pi(x) = αiγiK(xi, x)

to the final sum. This is what [Barbella et al. (2009)] define as the pull of a support
vector following the intuition that the support vector pulls the vector in one direction
or the other. We furthermore realize that the RBF-kernel K(xi, x) = e−γ||xi−x||2

gives a very good similarity measure [Barbella et al. (2009)], especially its value is
maximal (1) if xi = x and decreases with increasing distance of xi and x. A large
pull is therefore caused either by large αiγi , which result from training the SVM, or
because the distance to the support vector is small. Computation is trivial and we
compute the pull for each support vector against all instances in the test set used in
the evaluation chapter. We then select the support vectors that contributed most to
a classification in favor or against a certain class. We show two vectors with greatest
influence for and against a classification for the separator constituent classifier in
tables 5.5 and 5.6.

Again the interpretation of the description has been covered in section 5.3.1 and we
do not further interpret the results but give an intuition. The support vector in table
5.5 for example, stems from the sentence "Checchi wanted to extend the death penalty
[...] and he wanted a drug rehabilitation programs [...]" with the word in bold
showing the word being classified. A clear example where a separator constituent
should be placed. The support vector in table 5.6 stems from the word “and” in
bold in the sentence “All Dogs Go to Heaven 2 [...] is a 1996 American animated
family film, and a sequel to United Artists ’ 1989 animated film All Dogs Go to
Heaven". A clear example of a list item start, but not of a separator constituent.

To provide another intuition we also compute the feature vectors of the test set with
greatest distance to all support vectors. This allows finding best candidates for a
certain class, because we assume they are farthest away from all support vectors of
their respective class. To compute the distance we realize that the following holds:

|x− y|2 = (x− y) ∗ (xT − yT )
= x ∗ xT + y ∗ yT − y ∗ xT − x ∗ yT

= < x, x > + < y, y > −2∗ < x, y >

and therefore:

|Φ(x)− Φ(y)| = K(x, x) + K(y, y)− 2 ∗K(x, y)

44



5.3 Classifier Analysis

Index Description
115 cw:-1:Oă
30 cw:-2:NPă
84 cw:-3:VPă
149 cw:-4:Oă
105 cw:0:Oă
19 cw:1:NPă
20 cw:2:VPă
21 cw:3:NPă
86 cw:4:PPă
167 pw:-1:,ă
57 pw:-2:NNSă
119 pw:-3:NNă
108 pw:-4:VBă
101 pw:0:CCă
273 pw:1:PPă
155 pw:2:VBDă
49 pw:3:DTă
50 pw:4:NNă
96 ww:0:andă

Table 5.5: The support vector con-
tributing most in favor of a separa-
tor classification according to pull.
Only the features with non-trivial
value are shown.

Index Description
115 cw:-1:O
30 cw:-2:NP
84 cw:-3:VP
149 cw:-4:O
105 cw:0:O
19 cw:1:NP
116 cw:2:PP
21 cw:3:NP
10 cw:4:NP
167 pw:-1:,
110 pw:-2:NN
119 pw:-3:NN
151 pw:-4:JJ
101 pw:0:CC
70 pw:1:DT
71 pw:2:NN
28 pw:3:TO
124 pw:4:NP
96 ww:0:and

Table 5.6: The support vector con-
tributing most most against a sep-
arator classification according to
pull. Only the features with non-
trivial value are shown.

Now because K(x, x) is trivially 1 for the RBF-Kernel:

|Φ(x)− Φ(y)| = 2− 2 ∗K(x, y)

We now compute the minimum distance of each feature vector to all support vectors
of their respective class, i.e. mini∈sv+αiγi(2 − 2 ∗ K(svi, y)) for feature vectors y
that belong to the class, and analogously mini∈sv−αiγi(2− 2 ∗K(svi, y)) for feature
vectors y that do not belong to the class. sv+ and sv− denote the support vectors
of the positive and negative class respectively. Sorting the two lists by descending
minimum distance leaves the feature vectors farthest away at the top. Tables 5.7
and 5.8 show the two feature vectors with maximal minimal distance to all support
vectors of their respective class for the separator classifier. Again only non trivial
values in the vector are shown.

45



Chapter 5 Sentence Constituent Identification Using Machine Learning

Index Description
107 cw:-1:O
30 cw:-2:NP
166 cw:-3:PP
167 cw:-4:PP
324 cw:0:SBAR
19 cw:1:NP
20 cw:2:VP
97 cw:3:PP
10 cw:4:NP
157 pw:-1:,
153 pw:-2:NP
156 pw:-3:NP
179 pw:-4:VBN
128 pw:0:IN
269 pw:1:PP
84 pw:2:VBZ
202 pw:3:VBN
106 pw:4:IN

Table 5.7: The feature vector of pos-
itive test set instances furthest
away from all support vectors in fa-
vor of a separator constituent.

Index Description
237 bw:-1:SEP
107 cw:-1:O
117 cw:-2:O
51 cw:-3:NP
200 cw:-4:ADVP
6 cw:0:NP
7 cw:1:VP
8 cw:2:NP
97 cw:3:PP
10 cw:4:NP
102 pw:-1:CC
161 pw:-2:,
111 pw:-3:NN
110 pw:-4:DT
1 pw:0:PP
2 pw:1:VBD
3 pw:2:CD
115 pw:3:IN
98 ww:-1:and

Table 5.8: The feature vector of the
negative test set instances fur-
thest away from all support vectors
against a separator constituent.

We note two things. The first feature shown in table 5.8 “bw:-1:SEP” shows that
a particular good instance of a word that is not a separator constituent is one that
directly follows a separator constituent. Furthermore in table 5.7 the start of a
sub-ordinate clause, “cw:0:SBAR”, followed by a noun phrase, “cw:1:NP”, and a
verb phrase, ”cw:2:VP”, is a particular good example of a separator constituent.
An example is “The penalty of life imprisonment is not provided for in the Revised
Penal Code , although it is imposed by other penal statutes [...]” with the separator
constituent in bold.

5.4 Inference Algorithm

In this section we present an algorithm to infer an optimal solution given the sug-
gested constituent start and end points of our classifiers. We achieve this by a

46



5.4 Inference Algorithm

mapping to the maximum weight independent set problem (MWIS)14. We start by
giving some preliminaries and then describe the mapping. The maximum indepen-
dent set problem is NP -complete, so no efficient algorithm for solving it is known.
We therefore provide an approach based on enumeration and a greedy approach for
solving it.

5.4.1 Preliminaries

Let G(V, E) be an undirected graph with no multiple edges, vertices V and edges
E. Moreover let w(i) be a positive weight assigned to each vertex i. With |V | we
denote the cardinality of V and with ω(V ) the sum of weights w(i) of all vertices in
V , i.e. ω(V ) = ∑

i∈V w(i).

Definition 3. A set of vertices V ′ ⊆ V is independent if for all distinct vertices
u, v ∈ V ′ it holds that{u, v} 6∈ E, i.e. no two vertices of V ′ are adjacent.

Definition 4. The maximum weight independent set (MWIS) problem is the prob-
lem of finding an independent set V ′ ⊆ V such that the sum of all weights, ω(V ′),
is maximum among all independent sets of V . If we assign the same weight w to
all vertices of V the problem is called the maximum independent set problem and
as a result we are interested in finding an independent set V ′ ⊆ V , such that |V ′| is
maximum among all independent sets of V .

5.4.2 Mapping to the Maximum Weight Independent Set
Problem

We map the problem of finding an optimal structure of constituents to the maximum
weight independent set problem as follows.
We are given a set of constituent start and end suggestions S = {sx,i, ex,,j...} where
sx,i denotes the start of constituent type x at the i-th word in the sentence and
likewise ex,j the constituent end at the j-th word. A possible constituent is a pair
c = (si, ej)x such that i ≤ j. We denote the set of all possible constituents based
on these suggestions as C = {(si, ej)x|sx,i, ex,j ∈ S ∧ i ≤ j}. Two constituents
c = (s1, e1)x and d = (s2, e2)x overlap iff s1 < s2 ≤ e1 < e2 or s2 < s1 ≤ e2 < e1, and
we denote it by c ∼ d. We construct a graph G(V, E) as follows:

1. For each possible constituent c ∈ C add a vertex to G

2. Apply the classifier cx to the constituent c of type x, and if, according to the
classifier, c belongs to x assign the weight 100, and 1 else.

3. Add an edge between all distinct vertices u, v ∈ V if their corresponding
constituents c and d overlap, i.e. c ∼ d .

14This is not to be confused with the maximal independent set problem.

