
Albert-Ludwigs-Universität Freiburg

Master Thesis
Efficient Multi-modal Route Planning with Transfer

Patterns
Cynthia Jiménez Cárdenas

Reviewers:
Prof. Dr. Hannah Bast

Prof. Dr. Christian Schindelhauer

Supervisors:
Prof. Dr. Hannah Bast
Dr. Sabine Storandt

Freiburg im Breisgau, October 23, 2013

DECLARATION

I hereby declare, that I am the sole author and composer of my Thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place,Date Signature

iii

Acknowledgments
I would like to thank first my Professor Hannah Bast for providing me with such an
interesting project, for her excitement in regard to teaching that inspired me to con-
tinue working on route planning and for her advice during the course of this project.
My sincere thanks also goes to Professor Christian Schindelhauer for agreeing to
review this thesis as second supervisor. Furthermore, I would like to express my
sincere gratitude to my supervisor Sabine Storandt for her guidance, enthusiasm,
and help.

In addition, I would like to thank my family, my beloved parents, Eliza and
Roberto, for the opportunities they gave me and for always being there for me, and
my siblings, Tatis and Alex for their unconditional support. Especially, my sister
for proofreading this thesis and Alex for all his helpful advices.
Above all, I want to thank my beloved husband Daniel for his love, patience and

constant support, for all the late nights and early mornings, and for keeping me
sane over the past few months. Thank you for being my reviewer, proofreader, and
sounding board. But most of all, thank you for being my best friend.

v

Abstract
In these days, there is a big interest in route planning systems with different types
of transportation. We study a way to efficiently compute optimal paths with real
data in a multi-modal scenario considering walking, transit and car. Therefore, we
implement Transfer Patterns, which is a state-of-the-art route planning approach
[8]. This allows to obtain shortest paths queries within milliseconds. When using
a Pareto-cost model various optimal paths are provided for the user. However, the
high number of optimal solutions also includes a lot of unreasonable routes, although
they are Pareto-optimal. To address this problem, we use a filtering procedure
called Types aNd Thresholds (TNT) [10], which provides a both small and diverse
set of reasonable optimal paths decreasing the number of transfer patterns and
hence resulting in faster query times. To our knowledge this is the first work which
realizes the combination of these two approaches (Transfer Patterns with TNT).
We present an evaluation on query times of selected optimal paths, which shows
different and reasonable route options with an average query time of 14 milliseconds
for the Freiburg network.

1

Zusammenfassung
Derzeit besteht ein sehr großes Interesse an der Entwicklung von neuartigen Routen-
planern, die in der Lage sind mehrere Transportmodi miteinander zu kombinieren.
Wir untersuchen daher ein Verfahren, das für ein reales Netzwerk optimale Wege
in einem Mehrfachmodell unter Einbeziehung der Transportformen „Gehen“, „Öf-
fentliche Verkehrsmittel“ und „PKW“ errechnet. Um dies zu erreichen, verwenden
wir sogenannte Transfermuster (Transfer Patterns), die im Bereich der Routenpla-
nung einen hochmodernen Ansatz darstellen [8]. Auf diese Weise können innerhalb
von Millisekunden Suchanfragen bearbeitet und kürzeste Strecken angezeigt wer-
den. Zudem werden bei der Verwendung des Pareto-Kostenmodells verschiedene
optimale Routen für den Benutzer bereitgestellt. Allerdings beinhaltet diese hohe
Anzahl von optimalen Wegen auch sehr viele unlogische und unangemessene Routen,
obwohl diese das Kriterium der Pareto-Optimalität erfüllen. Um diesem Problem
zu begegnen wird das Filterverfahren „Types and Threshold“ (TNT) eingesetzt [10].
Der Filter reduziert diese Anzahl, so dass nur noch wenige, jedoch unterschiedliche
optimale Wege angezeigt werden. Das wiederum verringert die Anzahl an „Transfer
Patterns“ und folglich auch die Suchanfragezeit. Unseres Wissens ist dies die erste
Arbeit, die das Verfahren „Transfer Patterns“ mit dem Filter „Types and Threshold“
kombiniert. Wir stellen Auswertungen von Suchanfragezeiten bestimmter Strecken
dar. Diese zeigen im Freiburger Netzwerk verschiedene und angemessene Streckenop-
tionen bei einer durchschnittlichen Abfragezeit von nur 14 Millisekunden.

