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Zusammenfassung

Wir präsentieren Algorithmen für multi-modale Routenplanung in Straßennetzwerken
und Netzwerken des öffentlichen Personennahverkehrs (ÖPNV), so, wie in kombinierten
Netzwerken.
Dazu stellen wir das Nächste-Nachbar- und das Kürzester-Pfad-Problem vor und

schlagen Lösungen basierend auf Cover Trees, ALT und CSA vor.
Des Weiteren erläutern wir die Theorie hinter den Algorithmen, geben eine kurze

Übersicht über andere Techniken, zeigen Versuchsergebnisse auf und vergleichen die
Techniken untereinander.



Abstract

We present algorithms for multi-modal route planning in road and public transit net-
works, as well as in combined networks.
Therefore, we explore the nearest neighbor and shortest path problem and propose

solutions based on Cover Trees, ALT and CSA.
Further, we illustrate the theory behind the algorithms, give a short overview of other

techniques, present experimental results and compare the techniques with each other.



Section 1
Introduction

Route planning refers to the problem of finding an optimal route between given locations
in a network. With the ongoing expansion of road and public transit networks all over
the world route planner gain more and more importance. This led to a rapid increase
in research [19, 31, 47] of relevant topics and development of route planner software
[37, 35, 60].

However, a common problem of most such services is that they are limited to one
transportation mode only. That is a route can only be taken by a car or train, but
not with both at the same time. This is known as uni-modal routing. In contrast to
that multi-modal routing allows the alternation of transportation modes. For example
a route that first uses a car to drive to a train station, then a train which travels to a
another train station and finally using a bicycle from there to reach the destination.
The difficulty with multi-modal routing lies in most algorithms being fitted to net-

works with specific properties. Unfortunately, road networks differ a lot from public
transit networks. As such, a route planning algorithm fitted to a certain type of net-
work will likely yield undesired results, have an impractical running time or not even be
able to be used at all on different networks. We will explore this later in Section 6.

1.1 Related Work
Research on route planning began roughly in the 1950s with the development of Dijk-
stra [27] and the Bellman-Ford algorithm [27]. Ten years later Dijkstra was
improved using certain heuristics, introducing A? [40]. While these algorithms are all
able to compute the shortest path in a road network, they are too slow on real world
networks of realistic size, such as the scale of a country or even a state.
Thus, starting from 2000, research focused on developing speedup techniques for

Dijkstra. Basic techniques include bi-directional search, goal-directed search and con-
traction. In 2005 A? was further improved by introducing a heuristic based on land-
marks, exploiting properties of the triangle inequality, called ALT [40]. Around the
same time, techniques based on edge labels were developed. A prominent refinement
of this approach is called Arc-Flags [46]. In 2008, contraction hierarchies (CH) [38]
was presented as a very efficient algorithm based on contraction. Also, transit node
routing (TNR) [20], a technique based on access nodes, was developed. A year later,
it was shown that approaches can efficiently be combined, yielding very fast solutions.
Resulting in Chase [21], which combines CH with Arc-Flags, and a combination
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1.2. Contributions Section 1

of TNR and Arc-Flags, that yield query times of around 0.005 milliseconds on road
networks of country size (compare to Figure 6.4 in Section 6).

For public transportation networks, research was first focused on adapting existing
solutions for road networks. From 2005 to 2012 most of the mentioned algorithms
were successfully extended to compute shortest paths in public transportation networks
[31, 55, 47, 14, 19]. Unfortunately, most do not perform well on transit networks,
as such networks have a completely different structure from which previous speedup
techniques do not benefit much.

Because of that, techniques designed especially for transit networks have been develo-
ped. Efficient algorithms include Transfer Patterns [18] from 2010, Raptor [30]
from 2012 and CSA [33] from 2017.

A similar approach was done for multi-modal routing, where most algorithms have been
adapted to also run in combined networks, accounting for transportation mode restricti-
ons [17, 40, 58]. However, the topic is still relatively new and promising approaches,
as well as extensive research, appear only since around 2008. Theoretical background
was provided by [17, 16]. Nowadays, research is focused on ANR [29, 19], a general
approach for combining multiple networks using access nodes, as well as on improving
techniques for solving related subproblems, such as efficient access node selection and
solving the LCSPP [17] with less restrictions.

Meanwhile, related, more practice-oriented problems are studied, such as penalizing
turns [25, 39] or general multi criteria routing [48, 51, 19].

1.2 Contributions
Our main contribution to this research field is the development of Cobweb [57], which
is an open-source framework for multi-modal route planning developed in the context
of this thesis. Further, in Section 6 we give a detailed evaluation of experiments de-
monstrating the effectiveness of our implementations for all algorithms explained in this
thesis. Additionally, we give an overview over route planning and relevant approaches,
as well as a thorough explanation for all used algorithms including examples illustrating
them.

Cobweb is able to parse networks given in the OSM and GTFS format, which we
will explore later in Section 6.1, as well as in compressed formats, such as BZIP2
[1], GZIP [32], ZIP [44] and XZ [10]. Networks are then represented in one of the
models presented in Section 3. Metadata, like names of roads, are saved in an external
database and retrieved again later.

The back end offers three REST-APIs [52] using a client-server-based structure com-
municating over the HTTP [36] which are written primarily in Java. One API is for
planning journeys, one for searching nodes by their name and one for retrieving the
nearest node to a given location.
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1.3. Overview Section 1

The routing API answers journey planning requests from a given source to a desti-
nation. The answer contains multiple viable journeys. A request consists of

1. depTime, the departure time to start journeys at;

2. modes, transportation modes allowed for the journey. Applicable are car, bike, foot
and tram;

3. from, the source node to depart from;

4. to, the destination node to travel to.

The server then computes journeys using the algorithms presented in Section 5 and
responds with a list of viable journeys. A journey mainly consists of geographical coor-
dinates describing the path to travel along and metadata, such as which transportation
mode to use for which segment, names of roads and time information for each segment.
The name search API finds OSM nodes by their name. Therefore, we developed

LexiSearch [56], an API for retrieving information from given datasets. It maintains
the names of OSM nodes in an inverted n-gram index [26, 28]. This makes it possible to
efficiently retrieve nodes by an approximate name which is allowed to have errors, such
as spelling mistakes. This is known as fuzzy search, or approximate string matching,
see [49] for details. Further, nodes can be retrieved by prefixes, yielding search results
as-you-type. For example, a request with the approximate prefix name Freirb would
yield nodes with the name Freiburg and Freiburg im Breisgau.
The third API offers retrieval of the OSM node nearest to a given geographical coor-

dinate. Making it possible for a client to plan a route from an arbitrary location to an
arbitrary destination, for example by clicking on a map. Cobweb retrieves the nearest
node by using a Cover Tree and solving the Nearest Neighbor Problem, as ex-
plained in Section 4.

Cobweb comes with a light web-based front end (see Figure 1.1 for an image). Its
interface is very similar to other route planning applications, providing input fields for a
source and a destination, as well as a departure time and transportation mode restricti-
ons. The front end is primarily written in JavaScript and communicates with the back
end’s REST-APIs using asynchronous method invocations. The resulting journeys are
displayed on a map and highlighted according to metadata, such as the used transpor-
tation mode.

The source code of Cobweb, a release candidate, as well as a detailed description
of the project, its APIs, an installation guide, the structure and its control flow, can be
found at [57].

1.3 Overview
In this thesis, we explore a technique with which we can combine an algorithm fitted for
road networks with an algorithm for public transit networks, effectively obtaining a ge-
neric algorithm that is able to compute routes on combined networks. The basic idea is

8



1.3. Overview Section 1

Fig. 1.1: Screenshot of Cobwebs [57] front end, an open-source multi-modal route plan-
ner. It shows a multi-modal route starting from a given source, using the modes
foot-tram-foot-tram-foot in that sequence to reach the destination.

simple, given a source and destination, both in the road network, we select access nodes
for both. These are nodes where we will switch from the road into the public transit
network. A route can then be computed by using the road algorithm for the source to
its access nodes, the transit algorithm for the access nodes of the source to the access
nodes of the destination and finally the road algorithm again for the destinations access
nodes to the destination. Note that this technique might not yield the shortest possible
path anymore. Also, it does not allow an arbitrary alternation of transportation modes.
However, we accept those limitations since the resulting algorithm is very generic and
able to compute routes faster than without limitations. We will cover this technique in
detail in Section 5.3.2.

Our final technique uses a modified version of ALT [40] as road algorithm and CSA
[33] for the transportation network. The algorithms are presented in Section 5.1.2 and
Section 5.2.1 respectively. We also develop a multi-modal variant of Dijkstra [27],
which is able to compute the shortest route in a combined network with the possibility
of changing transportation modes arbitrarily. It is presented in Section 5.3.1 and acts
as a baseline to our final technique based on access nodes.
We compute access nodes by solving the Nearest Neighbor Problem. For a given

node in the road network its access nodes are then all nodes in the transit network, which
are in the vicinity of the road node. We explore a solution to this problem in Section 4.

Section 3 starts by defining types of networks. We represent road networks by graphs
only. For transit networks, we provide a graph representation too. Both graphs can then
be combined into a linked graph. The advantage of graph based models is that they are
well studied and therefore we are able to use our multi-modal variant of Dijkstra to
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1.3. Overview Section 1

compute routes on them. However, we also propose a non-graph based representation
for transit networks, a timetable. The timetable is used by CSA, an efficient algorithm
for route planning on public transit networks. With that, our road and transit networks
get incompatible and can not easily be combined. Therefore, we use the previously
mentioned generic approach based on access nodes for this type of network.

Further, we implemented the presented algorithms in the Cobweb [57] project, which
is an open-source multi-modal route planner. In Section 6 we show our experimental
results and compare the techniques with each other.
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Section 2
Preliminaries

Before we define our specific data models and problems we will introduce and formalize
commonly reoccurring terms.

2.1 Graph
Definition 1. A graph G is a tuple (V,E) with a set of nodes V and a set of edges
E ⊆ V ×R≥0×V . An edge e ∈ E is an ordered tuple (u,w, v) with a source node u ∈ V ,
a non-negative weight w ∈ R≥0 and a destination node v ∈ V .

Note that Definition 1 actually defines a directed graph, as opposed to an undirected
graph where an edge like (u,w, v) would be considered equal to the edge of opposite di-
rection (v, w, u) (compare to [34]). However, for transportation networks an undirected
graph often is not applicable, for example, due to one way streets or time dependent
connections like trains which depart at different times for different directions.
In the context of route planning we refer to the weight w of an edge (u,w, v) as cost.

It can be used to encode the length of the represented connection. Or to represent the
time it takes to travel the distance in a given transportation mode.

v1 v2

v3 v4

v5

8
2

1
1

2

1

Fig. 2.1: Illustration of an example graph with five nodes and six edges.

As an example, consider the graph G = (V,E) with

V = {v1, v2, v3, v4, v5} and
E = {(v1, 8, v2), (v1, 1, v3), (v2, 1, v1), (v2, 2, v5), (v3, 2, v4), (v4, 1, v2)},

which is illustrated in Figure 2.1.
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2.2. Tree Section 2

Definition 2. Given a graph G = (V,E) the function src : E → V, (u,w, v) 7→ u gets
the source of an edge. Analogously dest : E → V, (u,w, v) 7→ v retrieves the destination.

Definition 3. A path in a graph G = (V,E) is a sequence p = e1e2e3 . . . of edges ei ∈ E
such that

∀i : dest(ei) = src(ei+1).

We write e ∈ p if an edge e appears at least once in the path p. The length of a path is
the amount of edges it contains, i.e. the length of the sequence. The weight or cost is
the sum of its edges weights.
Let k be the length of a path p, then we define:

src(p) = src(e1)
dest(p) = dest(ek)

Given two paths q1 = e1 . . . ek and q2 = e′1 . . . e
′
l where dest(ek) = src(e′1), the concate-

nation of both paths is a path

p = e1 . . . eke
′
1 . . . e

′
l

with length k + l, also denoted by p = q1q2.

An example of a path in the graph G would be

p = (v1, 8, v2)(v2, 1, v1)(v1, 1, v3).

Its length is 3 and it has a weight of 10.

2.2 Tree
Definition 4. A tree is a graph T = (V,E) with the following properties:

1. There is exactly one node r ∈ V with no ingoing edges, called the root, i.e.

∃!r ∈ V @e ∈ E : dest(e) = r.

2. All other nodes v have exactly one ingoing edge. The source p of this edge is called
parent of v and v is called child of p:

∀v ∈ V : v 6= r ⇒ ∃!e ∈ E : dest(e) = v.