47



Chapter 5 Sentence Constituent Identification Using Machine Learning

4. Add an edge between all distinct vertices u, v ∈ V if their corresponding
constituents c and d have the same start and type, i.e. using the notation for
c and d from above if sx,i = sy,j

Step 1 is self-explanatory. Step 2 assigns a weight based on the outcome of our
constituent classifiers. Because currently the constituent classifiers are not robust
enough we cannot ignore possible other suggestions, but assign a small weight. As a
result a correct suggestion of the constituent classifier is practically guaranteed to be
included in the solution, but other possible suggestions are not ignored completely.
With rule 3 we avoid that one suggestion causes the start of two constituents. For
example, when S = {sREL,1, sREL,4, eREL,3, eREL,10} it is always possible to construct
a surrounding constituent (s1, s10)REL. At first this seems like a restriction, but note
that this only applies to constituents of the same type and that in practice no two
constituents of the same type start at the same word.
To further improve results we apply a simple heuristic that allows closing each
constituent at the end of a sentence or before a separator constituent. In essence this
means inserting end suggestions for all constituent types into S before construction
of the graph.
After construction the graph G(V, E) consists of weighted vertices representing all
possible constituents. In an independent set V ′ ⊆ V no two vertices are adjacent and
thus the corresponding constituents do not overlap or have the same start suggestion.
The maximum weight independent set is the independent set V ′ ⊆ V where ω(V ′)
is maximum among all independent set and corresponds to the final constituents
identified.

5.4.3 Solving the Maximum Weight Independent Set Problem

The maximum weight independent set problem is NP -complete, so currently no
efficient algorithm is known for solving it. We therefore use a naive algorithm
enumerating all the possible solutions and for large problem sizes fall back to a greedy
algorithm. We start by explaining the naive algorithm for enumeration followed
by the greedy algorithm. To provide simple pseudo-code we first define a set of
operations. Given a graph G(V, E), N(v) defines the neighborhood of vertex v, i.e.
all adjacent nodes. Furthermore, the standard set operations work on graphs, i.e.
G\N(v) removes all neighbors of v from G and G∪v inserts v into G without adding
any edges.

Enumeration. Algorithm 5.1 shows how to enumerate the problem recursively
and is a slightly modified version of an approach in [R et al. (1986)] for finding the
size of the maximum independent set.
At each call we split the graph into two sub-graphs at vertex v. Either the final
MWIS contains v or it does not. The set that contains v cannot contain any neigh-
bors of v so we remove them and recursively compute the MWIS. We also remove v

48



5.4 Inference Algorithm

and later add it again, to avoid it from being randomly chosen in the sub-calls. We
also recursively compute the MWIS set for the graph that does not contain v. The
resulting MWIS is then the set returned by the sub-calls with larger ω. In [R et al.
(1986)] it has already been shown that runtime is exponential O(2n) in the number
of vertices of G.

Algorithm 5.1 Recursively Enumerate Maximum Weight Independent Set Problem
1: maxInSet(G):
2: if G has no edges then
3: return G
4: else
5: v ← vertex from G with maximum weight
6: withoutV ← maxInSet(G \ v)
7: withV ← maxInSet(G \N(v) \ v)
8: withV ← withV ∪ v
9: if ω(withV ) > ω(withoutV ) then

10: return withV
11: else
12: return withoutV
13: end if
14: end if

Greedy. We fall back to the greedy approach if the sentence is longer than 30
words. The greedy approach does not always obtain an optimal solution but is
guaranteed to run in O(n). Algorithm 5.2 shows the pseudo-code. It greedily choses
the vertex in G with largest weight, removes adjacent vertices and continues like
that until G is empty.

Algorithm 5.2 Greedy Approach for Maximum Weight Independent Set Problem
1: greedyMaxInSet(G):
2: begin
3: I ← ∅
4: while G 6= ∅ do
5: v ← vertex with maximum weight from G
6: G← G \N(v) \ v
7: I ← I ∪ v
8: end while
9: return I

10: end

49



Chapter 5 Sentence Constituent Identification Using Machine Learning

5.5 Implementation Details

We use libSVM 15 as a Support Vector Machine implementation. It is written in
C++, so it integrates well with our existing code we used for implementing for
feature extraction and remaining parts of contextual sentence decomposition. For
training we used provided utilities of libSVM that perform cross-validation and
parameter selection for kernel values.
We provide some information on how we tuned learning parameters. The constituent
start and end classifiers are supposed to deliver suggestions. Because we can recover
from wrong suggestions in the inference phase it is desirable to train the start and
end classifiers in such a way that they rather make wrong suggestions but don’t miss
a correct one, instead of the other way round. We can achieve this by adjusting the
cost of misclassifying a certain class during the learning phase. We simply set the
cost of misclassifying a positive class, e.g. “is a relative clause start”, to a much
larger value than mis-classifying the negative class, i.e. “is not a relative clause
start”. As a result classifying as a negative class, when it fact it should be positive,
is much worse than the other way round - exactly what we want to achieve. Table 5.9
shows the settings and kernel parameters for all classifiers used for the best results
achieved.

Classifier γ C cost +1 cost -1
SEP 0.03125 32 3 1
REL( 0.0078125 128 10 0.1
REL) 0.0078125 32 10 0.1

RELA( 0.03125 2 10 0.1
RELA) 0.0078125 128 10 0.1
LIT( 0.03125 8 10 0.1
LIT) 0.03125 32 10 0.1
REL 0.0078125 8 3 1
LIT 0.03125 8 3 1

RELA 0.0001221 512 3 1
Table 5.9: Training parameters γ of the RBF-Kernel and misclassification cost C

for all classifiers used. “REL(“ denotes the relative clause constituent start clas-
sifier, “REL)” the according end classifier and “REL” the complete constituent
classifier. Analogously for all other constituent types. “Cost +1” denotes the cost
multiplier for the positive class and “Cost -1” for the negative class.

15http://www.csie.ntu.edu.tw/~cjlin/libsvm/

50



6 Semantic Wikipedia Full-Text
Search

In the previous chapters we provided the necessary pieces for contextual sentence
decomposition (CSD) and the introduction already presented our understanding of
semantic full-text search. This chapter now describes how we can integrate con-
textual sentence decomposition with an existing search engine to provide semantic
full-text search on the English Wikipedia. Having a fully functional search engine
at hand allows us to draw more reliable conclusions on the benefits and quality of
contextual sentence decomposition and consequently we also use it in the following
chapter for evaluation purposes.

The first section provides an overview of the components involved. Afterwards we
describe how we integrate contextual sentence decomposition with a search engine so
that the executed queries can benefit from it. To demonstrate the effect of contextual
sentence decomposition in this set-up the last section provides some selected example
queries and results.

6.1 Overview

A semantic full-text search engine should allow us to search for example for plants
with edible leaves and as a result return a list of documents16 that mention plants
that have edible leaves. More precisely, if we formulate the query as plant edible
leaves 17 we expect it to return a list of sentences where an instance of the class
plant, such as “Rhubarb” (and not the word “plant”) is mentioned along the words
“edible” and “leaves”.

We use SUSI (Wikipedia Search Using Semantic Index Annotations) [Buchhold
(2010)] with our approaches of contextual sentence decomposition to allow seman-
tic full-text search on the English Wikipedia. SUSI is based on ESTER (Efficient
Search on Text, Entities and Relations) [Bast et al. (2007)]. Both utilize structured
16In the context of search engines a document represents some unit of information. Here, a

document could e.g. refer to a complete article in Wikipedia or just to one sentence of an
article.

17For simplicity for now we assume that plant in bold letters in this search query represents an
entity class whereas edible and leaves are regular words.

51



Chapter 6 Semantic Wikipedia Full-Text Search

knowledge from the ontology YAGO, but SUSI extends ESTER by providing an im-
proved entity recognition and experimental anaphora resolution, which is important
for CSD. Furthermore SUSI applies a novel index annotation allowing faster search
queries with only minimal index blow-up.

SUSI already allows simple semantic full-text search, but it performs no natural
language processing. The returned results are merely the result of full-text search
in an index annotated with semantic information. Matches of a query must simply
occur within the same document, in this case a sentence. By applying contextual
sentence decomposition on the sentences we now require the matches to occur within
the same sub-sentence. This provides a better semantic full-text search, that not
only is semantic because of the information incorporated via an ontology, entity
recognition and anaphora resolution, but also because it adheres to the semantics
of the sentence part of the natural language.

Queries for SUSI are composed of words, entities and classes. Throughout this and
the evaluation chapter, a query is composed of regular words, such as “edible”, or
special words starting with “:e”. The special words are used to represent the struc-
tured information of YAGO. For example, the special word :e:entity:physicalentity
:object resembles that an object is a physical entity which is an entity etc. Due to
the length of the special words, we only provide the start and the characterstic end.
SUSI performs prefix search and therefore the query edi* matches the words “ed-
itor” and “edible” and the query :e:entity:physicalentity:object...:person:* matches
all instances of persons, for example “Albert Einstein”.

We have provided an implementaion in C++ of the respective approaches of sentence
constituent identification and sentence constituent recombination to allow contex-
tual sentence decomposition and the next section describes how we can integrate it
with SUSI.

6.2 Integrating with the Existing Index

To integrate contextual sentence decomposition with SUSI we need to find a suit-
able integration point. Of course, we want to perform the decomposition as a pre-
processing step, after all the result is static, as is the index of the search engine.
Therefore, ideally we want to integrate with the existing index generation, without
having to change any of the structures. The underlying index of SUSI is constructed
in a pipeline of index transformations, so an obvious approach is to extend the
pipeline at the correct place with yet another transformation. This is actually a
viable approach and the process described in this section.