3

Contents

1 Introduction 7

2 Related Work 11

3 Route Planning in Road Networks 13
3.1 OSM Data . 13
3.2 Modelling Road Networks as Graphs 13
3.3 Algorithms . 14

3.3.1 Dijkstra and Extensions . 14
3.3.2 Contraction Hierarchies . 15

4 Route Planning in Public Transportation Networks 17
4.1 General Transit Feed Specification (GTFS) 17
4.2 Modelling Public Transportation Networks as Graphs 18

4.2.1 Time-Expanded Model . 18
4.2.2 Time-Dependent Model . 18

4.3 Algorithms . 20
4.3.1 Multi-label Dijkstra . 22
4.3.2 Transfer Patterns . 22

5 Combining Road and Public Transportation Networks 23
5.1 Graph Model . 23

5.1.1 Transit Graph . 23
5.1.2 Walk and Car Graphs . 25

5.2 Contracting Road Graphs . 25
5.3 Joining Graphs into a Multi-Modal Graph 25

6 Implementing Multi-modal Transfer Patterns 27
6.1 Transfer Patterns . 27
6.2 Cost Model . 28
6.3 Multi-label Profile Queries . 29
6.4 Storing Transfer Patterns . 29
6.5 Query Graph . 30
6.6 Location-to-Location Queries . 31

6.6.1 Entry Stations . 31

5

6.6.2 Evaluating the Query Graph 32
6.7 Types and Thresholds (TNT) . 33

6.7.1 Filtering by Types . 34
6.7.2 Discretization . 35
6.7.3 Observations . 36

7 Evaluation 37
7.1 Setup . 37
7.2 Pre-processing Time . 38
7.3 Number of Transfers Patterns . 40
7.4 Quality Evaluation . 41

7.4.1 Transfer Patterns vs Dijkstra 41
7.4.2 Transfer Patterns with TNT vs Dijkstra 41

7.5 Query Times . 46

8 Conclusions and Future Work 51

6

Chapter 1

Introduction
A lot of travelers do not use traditional maps anymore when finding a perfect route
from one place to another. Planning a trip with the help of route planning applica-
tions like Google Maps1, are in the ascendant. When entering the starting and end
point these applications provide possible routes very fast so that time consuming
map reading can be avoided. The list of displayed routes is in general ranked in
terms of the criterion “duration”, providing the fastest. However, the best route is
not always the fastest one, choosing the best route depends on users preferences.
For example, traveling from Mannheim to Freiburg, there are several options. One
of them is taking a direct connection by train, which takes 3 hours. Another route
option takes 2 hours and 30 minutes but implies a transfer in Karlsruhe. While
one person traveling with heavy luggage would prefer the route with less transfers
although it implies more travel time, another person would prefer the fastest route
to get on time to an appointment. One can also think on another traveling criterion
like the price. Route planning applications which take into account several criteria
are called multi-criteria.
When using public transportation as the traveling mode, advanced route planning

systems also include the walking mode. This is due to the fact that the starting and
end point are often not a station, so that at the beginning or at the end a portion of
walking is necessary. One might want to have an integral solution that includes the
way from your house to the train station in Mannheim as well as the way from the
train station in Freiburg to the final location. Additionally, walking is also benefi-
cial when a change from one station to another station gives an advantage in time.
These requests that include also the part from location to stations and vice versa are
called location-to-location queries. Including other means of transportation like car
(taxi) and bike provide even more interesting routes and time saving possibilities.
In certain cases, in metropolitan areas, taking a taxi or bike in the middle of a trip
can save a lot of time, if this ride describes a shortcut compared to public transport
or brings the user to a different station with better connections. If it is not within
a reasonable walking radius, a user will not even check schedules from this station.
A user can not figure out these options easily by himself and probably wants to use

1http://www.google.com/transit

7

them if he knew.