Definition 5. The subtree of a tree T = (V,E) rooted at a node r′ ∈ V is a tree
T ′ = (V ′, E′). V ′ ⊆ V is the set of nodes that can be reached from r′. That is, all
nodes that are part of possible paths starting at r′. Likewise, E′ ⊆ E is the set of edges
restricted to the vertices in V ′. The root of T ′ is r′.

12



2.3. Automaton Section 2

Definition 6. The depth of a node v in a tree T = (V,E), denoted by depth(v), is
defined as the amount of edges between v and the root r. It is the length of the unique
path p starting at r and ending at v.
The height of a tree is its greatest depth, i.e.

max
v∈V

depth(v).

And

children(v) = {c ∈ T |c child of v}.

Trees are hierarchical data-structures. Every node, except the root, has one parent. A
node itself can have multiple children. Note that it is not possible to form a loop in a
tree, i.e. a path that visits a node more than once. A node without children is called a
leaf.

v1

v2 v3 v4

v5 v6 v7

v2

v5 v6

Fig. 2.2: An example of an unlabeled tree (left) and the subtree of v2 (right).

Figure 2.2 shows a tree with 7 nodes. The node v1 is the root; v5, v6, v3 and v7 are the
leaves. The tree has a height of 2, the depth of v4 is 1. The subtree rooted at v2 only
consists of the nodes v2, v5 and v6.

2.3 Automaton
Automata are labeled graphs. They are used to represent states and the correlation
between them.

Definition 7. A deterministic finite automaton (DFA) A is a tuple (Q, σ,∆, q0, F )
with

• a set of states Q,

• a set of labels σ, called alphabet,

• a transition relation ∆ ⊆ Q× σ ×Q,

13



2.3. Automaton Section 2

• an initial state q0 ∈ Q and

• a set of accepting states F ⊆ Q.

Definition 8. A word w ∈ Σ? is a finite sequence of letters

w = a0a1a2 . . . ak−1

with ai ∈ Σ and some k ∈ N. The empty word is denoted by ε.
A word is called accepted iff

1.

∀i : (qi, ai, qi+1) ∈ ∆,

for some qi ∈ Q,

2. q0 is the initial state of the automaton and

3. the last state is accepting, i.e. qk ∈ F .

We say, the automaton A accepts the word w.

Definition 9. The language L(A) of an automaton A is defined as the set of accepted
words:

L(A) = {w ∈ Σ?|A accepts w}

q0start q1 q2

a

b

c

Fig. 2.3: Example of a deterministic finite automaton. q0 is the initial state and q2 is
accepting.

For an example, refer to Figure 2.3 which accepts the language

(ab)?ac
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2.4. Metric Section 2

denoting words with a finite sequence of ab, then one a and one c. Such as:

ac

abac

ababac

abababac

...

2.4 Metric
Definition 10. A function d : M ×M → R on a set M is called a metric iff for all
x, y, z ∈M

d(x, y) ≥ 0, non-negativity
d(x, y) = 0⇔ x = y, identity of indiscernibles

d(x, y) = d(y, x) and symmetry
d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

holds.

Definition 11. A metric space is a pair (M,d) where M is a set and d : M ×M → R
a metric on M .

Definition 12. Given a metric d on a set M , the distance of a point p ∈M to a subset
Q ⊆M is defined as the distance from p to its nearest point in Q:

d(p,Q) = min
q∈Q

d(p, q)

A metric is used to measure the distance between given locations. Section 4 and
Section 5, in particular Section 5.1.2, will make heavy use of this term.

There, we measure the distance between geographical locations given as pair of lati-
tude and longitude coordinates. Latitude and longitude, often denoted by φ and λ, are
real numbers in the ranges (−90, 90) and [−180, 180) respectively, measured in degrees.
However, for convenience, we represent them in radians. Both representations are equi-
valent to each other and can easily be converted using the ratio 360◦ = 2π rad.

A commonly used measure is the as-the-crow-flies metric, which is equivalent to the
Euclidean distance in the Euclidean space. Definition 13 defines an approximation
of this distance on locations given by latitude and longitude coordinates. The approx-
imation is commonly known as equirectangular projection of the earth [50]. Note that
there are more accurate methods for computing the great-circle distance for geographi-
cal locations, like the haversine formula [53]. However, they come with a significant
computational overhead.
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2.4. Metric Section 2

Definition 13. Given a set of coordinates M =
{
(φ, λ)|φ ∈

(
−π

2 ,
π
2
)
, λ ∈ [−π, π)

}
, we

define asTheCrowFlies : M ×M → R such that

((φ1, λ1) , (φ2, λ2)) 7→

√(
(λ2 − λ1) · cos

(
φ1 + φ2

2

))2
+ (φ2 − φ1)2 · 6371000.

The value 6 371 000 refers to the approximate mean of the earth radius R⊕ in meters.
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Section 3
Models

This section defines the models we use for the different network types. We define a graph
based representation for road and transit networks. Then both graphs are combined into
a linked graph, making it possible to have one graph for the whole network. Afterwards
an alternative representation for transit networks is shown.

3.1 Road graph
A road network typically is time-independent. It consists of geographical locations and
roads connecting them with each other. We assume that a road can be taken at any
time, with no time dependent constraints (see Section 2 of [31]).
Modeling the network as a graph is straightforward, Definition 14 goes into detail.

Definition 14. A road graph is a graph G = (V,E) with a set of geographical coordinates

V = {(φ, λ)|φ ∈
(
−π2 ,

π

2

)
, λ ∈ [−π, π)},

for example road junctions. There is an edge (u,w, v) ∈ E iff there is a road connecting
the location u with the location v, which can be taken in that direction. The weight w of
the edge is the average time needed to take the road from u to v using a car, measured
in seconds.

Figure 3.1 shows a contrived example road network with the corresponding road graph.
Note that two way streets result in two edges, one edge for every direction the road can
be taken.

Since edge weights are represented as the average time needed to take the road, it is
possible to encode different road types. For example the average speed on a motorway
is much higher than on a residential street. As such, the weight of an edge representing
a motorway is much smaller than the weight of an edge representing a residential street.
While the example has exactly one node per road junction this must not always be

the case. Typical real world data often consist of multiple nodes per road segment.
However, Definition 14 is still valid for such data as long as there are edges between
the nodes if and only if there is a road connecting the locations.

17



3.2. Transit graph Section 3

v1 v2

v3

v4

v5

v6

v7

v8

v9

Fig. 3.1: Example of a road network with its corresponding road graph. White con-
nections indicate roads, dark gray rectangles represent houses or other static
objects. Geographical coordinates for each node, as well as edge weights are
omitted in the illustration.

3.2 Transit graph
Transit networks can be modeled similar to road graphs. The key difference is that
transit networks are time-dependent while road networks typically are not. For example
an edge connecting Freiburg main station to Karlsruhe main station can not be taken
at any time since trains and other transit vehicles only depart at certain times. The
schedule might even change at different days.

The difficulty lies in modeling time dependence in a static graph. There are two common
approaches to that problem (see [31, 47, 19]).

18



3.2. Transit graph Section 3

The first approach is called time-dependent. There, edge weights are not static numbers,
but piecewise continuous functions that take a date with time and compute the cost it
needs to take the edge when starting at the given time. This includes waiting time. As
an example, assume an edge (u, c, v) with the cost function c. The edge represents a
train connection and the travel time is 10 minutes. However, the train departs at 10:15
am, while the starting time is 10:00 am. Thus, the cost function computes a waiting
time of 15 minutes plus the travel time of 10 minutes. Resulting in an edge weight of
25 minutes.
The main problem with this model is that it makes precomputations for route plan-

ning very difficult as the starting time is not known in advance.

The second approach, originally from [55], is called time-expanded. There, the idea
is to remove any time dependence from the graph by creating additional nodes for every
event at a station. Then, a node also has a time information next to its geographical
location.

Definition 15. A time expanded transit graph is a graph G = (V,E) with a set of
events at geographical coordinates

V =
{

(φ, λ, t)
∣∣∣∣φ ∈ (−π2 , π2

)
, λ ∈ [−π, π) , t time

}
,

for example a train arriving or departing at a train station at a certain time.
For a node v ∈ V , vφ and vλ denote its location and vt its time.

There is an edge (u,w, v) ∈ E iff

1. there is a vehicle departing from u at time ut which arrives at v at time vt without
stops in between, or

2. v is the node at the same coordinates than u with the smallest time vt that is still
greater than ut. This edge represents exiting a vehicle and waiting for another
connection. That is

∀v′ ∈ V \ {v} : v′φ = uφ ∧ v′λ = uλ ∧ v′t ≥ ut
⇒ v′t − ut > vt − ut.

The weight w of an edge (u,w, v) is the difference between both nodes times, that is

w = vt − ut.

Note that weights are still positive since vt ≥ ut always holds due to construction.

Definition 15 defines such a time expanded transit graph and Figure 3.2 shows an
example. For simplicity, it is assumed that the trains have no stops other than shown
in the schedule. The schedule lists four trains:
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3.2. Transit graph Section 3

−→ Freiburg Hbf Offenburg Karlsruhe Hbf
departure arrival departure arrival

ICE 104 3:56 pm 4:28 pm 4:29 pm 4:58 pm
RE 17024 4:03 pm 4:50 pm
RE 17322 4:35 pm 5:19 pm
←− arrival departure arrival departure

ICE 79 8:10 pm 7:10 pm

3:56 pm

4:03 pm

4:28 pm

4:35 pm

4:50 pm
4:58 pm

5:19 pm

7:10 pm

8:10 pm

Freiburg Hbf Offenburg Karlsruhe Hbf

32

30

47

44

60

7

247

7

15

21

111

Fig. 3.2: Example of a transit network with its corresponding time expanded transit
graph. The table shows an excerpt of a train schedule. Regular edges indicate
a train connection and dashed edges waiting edges. Edge weights are measured
in minutes.

1. The ICE 104, which travels from Freiburg Hbf to Karlsruhe Hbf via Offenburg,

2. the RE 17024, connecting Freiburg Hbf with Offenburg,

3. the RE 17322, driving from Offenburg to Karlsruhe Hbf and

4. the ICE 79, which travels in the opposite direction, connecting Karlsruhe Hbf with
Freiburg Hbf without intermediate stops.

As seen in the example, the resulting graph has no time dependency anymore and is
static, as well as all edge weights. The downside is that the graph size dramatically

20



3.2. Transit graph Section 3

increases as a new node is introduced for every single event. In order to limit the gro-
wth, we assume that a schedule is the same every day and does not change. In fact,
most schedules are stable and often change only slightly, for example on weekends or on
holidays. In practice hybrid models can be used for those exceptions.

However, the model still lacks an important feature. It does not represent transfer
buffers [47, 19] yet. It takes some minimal amount of time to exit a vehicle and enter
a different vehicle, possibly even at a different platform.
We model that by further distinguishing the nodes by arrival and departure events. In

between we can then add transfer nodes, which model the transfer duration. Therefore,
the previous definition is adjusted and Definition 16 is received.

Definition 16. A realistic time expanded transit graph is a graph G = (V,E) with a
set of events at geographical coordinates

V = {(φ, λ, t, e)|φ ∈
(
−π2 ,

π

2

)
, λ ∈ [−π, π) , t time, e ∈ {arrival, departure, transfer}},

for example a train arriving at a train station at a certain time.
A node (φ, λ, t, e) ∈ V is an arrival node if e = arrival, analogously it is a departure

node for e = departure and a transfer node for e = transfer. For a node v ∈ V , vφ and
vλ denote its location, vt its time and ve its event type.

For every arrival node n there must exist a transfer node m at the same coordinates
such that mt = nt + d with d being the average transfer duration at the corresponding
stop.

There is an edge (u,w, v) ∈ E iff

1. ue = departure ∧ ve = arrival such that there is a vehicle departing from u at time
ut which arrives at v at time vt without stops in between; or

2. ue = arrival∧ ve = departure such that u and v belong to the same connection. For
example a train arriving at a station and then departing again; or

3. ue = arrival ∧ ve = transfer such that v is the first transfer node at the same
coordinates whose time vt comes after ut. That is

∀v′ ∈ V \ {v} : v′φ = uφ ∧ v′λ = uλ ∧ v′e = transfer ∧ v′t ≥ ut
⇒ v′t − ut > vt − ut.