A number of index files play a role for the final search engine but we concentrate
on the one relevant to our task and begin by describing it. Table 6.1 shows how the
sentence “Albert Einstein took an entry examination, which he failed.” is represen-

52



6.2 Integrating with the Existing Index

tend in the index file. At this stage the index data is still in ASCII format and we
can use it to apply contextual sentence decomposition.

word document score position
:e:entity[...]physicist:alberteinstein:Albert_Einstein 19373 1 0

Albert 19373 1 0
Einstein 19373 1 0

__eofEntity 19373 1 0
took 19373 1 0
an 19373 1 0

entry 19373 1 0
examination 19373 1 0

, 19373 1 0
which 19373 1 0

:e:entity[...]physicist:alberteinstein:Albert_Einstein 19373 1 0
he 19373 1 0

__eofEntity 19373 1 0
failed 19373 1 0

Table 6.1: Example Sentence in Index Format with Recognized Entities.

The first column shows the word, the second one a document identifier, the third one
a score value and the fourth one a position identifier. The words represent the actual
content of the English Wikipedia and contain some special words that are the result
of entity recognition and anaphora resolution provided by SUSI. For example the
special word “:e:entity[...]scientist:physicist:alberteinstein:Albert_Einstein”18 marks
the entity Albert Einstein and provides the information that he is a physicist which
is a scientist which is a person and so on. The special word “__eofEntity” is used to
express across which words the last mentioned entity spans. The document identifier
in our case uniquely identifies a sentence and the score value is irrelevant for us and
we ignore it. The position identifier is used to assign each word some position within
a document and is currently unused.
The interesting detail that allows using the same structure for sub-sentences is that
it is possible to assign the same position to several words and to restrict a query
using a special operator to match not only in the same document but also at the
same position. This is exactly our use case. If the words of each sub-sentence of a
sentence share the same position and same document id, a set of words must occur
within the same sub-sentence to generate a match. Thus it is possible to restrict
the search to sub-sentences.
To perform contextual sentence decomposition we then proceed as follows.

1. Perform part-of-speech tagging on the index.
18The complete special word has been shortened for reasons of brevity.

53



Chapter 6 Semantic Wikipedia Full-Text Search

2. Perform text chunking on the index.
3. Perform contextual sentence decomposition outputting a new index file.
4. Continue the index generation with the new index file.

Both, part-of-speech as well as text chunking tags are required for the sentence con-
stituent identification phases of contextual sentence decomposition. We therefore
apply part-of-speech TreeTagger [Schmid (1994)], and afterwards the text chun-
ker YamCha [Kudoh and Matsumoto (2000)] on the index file by transform the
format to the required input formats of the respective tools. The final input for
contextual sentence decomposition is then the original index enriched with columns
containing the word’s part-of-speech and text chunking tag. The implementation
of sub-sentenceSentence Decomposition remembers document id, score and entity
definitions for each word and assigns each resulting sub-sentence a new position
denoted in the word’s position column.
Table 6.2 depicts the resulting sub sentences “Albert Einstein took an entry exam-
ination” and “an entry examination, which he failed.” of the sentence above in
the desired index format. This again nicely shows why the anaphora resolution is
required beforehand. The second sub-sentences still contains the information that
“he” refers to Albert Einstein, something that would be lost instead. The index
generation pipeline can then be continued as usual.

word document score position
:e:entity[...]physicist:alberteinstein:Albert_Einstein 19373 1 0

Albert 19373 1 0
Einstein 19373 1 0

__eofEntity 19373 1 0
took 19373 1 0
an 19373 1 0

entry 19373 1 0
examination 19373 1 0

an 19373 1 1
entry 19373 1 1

examination 19373 1 1
, 19373 1 1

which 19373 1 1
:e:entity[...]physicist:alberteinstein:Albert_Einstein 19373 1 1

he 19373 1 1
__eofEntity 19373 1 1

failed 19373 1 1
Table 6.2: Decomposed Example Sentence in Index Format.

54



6.3 Example Queries and Results

6.3 Example Queries and Results

We next show some sample results of queries executed against SUSI using contextual
sentence decomposition. For each query we show an actual result returned, and
a result not returned because of CSD, which would otherwise be returned. This
provides some intuition of the final result and overall use of semantic full-text search
and especially contextual sentence decomposition.

In the queries shown the “=” operator is used instead of a space to require the
matches to occur in the same sub-sentence. The prefixes are followed by the wild-
card operator “*”. Matches in the results are shown in bold, and additionally the
respective entity we are looking for with our query is underlined.

Query for all friends of Albert Einstein:

friend*=:ee:entity:alberteinstein:*=
:e:entity:[...]:livingthing:organism:person:*

Returned Leó Szilárd:

“During August 1939 he [Leó Szilárd] approached his old friend and collaborator
Albert Einstein [...]”

Did not return Yoshio Nishina:

“Yoshio Nishina, a friend of Niels Bohr and a close associate of
Albert Einstein.”

Query for athletes disqualified due to doping:

disqualif*=doping=:e:entity:[...]:livingthing
:organism:person:contestant:athlete:*

Returned Lyidmila Blonska:

“Lyudmila Blonska was later disqualified for failing a doping test [...]”

Did not return Thomas Alsgaard:

“However Mühlegg was found guilty of doping and disqualified by the IOC in
February 2004, therefore upgrading Estil and Alsgaard to joint gold medalists.”

55



Chapter 6 Semantic Wikipedia Full-Text Search

Query for plants with edible leaves:

edible=leaf|leaves=:e:entity:[...]:livingthing:organism:plant*

Returned Parsley:

“Carrot, celery and parsley are true biennials that are usually grown as annual
crops for their edible roots, petioles and leaves, respectively.”

Did not return Pandanus:

“Pandanus: from pandan, a tropical tree or shrub with a twisted stem, long spiny
leaves, and fibrous edible fruit.”

Query for politicians that died because of diabetes:

die*|death=:ee:entity:diabetes:*=
:e:entity:[...]:person:leader:politician:*

Returned Bernard Dowiyogo:

“He [Bernard Dowiyogo] died in office in March 2003 (having been president
on this occasion since January 2003) at George Washington University Hospital in

Washington, D.C. from heart complications brought on by his struggle with
diabetes, a common ailment on Nauru.”

Did not return Joan Littlewood:

“In 1975, her collaborator and partner, Gerry Raffles died of diabetes, and in
1979, a devastated Joan Littlewood moved to France, and ceased to direct.”

56



7 Evaluation

Evaluation shall provide the answer to two questions: on the one hand how well
does the approach of contextual sentence decomposition (CSD) work for seman-
tic full-text search, and on the other hand how do the two approaches of sentence
constituent identification (SCI) compare to each other. Evaluation is therefore per-
formed on three different levels. First we directly compare the two approaches of
sentence constituent identification in terms of how well they recognize constituents.
We then compare their influence by evaluating the resulting contextual sentence de-
composition. In order to asses the overall effect of CSD on semantic full-text search
we examine the search quality of a semantic search engine incorporating it. For each
evaluation we closely inspect results and give an interpretation.

7.1 Measures

We shortly describe the measures relevant throughout the evaluations. For each
experiment performed we determine expected results and compare them against
actual results. We can categorize each element in the set of expected or actual
results into one of three categories:
• True: for an element present in the actual as well as the expected results
• false-positive (False-Pos): for an element present in the actual but not in

the expected results
• false-negative (False-Neg): for an element present in the expected but not

in the actual results
We then compute the precision, recall and F-measure (Fβ=1) which are typical mea-
sures in an Information Retrieval context. Let TRUE, FALSE-POS and FALSE-
NEG be sets containing all elements of the respective categories. The measures can
be computed as follows:

precision = |TRUE |
|TRUE |+ |FALSE-POS | recall = |TRUE |

|TRUE |+ |FALSE-NEG|

Fβ=1 = 2· precision · recall

precision + recall

57



Chapter 7 Evaluation

7.2 Sentence Constituent Identification

To evaluate the quality of our sentence constituent identification approaches we use
a test set of 50 sentences selected from the English Wikipedia. The sentences mainly
consist of false-positives observed during semantic search queries, but also contain
sentences selected due to an interesting structure of constituents. The test set is
therefore a particularly hard set of sentences compared to the average sentences of
the English Wikipedia. For each sentence a gold annotation in form of the type, start
and end of each contained constituent has manually been provided. We measure how
well starts as well as ends of each constituent type are determined compared to the
golden assignments. We also measure how well complete constituents (consisting of
correct start and end pair) are determined.

7.2.1 Measurements

In the tables below the start of a relative clause constituent is denoted by “REL(“
and an end by “REL)” and analogously for the remaining constituents. A separator
constituent consists of only one word, therefore no distinction between start and end
is necessary.