Up to this point we consider that using multi-criteria and multiple modes of
transportation for location-to-location queries gives a great value to plan a trip.
Moreover, several diverse optimal paths should be displayed, so that the user choose
the one that fits better for him. In our implementation we consider the modes public
transportation, walking and car. The criteria taken into account are travel time,
number of transfers and car duration. The latter can be seen as the implied cost
of using a taxi. In order to minimize the values of the aforementioned criteria and
obtain multiple options we consider the use of Pareto sets [22]. However, including
the car mode leads to a huge amount of optimal paths. Most of them have only
a slight difference between the car usage and total travel time. One reason of the
increased number of optimal paths is that each portion of transit between stations
can be replaced by car usage. Within a city traveling by car is normally faster than
using public transportation. So that replacing a portion of transit increases the car
duration, but decreases the total travel time. Because in the Pareto sense a cost
dominates another cost only if it is less or equal in all components, all these varia-
tions are optimal. Consider the example of using the car to the nearest bus station
and then continue from there using a bus line. It is also optimal to go by car to the
second nearest bus station and continue the transit from there. The first option has
a lower car duration but more travel time, whereas the second option has a greater
car duration but less travel time. Both solutions are Pareto-optimal but very similar
so that one solution cannot be considered as an alternative route of the other one.
Another problem in this setting is that resulting optimal paths are not reasonable.
For example, consider a query from Mannheim to Freiburg at night. One possible
result is "take a taxi for 2 hours and then 2 minutes with the tram and then walk"
or "walk one hour then take a bus 3 minutes then a taxi 1 minute". Although these
options are Pareto-optimal, it is unlikely that a user will choose them and thus they
should be filtered out.

Our route planning strategy to deal with these challenges consists on combin-
ing a state-of-the art algorithm called Transfer Patterns algorithm [7] with filtering
techniques called Types and Thresholds (TNT) [10]. To our knowledge this is the
first time this two approaches are combined. The Transfer Patterns algorithm is a
novel approach to get fast queries in public transportation networks. It exploits the
idea that a given source and target exhibit a time-independently limited number of
transfer patterns, which are the sequences of stations where a change of vehicle hap-
pens. For example, when traveling from Mannheim to Freiburg, the best connection
is either transfering in Karlsruhe, transfering in Offenburg or a direct connection
to Freiburg. In this case the transfer patterns are Mannheim-Karlsruhe-Freiburg,
Mannheim-Offenburg-Freiburg and Mannheim-Freiburg. These transfers are pre-
computed and stored, so that at query time optimal paths are only explored within

8

the schedules of these three options, which is a very small search space compared
with normal Dijkstra’s algorithm [18]. Therefore, it enables query times of just a
few milliseconds. Our approach creates a lot of optimal paths which have to be
reduced in order to show the user only different and reasonable routes. Therefore,
we use a method called Types and Thresholds, which filters out non-adequate results.

In the next section we give an overview of related investigations on multi-modal
and multi-criteria route planning. Chapters 3 and 4 give background on how to
model road and transit networks as graphs. Additionally, they provide a brief de-
scription of algorithms to compute shortest paths both in road and transit networks.
Chapter 5 describes the graph model combining road and transit networks. Chap-
ter 6 explains the implementation of multi-modal transfer patterns and the concept
of Types and Thresholds. Chapter 7 shows results of the evaluation on the Vitoria-
Gasteiz and Freiburg networks. Chapter 8 summarizes and concludes this work.