Such an edge represents exiting the vehicle and getting ready to enter a different
vehicle; or

4. ue = transfer ∧ ve = transfer such that v is the first transfer node at the same
coordinates whose time vt comes after ut, representing waiting at a stop; or
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5. ue = transfer ∧ ve = departure such that u is the last transfer node at the same
coordinates whose time ut comes before vt, i.e.

∀u′ ∈ V \ {u} : u′φ = vφ ∧ u′λ = vλ ∧ u′e = transfer ∧ u′t ≤ vt
⇒ vt − u′t > vt − ut.

An edge like this represents entering a different vehicle from a stop after transfer-
ring or waiting at the stop.

The weight w of an edge (u,w, v) is the difference between both nodes times, that is

w = vt − ut.

Figure 3.3 shows how the transit graph of Figure 3.2 changes with transfer buffers.
The weight of edges connecting arrival nodes to transfer nodes is equal to the transfer

duration, 5 minutes in the example. The transfer duration can be different for each edge.
A transfer is now possible if the departure of the desired vehicle is after the arrival of
the current vehicle plus the duration time. As seen in the example, edges connecting
transfer nodes with departure nodes are present exactly in this case. A transfer from
ICE 104 to RE 17322 in Offenburg is indicated by taking the edge to the first transfer
node in Offenburg and then following the edge with cost 2 to the departure node of the
train.

3.3 Link graph
In this section we examine how a road and a transit graph can be combined into a single
graph such that all connections of the real network are preserved.

The approach is simple, selected nodes in the road network are connected to nodes
of a certain stop in the transit network and vice versa. Since starting time is not known
in advance, the graph must connect a road node to all arrival nodes of a stop (compare
to [29]).
In order to not miss a connection, the transit graph must ensure that every connection

starts with an arrival node. In Figure 3.3 this is not the case and all four trains start at
a departure node. However, this is easily fixed by adding an additional arrival node to
the beginning of every connection not starting with an arrival node already. The arrival
nodes time is the same as the time of the departure node and both are connected by an
edge with a weight of 0. Definition 17 formalized the model.

Definition 17. Assume a road graph R = (VR, ER), a realistic time expanded transit
graph T = (VT , ET ) where every connection in T starts by an arrival node and a partial
function link : VR 7→ M where M contains subsets S ⊆ VT . For every element S ∈ M
with an arbitrary element s ∈ S the following properties must hold:

1. All contained elements must be arrival nodes and have the same location than s,
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3:56 pm

4:03 pm

4:28 pm
4:29 pm

4:33 pm

4:35 pm

4:50 pm

4:55 pm

4:58 pm

5:03 pm

5:19 pm

5:24 pm

7:10 pm

8:10 pm

8:15 pm

Freiburg Hbf Offenburg Karlsruhe Hbf

32

1

29

47

44

60

5

5

5

5

5

2

106

22

21

Fig. 3.3: Illustration of a realistic time expanded transit graph representing the schedule
from Figure 3.2. A transfer duration of 5 minutes is assumed at every stop.
Rectangular nodes are arrival nodes, circular nodes represent departure nodes
and diamond shaped nodes are transfer nodes. Regular edges indicate a train
connection and dashed edges involve transfer nodes. Edge weights are measured
in minutes.

i.e.

∀s′ ∈ S : s′e = arrival ∧ s′φ = sφ ∧ s′λ = sλ.

2. The set must contain all arrival nodes at the location of s, i.e.

@v ∈ VT \ S : ve = arrival ∧ vφ = sφ ∧ vλ = sλ.

Then, a link graph is a graph L = (VR ∪· VT , ER ∪· ET ∪· EL) with an additional set of
link edges EL = VR × R≥0 × VT .
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There is an edge (u, 0, v) ∈ EL iff link(u) is defined and v ∈ link(u).

The function link can be obtained in different ways. For example, by creating a mapping
from a road node u to a stop S if u is in the vicinity of S according to the asTheCrowFlies
metric.
Another straightforward possibility is to always connect a stop to the road node

nearest to it. We will explore this problem in Section 4. An obvious downside of this
approach is that the nearest road node might not always have a good connectivity in the
road network. A solution consists in creating a road node at the coordinates of the stop
as representative. The node can then be connected with all road nodes in the vicinity.

3.4 Timetable
Timetables [19] are non-graph based representations for transit networks. They consist
of stops, trips, connections and footpaths.

Definition 18. A timetable is a tuple (S, T, C, F ) with stops S, trips T , connections C
and footpaths F .

A stop is a position where passengers can enter or exit a vehicle, for example a train
station or bus stop. It is represented as geographical coordinate (φ, λ) with φ ∈(
−π

2 ,
π
2
)
, λ ∈ [−π, π).

A trip is a scheduled vehicle, like the ICE 104 in the example schedule of Figure 3.2
or a bus.

In contrast to a trip, a connection is only a segment of a trip without stops in be-
tween. For example, the connection of the ICE 104 from Freiburg Hbf at 3:56 pm to
Offenburg with arrival at 4:28 pm. It is defined as a tuple c = (sdep, sarr, tdep, tarr, o) with
sdep, sarr ∈ S representing the departure and arrival stop of the connection respectively.
Analogously tdep is the time the vehicle departs at sdep and tarr when it arrives at sarr.
And o ∈ T is the trip the connection belongs to.

Footpaths represent transfer possibilities between stops and are formalized as orde-
red tuple (sdep, d, sarr) with sdep, sarr ∈ S being the stops the footpath connects. The
duration it needs to take the path by foot is represented by d, measured in seconds.
Together with the set of stops S the footpaths build a graph G = (S, F ), representing
directed edges between stops.
We require the following for the footpaths:

1. Footpaths must be transitively closed, that is

∃(a, d1, b), (b, d2, c) ∈ F ⇒ (a, d3, c) ∈ F

for arbitrary durations d1, d2, d3.
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2. The triangle inequality must hold for all footpaths:

∃(a, d1, b), (b, d2, c) ∈ F ⇒ ∃(a, d3, c) ∈ F : d3 ≤ d1 + d2

3. Every stop must have a self-loop footpath, i.e.

∀s ∈ S ⇒ (s, d, s) ∈ F.

The duration d models the transfer time at this stop, as already introduced in
Section 3.2.

The first property can easily make the set of footpaths huge. However, it is necessary
for our algorithms that the amount of footpaths stays relatively small. In practice, we
therefore connect each stop only to stops in its vicinity and then compute the transitive
closure to ensure that the model is transitively closed.

To familiarize more with the model, we take a look at the schedule from Figure 3.2
again. The corresponding timetable consists of:

S = {f, o, k},

where f, o, k represent Freiburg Hbf, Offenburg and Karlsruhe Hbf respectively;

T = {t104, t17024, t17322, t79},

representing the four trains ICE 104, RE 17024, RE 17322 and ICE 79; the connections

(f, o, 3:56 pm, 4:28 pm, t104),
(o, k, 4:29 pm, 4:58 pm, t104),
(f, o, 4:03 pm, 4:50 pm, t17024),
(o, k, 4:35 pm, 5:19 pm, t17322),
(k, f, 7:10 pm, 8:10 pm, t79)

and at least the footpaths

(f, 300, f),
(o, 300, o),
(k, 300, k)

for transferring at the same stop with a duration of 300 seconds (5 minutes).
If we would decide that Offenburg is reachable from Freiburg Hbf by foot, and analo-

gously Karlsruhe Hbf from Offenburg, we would also need to add a footpath connecting
Freiburg Hbf directly with Karlsruhe Hbf. Else the footpaths would not be transitively
closed anymore.
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Section 4
Nearest neighbor problem

In this section we introduce the Nearest Neighbor Problem, also known as nearest
neighbor search (NNS). First, we define the problem. Then a short overview of related
research is given, after which we elaborate on a solution called Cover Tree [23].

Definition 19. Given a metric space (M,d) (see Definition 11) with |M | ≥ 2 and a
point x ∈M , the nearest neighbor problem asks for finding a point y ∈M such that

y = arg min
y′∈M\{x}

d(x, y′).

The point y is called nearest neighbor of x.
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Fig. 4.1: Grid showing eleven points in the Cartesian plane R2.

For following examples the toy data set shown in Figure 4.1 is introduced. It consists
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Section 4

of the points

x1 = (50, 50),
x2 = (30, 30),
x3 = (30, 70),
x4 = (70, 30),
x5 = (70, 70),
x6 = (30, 15),
x7 = (20, 30),
x8 = (70, 15),
x9 = (85, 30),
x10 = (20, 70),
x11 = (10, 80).

All points are elements of the Cartesian plane R. The Euclidean distance d is chosen as
metric on this set. For two dimensions, it can be defined as:

d : R2 × R2, ((x1, y1), (x2, y2)) 7→
√

(x2 − x1)2 + (y2 − y1)2

Informally, d computes the ordinary straight-line distance between two points.

The nearest neighbor of x5 is x1, as

d(x5, x1) =
√

(50− 70)2 + (50− 70)2

=
√

800

is smaller than all other distances to x5, like

d(x5, x4) =
√

(70− 70)2 + (30− 70)2

=
√

1600.

On the other hand, x1 has four smallest neighbors:

d(x1, x2) = d(x1, x3) = d(x1, x4) = d(x1, x5)

Any of them is a valid solution to the nearest neighbor problem for x1.

The search for a nearest neighbor is a well understood problem [12, 11] and has many
applications. Without restrictions, solving the problem on general metrics is proven to
require Ω(n) time [12], where n is the amount of points.
Typical approaches divide the space into regions, exploiting properties of the metric

space. Common examples include k-d trees [22], VP trees [59], BK-trees [24] and
Cover Trees [23].
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The problem also has a lot of variants. We elaborate on two of them:

Definition 20. The k-nearest neighbors of a point x ∈ M are the k closest points
{y1, y2, . . . , yk} ⊆M to x. That is

y1 = arg min
y′∈M\{x}

d(x, y′),

y2 = arg min
y′∈M\{x,y1}

d(x, y′),

...
yk = arg min

y′∈M\{x,y1,...,yk−1}
d(x, y′).

Definition 21. The k-neighborhood of a point x ∈M is the set

{y ∈M \ {x}|d(x, y) ≤ k}.

4.1 Cover tree
Definition 22. A cover tree T on a metric space (M,d) is a leveled tree (V,E).
The root is placed at the greatest level, denoted by imax ∈ Z. The level of a node v ∈ V

is

lvl(v) = imax − depth(v).

The lowest level is denoted by imin. Every node v ∈ V is associated with a point m ∈M .
We write assoc(v) = m. Nodes of a certain level form a cover of points in M . A cover
for a level i is defined as

Ci = {m ∈M |∃v ∈ V : lvl(v) = i ∧ assoc(v) = m}.

The following properties must hold:

1. For a level i, there must not exist nodes, which are associated with the same point
m ∈M :

@v, v′ ∈ V : i = lvl(v) = lvl(v′) ∧ v 6= v′ ∧ assoc(v) = assoc(v′)

So each point can at most appear once per level.

2. Ci ⊂ Ci−1. This ensures that, once a point was associated with a node in a level,
it appears in all lower levels too.

3. Points are covered by their parents:

∀p ∈ Ci−1∃q ∈ Ci : d(p, q) < 2i
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and the node vp with lvl(vp) = i ∧ assoc(vp) = p is the parent of the node vq with
lvl(vq) = i− 1 ∧ assoc(vq) = q.

4. Points in a cover Ci have a separation of at least 2i, i.e.

∀p, q ∈ Ci : p 6= q ⇒ d(p, q) > 2i.

A cover tree [23] has interesting distance properties on its nodes, which allows for
efficient retrieval of nearest neighbors. The general approach is straightforward. Given
a node v in the tree placed at level i, we know that all nodes of the subtree rooted at v
are associated with points inside a distance of at most 2i. This means that, if we search
for a nearest neighbor, and traverse to a node v in the tree, all nodes underneath v are
relatively close to v. So, if we already have a candidate for a nearest neighbor, with a
distance of d and v is already further away than d + 2i; v and all nodes in its subtree
can not improve the distance.

level 6

level 5

level 4

level 3

x1

x11 x1

x11 x1 x2 x3 x4 x5

x11 x1 x2 x6 x7 x3 x10 x4 x8 x9 x5

Fig. 4.2: Cover tree for the data set of Figure 4.1. Nodes are vertically grouped by
their levels and highlighted accordingly.

Figure 4.2 shows a valid cover tree for the toy example illustrated in Figure 4.1. The
covers are

C6 = {x1},
C5 = {x1, x11},
C4 = {x1, x2, x3, x4, x5, x11},
C3 = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}.