Type SCI True False-Neg False-Pos Precision Recall F-measure
REL RULE-SCI 16 7 2 88.9% 69.6% 78%

ML-SCI 13 10 4 76.5% 56.5% 65%
RELA RULE-SCI 2 3 7 22.2% 40% 28.6%

ML-SCI 3 2 13 18.8% 60% 28.6%
LIT RULE-SCI 41 36 24 63.1% 53.2% 57.7%

ML-SCI 24 53 24 50% 31.2% 38.4%
SEP RULE-SCI 23 2 14 62.2% 92.5% 74.2%

ML-SCI 15 10 6 71.4% 60% 65.2%
TOTAL RULE-SCI 82 48 47 63,6% 63,1% 63,3%

ML-SCI 55 75 47 53,9% 42,3% 47,4%
Table 7.1: Evaluation of sentence constituent identification. Results for the rule

based SCI (RULE-SCI) and machine learning based SCI (ML-SCI) are shown.
Matched constituents must have same start and end.

58



7.2 Sentence Constituent Identification

Type SCI True False-Neg False-Pos Precision Recall F-measure
REL( RULE-SCI 18 5 0 100% 78.3% 87.8%

ML-SCI 16 7 1 94.1% 69.6% 80%
REL) RULE-SCI 16 7 2 88.9% 69.6% 78.0%

ML-SCI 13 10 4 76.5% 56.2% 64.8%
RELA( RULE-SCI 3 2 6 33.3% 60% 42.9%

ML-SCI 5 0 11 31.3% 100% 47.7%
RELA) RULE-SCI 2 3 7 22.2% 40% 28.6%

ML-SCI 3 2 13 18.8% 60% 28.6%
LIT( RULE-SCI 48 29 17 73.8% 62.3% 67.6%

ML-SCI 32 45 16 66.7% 41.6% 51.2%
LIT) RULE-SCI 50 27 15 76.9% 64.9% 70.4%

ML-SCI 31 46 17 64.6% 40.3% 49.6%
SEP RULE-SCI 23 2 14 62.2% 92.5% 74.2%

ML-SCI 15 10 6 71.4% 60% 65.2%
TOTAL RULE-SCI 160 75 61 72,4% 68,1% 70,2%

ML-SCI 115 120 45 71,9% 48,9% 58,2%
Table 7.2: Results for the evaluations of identified starts and ends of constituents.

The results for the rule based SCI (RULE-SCI) and machine learning based SCI
(ML-SCI) are shown. For ML-SCI this represents the final result after inference
and not an intermediate classification.

7.2.2 Interpretation

First we consider each of the approaches by itself. For the rule based approach
of sentence constituent identification we can see in table 7.1 that the best results
are achieved for identifying relative clause constituents followed by separator con-
stituents. Separator and relative clause constituents don’t share many character-
istics with other constituents and are easily distinguishable and recognized fairly
well. Compared to them the identification of list item constituents and appositive
constituents is worse. This can be attributed to the fact that list item constituents
and appositive constituents are similar in their grammatical environment. Both
usually only consist of noun phrases and the rule based approach sometimes as-
signs the wrong type. For example consider the following passage showing correct
constituents:

“[...] this position,(REL which had passed (LIT from Jacques-Champion
Chambonnières)LIT (LIT to Jean-Henri D’Anglebert )LIT (LIT to François Couperin

)LIT (LIT to his daughter , (RELAMarguerite-Antoinette Couperin)RELA)LIT , and
then (LIT to Bernard de Bury )LIT )REL”

59



Chapter 7 Evaluation

The appositive “Marguerite-Antoinette Couperin” is identified as another list item
constituent by the rule based approach. Unfortunately assigning the wrong type
in this case poses a problem because the recombination phase treats the types in a
different way19. Another issue influencing list item recognition is that the rule based
approach uses the assumption that list items are separated by commas - something
that for example does not hold in the sentence above.

Looking closer at the starts and ends of each constituent type in table 7.2 we can see
that the starts of each constituent type are usually better recognized than their ends.
However, the absolute numbers of correct matches are relatively close and remem-
bering that the rule based approach first discovers the starts and then assigns ends
to the constituents we can conclude that the corresponding ends are often correctly
assigned and thus the heuristic is effective. What stands out is the precision of 100
percent for discovering relative clause starts. However, we miss some starts which
results in a recall of only 78.3 percent showing that the rule applied is effective
but might be further extended to matching the missed starts. For the compara-
bly bad results of appositive constituent starts one has to realize that the test set
only provided a small number of examples. A test set containing more appositive
constituents might give some more insight here.

For the list item constituents we observe that a lot of false starts are identified.
This is caused by missing parts of a first list item constituent. For example, in the
sentence with correctly identified constituents:

“Taro is a tropical plant grown (LIT primarily as a root vegetable for its edible
corm )LIT , and (LIT secondarily as a leaf vegetable )LIT ”

the first list item constituent actually identified is “its edible corm”. Improving the
heuristic for identifying the first list item constituents may provide a solution here.

The identification of separator constituents shows a good recall of 88.5 percent
but also a comparably large number of false-positives indicating that the applied
rule might be too optimistic. Remaining errors are often caused by not perfectly
recognizing embedded constituents as in:

“Yoshio Nishina , (REL(LIT a friend of Niels Bohr )LIT and (LIT a close associate
of Albert Einstein)LIT )REL”

for which the constituents actually identified are:

“Yoshio Nishina , (LIT a friend of Niels Bohr )LIT and (LIT a close associate of
Albert Einstein)LIT ”

19As opposed to for example assigning the type REL instead of RELA.

60



7.2 Sentence Constituent Identification

It is interesting to note that in this case the resulting sub-sentences after the recom-
bination phase would be identical. This is not necessarily always the case. The next
evaluations, measuring results after recombination, will show how large the actual
influence of wrong identifications are.
Let us next consider the results for the machine learning based approach of SCI. As
table 7.1 shows basically the same observations hold as for the rule based approach:
relative clause and separator constituents seem to be easier to discover than ap-
positive and list item constituents. However, the machine learning approach causes
a larger number of false-positives and negatives reducing the overall F-measures.
Furthermore, the measures for the recognized list item constituents are worse than
for the rule based approach. To understand the results we need to remember that
the machine learning based approach is based on a filtering phase and an inference
phase. The presented results are the final results after the inference phase. In the
filtering phase starts and ends of constituents are suggested and the inference phase
builds a constituent structure out of these suggestions. Because the inference phase
cannot recover from missing suggestions, false-negatives might be caused by missing
suggestions. False-positives however should be filtered out. We therefore need to
consider each of the phases in more detail.
Looking at table 7.2 we can see that starts of the final constituents are better
identified than their ends. This can be caused by either the filtering phase not
suggesting the correct ends or by the inference phase selecting the wrong ends.
Therefore, table 7.3 shows how well the classifiers of the filtering phase identified
constituent starts and ends in the test set, which resembles the input to the inference
algorithm.

Type True False-Neg False-Pos Precision Recall F-measure Accuracy
REL( 18 5 1 94.7% 78.3% 85.7% 99.5%
REL) 16 7 44 26.7% 69.6% 38.6% 95.5%
RELA( 5 0 16 23.8% 100% 38.4% 98.7%
RELA) 3 2 5 37.5% 60% 46.2% 99.4%
LIT( 39 36 22 63.9% 52% 57.3% 95.1%
LIT) 53 22 5 91.4% 70.7% 79.7% 97.8%

Table 7.3: Filtering phase classifier performance on the test set. For each con-
stituent type we show the number of constituent starts and ends correctly identi-
fied, missed and erroneously identified. Accuracy in the last column is based on
all 1189 instances of words classified.

The classifiers were trained to produce a good recall for the sake of a good pre-
cision. Looking at table 7.3 we can indeed observe that , with respect to recall,
the classifiers of constituent ends are worse than those of the corresponding start
classifiers explaining our observation. An exception here is the list item constituent
start classifier which performs even worse than its end classifier also explaining why

61



Chapter 7 Evaluation

the overall result for this constituent type is influenced. This may be caused by the
fact that some list item constituents in the training set start with a preposition or
a verb and confuse the classifier. A larger training set should help improving the
end classifiers as well as the list item start classifier. Another approach might also
be the utilization of a heuristic, similar to the one of the rule based approach, to
deduct constituent ends for suggested starts20.

To draw conclusions on how well the inference phase works we remember that three
additional classifiers are used to decide whether a possible constituent start and end
pair actually resemble a constituent of the given type. Depending on the outcome
the possible suggestion is assigned a weight in the mapped graph. Table 7.4 shows
the performance of these classifiers on the test set. Especially the large number
of false-positives poses a problem here: a larger weight will be assigned to those
candidates causing the final resulting false-positives we observed. The comparably
bad performance of these classifiers directly influences the robustness of the inference
phase. Again, especially a larger training set and more parameter tuning and feature
selection should be the solution here.

Type True False-Pos False-Neg Precision Recall F-measure Accuracy
REL 14 19 9 42.4% 60.9% 50% 87.4%
RELA 2 5 3 28.6% 40% 33.3% 96.4%
LIT 57 18 20 76% 74% 75% 82.9%

Table 7.4: Inference phase classifier performance on the test set. Accuracy in the
last column is based on all 222 instances of constituents classified.