9

Chapter 2

Related Work

Recent research on route planning focuses on multi-criteria and multi-modal rout-
ing. Some of these works convert the multi-criteria search into a single criterion
problem [29] [4] [34]. However, combining multiple criteria into one criterion may
miss optimal paths [13]. Moreover in [34] it is also required that the user knows a
priori a mode hierarchy, which means when to use a specific transportation mode.
In practice, the user normally does not know this in advance, but wants this in-
formation to be provided by the system. Other approaches restrict the modes, for
instance by limiting the car usage at the beginning and end of a route [15]. Further
approaches, make use of Pareto sets [22] to minimize multiple criteria and provide
several results to the user [14] [6] [9].

Delling et al. [14] consider a multi-criteria and multi-modal scenario based on
RAPTOR (Round Based Public Transit Optimized Router) [16]. Here, full Pareto
sets of optimal costs are computed taking into account the criteria travel time, num-
ber of transfers, walking duration and taxi costs. They address the problem of large
Pareto sets by ranking the results by score. This score denotes the significance of
the result and is computed using fuzzy logic in a post processing step. Furthermore,
they applied heuristics during query search to speed up query times. They obtained
average query times of one second on the London network.

In a very recent work, a filter procedure called Types and Thresholds (TNT) was
introduced in [6]. This approach involves multiple criteria and the modes transit,
walk and car. Here, a classification of reasonable paths was provided as a result of an
analysis of availabiltiy, velocity and relative durations of each mode of transporta-
tion. Based on this classification and other assumptions, heuristics were defined to
reduce the number of Pareto-optimal paths to a small and diverse result set. They
achieved average query times of one second for the New York network. Additionally,
they provide an evaluation that indicates that the quality of the resulting paths is
preserved despite of heuristics.

Query times of [6] and [14] (around one second) allow for interactive queries in

11

large networks. However, faster query times on transit networks have been reported
by the precomputation of Transfer Patterns (around 6 milliseconds for New York).

Routing with Transfer Patterns was introduced by Bast et al. [7]. It is based on a
precomputation and fast queries to time tables for direct connections. The authors
provide heuristics to speed up the precomputation, such as the important stations
heuristic which makes feasible precomputation on large networks. They obtained
query times of few milliseconds on large networks, such as the train network of
Switzerland and the train + local transport network of a big part of North America.
Geisberger research in [20] elaborated in detail the Transfer Pattern algorithm and
introduced an extension to compute location-to-location queries.

Braun in his master thesis [9] extended the Transfer Patterns algorithm with
the car mode. As well as in [6] and [14], he faced the problem of large Pareto
sets. He identified several reasons of this problem and proposed ways to reduce this
sets by restricting the graph model. He showed that precomputation using the re-
stricted graphs is feasible also for large networks like New York. However, the work
concluded that these restricted models decrease the quality of the resulting paths.
Furthermore, this approach was only shaped for station-to-station queries.

Other works on routing with transfer patterns focuses on the robustness to delay.
This means how time table updates due to delays affect the optimal paths. In [32]
it was proven that transfer patterns are robust against delays, which means that
alternative paths caused by delays are already covered by transfer patterns.

In this thesis we combine for the first time the Transfer Patterns algorithm which
allows for fast query times with concepts of Types and Thresholds during prepro-
cessing time to obtain a representative result set involving the modes transit, walk
and car and provide an efficient backend to compute optimal paths for the Vitoria
and Freiburg network.

12

Chapter 3

Route Planning in Road Networks
This chapter presents an overview of how to model a road network as a graph. Ad-
ditionally, it provides background about the algorithms to compute shortest paths.
First, we describe the most common algorithm to solve the problem of finding short-
est paths in a graph, this is called Dijkstra’s Algorithm. Then, we provide a de-
scription of other variants of Dijkstra’s Algorithm that are more goal-directed due to
the use of heuristics. Finally, we introduce the concept of Contraction Hierarchies,
which is a speed-up technique based on precomputation[21].