Clearly the first property holds, there is no level where a xi is associated with a node
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Fig. 4.3: A figure that shows the separation property for each level of the cover tree
shown in Figure 4.2. The levels are highlighted in the same manner than in
the previous example. The levels are 6, 5, 4 and 3 from top left to bottom right.
The radii around the points have a size of 26, 25, 24 and 23.

more than once. The second property holds too, it is

C6 ⊂ C5 ⊂ C4 ⊂ C3.

For the last two properties we take a look at Figure 4.3. It illustrates the fourth
property. The property states that all points in a cover Ci must have a distance of at
least 2i to each other. For level 6 this is trivial, since the set only contains x1. For level
5 it must hold that

d(x1, x11) = 50 > 32 = 25,

which is true. If this would not be the case, the figure would show the nodes included
inside the circle around the other node. Analogously all nodes in C4 and C3 are separa-
ted enough from each other.
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The third property can easily be confirmed using the figure too. It states that a node
in level i − 1 must be closer than 2i to its parent. Obviously this holds for x1 and
x11 in level 5, as a radius of 26 around their parent x1 covers all nodes. Likewise are
x1, x2, x3, x4 and x5 included in the circle around their parent x1 with radius 25.
Note that it is not necessary that a node covers its whole subtree in its level. As an

example, we refer to x1 in level 5 which does not cover x10, as d(x1, x10) > 25, though
it is part of the subtree rooted at x1. The third property only demands that a parent
covers all its direct children, not grandchildren or similar.

Algorithm 1: Inserting a point into a cover tree operating on a metric space
(M,d).

input : point p ∈M , candidate cover set Qi ⊆ Ci, level i
output: true if p was inserted at level i− 1, false otherwise

1 Q← {children(q)|q ∈ Qi};
2 if d(p,Q) > 2i then
3 return false ; // Check separation

4 else
5 Qi−1 ← {q ∈ Q|d(p, q) ≤ 2i}; // Covering candidates

6 if ¬insert(p,Qi−1, i− 1) ∧ d(p,Qi) ≤ 2i then
7 pick any q ∈ Qi : d(p, q) ≤ 2i;
8 append q as child to q;
9 return true;

10 else
11 return false;

The cover tree is constructed using Algorithm 1 with the maximal level imax and the
cover set Ck which only consists of the root. The algorithm is stated recursively, but
can easily be implemented without recursion by descending the levels and only following
relevant candidates.

A point p can be appended in level i−1 to a parent q in level i if the point has enough
separation to all other nodes in this level, meaning more than 2i−1, and is covered by
the parent, that is a distance of less than 2i. The algorithm searches such a point by
descending the levels, computing the separation and appending it to a node if it also
covers the point.

A search for a nearest neighbor follows a similar approach. Algorithm 2 starts at the
root and traverses the tree by following the children. The candidate set is refined by
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Algorithm 2: Searching a nearest neighbor in a cover tree operating on a
metric space (M,d).

input : point p ∈M
output: a nearest neighbor to p in M

1 Qimax ← Cimax ;
2 for i from imax to imin do
3 Q← {children(q)|q ∈ Qi};
4 Qi−1 ← {q ∈ Q|d(p, q) ≤ d(p,Q) + 2i};
5 return arg minq∈Qimin

d(p, q);

only following children which are closer than

d(p,Q) + 2i.

There, the distance to the set represents the distance of the current best candidate.
Nodes in the subtree rooted at a child can maximally be 2i closer than the child itself.
Therefore, take a look at Figure 4.3 where x2 is maximally 25 closer to x7 than x1,
else it would not be covered by its parent x1. Because of that the algorithm only
follows children which can have nodes in their subtree that improve over the current
best candidate. Other children are rejected.
Note that the algorithm must track down all levels, as another node could show up

in the lowest level because of the separation property.

Algorithm 3: Searching the k-nearest neighbors in a cover tree operating on
a metric space (M,d).

input : point p ∈M , amount k ∈ N
output: k-nearest neighbors to p in M

1 Qimax ← Cimax ;
2 for i from imax to imin do
3 Q← {children(q)|q ∈ Qi};
4 perform a k-partial sort of Q, ascending in d(p, q);
5 let q′ be the k-th element of Q;
6 Qi−1 ← {q ∈ Q|d(p, q) ≤ d(p, q′) + 2i};

7 perform a k-partial sort of Qimin , ascending in d(p, q);
8 return first k elements of Qimin ;

The cover tree can also be used to efficiently compute the k-nearest neighbors or the
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Algorithm 4: Computing the k-neighborhood by using a cover tree which
operates on a metric space (M,d).

input : point p ∈M , radius k ∈ R≥0
output: k-neighborhood of p in M

1 Qimax ← Cimax ;
2 for i from imax to imin do
3 Q← {children(q)|q ∈ Qi};
4 Qi−1 ← {q ∈ Q|d(p, q) ≤ k + 2i};
5 return{q ∈ Qimin |d(p, q) ≤ k};

k-neighborhood. In order to compute the k-nearest neighbors, Algorithm 3 extends
the range bound from the current best candidate to the k-th best candidate. Likewise
does Algorithm 4 extend the bound to the given range k instead of involving candidate
distances.

For other operations and a detailed analysis of the cover tree, as well as its complexity
and a comparison against other techniques, refer to [23].
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Section 5
Shortest path problem

For route planning, routes through a network must be optimized with respect to one or
even many criteria. A common criterion is travel time. Others include cost, number of
transfers or restrictions in transportation types.
In this chapter, we will first give an informal description of the Earliest Arrival

Problem. Followed by the Shortest Path Problem, which is equivalent to the
Earliest Arrival Problem for our graph based network representations.
Then, we introduce algorithms for solving the problem. First, for time-independent

networks, then for time-dependent. Afterwards, we explain two solutions for combined
networks, using multiple transportation modes. There, the problem description slightly
changes by adding transportation mode restrictions.

Definition 23. The earliest arrival problem asks for finding a route in a network with
the following properties.

1. The route must start at s and end at t.

2. The departure time at s is τ .

3. All other applicable routes must have a greater travel time, i.e. arrive later at t.
Points s and t are given source and target points in the network, respectively. τ is the
desired departure time, it may be ignored for a time-independent network.
Definition 24. Given a graph G = (V,E), source and target nodes s, t ∈ V and a
desired departure time τ , the shortest path problem asks for a path p (see Definition
3) which

1. begins at s and ends at t,

2. has the smallest weight of all applicable paths.
The arrival time at t is τ plus the weight of p. In a time-dependent graph τ must be
used to ensure correct edge weights. The path p is called shortest path.

Additionally, we consider a special variant of the shortest path problem:
Definition 25. The many-to-one shortest path problem is a variation of the shortest
path problem where the source consists of a set of source nodes S ⊆ V .
The problem asks for the path p that starts at the source s ∈ S which minimizes the

path weight.
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5.1 Time-independent
Route planning in time-independent networks is a well understood problem. Many effi-
cient solutions to the shortest path problem exists. We introduce a very basic algorithm,
Dijkstra and a simple improvement based on heuristics, A?.
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Fig. 5.1: Example for a time independent network, represented by a road graph. The
figure shows three paths from v1 to v5. From top left to bottom right, the path
weights are 10, 7 and 6. The last example represents the shortest path from v1
to v5.

The network shown in Figure 5.1 acts as toy example for this section.

5.1.1 Dijkstra
Dijkstra [27] is a simple approach to solving the shortest path problem. It can be vie-
wed as the logical extension of breadth-first search (BFS) [27] in weighted graphs. The
algorithm revolves around a priority queue where it stores neighboring nodes, sorted by
their shortest path cost. In each round, the node with the smallest shortest path cost is
relaxed. That is, all its neighboring, not already relaxed, nodes are added to the queue.
The algorithm terminates as soon as the target node has been relaxed. Algorithm 5
gives a formal description.

To familiarize with the algorithm, we step through the execution for the graph shown
in Figure 5.1, with v1 as source and v5 as target node.
The dist function, often implemented as array, stores the tentative shortest path

weight to the given node. prev is used for path extraction at the end, it stores the
parent nodes used for the shortest paths represented by dist. The algorithm starts
by initializing both collections with default values. Initially, the distance to all nodes,
except the source, is unknown. Thus, ∞ is used for them. Q represents the list of nodes
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Algorithm 5: Dijkstra’s algorithm for computing shortest paths in time-
independent graphs.

input : graph G = (V,E), source s ∈ V , target t ∈ V
output: shortest path from s to t
// Initialization

1 for v ∈ V do
2 dist(v)←∞;
3 prev(v)← undefined;

4 dist(s)← 0;
5 Q← {s};

// Compute shortest paths
6 while Q is not empty do
7 u← arg minu′∈Q dist(u′);
8 Q← Q \ {u};
9 if u == t then

10 break;

// Relax u
11 for outgoing edge (u,w, v) ∈ E do
12 currentDist← dist(u) + w;
13 if currentDist < dist(v) then

// Improve distance by using this edge
14 dist(v)← currentDist;
15 prev(v)← u;
16 Q← Q ∪ {v};

// Extract path by backtracking
17 p← empty path;
18 u← t;
19 while prev(u) 6= undefined do
20 w ← dist(u)− dist(prev(u));
21 prepend (prev(u), w, u) to p;
22 u← prev(u);
23 prepend s to p;
24 return p;
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that need to be processed, usually implemented as a priority queue. Initially, it only
holds the source node s.

In the example Q starts as {v1}. The algorithm then relaxes v1 and stores distances
to its neighbors:

dist(v2) = 8 prev(v2) = v1,

dist(v3) = 1 prev(v3) = v1

Additionally, the queue Q is updated, it is

Q = {v2, v3}.

The next iteration of the loop starts and the node with the smallest distance is chosen,
i.e. v3. The node is relaxed and we receive

dist(v4) = 3 prev(v4) = v3,

Q = {v2, v4}.

The next node is v4, yielding

dist(v2) = 4 prev(v2) = v4,

dist(v5) = 7 prev(v5) = v4,

Q = {v2, v5}.

Note that v4 improves the distance to v2. The previous values for v2 are overwritten
and the tentative shortest path to v2 uses (v4, 1, v2) and not (v1, 8, v2) anymore. In the
next round v2 is relaxed, which improves the distance to v5:

dist(v5) = 6 prev(v5) = v2,

Q = {v5}.

The only node left is the target node v5 now. It is relaxed and the loop terminates. The
algorithm backtracks the parent pointers

prev(v5) = v2,

prev(v2) = v4,

prev(v4) = v3,

prev(v3) = v1,

prev(v1) = undefined

and constructs the shortest path

p = (v1, 1, v3)(v3, 2, v4)(v4, 1, v2)(v2, 2, v5)

which is the path shown by the last example in the figure.
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5.1.2 A? and ALT
An important observation of Dijkstra is that, if it settles the shortest path distance to
a node, then, all nodes which are closer to the source, were already settled in a previous
round.
Moreover, the algorithm explores the graph in all directions equally. It has no sense

of goal direction.

The A? algorithm [40] is a simple extension of Dijkstra, which improves its effi-
ciency by steering the exploration more towards the target. Figure 5.2 illustrates this
by comparing the search space of both algorithms. The search space of A? is smaller
and much more directed to the target node t.

Fig. 5.2: Schematic illustration of a query processed by Dijkstra (left) and A? (right).
The highlighted areas indicate the search space, i.e. the nodes the algorithm
has explored already. The illustration is from [19].

Unfortunately, computing the exact goal direction is as hard as computing the shortest
path to the target. Therefore, a heuristic is used to approximate the direction. The
choice of the heuristic heavily depends on the underlying network. In the worst case, a
heuristic may not improve over Dijkstra and the same search space is received. In the
best case, the algorithm explores only the nodes on the shortest path.
Such a heuristic must fulfill two properties, formulated by Definition 26.

Definition 26. Given a graph G = (V,E), a metric dist on V (see Definition 10),
a heuristic is a function h : V × V → R≥0 which approximates dist. The heuristic h
must be

1. admissable, i.e. never overestimate:

∀u, t ∈ V : h(u, t) ≤ dist(u, t)

2. monotone, i.e. satisfy the triangle inequality:

∀t ∈ V ∀(u,w, v) ∈ E : h(u, t) ≤ w + h(v, t)

Given such a heuristic h, the A? algorithm is received by adjusting line 7 of Algorithm
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5 to

u← arg min
u′∈Q

dist(u′) + h(u′, t).

This will prefer nodes that are estimated to be closer to the target before others. By
that, the algorithms search space first expands into a direction that minimizes the dis-
tance according to the heuristic h.