Comparing the two approaches first of all we can see that the rule based approach
of sentence constituent identification outperforms the machine learning based ap-
proach in all measures taken above. Especially the machine learning based approach
produces both, more false-positives and negatives compared to the rule based ap-
proach. As we saw this is mainly due to our used classifiers still not being robust
and accurate enough. The filtering phase fails to predict some ends of constituents
causing the false-negatives and the inference phase is not robust enough to filter out
some wrong suggestions causing the false-positives. A larger training set will defi-
nitely increase the performance of the classifiers and further parameter and feature
tuning should help as well. As we saw the rule based approach could be improved
by developing new and improving existing heuristics. However, care must be taken
not to influence existing heuristics. Furthermore the rule based approach is limited
by its ability to discover more complex embedded constituents - something that is
not easily solved.

20A simple heuristic, suggesting ends for each open constituent at the end of a sentence, is already
present, but obviously not effective enough.

62



7.3 Contextual Sentence Decomposition

As a final example consider the passage with correct annotations:

“Yoshio Nishina , (REL(LIT a friend of Niels Bohr )LIT and (LIT a close associate
of Albert Einstein )LIT )REL”

and how the machine learning based approach identified the constituents

“Yoshio Nishina , (RELAa friend (LIT of Niels Bohr )LIT and (LIT a close associate
of Albert Einstein )LIT )RELA”

resulting in one correctly identified constituent and two false-positive constituents.
However, this result is not far from the desired one, something that is not reflected
in this evaluation. Identifying such an embedded structure is a hard task and it
demonstrates the potential of the machine learning based approach. Therefore, one
must bear in mind that the above evaluation is strict and does not consider the
final outcome of contextual sentence decomposition - and after all, this is what
we are interested in. Still, the results for the rule based approach are superior.
The next section provides an evaluation of the final outcome of contextual sentence
decomposition.

7.3 Contextual Sentence Decomposition

For each of the sentence constituent identification approaches we evaluate the re-
sulting contextual sentence decomposition. The same set of sentences as in the
previous evaluation is used and for each sentence the set of expected sub-sentences
was manually provided. For the evaluation we first define sub-sentence equality as
set equality filtered on a set of relevant word categories. Let c be a sub-sentence
consisting of a multi-set of words {w1, w2...wn}. To denote the part-of-speech tag of
a word w we use pos(w) and we define the set P to contain relevant word categories.
The set of relevant words D corresponding to sub-sentence C is simply the set of
words whose part-of-speech is in P :

D = {wi|wi ∈ C ∧ pos(wi) ∈ P}

and sub-sentence equality is easily defined as equality of the corresponding sets

C1 = C2 ⇐⇒ D1 = D2

63



Chapter 7 Evaluation

Using the set P of relevant word categories allows us to ignore certain type of words
like “and”,”or” and “but” which are not relevant for the use-case we consider. We
also use the Jaccard distance to measure the similarity of two sub-sentences. The
Jaccard distance d of two sub-sentences C1,C2 is based on their corresponding sets
of relevant words D1 and D2 , and defined as follows:

d = 1− |D1 ∩D2|
|D1 ∪D2|

A Jaccard distance of 0 results from two identical sub-sentences and a distance of 1
from two completely different sets.
Evaluation is then performed for each sentence by comparing resulting actual with
expected sub-sentences and categorizing them into true, false-positive and false-
negative using above defined sub-sentence equality. Additionally, for each false-
positive sub-sentence we compute the minimum Jaccard distance to the sub-sentences
marked false-negative and vice versa. This allows a measure of how “wrong” the
resulting sub-sentences actually are.

7.3.1 Measurements

In the following evaluation the set of part-of-speech tags regarded relevant are:

P = {PP$, NNP, NNS, NP, NN, V BD, V BZ,

V BP, JJ, V B, RB, PP, PRP, V BN, CD}

For a description of these tags we refer to [Marcus et al. (1993)], but mainly they
include all nouns, personal pronouns, verbs, adjectives, adverbs and numbers.

True False-Pos False-Neg Precision Recall F-measure
ML-CD 56 63 93 47% 37.6% 41.8%
RULE-CD 98 57 51 63.4% 65.8% 64.5%

Table 7.5: Results for the evaluation of contextual sentence decomposition using
the Machine Learning (ML-CD) and Rule Based (RULE-CD) sentence constituent
identification.

64



7.3 Contextual Sentence Decomposition

Avg.Distance False-Pos Avg.Distance False-Neg
ML-CD 0.369 0.456
RULE-CD 0.463 0.443

Table 7.6: Average Jaccard distances for the results of contextual sentence decom-
position using the Machine Learning (ML-CD) and Rule Based (RULE-CD) Sen-
tence Constituent Identification.

7.3.2 Interpretation

As we can see in table 7.5 the rule based approach of contextual sentence decomposi-
tion (RULE-CD) clearly outperforms the machine learning based approach (ML-CD)
regarding quality of resulting sub-sentences. This is not unexpected considering the
quality of identified constituents evaluated previously.
The machine learning based approach produces a large number of false-negatives
and it also produces a smaller total amount of sub-sentences than the rule based
approach, accounting for much of the difference. A close look reveals that this
is often due to single list item constituents being identified, that are missing the
remaining list items of the enumeration. For example, in

“Bernard de Bury (LIT resided in Versailles his entire life )LIT , and (LIT held
various positions at the court )LIT ”

only the last list item was identified which, by itself, does not result in a new
sub-sentence. Furthermore some slight errors in constituent identification lead to
slightly wrong sub-sentences, resulting in false-positive as well as false-negative sub-
sentences. Consistent with the previous evaluation, some constituents are missed
completely further attributing to the smaller amount of resulting sub-sentences. The
large number of false-positive sub-sentences can be attributed to wrongly identified
constituents.
The rule based approach performs as expected: the average F-measure of identified
constituents in the previous evaluation is 59.6 percent and for the resulting sub-
sentences it is 62 percent. A large number of errors are caused by not recognizing
long lists or complex embedded constituents. For example, the embedded structure
in

“Harrison (LIT asserts the existence of female trinities )LIT , (LIT discusses the
Horae as chronological symbols representing the phases of the Moon )LIT and (LIT

goes on to equate the Horae with (LIT the Seasons)LIT , (LIT the Graces )LIT and
(LIT the Fates )LIT )LIT ”

is not recognized but the enumeration is continued on the same level, resulting
in false-positive as well as false-negative sub-sentences. For smaller and simpler
sentences the rule based approach performs very well however.

65



Chapter 7 Evaluation

Looking at table 7.6 we can see that the average distance of false-positives and
false-negatives is smaller for the machine learning based approach. One can conclude
that on average each of the false-positive sub-sentences generated by the machine
learning approach was contained to about 63 percent (100 - 36.9 percent) in one of
the false-negative sub-sentences (of the same sentence of course). In other words,
although it made more errors, the average “significance” of an error is smaller. This
also matches the observation that the machine learning based approach makes a lot
of smaller errors in constituent identification.

Overall we can say that RULE-CD is the more aggressive type of decomposition.
More sub-sentences are generated, and it produces less errors, but these are worse
than the errors produced by ML-CD. ML-CD on the other hand identifies less con-
stituents resulting in less sub-sentences and the erroneous sub-sentences are on av-
erage closer to the desired ones.

For both approaches it holds that on average more than 50 percent of a missed
sub-sentence are contained in one of the false-positives generated. Therefore, the
final evaluation of search quality will have to show how large the influence of slightly
wrong sub-sentences actually is.

Something we have not considered so far is the fact that when we measure the
quality of contextual sentence decomposition we also measure the quality of sentence
constituent recombination. SCR uses a heuristic for attaching relative clauses to the
noun they describe, which is not always correct. For example, in

“[...] various addresses in and around Kennington Road in Lambeth , (REL

including (LIT 3 Pownall Terrace )LIT , (LIT Chester Street )LIT and (LIT 39
Methley Street )LIT )REL.”

the relative clause refers to “various addresses in and around Kennington Road in
Lambeth” but we actually attach it to “Lambeth” resulting in wrong sub-sentences.
A close inspection shows that this only caused a relatively low number of false-
positive sub-sentences for the approaches, therefore we do not further consider it.

7.4 Search Quality

The previous evaluations examined how the approaches of sentence constituent iden-
tification compare to each other in terms of resulting decomposition. We now eval-
uate how contextual sentence decomposition influences search quality for semantic
full-text searches.