A common choice for a simple heuristic is the as-the-crow-flies metric (see Definition
13). The properties are easily verified. A theoretically shortest path has the shortest
possible distance and uses the fastest available transportation mode. This is exactly the
path represented by the straight-line distance, computed by the as-the-crow-flies metric.
It can thus never overestimate. It is also trivially monotone since it is a metric, i.e. the
triangle inequality holds for all elements.
A heuristic is a good choice if it approximates the actual shortest path distance well.

As such, the as-the-crow-flies heuristic works well on networks with a high connectivity
in all directions. For example a residential area of a city without one way streets. Unfor-
tunately, in road networks, the common case is to first drive into the opposite direction
in order to reach a fast highway. This even gets worse on networks where the importance
of nodes heavily differs, such as public transit networks. For train networks, the typical
case is that one first needs to travel to a main station. This is obviously due to a main
station having a much better connectivity and faster trains available. Because of that,
the effectiveness of as-the-crow-flies is very limited on such networks.

The landmark heuristic partially solves the issue. An A? algorithm using the landmark
heuristic is called ALT [40], which stands for landmarks and triangle inequality.

The heuristic provides a more generic approach by approximating the distance bet-
ween nodes u and v by using precomputed distances with predetermined nodes l, called
landmarks.

Definition 27. Given a set of landmarks L ⊆ V , the heuristic landmarks is defined by

landmarks(u, v) = max
l∈L

(max{dist(u, l)− dist(v, l), dist(l, v)− dist(l, u)}) .

Obviously, the heuristic improves if the set of landmarks is increased. However, ac-
tual shortest path distances from all landmarks to all other nodes in the graph must
be precomputed. With an increasing amount of landmarks the precomputation might
not be feasible anymore because it takes too long or consumes too much space. Note
that if L = V , the heuristic becomes the actual shortest path distance function, i.e.
landmarks = dist.
In practice, an amount between 20 and 50 randomly chosen nodes seems to be a good

compromise. Refer to [40] for a detailed analysis.

The computation of the actual shortest path distances, to and from the landmarks,
can be done by using Dijkstra. But, instead of running the algorithm for all pairs of
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nodes, the distances can be obtained with two runs only. Therefore, the algorithm is
slightly modified by dropping lines 9 and 10, such that the algorithm relaxes the whole
network. By that, a single run of Dijkstra with a landmark l as the source, computes
the distances dist(l, v) to all nodes v in the network. By reversing the graph, i.e. edges
(u,w, v) become (v, w, u), the distances to the landmarks can be obtained analogously
with l as source again. Depending on the graph implementation, reversal can be done
in O(1) by only implicitly reversing the edges.

5.2 Time-dependent
Approaches designed for time-independent networks, such as ALT, have an important
drawback. Optimization is always done on assuming that edge costs are constant. Ho-
wever, in a time-dependent network, this is not the case. The weight of an edge is
dependent on the departure time, which is not known in advance.

Dijkstra and its variants A? and ALT can easily be adapted to also work with time-
dependent networks by taking the departure time into consideration when computing
the weight of an edge. However, their effectiveness is very limited. Nonetheless, they
were used for a long time for time-dependent networks too. With increasing research on
route planning in time-dependent networks, more effective algorithms, such as Trans-
fer Patterns [18] and CSA [33], were developed. Many of them do not use graphs
and prefer data-structures that are designed for time-dependent data, such as timetables
(see Section 3.4).

5.2.1 Connection scan
Connection scan (CSA) [33] is an algorithm for route planning specially designed for
time-dependent networks, such as public transit networks. It processes the network re-
presented as timetable, as defined by Definition 18.

The algorithm is very simple. All connections of the timetable are sorted by their
departure time. Given a query, connections are explored increasing in their departure
time. The algorithm is fast primarily due to the fact that connections can be maintai-
ned in a simple array. In contrast to Dijkstra, it does not need to maintain a priority
queue or other more complex data-structures. Arrays are heavily optimized and benefit
from a lot of effects, like cache locality [41].

Algorithm 6 shows the full connection scan algorithm. The array S stores for each
stop the currently best arrival time. T associates for each trip the first connection, it is
taken with. J is used for path extraction and memorizes for each stop a segment of a
trip, consisting of enter and exit connections center and cexit respectively, and a footpath
f :

(center, cexit, f)
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Algorithm 6: Connection scan algorithm for computing shortest paths in
time-dependent networks, represented by timetables.

input : timetable (S, T, C, F ), source s ∈ S, target t ∈ S, departure time τ
output: shortest path from s to t
// Initialization

1 for u ∈ S do S[u]←∞ ;
2 for o ∈ T do T [o]← undefined ;
3 for u ∈ S do J [u]← (undefined, undefined, undefined) ;
4 for f = (udep, d, uarr) ∈ F : udep = s do
5 S[uarr]← τ + d;
6 J [uarr]← (undefined, undefined, f);

// Explore connections increasing in departure time
7 c0 ← arg min(udep,uarr,τdep,τarr,o)∈C:τdep≥τ τdep;
8 for c = (udep, uarr, τdep, τarr, o) ∈ C increasing by τdep, starting from c0 do
9 if τdep ≥ S[t] then

10 break;

11 if T [o] 6= undefined ∨ τdep ≥ S[udep] then
12 if T [o] == undefined then
13 T [o]← c;
14 if τarr < S[uarr] then
15 for f = (vdep, d, varr) ∈ F : vdep = uarr do
16 if τarr + d < S[varr] then
17 S[varr]← τarr + d;
18 J [varr]← (T [o], c, f);

// Extract path by backtracking
19 p← empty path;
20 u← t;
21 while center 6= undefined : (center, cexit, f) = J [u] do
22 prepend f to p;
23 prepend the part of the trip between center and cexit to p;
24 u← vdep : (vdep, varr, τ

′
dep, τ

′
arr, o) = center;

25 prepend f : (undefined, undefined, f) = J [s] to p;
26 return p;
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It represents a path which takes the segment of the trip starting at center, ending at cexit
and then taking the footpath f from the arrival stop of cexit. Such an entry is associated
with the arrival stop of the footpath f , always representing the parent path that results
in the current best arrival time for the corresponding stop.

The algorithm starts by initializing the arrays with default values and relaxing all initial
footpaths. Connections are then explored increasing in their departure time, starting
from the first connection c0 that starts after the departure time τ . Line 7 is typically
implemented as a binary search [45] on a sorted array of connections C.
Line 9 is the stopping criterion, which lets the algorithm terminate once a connection

departs after the current best arrival time at the target t. Since connections are explored
increasing in time, it is impossible that a connection can improve on the arrival time
anymore.
Line 11 will only explore a connection if a previous connection of the same trip was

already used, indicating traveling without a transfer; or if it was already possible to
arrive at the stop earlier with a previous connection, indicating a transfer at this stop.
A connection is then only relaxed if it improves the arrival time at its arrival stop,

represented by line 14. If so, all outgoing footpaths are explored. A footpath represents
exiting the vehicle, walking to the arrival stop of the footpath ready for entering another
vehicle. Note that self-loop footpaths must be contained in timetables (compare to
Definition 18), making it possible to transfer at one stop.
Line 16 only considers footpaths that improve the arrival time at the corresponding

stop. Line 18 stores the path represented by taking this connection and the footpath.

For an example, we refer to the schedule of Figure 3.2 again. The corresponding
timetable is explained in Section 3.4, we use the same notion again. It consists of five
connections, denoted by c1, c2, c3, c4 and c5, sorted by departure time. We assume only
the three self-loop footpaths on the stops f , o and k.

Assume a query from Freiburg Hbf, represented by stop f , to Karlsruhe Hbf, represen-
ted by k, with a departure time of τ = 3:50 pm. The initial configuration after line 3
is

S[f ] = S[o] = S[k] =∞,
T [t104] = T [t17024] = T [t17322] = T [t79] = undefined,
J [f ] = J [o] = J [k] = (undefined, undefined, undefined).

Then the footpath (f, 300, f) departing at Freiburg Hbf is relaxed, resulting in

S[f ] = 3:55 pm,
J [f ] = (undefined, undefined, (f, 300, f)).

Connections are now explored increasing in departure time, starting with

c1 = (f, o, 3:56 pm, 4:28 pm, t104).
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The connection is considered since we already arrived at Freiburg Hbf before 3:56 pm.
The trip is set and the footpath at Offenburg is relaxed, yielding

T [t104] = c1,

S[o] = 4:33 pm,
J [o] = (c1, c1, (o, 300, o)).

The next connection is

c2 = (f, o, 4:03 pm, 4:50 pm, t17024).

However, it induces no changes, as the previous connection already arrived in Offenburg
earlier. The algorithm continues by exploring

c3 = (o, k, 4:29 pm, 4:58 pm, t104).

The connection is considered because the trip t104 was used before already, indicating
that the trip can be taken without transferring. Else it would not be applicable, since
the current best arrival time at Offenburg, including the transfer duration of 5 minutes,
is 4:33 pm, which is after the departure time of c3. The changes are

S[k] = 5:03 pm,
J [k] = (c1, c3, (k, 300, k)).

In the next iteration

c4 = (o, k, 4:35 pm, 5:19 pm, t17322)

is considered, again inducing no changes. The algorithm then terminates exploration
since the last connection

c5 = (k, f, 7:10 pm, 8:10 pm, t79)

departs after the current best arrival time at Karlsruhe Hbf, which is S[k] = 5:03 pm.
Path construction is straightforward, it is

J [k] = (c1, c3, (k, 300, k)),
J [f ] = (undefined, undefined, (f, 300, f)),

which yields the path which takes

• the footpath from Freiburg Hbf to Freiburg Hbf,

• t104 starting with c1 to c3, which is using the ICE 104 from Freiburg Hbf to Karlsruhe Hbf,

• and a final footpath from Karlsruhe Hbf to Karlsruhe Hbf.

The earliest arrival time at Karlsruhe Hbf is S[k] = 5:03 pm.
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5.3 Multi-modal
So far, all presented route planning algorithms are limited to networks only consisting of
routes of one transportation mode, for example a train network. We only distinguished
between time-independent and time-dependent networks. However, in practice, we want
to plan routes involving multiple transportation modes. For example, using a bicycle
to drive to the next train main station, using the road network, and then entering a train.

To represent transportation mode possibilities in the networks, we slightly modify our
models. All edges in graph based models get transportation mode labels, formalized by
Definition 28.

Definition 28. Given a set of transportation mode labels M , a multi-modal graph
G = (V,E) is a graph with a label function

mode : E → {S ⊆M}

that assigns to each vertex a set of available transportation modes.

In our implementation in Cobweb we use the modes

M = {car, bike, foot, tram}.

The timetable model is adjusted by assigning all connections the mode tram and all
footpaths foot.

Another difficulty of multi-modal routing is that, in practice, it is usually not appli-
cable to change transportation modes arbitrarily. User have different requirements and
preferences regarding the change of modes. For example, it might not be possible to use
a car right after traveling with a tram and then leaving it at a train station before con-
tinuing the journey using a train. If the model does not account for this, the algorithm
should not be allowed to pick such a route.

start

foot

foot

foot

tram

tram

car

Fig. 5.3: Automaton representing transportation mode constraints.

Applicable transportation mode sequences are typically represented as languages of au-
tomata (see Section 2.3) [17]. Figure 5.3 shows an example. The automaton accepts
words consisting of routes that
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1. are empty,

2. only use foot,

3. use the tram after walking to a stop,

4. use the car after walking to a stop and using the tram, and

5. use the car directly after walking.

A route that takes the tram after using a car is not accepted by the automaton and thus,
not applicable.

The search of shortest paths, restricted to such transportation mode automata, is called
the Label-Constrained Shortest Path Problem [17] (LCSPP). Common algo-
rithms, like Dijkstra, A? and ALT, were adapted and analyzed with respect to the
LCSPP [17, 40, 58].

However, we will study two algorithms that are restricted to fixed languages, not accep-
ting arbitrary automata. First, we show a simple extension of Dijkstra and its vari-
ants that adapts the algorithm for multi-modal route planning. Afterwards, we present
a generic approach to combine any uni-modal algorithms for limited multi-modal route
planning.

5.3.1 Modified Dijkstra
In order to adapt Dijkstra and its variants A? and ALT for multi-modal graphs (see
Definition 28), the algorithm needs to account for the labels at edges.

Given a multi-modal graph, a source s and a target t, and a set of available trans-
portation modes

S ⊆ {car, bike, foot, tram} = M,

the modified Dijkstra computes a shortest path p from s to t which does only use
edges labeled with available modes, i.e.

∀e ∈ p : mode(e) ⊆ S.

Therefore, we adjust line 11 of Algorithm 5 to only consider outgoing edges such that

e = (u,w, v) ∈ E : mode(e) ⊆ S.

When multiple transportation modes are available, such as {bike, car}, the edge weight
is not static anymore, as a car can travel the distance faster than a bike. To break the
ties, we always choose the fastest transportation mode, referring to the order

foot < bike < tram < car.
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The edge weight w in line 11 is then computed as if the fastest, on this edge available,
transportation mode is used:

max< mode(e)

The modified Dijkstra accepts the transportation mode model shown in Figure 5.4.

start

m ∈ S

m′ ∈M \ S

m′ ∈M

Fig. 5.4: The transportation mode constraints of Dijkstra, adapted to multi-modal
routing.

While this modification works perfectly fine for Dijkstra, it does impair the effecti-
veness of A? and ALT. The problem is that the heuristic of A? can not know the
transportation mode restrictions S beforehand. Because of that, a heuristic must al-
ways assume that the fastest possible transportation mode is chosen. Else, it might be
possible that the actual shortest path uses a faster mode than the heuristic assumed, in
which case the heuristic would overestimate the travel time and violate Definition 26.
For asTheCrowFlies this means that it must assume that the straight-line distance is

traveled using a car, or more general:

max<M

For ALT all precomputation must be done under the assumption that, at query time,
there are no transportation mode restrictions, i.e.

S = M.

The actual impact on the effectiveness heavily depends on the type of network. It has
no effect at all if all edges on the shortest path for S = M can also be taken with the
actual restricted version of S. It gets worse if some edges are not available anymore,
for example a highway that can not be taken for S = {foot}, although the heuristic
assumed it can be taken using a car.

In a typical road network most edges support all road-type transportation modes, i.e.
{foot, bike, car}. The most common exceptions are highways, pedestrian zones and bi-
keways. However, the latter two do typically not cover big distances and a regular road
connecting the same locations is often available too. Because of that A? and ALT typi-
cally perform worse only on long-distance routes, which make heavy usage of highways,
if the transportation modes are restricted to modes not available on highways. A similar
observation can be done for combined networks, like a link graph (see Section 3.3).
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For ALT this problem can be tackled by precomputing the distances to the landmarks
for every possible transportation mode restriction S individually. However, this results
in

|P(M)| = 2|M |

combinations, which is usually not feasible.

5.3.2 Access nodes
Often, combining multiple networks of different types into one representation, such as
a graph, is not appropriate. We have seen that graph representations for public transit
networks dramatically scale in size, due to representing time information. A timetable
is more suited for such a network type and algorithms optimized to a specific network
type, such as CSA, perform much better than a generic approach like Dijkstra.

In this section, we elaborate on a generic technique that allows to combine any networks
with corresponding algorithms for a restricted variant of the Shortest Path Pro-
blem. We describe the algorithm by combining a road with a public transit network,
using the multi-modal variant of ALT and CSA respectively. The general technique is
known as Access-Node Routing (ANR) [29, 19].

Given a source and a destination node in the road network, we first compute access
nodes. Those are nodes where we will switch from the road into the public transit
network. Therefore, the access nodes are computed as the k-nearest neighbors (see De-
finition 20) for both, the source and the destination node, in the public transit network.
The amount k should be kept small in order to keep query time low, we use 3 in our
implementation.
In the best case, the access nodes are important, i.e. they maximize the amount of

shortest paths, from the source to the destination, of which they are part of. Because of
that, typically they are precomputed, using a ranking among the nodes. For example,
a train main station is preferred over a small tram stop. The computation can be
optimized further by using heuristics and techniques like ALT were some paths are
already precomputed. See [29] for details on how to obtain good access nodes.
Given the access nodes for source and destination, a path is computed piecewise, by

computing shortest paths from

1. the source to all its access nodes,

2. the access nodes of the source to all access nodes of the destination, and

3. the access nodes of the destination to the destination.

We denote the corresponding sets of paths by Ps, Pst and Pt respectively. The resulting
path is chosen as the concatenation of paths from those sets, such that the cost is
minimized. That is, we receive a path

p = p1p2p3
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with p1 ∈ Ps, p2 ∈ Pst and p3 ∈ Pt such that

dest(p1) = src(p2),
dest(p2) = src(p3).

Of all paths satisfying these constraints, p is chosen as the path with the smallest cost.
Additionally, we consider the shortest path q between the source and destination that
only uses the road network. The final path is again the one with the smallest cost.
Figure 5.5 illustrates the scheme of this approach.

Fig. 5.5: Scheme of Access-Node Routing. Circular nodes represent the source and
destination node, rectangular nodes are their corresponding access nodes. Solid
edges indicate shortest paths in the first network, dashed lines are in the second
network.

The accepted transportation mode model is shown in Figure 5.6.

start
w1 ∈ L(A) w2 ∈ L(B) w3 ∈ L(A)

w4 ∈ L(A)

Fig. 5.6: The transportation mode constraints of Access-Node Routing with two net-
works. A represents the transportation mode model accepted by the algorithm
on the first network, B refers to the automaton of the algorithm on the second
network.

Note that the resulting path is not necessarily a valid solution to the Shortest Path
Problem anymore. A correct solution may not even contain any of the used access
nodes. However, if access nodes are chosen well, the resulting path is likely to be
appropriate and a good approximation to the actual solution.
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Section 6
Evaluation

In this section we report on our experimental results for the presented algorithms on
three data sets of increasing size. Therefore, we first give insights on the data sets and
how the network models are obtained. Afterwards we evaluate Cover Trees, Dijk-
stra, A? (with asTheCrowFlies), ALT, CSA and multi-modal methods such as the
adopted Dijkstra and our simplified version of ANR on the given data sets.

When evaluating shortest path queries on randomly chosen source and target nodes,
the resulting paths tend to be long-range. However, in practice, most queries are only
local and algorithms like Dijkstra do not scale well with increasing range. To overcome
this measurement problem, we introduce the notion of a Dijkstra rank [54].

Definition 29. Given a graph G = (V,E), the Dijkstra rank of a node v ∈ V is the
number of the iteration in which, when running Dijkstra on the graph, it is polled
from the priority queue (see line 7 of Algorithm 5).
That is the position i for vi in the order of vertices when sorted ascending by their

distance to the source, i.e.

v1, v2, . . . , v|V |

with dist(vi) ≤ dist(vi+1) for all i.

Instead of choosing queries randomly, we only choose source nodes randomly and then
select targets by their Dijkstra rank to the source. Queries can then be sorted by the
Dijkstra rank and, by that, evaluated in terms of increasing range.

6.1 Input data
We consider three data sets, consisting of road and public transit data. The road net-
work is extracted from OSM [43] formatted data and transit data is given in the GTFS
[13] format.

Our data sets represent the region around the German cities Freiburg and Stuttgart.
Their road network is of similar size, while our transit data for Freiburg only include
tram data, whereas the data for Stuttgart also include train and bus connections. The
size of our transit network for Stuttgart is about ten times the size of the network for
Freiburg.

49



6.1. Input data Section 6

Furthermore, we include a road and transit network for the country Switzerland. The
transit data consists of train, tram and bus connections. Both networks are about three
times the size of Stuttgarts.

We obtain our road networks from [4, 6, 8] and our transit networks from [3, 7].
The transit data used for Stuttgart is under restricted public access (refer to [9]).

6.1.1 OSM
OSM [43] (OpenStreetMap) data is represented in a XML structure describing

1. nodes, with an unique identifier and a coordinate given as pair of latitude and
longitude;

2. ways, also with an unique identifier, consisting of multiple nodes referenced by
their identifier;

3. relations, consisting of nodes, ways and other relations, representing relationships
between the referenced data;

4. tags as key-value pairs, storing metadata about the other items.

A small OSM example data set is shown in Listing 6.1. Ways are used to represent
roads consisting of nodes. Tags are used to describe metadata like speed limits for a
road or whether it is a one way street or not. However, the format also contains a lot
of data not directly relevant for route planning, like shapes of buildings and outlines of
public parks. Therefore, we filter OSM data and only keep relevant information.

As we are only interested in the road network itself, we start by reading the ways.
We filter them based on the tags described by Listing 6.2. Ways having at least one of
the key-value pairs described under −−KEEP and none of the pairs under −−DROP
are kept, as they represent roads of the network. All other ways are rejected, as well as
all relations. After that, we read the nodes and only keep nodes that occurred at least
once in any of the ways that passed the filter. Our road network is then built using the
remaining nodes as graph nodes, translating the ways into edges between the nodes.
Ways with a positive oneway tag are translated into edges only going into the given

direction, else we generate edges for both directions. The cost of an edge is computed
as the time it takes to travel the direct distance between the source and destination
coordinates (see Definition 13) at a certain speed. The speed is determined either by
a given maxspeed tag or the average speed for the road type defined by the highway tag.
Therefore, we use the average speed references shown in Table 6.1.

The size of the resulting road graphs (see Section 3.1) for all three data sets is re-
ported in Table 6.2. As seen, filtering the OSM data sets beforehand reduces the size
of data that is to be processed by 95% to 97%. The road graphs have approximately
two edges per node. This is due to most streets being a two way street, thus generating
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1 <?xml version =’1.0 ’ encoding =’UTF -8’?>
2 <osm version ="0.6">
3 <bounds minlon =" 7.253190 " minlat =" 47.299090 " maxlon =" 9.246965 " maxlat ="

48.751520 "/>
4 <node id=" 29764598 " lat=" 47.8512831 " lon=" 7.9230269 "/>
5 <node id=" 669209525 " lat=" 47.8513215 " lon=" 7.9231227 "/>
6 <node id=" 3993821274 " lat=" 47.8513342 " lon=" 7.923183 "/>
7 <node id=" 832450227 " lat=" 47.8157938 " lon=" 8.8487527 ">
8 <tag k=" highway " v=" motorway_junction "/>
9 <tag k="name" v="Kreuz Hegau"/>

10 </node >
11 <node id=" 100036455 " lat=" 47.5728421 " lon=" 8.0365409 ">
12 <tag k="name" v=" Niederhof "/>
13 <tag k=" traffic_sign " v=" city_limit "/>
14 </node >
15 <way id=" 29764598 ">
16 <nd ref=" 669209525 "/>
17 <nd ref=" 3993821274 "/>
18 <tag k=" highway " v=" motorway "/>
19 <tag k=" oneway " v="yes"/>
20 </way >
21 <relation id="56688">
22 <member type="node" ref=" 29764598 " role=""/>
23 <member type="node" ref=" 669209525 " role=""/>
24 <member type="way" ref=" 29764598 " role=""/>
25 <tag k="name" v="Bus line 1"/>
26 <tag k=" network " v="VVW"/>
27 <tag k="ref" v="1"/>
28 <tag k="route" v="bus"/>
29 <tag k="type" v="route"/>
30 </relation >
31 </osm >

Listing 6.1: OSM example data set, derived from [5].
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1 --KEEP
2
3 # highways
4 highway = motorway
5 highway =trunk
6 highway = primary
7 highway = secondary
8 highway = tertiary
9 highway = residential

10 highway = living_street
11 highway = unclassified
12 highway = cycleway
13
14 # highwaylinks
15 highway = motorway_link
16 highway = trunk_link
17 highway = primary_link
18 highway = secondary_link
19 highway = tertiary_link
20 highway = residential_link
21
22 #non - standard
23 way= primary
24 way= seconday
25
26 --DROP
27
28 area=yes
29 train=yes
30 access =no
31 type= multipolygon
32 railway = platform
33 railway = station
34 highway = proposed
35 highway = construction
36 building =yes
37 building = train_station

Listing 6.2: Tag filter for OSM ways.
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tag value ø km/h
motorway 120
trunk 110
primary 100
secondary 80
tertiary 70
motorway_link 50
trunk_link 50
primary_link 50
secondary_link 50
residential 50
unclassified 40
unsurfaced 30
road 20
cycleway 14
living_street 7
service 7

Table 6.1: Average speed in km/h for an OSM way with the corresponding value for the
highway tag.

two edges per connection between two nodes. Obviously, road junctions are, compared
to the amount of nodes, rare and thus, multiple edges do only rarely share the same
node. The in- and outdegree of nodes is extremely low, mostly 2 (≈ 80%), as seen in
Table 6.3.