A search engine incorporating contextual sentence decomposition as described in
chapter 6 is used to execute a selected set of queries, allowing us to evaluate search
quality by examining the returned results against a ground truth. The baseline is

66



7.4 Search Quality

provided by executing the queries against a regular index21 of the English Wikipedia.
We then compare it against the queries on the index for which CSD has been per-
formed using each of the SCI approaches.
In detail evaluation is performed as follows. Each selected query returns a list
of entities together with a witness, an excerpt of the full-text where the match
occurred22. For example, the query

edible leaf|leaves :e:entity:[...]livingthing:organism:plant*”

matches all sentences where the words “edible”, “leaf ” or “leaves”, and an instance
of a plant occurs. Each returned result then consists of an entity representing the
plant, together with the sentence the match occurred in. Consequently it is also
possible that an entity is returned several times - once for each hit in the corpus.
We then compare the set of returned entities with our ground truth and evaluate
the results using our standard measures. Note that the witnesses are not used in
this evaluation, but will allow a more detailed reasoning for some cases as we will
see.
We use two different sets of queries shown in table 7.7. The first one (A1-A5) is evalu-
ated against an automatically generated ground truth using Wikipedia lists, identical
to the evaluation already performed for SUSI [Buchhold (2010)]. A Wikipedia list
contains facts of a certain nature and has been manually populated or automatically
extracted, for example a list of edible plants, which can then be parsed for entity
names. Although a good source of information it has been shown to be incomplete
or to contain wrong facts [Buchhold (2010)], making the evaluation less accurate.
We therefore use a second set of queries (M1-M5) for which the ground truth has
been manually generated by executing each query against the search engine running
our baseline index and examining returned results. Consequently these queries can
only generate correct or false-positive results on the baseline.
While being a very important evaluation we note that several influences play a role
in its results, possibly falsifying them to some extent. First of all contextual sentence
decomposition assumes that entity recognition and anaphora resolution is performed
beforehand. Therefore, the evaluation depends on the quality of entity recognition
and anaphora resolution incorporated into SUSI. Especially an unresolved anaphora
may lead to false elimination of some results. If for example in the following sentence

“Usable parts of Rhubarb include the edible stalks and the medicinally used roots,
however its leaves are toxic.”

it remains unresolved that “its” refers to “Rhubarb”, the resulting sub-sentence “its
leaves are toxic” looses very vital information.
21SUSI generates the index by parsing an XML dump of the English Wikipedia.
22The actual implementation is slightly different but for our concerns we can assume the afore-

mentioned behavior.

67



Chapter 7 Evaluation

Furthermore natural language processing can be influenced by the lexical quality
of the index. It has been parsed from Wikipedia markup and, although error-less
to large extents, may contain dubious characters and incorrect sentence boundaries.
This hardly influences search results on the standard index, but it can inhibit natural
language processing and thus contextual sentence decomposition to some extent. We
need to remember that the contextual sentence decomposition approaches are based
on a part-of-speech tagger and text chunkers. These assume correct english sentences
as input and their performance can influence all further processing.
As a last point we note that the evaluation does not properly reflect the full effect
of contextual sentence decomposition. This stems from the already mentioned fact
that the result of a query can contain an entity-excerpt pair several times - once for
each sentence or sub-sentence that matched. Assume a false-positive entity that is
contained five times because it occurs in five different matching sentences, but each
time with a different, wrong meaning. If contextual sentence decomposition can
eliminate four of the five false-positives results, the entity will still be in the result
set and the effect of Context Decomposition is not visible in the standard measures.

7.4.1 Measurements

The following table shows the queries used for search quality evaluation.

ID Query
A1 drug=died|death=:e:entity:[...]:person:*
A2 united=states=elected=:e:entity:[...]:president:*
A3 english=:e:entity:[...]:sovereign:*
A4 political=:e:entity:p[...]:writer:*
A5 computer=:e:entity:[...]:scientist:*
M1 edible=leaf|leaves=:e:entity:[...]:plant*
M2 friend*=:ee:entity:alberteinstein:*=:e:entity:[...]:person:*
M3 blood=sugar|glucose|:e:entity:[...]:monosaccharide:*

=:e:entity:[...]:hormone:*
M4 die*|death=:ee:entity:diabetes:*=:e:entity:[...]:politician:*
M5 disqualif*=doping=:e:entity:[...]:athlete:*

Table 7.7: Queries for search quality evaluation. The prefix M indicates evaluation
using a manually generated ground truth, and analogously the prefix A evaluation
against an automatically generated ground truth. For brevity the queries have
been shortened. The full queries can be found in the appendix.

68



7.4 Search Quality

Query Index True False-Neg False-Pos Precision Recall F-measure
A1 BASE 106 108 1124 8.62% 49.53% 14.68%

ML-CD 92 122 848 9.79% 42.99% 15.94%
RULE-CD 83 131 560 12.90% 38.79% 19.37%

A2 BASE 42 1 139 23.2% 97.67% 37.5%
ML-CD 40 3 111 26.49% 93.02% 41.24%
RULE-CD 39 4 69 36.11% 90.7% 51.66%

A3 BASE 48 11 1409 3.29% 81.36% 4.37%
ML-CD 48 11 1262 3.66% 81.36% 7.01%
RULE-CD 47 12 1103 4.09% 79.66% 7.78%

A4 BASE 29 18 13209 2.19% 61.7% 4.37%
ML-CD 28 19 11755 2.38% 59.57% 4.73%
RULE-CD 26 21 10519 2.47% 55.32% 4.91%

A5 BASE 294 63 2850 9.35% 82.35% 16.8%
ML-CD 290 67 2570 10.14% 81.23% 18.03%
RULE-CD 289 68 2403 10.74% 80.95% 18.96%

TOTAL BASE 519 201 18731 2,7% 72,1% 5,2%
A1-A5 ML-CD 498 222 16546 2,9% 69,2% 5,6%

RULE-CD 484 236 14654 3,2% 64,7% 6,1%
M1 BASE 41 0 58 41.41% 100% 58.57%

ML-CD 33 8 42 44% 80.49% 56.9%
RULE-CD 25 16 16 60.98% 60.98% 60.98%

M2 BASE 35 0 65 35% 100% 51.85%
ML-CD 28 7 52 35% 80% 48.7%
RULE-CD 21 14 15 58.33% 60% 59.15%

M3 BASE 21 0 19 52.5% 100% 68.85%
ML-CD 18 3 18 50% 85.7% 63.16%
RULE-CD 17 4 9 65.38% 80.95% 72.34%

M4 BASE 21 0 7 75% 100% 85.71%
ML-CD 20 1 4 83.33% 95.23% 88.89%
RULE-CD 19 2 1 95% 90.48% 92.68%

M5 BASE 42 0 24 63.63% 100% 77.78%
ML-CD 37 5 15 71.15% 88.1% 78.72%
RULE-CD 34 8 8 80.95% 80.95% 80.95%

TOTAL BASE 160 0 173 48% 100% 64,9%
M1-M5 ML-CD 136 24 131 50,9% 85% 63,7%

RULE-CD 116 44 49 70,3% 72,5% 71,4%
Table 7.8: Search query results for executing against the baseline index (BASE)

and the indices pre-processed with contextual sentence decomposition using the
rule based approach (RULE-CD) and the machine learning based approach (ML-
CD) are shown.

69



Chapter 7 Evaluation

7.4.2 Interpretation

First of all we note that applying contextual sentence decomposition can not increase
the recall of a search query. Sub-sentences represent subsets of the words of an
original sentence, therefore if a set of words and entities is not present in a sentence,
it can not be present in its sub-sentences. Ideally we expect an increase in precision,
by weeding out many false-positives, at the same time maintaining recall, resulting
in an increase of the overall F-measure.
As we can see in table 7.8 for all queries performed precision has increased. Most
notably the increase is always higher with the rule based approach of contextual
sentence decomposition. This is consistent with our previous evaluations, showing
that RULE-CD outperforms ML-CD. Because precision is low for the queries based
on an automatically generated ground truths (A1-A5), comparing absolute values
is not meaningful and we compute the averages of relative increases. On average
the machine learning based approach caused a relative increase in precision of 12.5
percent, and 31.5 percent for the rule based approach. For the queries evaluated
against a manually created ground truth (M1-M5) the relative increase was 4.7
percent and 38.8 percent respectively. The difference for the machine learning based
approach is caused by the two queries M2 and M3. A problem here seems to be
that the ground truth and result size is relatively small, for example, for M3 the
incorrect elimination of three and correct elimination of one results, already causes
a decrease of precision. Overall the increase in precision is not as large as we might
expect based on the previous evaluations. We therefore closely inspect the errors,
but first interpret the remaining results on recall and F-measure.
As already noted the recall of each query can not be increased using contextual
sentence decomposition. Maintaining recall is therefore the primary goal. As shown
in table 7.8 however, recall is affected in a negative way by contextual sentence
decomposition. The decrease is slightly larger for the rule based contextual sentence
decomposition because it seems to be more aggressive. This is consistent with
our previous evaluations: ML-SCI causes a smaller number of constituents to be
identified resulting in less decomposition and furthermore the average distance of
false-positives, as shown in table 7.6 is smaller. Thus, if an error occurs it has less
impact than with RULE-CD. Nonetheless the decrease is small for most queries,
especially when considering the absolute number of true results for some queries -
causing only a few entities not to be returned already has a large impact on recall.
Considering the F-measure that incorporates both precision and recall we still ob-
serve an increase for practically all queries. The decrease in recall is always coun-
terbalanced by an even larger increase in precision. An exception are the queries
M2 and M3 where ML-SCI incorrectly eliminates few true results already causing
a too large decrease in recall. We can see some fluctuation throughout all queries.
This can be caused by different levels and areas of natural language used within
certain topics. For example, the query M3 for hormones that play a role in blood
sugar matches a lot of sentences using medicinal terminology, that are typically long