6.1.2 GTFS
GTFS [13] is short for General Transit Feed Specification, it defines a common format
for public transit schedules. It comes compressed as ZIP archive, consisting of multiple
text files formatted as CSV tables. The mandatory tables are

1. agency.txt, defining metadata about the transit agency;

2. routes.txt, containing information about complete routes, like all trips belonging
to a bus line;

3. trips.txt, consisting of single trips, belonging to a route;

4. stop_times.txt, having departure and arrival times at the stops for all connections
in the network;

5. stops.txt, providing metadata and coordinates of all stops;
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data (MB) Road graph
raw filtered nodes edges

Freiburg 2 260 86 743 003 1 494 883
Stuttgart 2 420 118 973 142 1 950 978
Switzerland 5 530 279 2 627 645 5 226 060

Table 6.2: The size of the OSM data sets, in megabyte (MB) before and after filtering,
and the size of the resulting road graphs in amount of nodes |V | and edges
|E|.

indegree deg−
0 1 2 3 4 5 6

Freiburg 90 64 990 611 055 59 751 7 057 58 2
Stuttgart 145 109 808 759 157 93 354 10 599 76 3
Switzerland 325 235 069 2 201 945 174 333 15 767 202 4

outdegree deg+

0 1 2 3 4 5 6 7
Freiburg 105 65 336 610 353 60 059 7 088 60 2 0
Stuttgart 162 110 002 758 740 93 545 10 607 83 3 0
Switzerland 328 235 255 2 201 711 174 247 15 884 215 4 1

Table 6.3: A table showing the number of nodes of the corresponding road graph that
have a certain in- or outdegree. That is, the number of ingoing and outgoing
edges respectively.

6. calendar.txt defining the service pattern on which routes are available.

Furthermore, there are a couple of optional tables, of which we are only interested in

7. transfers.txt, provides transfer possibilities between stops and their duration.

An example feed can be seen in Listing 6.3. The format is similar to our definition
of timetables (see Section 3.4), with the difference that connections are not directly
given as edges departing from one stop to another, but as pair of arrival and departure
time at stops. Also, it contains a lot of metadata which we do not process.

Construction of a realistic time expanded transit graph (see Definition 16) is straight-
forward and mainly revolves around parsing stop_times.txt. We build two nodes for
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1 // agency .txt
2 agency_id , agency_name , agency_url , agency_timezone , agency_phone ,

agency_lang
3 FunBus , The Fun Bus , , (310) 555 -0222 , en
4
5 // routes .txt
6 route_id , route_short_name , route_long_name , route_desc , route_type
7 A, 17, Mission , From lower Mission to Downtown ., 3
8
9 // trips.txt

10 route_id , service_id , trip_id , trip_headsign , block_id
11 A, WE , AWE1 , Downtown , 1
12 A, WE , AWE2 , Downtown , 2
13
14 // stop_times .txt
15 trip_id , arrival_time , departure_time , stop_id , stop_sequence ,

pickup_type , drop_off_type
16 AWE1 , 0:06:10 , 0:06:10 , S1 , 1, 0, 0
17 AWE1 , 0:06:20 , 0:06:30 , S3 , 3, 0, 0
18 AWE1 , 0:06:45 , 0:06:45 , S6 , 5, 0, 0
19 AWD1 , 0:06:10 , 0:06:10 , S1 , 1, 0, 0
20 AWD1 , 0:06:20 , 0:06:20 , S3 , 3, 0, 0
21 AWD1 , 0:06:45 , 0:06:45 , S6 , 6, 0, 0
22
23 // stops.txt
24 stop_id , stop_name , stop_desc , stop_lat , stop_lon , stop_url ,

location_type , parent_station
25 S1 , Mission St. & Silver Ave., , 37.728631 , -122.431282 , , ,
26 S3 , Mission St. & 24th St., , 37.75223 , -122.418581 , , ,
27 S6 , Mission St. & 15th St., , 37.766629 , -122.419782 , , ,
28
29 // calendar .txt
30 service_id , monday , tuesday , wednesday , thursday , friday , saturday ,

sunday , start_date , end_date
31 WE , 0, 0, 0, 0, 0, 1, 1, 20060701 , 20060731
32 WD , 1, 1, 1, 1, 1, 0, 0, 20060701 , 20060731
33
34 // transfers .txt
35 from_stop_id , to_stop_id , transfer_type , min_transfer_time
36 S3 , S6 , 2, 300
37 S6 , S3 3, 180

Listing 6.3: GTFS example data set, inspired by [2].
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every entry, one representing the arrival event at the stop and another for the depar-
ture. Furthermore, we create a transfer node for every arrival node, indicating a transfer
at the given stop. Each arrival node is then connected by an edge with its corresponding
departure and transfer node.
After parsing all data, we connect departure nodes with the arrival nodes at the next

stop in a trip. Therefore, we process each trip and follow the stop_times.txt entries
belonging to that trip in the order defined by the stop_sequence field.
As a next step, waiting edges are created by sorting transfer nodes of a stop ascending

in time and then creating edges connecting them in that order. Finally, every departure
node is connected to its previous transfer node. We find the transfer node by using a
binary search [45] on the sorted list of transfer nodes for this stop.

Timetables (see Definition 18) are received similarly. But simpler, as transfer no-
des are not present. We process all stops and trips defined in stops.txt and trips.txt and
obtain the sets S and T respectively. Connections are created by again processing en-
tries in stop_times.txt, belonging to one trip, in the sequence defined by stop_sequence.
We create one connection for every departure node with the corresponding next arrival
node.
For the footpaths, we initially take the transfers given in transfers.txt. In order to

increase the quality of our footpath model, we also connect stops with footpaths if they
are within 600 meters of each other.
However, our footpaths need to fulfill strong properties (see Section 3.4), which

the given transfers usually not obey. Therefore, we have to add self-loop footpaths, if
not present. And we need to compute the transitive closure of the given footpaths in
order to ensure that they are transitively closed. Thus, it is crucial that the range, for
which close stops are connected, is kept low. Else, the amount of footpaths dramatically
increases due to the transitive closure.
The triangle inequality property is ensured by rejecting given transfer durations and

approximating all durations by using asTheCrowFlies. Additionally, all footpath dura-
tions must not be lower than the transfer buffer used for the self-loop footpaths. We do
so by taking the max of the transfer buffer and the calculated duration.

Table 6.4 reports the size of the feed and the resulting network. It can be clearly
seen that a timetable has a much smaller amount of objects, compared to a realistic
time expanded transit graph. In particular compared to the size of a road graph (see
Table 6.2). This even becomes worse if we use it to construct a link graph, as seen in
Section 3.3, as we need to add an incoming and outgoing edge for each arrival node, in
order to connect it with the road graph. Table 6.5 reports the exact amount of added
link edges.
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data (KB) Transit graph
nodes edges

Freiburg 1 713 613 329 1 006 862
Stuttgart 32 213 4 517 511 7 415 894
Switzerland 75 477 32 688 498 53 370 236

Timetable
stops trips connections footpaths

Freiburg 713 13 249 191 194 255 495
Stuttgart 7 877 90 475 1 415 362 1 926 611
Switzerland 30 227 1 014 699 9 881 467 3 793 581

Footpaths
given self-loops close closure

Freiburg 0 713 9 008 245 774
Stuttgart 6 080 7 877 73 730 1 838 924
Switzerland 22 402 30 227 174 698 3 566 254

Table 6.4: The size of the GTFS feeds, in kilobyte (KB) and the size of the resulting
realistic time expanded transit graphs in amount of nodes |V | and edges |E|.
Also, the size of the obtained timetable and details about the footpath gene-
ration.
The column given denotes the amount of footpaths already given in the trans-
fers.txt file, self-loops represents how many missing self-loop paths were ad-
ded. Likewise does close report how many footpaths we added for connecting
close stops with each other. And closure denotes the amount of paths added
to ensure that the model is transitively closed.

6.2 Experiments
This section shows our experimental results for the algorithms presented in Section 4
and Section 5. The algorithms are implemented in the context of the Cobweb [57]
project, which is an open-source multi-modal route planner written in Java.

Results are measured from a sequential execution on a 6-core Intel Xeon E5649 machine
running at 2.53 GHz. The maximal heap size of Javas virtual machine is restricted to
85 GB.

6.2.1 Nearest neighbor computation
For solving the Nearest Neighbor Problem we implemented a Cover Tree data-
structure with corresponding retrieval methods, as explained in Section 22. It opera-

57



6.2. Experiments Section 6

link edges
Freiburg 306 906
Stuttgart 1 944 388
Switzerland 19 584 786

Table 6.5: The amount of link edges that are added when combining road with transit
graphs to create a link graph.

tes on nodes of the road network obtained from the data sets Freiburg, Stuttgart and
Switzerland, using asTheCrowFlies as metric on the nodes.

The experiment consists of continuous insertion of nodes, for each of the three networks
respectively, and then measuring random nearest neighbor queries, i.e. the execution
time of Algorithm 2. Measurements are done for tree sizes of 1, 10 000 and then in
steps of 10 000. Each measurement is averaged over 1 000 queries using randomly se-
lected nodes.

Figure 6.1 shows the results of the experiment. The method is comparably fast, even
for large road networks like Switzerland. The graph appears to be similar for all three
data sets. This is obviously due to the fact that they all represent the same type of
network, with a similar distribution of nodes.
In a road network, nodes are typically close to each other and appear in local groups,

representing cities and structured road segments. In particular, they are not uniformly
distributed. A Cover Tree benefits from this, as a node can be the parent of many
other, locally close nodes. And as such, the tree is balanced well, resulting in efficient
queries that are able to quickly find the correct path in the tree that leads to the nearest
neighbor.
Due to the same reason, the running time scales approximately logarithmically with

increasing size. Queries take longer if the depth of the tree increases. In a well balanced
Cover Tree the depth is logarithmic in its size.

6.2.2 Uni-modal routing
The first experiment for uni-modal routing compares time-independent methods for
solving the Shortest Path Problem. It measures an implementation of Dijkstra
(see Algorithm 5), the A? algorithm (see Section 5.1.2) using asTheCrowFlies as
heuristic and ALT with the precomputed heuristic shown in Definition 27.

Queries are performed on the road graphs obtained by the data sets Freiburg, Stuttgart
and Switzerland. We choose 50 random source nodes and then determine the Dijkstra
rank (see Definition 29) for the source nodes to all other nodes in the graph. Source
nodes with a bad connectivity are rejected and exchanged against another random source
node. This is determined by a source node having no node in the graph with a rank of
at least 215 which is only rarely the case for randomly chosen nodes. We then choose
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Fig. 6.1: Query durations for Algorithm 2 on a Cover Tree with increasing size, for
three road networks respectively. Measurements are done at a size of 1, 10 000
and then in steps of 10 000, averaged over 1 000 random queries. Running time
is stated in milliseconds.

nodes as destinations that have a Dijkstra rank of

20, 21, . . . , 2k

where k ≥ 15 is the maximal rank all source nodes have in common. By that, the
queries cover all types of ranges, highlighting how well the algorithms scale with queries
of increasing ranges. By that, we receive for every rank 2i in total 50 different queries
which we average the measured running time over.

Figure 6.2 shows the results of the experiment. First of all, it can be seen that all
three methods do not scale well with queries of increasing ranges. Long range queries,
like for a rank of 220 or 221, range from 1 to 10 seconds. In fact, the running time scales
exponentially for increasing ranges. Further, A? and ALT are slower than Dijkstra
for short range queries. This is due to the increased overhead of the modified Dijkstra
variants. Both need to additionally evaluate their corresponding heuristic on every re-
laxed edge. However, for mid and, in particular, for long range queries, A? performs
similar to Dijkstra and ALT even is about twice as fast. At this point the additional
overhead is negligible and the benefit of a good heuristic pays off. It can also be seen
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Fig. 6.2: Query durations for uni-modal time-independent route planning algorithms
computing shortest paths. Running time is measured in milliseconds, presented
on a logarithmic scale. Every point represents 50 queries from a random source
to a random target with the given Dijkstra rank over which the measurement
is averaged over. Errorbars indicate the results on the three data sets. The
upper end of the bar represents Switzerland, the dot Stuttgart and the lower
end Freiburg.

that asTheCrowFlies, which is used by A?, is not a good heuristic for road networks
and does not improve over the ordinary Dijkstra approach, as already explained in
Section 5.1.2.