70



7.4 Search Quality

and intertwined. In contrast an inspection of the results of query M4 for politicians
whose death was caused by diabetes reveals a relatively simple use of language, with
short and easy to understand sentences. This is in accordance with the results of
the respective queries.
Although the results are comprehensible so far we want to perform a deeper analysis
of the errors. For CSD only two different error scenarios must be considered: it can
cause a correct result to no longer be returned, causing a decrease in recall, and it
can still return a false-positive result it should have eliminated, causing a decrease
in precision. If none of these errors occur recall will remain unchanged and precision
equals 100 percent.
We finish this evaluation with a close inspection of results for the queries M1-M5 for
RULE-CD. For each of the returned faulty entity-witness pairs we categorize them
into “incorrectly not deleted”, for false-positives that have not been eliminated but
should be, or “incorrectly deleted”, for correct results that were eliminated. For
each query we inspect 10 errors and analyze why the respective error was made by
assigning one of the following categories:
• R for an erroneous relative clause attachment. For example, in the sentence

“A total of twelve weightlifters were disqualified for doping, amongst them
Greek star Leonidas Sampanis, who had won two silver medals in [...]” the
relative clause “amongst them Greek star Leonidas Sampanis ...” refers to
“weightlifters”, but the current implementation attaches it to the closest noun
which is “doping”.
• L for a lexical error in the index caused by the Wikipedia parser. An example

is a wrong sentence boundary as in “the toxin found in many wood-sorrels and
other edible plants A characteristic of members” or remaining characters of
Wikipedia markup.
• E for a problem with entity recognition and anaphora resolution. For example,

in “Hans Poelzig designed a summer house for Albert Einstein, one of his
lifelong friends.” the anaphora “his” was resolved to Albert Einstein, although
it refers to Hans Poelzig.
• D for an error on behalf of contextual sentence decomposition. This is mostly

due to erroneous constituent identification for example as in “Austria’s Jo-
hannes Eder (LIT originally finished fourth in this event )LIT , but (LIT was
disqualified on November 22 )LIT (SEP ,)SEP 2007 after the FIS issued a two-
year doping suspension [...]” where the separator is wrongly identified, result-
ing in wrong decomposition and loss of factual information.
• I for an error that occurs, although contextual sentence decomposition is per-

formed successfully. For example, in “[...] all the resulting hybrids of this
crossing have radish leaves and cabbage roots, the two non-edible parts of its
ancestors” we cannot distinguish the fact that we are talking about non-edible
instead of edible parts. As an other example consider “In the late 1960s,

71



Chapter 7 Evaluation

he and his Cambridge friend and colleague, Roger Penrose, applied a new,
complex mathematical model they had created from Albert Einstein’s general
theory of relativity” where current decomposition puts “he and his friend ...”
and “applied a new complex mathematical model [...] created from Albert Ein-
stein’s [...]” into the same sub-sentence, resulting in an erroneous relation
of the words “friend” and “Albert Einstein” and the entity referenced by the
anaphora “he”.

The results are presented in the following table.

R L E D I
Number of errors 3 5 7 23 12

Table 7.9: Category based error analysis for the queries M1-M5. An error is the
incorrect elimination of a correct entity-witness pair from the result set, respec-
tively a false-positive entity-witness pair that was not eliminated. Ten errors have
been analyzed for each of the queries.

As we can see in table 7.9 half of the errors really stem from problems in contextual
sentence decomposition (category D) and the other half can be attributed to the
remaining categories. The errors for contextual sentence decomposition are caused
by complex sentences and grammatical constructs RULE-CD cannot handle. For
example, the comma used in dates as in “November 22, 1999 ...” confuses the
algorithms, as do participle clauses, e.g. “When blood sugar levels become too high,
insulin is released from the pancreas, lowering the blood sugar levels”. Extending the
rules might alleviate these problems. The errors are however also caused by some
sentence constructions that are currently not properly reflected by our constituents.
For example the participle construction in the sentence above is recognized as a
relative clause, and therefore attached to a noun. However, it expresses and describes
a circumstance or causal relation. The same is true for adverbial clauses as in
“Dembo was also wounded in the same attack that killed Savimbi and, because he
was weakened by diabetes, died ten days later” where “because he was weakened by
diabetes” describes how Dembo died. A future direction therefore might be the
extension of constituent types to express such constructs.

Second most errors are caused by category I, where contextual sentence decomposi-
tion seems not powerful enough. On the one hand this is attributed to negations as
in “non edible” as opposed to “edible”. This is hard to solve, but might be a future
research direction. On the other hand this are problems where although contextual
sentence decomposition is applied, words in the same sub-sentence do not “belong
together”. For example, in the sub-sentence “[He and his friend] applied a new,
complex mathematical model they had created from Albert Einstein’s general theory
of relativity” the words “he”, “friend” and “Albert Einstein” do not directly belong
together. In this case the passage “they had created from Albert Einstein’s general
theory of relativity” is as a reduced restrictive relative clause but ignored by the

72



7.4 Search Quality

current approach. Therefore, a future direction might be to identify and recombine
more detailed constituents, resulting in finer grained sub-sentences.
The remaining categories R, L and E make up about a third of the errors. Especially
the quality of input to contextual sentence decomposition is however out of its
control. Some slight improvements in the parser and entity recognition will certainly
provide a benefit. Errors caused by relative clause attachment are infrequent, and
therefore should be of lower priority in future research. Still, a simple extension of
the heuristic might prove usable, for example the recognition of number and gender
of nouns is a first direction.

73



Chapter 7 Evaluation

74



8 Conclusion

The final chapter provides a conclusion of the work presented in this thesis. We
summarize the major contributions and results and also discuss areas where future
work looks promising and improvements can be made.

8.1 Summary and Results

In the introduction of this thesis we provided the motivation for contextual sentence
decomposition (CSD) that comes from for semantic full-text search. We then gave
a detailed problem definition that formally introduced the building blocks of CSD:
sentence constituent identification and sentence constituent recombination. We re-
alized that the difficult part of CSD is the identification of constituents, whereas the
formal definition of sentence constituent recombination already allows an immediate
implementation. Following this, we therefore described two different approaches for
sentence constituent identification, one based on a set of carefully devised rules, and
the other one based on machine learning techniques and an inference algorithm. This
allows for two different implementations of CSD and we described what the integra-
tion with an actual semantic search engine looks like. Using this search engine we
then evaluated the impact on semantic full-text search quality, but we also provided
a detailed comparison of the two approaches for sentence constituent identification.
All queries evaluated showed an increase in search quality due to contextual sentence
decomposition. Depending on the query the absolute increases in F-measure ranged
from a few percent up to 14 percent causing a relative increase of up to 90 percent.
This confirmed the idea, definition and implementation of contextual sentence de-
composition for semantic full-text search. Nonetheless the results did not meet our
expectations and we outlined several reasons why the evaluation did not reflect the
true potential of contextual sentence decomposition.
The evaluation and comparison of the rule based and machine learning based ap-
proaches of sentence constituent identification confirmed that both are eligible and
we revealed that initially our set of simple, carefully devised rules performs better
than the rather complicated machine learning based approach. However, we pointed
out that there is much potential for the machine learning based approach by increas-
ing its training set and improving its inference algorithm. This should also allow
for correct decomposition of complex, long and intertwined sentences, where the
rule based approach has most problems. Of course, further engineering of rules is

75



Chapter 8 Conclusion

possible as well, but it requires careful work, linguistic knowledge and experience
and is also language specific. Nonetheless the rule based approach already contains
a few simple yet effective rules, which lends itself to suggest a hybrid approach that
combines these effective rules with robust machine learning classifiers as a promising
candidate for future work.
No explicit comparison of performance with respect to processing speed has been
performed, but initial experiments show that the evaluation of rules is almost two
orders of magnitude faster than the machine learning based approach. However,
processing speed was not a top priority in the current implementations and we are
therefore confident that, when stressing this, both approaches allow an acceptable
implementation to that respect.

8.2 Future Work

In the following we present areas, coarsely ordered by decreasing priority, where
future research work seems promising.

More detailed evaluation. As already noted, the search quality evaluation does
not truly reflect the power of contextual sentence decomposition. This is because
the evaluation is performed against a ground truth containing only entities. If for
example, a query returns the same false-positive entity five times, each time with
a different witness, and contextual sentence decomposition manages to remove four
of these false-positive results, the remaining entity-witness pair will still be in the
result set and so will the entity. The removal of the four false-positive results is
not reflected in the evaluation at all. If instead the ground truth contains all the
entity-witness pairs, the evaluation can better reflect the power of contextual sen-
tence decomposition and will show better results. This is in line with our subjective
observation when using the search engine, which gave reason to higher expectations.
However, the annotation of a large amount of entity-witness pairs is a tedious and
costly task with too much effort for the context of this thesis and should therefore
be part of future work.

Improvement of the machine learning based approach to sentence constituent
identification. First of all the size of the training set must be increased. During
development increasing the training set size from 130 to 200 sentences improved the
F-measure of each classifier at least 5 percent and it can be expected to increase
even further. This will make the resulting classifiers more robust. Some more work
on feature and parameter selection can then further improve the inference phase,
making it less sensitive to wrong suggestions. If the used classifiers work better
different weighting approaches in the inference algorithm might show far better
results and, as a consequence, a major performance increase can be expected. Other

76



8.2 Future Work

improvements might be the training of only one constituent end classifier instead of
three, the incorporation of errors of the filtering phase into the training of inference
phase classifiers or the integration of rules to form a hybrid approach (see below)
as well as the exchange of Support Vector Machines against other machine learning
techniques.

Improvement of the rule based approach to sentence constituent identification.
The rule based approach works well already, but some minor and easy changes should
provide a further increase in performance. For example, the recognition of commas
in dates like “4 July, 2011” or brackets as relative clauses “the photoelectric effect
(which gave rise to quantum theory)” could easily be accomplished. One of the
major drawbacks of this approach is currently that the formulation of new rules
is done using algorithms, in essence implemented in C++. The development of a
domain specific language for rules would make implementation and thus evaluation
of new rules easier and faster. A next step might then be the improvement of rules
to better recognize embedded constituents.

Designing a hybrid approach. Depending on the outcomes above, a promising
approach seems to be the integration of easy yet effective rules with robust machine
learning techniques. This increases processing speed and might decrease problem
sizes for the inference algorithm, for example, if sentences can reliably be split
beforehand. This would combine the best of both worlds.

Extending contextual sentence decomposition. An extension of contextual sen-
tence decomposition could be evaluated. This refers to additional constituent types
as well as a possible adaption of SCR. We note that it is in fact debatable to what
extent a decomposition of sentences is reasonable. For example, should the sub-
sentence “He and his friend applied a new, complex mathematical model they had
created from Albert Einstein’s general theory of relativity” be further decomposed
into “He and his friend applied a new, complex mathematical model” and “a new,
complex mathematical model they had created from Albert Einstein’s general theory
of relativity”? An extension of contextual sentence decomposition, in the above
case for restrictive relative clauses, but also in general, is certainly feasible and an
evaluation would allow insight to its advantages and disadvantages and shed some
light. Another thing to consider in future is whether an extension of constituent
types allows better representation of certain sentence structures. For example, the
participle construction in “When blood sugar levels become too high, insulin is re-
leased from the pancreas, lowering the blood sugar levels” or the adverbial phrase in
“Dembo [...], because he was weakened by diabetes, died ten days later” are currently
not ideally represented, resulting in erroneous decomposition.

77



Chapter 8 Conclusion

Evaluation of further natural language processing techniques.
The current selection of natural language techniques focused on fast, but shallow
approaches. Evaluations of other natural language processing techniques that pro-
vide a semantically richer output might allow better recognition of constituents and
facilitate contextual sentence decomposition. For example, information similar to
a dependency graph, or more close to a complete parse tree would greatly benefit
contextual sentence decomposition. Annotations similar to Semantic Role Labeling
might prove useful as well. If these approaches allow an implementation that is fast
and accurate enough, they might prove usable and replace or extend the currently
used approaches.

Sentence constituent recombination. We can improve sentence constituent re-
combination in mainly two ways. On the one hand the attachment of relative clauses
can be extended by discovering gender and number of nouns they possibly attach
to. Because, according to our evaluation, the current heuristic works well we cannot
expect a large increase of performance, however the effort might be small enough to
justify it. On the other hand the assignment of list items to their enumeration is cur-
rently very simple, assuming continuous list items belong to the same enumeration.
This does not allow intermediate structures. An improvement is certainly possible
in this area, for example by assigning list items syntactic or semantic categories and
grouping them accordingly.

78



Bibliography

Baeurle, F. 2011. A user interface for semantic full text search. Master thesis.

Barbella, D., Benzaid, S., Christensen, J. M., Jackson, B., Qin, X. V.,
and Musicant, D. R. 2009. Understanding support vector machine classifica-
tions via a recommender system-like approach. In Int. Conf. on Data Mining.
305–311.

Bast, H., Chitea, A., Suchanek, F. M., and Weber, I. 2007. Ester: efficient
search on text, entities, and relations. In SIGIR, W. Kraaij, A. P. de Vries,
C. L. A. Clarke, N. Fuhr, and N. Kando, Eds. ACM, 671–678.

Bast, H. and Weber, I. 2007. The completesearch engine: Interactive, efficient,
and towards ir& db integration. In CIDR. www.crdrdb.org, 88–95.

Brill, E. 1992. A simple rule-based part of speech tagger. In ANLP. 152–155.

Buchhold, B. 2010. Susi: Wikipedia search using semantic index annotations.
Master thesis.

Burges, C. 1999. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery.

Carreras, X. 2005. Learning and inference in phrase recognition: A filtering-
ranking architecture using perceptron. Ph.D. thesis, Universitat Politècnica de
Catalunya.

Carreras, X. and Màrques, L. 2004. Introduction to the conll-2004 shared
task: Semantic role labeling. In Proceedings of CoNLL-2004. Boston, MA, USA,
89–97.

Chandrasekar, R., Doran, C., and Srinivas, B. 1996. Motivations and meth-
ods for text simplification. In Proceedings of the 16th conference on Computational
linguistics - Volume 2. COLING ’96. Association for Computational Linguistics,
Stroudsburg, PA, USA, 1041–1044.

Joachims, T. 1998. Text categorization with support vector machines: Learning
with many relevant features.

Klebanov, B. B., Knight, K., and Marcu, D. 2004. Text simplification for
information-seeking applications. In Conference on Cooperative Information Sys-
tems. 735–747.

79



Bibliography

Kudoh, T. and Matsumoto, Y. 2000. Use of support vector learning for chunk
identification. In Proceedings of the 2nd workshop on Learning language in logic
and the 4th conference on Computational natural language learning - Volume 7.
ConLL ’00. Association for Computational Linguistics, Stroudsburg, PA, USA,
142–144.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. 1993. Building
a large annotated corpus of english: the penn treebank. Comput. Linguist. 19,
313–330.

Marquez, L. and Salgado, J. G. 2000. Machine learning and natural language
processing.

R, C. C., S, S., I, B. M. T., A, F. R., Browman, K. E., and Crabbe,
J. C. 1986. Wilf: Algorithms and complexity. In Proceedings of ISSAC 94.
Prentice-Hall, 264–268.

Sang, E. F. T. K. and Déjean, H. 2001. Introduction to the conll-2001 shared
task: Clause identification. Computing Research Repository cs.CL/0107.

Schmid, H. 1994. Probabilistic part-of-speech tagging using decision trees.
Siddharthan, A. 2003. Syntactic simplification and text cohesion. Ph.D. thesis.
Tjong Kim Sang, E. F. and Buchholz, S. 2000. Introduction to the conll-2000

shared task: chunking. In Proceedings of the 2nd workshop on Learning language
in logic and the 4th conference on Computational natural language learning -
Volume 7. ConLL ’00. Association for Computational Linguistics, Stroudsburg,
PA, USA, 127–132.

wei Chen, Y. 2005. Combining svms with various feature selection strategies. In
Taiwan University. Springer-Verlag.

80


	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Thesis Structure

	2 Related Work
	2.1 Text Simplification
	2.2 Semantic Role Labeling and Clause Identification

	3 Problem Definition 
	3.1 Contextual Sentence Decomposition
	3.2 Sentence Constituent Types
	3.3 Natural Language Processing Preliminaries

	4 Sentence Constituent Identification Using Rules
	4.1 Preliminaries
	4.2 Finding Constituent Starts
	4.3 Finding Constituent Ends
	4.4 Examples

	5 Sentence Constituent Identification Using Machine Learning
	5.1 Overview
	5.1.1 Machine Learning and Support Vector Machines
	5.1.2 Detailed Approach

	5.2 Feature Selection and Training Classifiers
	5.2.1 Feature Representation
	5.2.2 Feature Selection for Constituent Start and End Classifiers
	5.2.3 Feature Selection for Constituent Classifiers
	5.2.4 Generating Training Sets and Training Classifiers

	5.3 Classifier Analysis 
	5.3.1 Analysis on Training Set
	5.3.2 Analysis with Linear Kernel
	5.3.3 Analysis with Radial Basis Function Kernel

	5.4 Inference Algorithm
	5.4.1 Preliminaries
	5.4.2 Mapping to the Maximum Weight Independent Set Problem
	5.4.3 Solving the Maximum Weight Independent Set Problem

	5.5 Implementation Details

	6 Semantic Wikipedia Full-Text Search
	6.1 Overview
	6.2 Integrating with the Existing Index
	6.3 Example Queries and Results

	7 Evaluation
	7.1 Measures
	7.2 Sentence Constituent Identification
	7.2.1 Measurements
	7.2.2 Interpretation

	7.3 Contextual Sentence Decomposition
	7.3.1 Measurements
	7.3.2 Interpretation

	7.4 Search Quality
	7.4.1 Measurements
	7.4.2 Interpretation


	8 Conclusion
	8.1 Summary and Results
	8.2 Future Work

	Bibliography