Furthermore, if ALT is implemented very carefully and optimized, it can outperform
Dijkstra earlier. For a comparison, we include the results from [19] of similar me-
asured experiments for highly optimized variants of Dijkstra and other techniques
for uni-modal time-independent route planning in Figure 6.3. The results show that
Dijkstras performance can be increased by approximately a factor of 1 000, compared
to our implementation, if heavily optimized. However, the running time for long range
queries is still not feasible. Fortunately, there exist other approaches which tackle this
problem, like seen in the figure. The presented algorithms are referenced and briefly
explained in [19].
Additionally, they give a general overview of uni-modal time-independent route plan-
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Fig. 6.3: Experimental results from [19] measured similar to Figure 6.2 for carefully
implemented uni-modal time-independent route planning algorithms.

ning techniques, comparing their average query time and their necessary preprocessing
time. We include their overview in Figure 6.4.

The second experiment compares time-dependent solutions to the Shortest Path
Problem. We measure the performance of an adopted Dijkstra variant (see Section
5.2) against CSA (using Algorithm 6) over the duration of one day, with changing
time. The experiment is measured for the 10.10.2018, which is a Wednesday, repre-
senting an average day in the schedule of the transit network. Dijkstra runs on a
realistic time expanded transit graph (see Definition 16) and CSA on a timetable (see
Definition 18), both obtained from the public transit data of Freiburg, Stuttgart and
Switzerland.
Measurements are taken in steps of 10 minutes over the whole day, averaged over 50

randomly chosen queries. The only exception is Dijkstra for Switzerland, which is done
in steps of 30 minutes, due to very long running times.

The algorithms are compared in Figure 6.5, with their single performance highlighted
in Figure 6.6.
Both algorithms perform worse if the size of the time schedule increases, roughly

increasing by a factor of 10 for all three data sets. However, CSA runs on Switzerland 10
times faster than Dijkstra on the small schedule of Freiburg, where CSA even performs
better by a factor of 1 000. Clearly, CSA outperforms Dijkstra for time-dependent
routing, making it a very viable choice. CSA can even successfully compete against
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Fig. 6.4: Overview from [19] of uni-modal time-independent route planning techniques,
comparing their average query time in milliseconds and their necessary prepro-
cessing time in minutes.

other approaches designed especially for time-dependent route planning, as shown by
[33].
It can also be seen that CSA is subject to the traffic congestion of the time schedule.

Yielding better running times in the evening and night from 6:00 pm to 6:00 am, than in
the morning, noon and afternoon from 6:00 am to 6:00 pm. This is due to the fact that
CSA needs to iterate all connections from a given time, not only relevant connections.
In a rush hour, the schedule has way more connections that need to be processed, leading
to a worse performance.

Dijkstra, on the other hand, only needs to scan connections available from the
already processed routes. Thus, it is not affected by traffic congestion as much as CSA
and is still more subject to the range of queries, which is not captured by this experiment.

6.2.3 Multi-modal routing
For multi-modal routing we compare a modified Dijkstra (see Section 5.3.1), running
on a link graph (see Definition 17), with our simplified version of ANR (refer to
Section 5.3.2. ANR runs on a road graph and a timetable, using an ordinary Dijkstra

62



6.2. Experiments Section 6

 0.1

 1

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

m
ill

is
e

c
o

n
d

s

time at 10.10.2018

Switzerland − Dijkstra
Stuttgart − Dijkstra
Freiburg − Diikstra
Switzerland − CSA

Stuttgart − CSA
Freiburg − CSA

Fig. 6.5: Query durations of a time-independent variant of Dijkstra and CSA for three
data sets, measured in milliseconds on a logarithmic scale. Measurements are
done for every 10 minutes of the 10.10.2018, averaged over 50 random queries.
Dijkstra for Switzerland is measured in steps of 30 minutes.

for the road and CSA for the transit network. For a given query, it computes the three
nearest neighbors to the source and destination as access nodes, using a Cover Tree,
then it runs Dijkstra to compute the shortest paths from the source and destination
to their access nodes. After that, CSA is used to compute the shortest paths between
the sources and destinations access nodes. Additionally, one shortest path query from
the source to the destination, limited to the road network, is run. In total this makes

• 2× 3-nearest neighbor queries from source and destination,

• 6× Dijkstra from the source and destination to access nodes,

• 9× CSA between access nodes,

• 1× Dijkstra from source to destination, limited to the road graph.

The measurement is done similar to the experiments for uni-modal time-independent
routing, as seen in Figure 6.2, measuring for specific increasing Dijkstra ranks. Addi-
tionally, the measurement is fixed to the 10.10.2018 at 12:00 pm. The first experiment
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Fig. 6.6: Results from Figure 6.5, but isolated and with a linear scale for the query
duration. The duration is measured in milliseconds and all graphs range from
12:00 am to 11:59 pm for the 10.10.2018.

has no limitations on the transportation modes. All modes of the set

{car, bike, foot, tram}

are available, while the second experiment limits the available modes to

{bike, tram}.

The results are given in Figure 6.7 and Figure 6.8 respectively.

Transportation mode restrictions do not impair the running time of Dijkstra or ANR.
Which is due to Dijkstra not using any optimizations relying on transportation mo-
des. Computation is done on the fly, without using precomputed results. The same
holds for the simplified ANR, which uses ordinary Dijkstra and CSA. Unfortuna-
tely, optimizations like ALT do not adapt well to multi-modal route planning, since
the precomputation must be done under the assumption of specific transportation mode
restrictions, which might be different at query time.
A key problem of Dijkstra on link graphs is that its running time is not applicable

for long range queries and that a link graph scales very bad in space consumption. In
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Fig. 6.7: Results of multi-modal route planning with transportation modes
{car, bike, foot, tram}. Query durations of Dijkstra on a link graph
and a simplified version of ANR using Dijkstra on a road graph and CSA
on a timetable are shown. Measurements are averaged over 50 random queries
with the specified Dijkstra rank. Query duration is measured in milliseconds,
presented on a logarithmic scale.

our experiments, the link graph for Switzerland consumes approximately 75 GB, while
ANR allocates only about 15 GB for the road graph and the timetable.

As expected, the simplified version of ANR does not beat the ordinary Dijkstra,
as it still needs to compute long range routes on the road graph using Dijkstra. The
key problem of our approach is that access nodes, which are chosen as nearest neighbors,
might be far away or not even be reachable when using the road network. Geographical
proximity does not necessarily imply short travel times. In this case, the 6 short range
Dijkstra computations are actually long range computations, for which Dijkstra
scales bad.
However, ANR has one major advantage over Dijkstra. It can use any algorithm

that computes shortest paths on a road network. This stands in contrast to the link
graph approach which needs an algorithm that is able to route on a combined network,
containing road and transit data. Because of that, a well implemented ANR uses a fast
algorithm for road networks (compare to Figure 6.4) and selects access nodes more
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Fig. 6.8: Experiment from Figure 6.7, but restricted to the transportation modes
{bike, tram}.

sophisticated. Which leads to ANR easily beating the query time of Dijkstra on link
graphs, making it a feasible approach for multi-modal route planning (see [29]).
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Section 7
Conclusion

Route planning is a problem that gained a lot of interest in the last decades. Problem
settings like uni-modal route planning are well researched, efficient solutions were deve-
loped. Corresponding research is now focused on multi-modal routing and other difficult
problems occurring in practice, such as turn penalties and multi criteria routing.

7.1 Future Work
Our goals for the future are focused on further extending and improving Cobweb. The
most important step in order to make our ANR version viable is to implement a sophi-
sticated routing algorithm for road networks. Such as techniques based on contraction,
like contraction hierarchies (CH) [38] and transit node routing (TNR) [20, 15]. Com-
bined with CSA this should yield promising acceptable low query times for shortest
path computations.

To improve the quality of our shortest paths, access node selection needs to be im-
proved. It should not solely be based on vicinity. Stops should be ordered in a certain
priority, measuring their importance for the network. Ideally, a stop is important if it
is part of many shortest paths. A simple hierarchy can be obtained by counting the
amount of connections available at a certain stop. The more connections, the more
likely it is important. The hierarchy can be further fine tuned by injecting query logs of
other applications or manually selecting big main stations before smaller stops.

Another important aspect is to greatly expand the amount of metadata displayed next
to a computed journey in the front end. An application that is to be used by clients
must give extensive information on routes. Not only the name of a street and identifi-
cation numbers of trains, but also include precise information on a road type, possible
restrictions, access to the complete schedule of the trip of a transit vehicle, cost, and
possibly even include forecasts for traffic congestion.
Currently, Cobweb uses a database to store metadata which are not directly relevant

to routing. The data are then later, after computing the shortest route, retrieved to an-
notate the journey. For efficient retrieval, in particular if the amount of stored metadata
increases, the database structure needs to be improved. Also, parsing a new data-feed
and inserting missing information into the database takes too long at the moment and
should be improved.

Long term goals consist of adding multi-criteria routing [48], such as optimizing not
only for the earliest arrival time, but also for factors like cost and amount of transfers.
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And adding support for real-time data (RTD) [42], for example, incorporating traffic
congestion, road outage and transit vehicle delays. Real-time data are already available
for most networks, especially for transit networks. However, RTD is particularly hard to
implement, because the underlying network changes, possibly invalidating precomputa-
tions. Fortunately, only small sections of a network are affected and need to be adjusted,
leading to the identification of a changes impact and possible precomputations.

7.2 Summary
We have presented common and established models for road and transit networks. Graph
based solutions are straightforward representations of the network, but cannot easily
adapt to time dependent data, such as transit networks. Timetables are non-graph ba-
sed alternatives for public transit networks, which fit their structure better than static
graphs. Additionally, a link graph can be used to combine graph based models for multi-
ple networks in a straightforward manner. While it might not necessarily be an effective
approach, it makes route planning on combined networks for graph based algorithms
possible.

In order to explain more sophisticated route planning approaches, we presented the
Nearest Neighbor Problem and thoroughly discussed an efficient solution to the
problem and various variants, using Cover Trees.

We covered basic route planning algorithms, such as Dijkstra and common optimi-
zations like A?. The effectiveness of A? heavily relies on the chosen heuristic, which
depends on the underlying structure of the network. ALT was presented as a solution
to this problem, providing a general applicable heuristic which is based on the actual
shortest path distances to chosen landmarks. For an overview of more sophisticated
uni-modal time-independent algorithms, we refer to [19].

CSA was introduced as an efficient approach for time-dependent route planning on
timetables. The approach is very simple, it just processes all connections available after
the initial departure time. CSA is fast because it heavily exploits cache locality [41]
and other low-level optimizations for arrays.
For multi-modal route planning we showed how Dijkstra can be adapted to run on a

link graph, representing a combined network. Further, we presented the general concept
of ANR and proposed a simplified variant of it, generalized to an arbitrary algorithm
for road networks and another algorithm for transit networks. This makes it possible to
combine a graph based solution like Dijkstra, or even more sophisticated approaches,
for the road network, with a timetable based approach for transit networks, such as CSA.

Further, we presented experimental results of implementations in the Cobweb pro-
ject [57] and discussed them. For the experiments three data sets are used, Freiburg,
Stuttgart and Switzerland. The setup, as well as the structure of the input data, was tho-
roughly explained. Cover Trees and CSA turned out to be a very efficient solution to
their corresponding problems. Dijkstra works well for short range queries, but scales
bad for increasing ranges. Further, it lacks behind more sophisticated approaches as
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seen in Figure 6.4. A? using asTheCrowFlies does not perform well on networks used
for route planning. While ALT, if carefully implemented, typically beats Dijkstra,
especially for mid to long range queries. In practice, link graphs are often not feasible
due to the extreme demands on space capacity. For multi-modal routing Dijkstra
performs similar to uni-modal routing, being feasible for short range queries, but scaling
bad for increasing ranges. ANR, if paired with efficient algorithms for both networks,
is a promising approach to multi-modal route planning, as seen in [29].

Route planning, in particular in practice, is a complex topic. A typical application
needs to account for more than just finding a route with the shortest travel time. Turn
penalties and multi-criteria routing, such as the cost of a trip, are important factors for
a client and need to be considered. A similar observation is done for multi-modal rou-
ting, where transportation mode restrictions, in practice, are not just a set of available
modes, but rather a complex model with multiple states depending on previous states,
as explained in Section 5.3.

Most algorithms do not adapt well to such restrictions, leading to the development
of many very specialized solutions. Because of that, existing approaches, such as ANR,
rather try to combine multiple algorithms, all suited well for their own specialized type of
network. In particular for multi-modal routing, including common restrictions occurring
in practice, there does not yet exist a feasible solution for networks of a large scale, such
as big countries or even continents. However, with increasing research in the last decade,
many promising approaches were developed and a solution does not seem too far.
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