3.1 OSM Data
OpenStreetMap(OSM) is a collaborative initiative, whose purpose is to provide free
geographical data [3]. The data is collected by contributors who record their move-
ments using a GPS tracking device. These maps can be downloaded in XML format
under the Open Database License. OSM files contain not only road data, but also
other map related data such as rivers, buildings, etc. We extract from these files
only node tags and way tags with the attribute "highway". Node tags represent a
specific location (latitude, longitude) and way tags connect nodes in a road.

3.2 Modelling Road Networks as Graphs
A graph G = (V, E) contains a set of nodes V and a set of edges E. For road networks
a node v ∈ V represents an intersection of two road segments and corresponds to
a location with a given latitude and longitude. An edge e ∈ E connects two nodes
and describes the road between two intersections. For an edge e we also write (u, v),
where u ∈ U is called the tail node and v ∈ V is called the head node. Each edge
e, also referred as arc, is weighted with a cost c(u, v). For road networks this cost
normally represents the travel time required between these two intersections on a
map.
A shortest path between two nodes v and v′ is a sequence of nodes v1, v2, ..., vn

13

(where v = v1 and v′ = vn) that are connected by edges (vi, vi + 1). Furthermore,
the sum of the edge’s cost is the minimum over all possible paths between v and v′.

3.3 Algorithms

3.3.1 Dijkstra and Extensions
Dijkstra’s Algorithm [18] developed in the 50’s is a common algorithm to compute
shortest paths in road networks. The algorithm maintains a priority queue with
tentative costs. Initially, the source node has tentative cost zero and all the other
nodes have a cost of infinity. Then, the node with the smallest tentative cost is taken
out of the priority queue and its status is changed to settled. For each outgoing arc
the algorithm checks whether the tentative cost of the tail node can be improved. If
this is the case, the node is added to the priority queue with its respective tentative
cost. This step is called relaxing an arc. The algorithm stops when the target node
or all nodes in the graph are settled. As a result, the tentative cost of each settled
node is the lowest cost from the source to this node. This only works if all arcs are
non-negative.
The drawback of this algorithm is the omnidirectional search for the shortest path,

which requires vast amount of computational resources and hence a high query time.
However, it is still the base of many other algorithms that compute shortest paths.
Such algorithms extend the original Dijkstra to reduce the number of visited nodes
and the search space of original Dijkstra’s algorithm, respectively. As a consequence
the time to find the shortest path decreases in comparison to the original algorithm.

A* Search One extension of Dijkstra’s algorithm is A* [23]. It makes use of an
heuristic function that estimates the distance to the target. The simplest approach
of an heuristic function is to compute the straight-line distance between source and
target. This estimated distance is added to the tentative distance of a node before
the insertion in the priority queue. As a result, nodes that are closer to the target
will come out sooner from the priority queue than nodes with greater distances from
the target. Hence, the search of the shortest path is more goal-directed than with
the original Dijkstra’s algorithm.
Another more sophisticated heuristic computes a set of landmarks. It exploits the
triangle inequality to approximate more accurately the distance to the target. This
approximation is used in the same way as the straight line distance with A*. This
combination of A* and landmarks heuristic is called ALT algorithm [1].

Bidirectional Dijkstra Another extension of Dijkstra’s algorithm is its bidirec-
tional version [12] which simultaneously searches from both source and target until

14

they meet. That is, when settling a node from one Dijkstra computation that is
already settled in the other Dijkstra. The Dijkstra from the target is performed
on the graph with inverted arcs, the so called backwards graph. This version of
Dijkstra’s algorithm decreases the search space of normal Dijkstra and is the base
of other elaborated algorithms like Contraction Hierarchies.

3.3.2 Contraction Hierarchies
Unlike Dijkstra’s Algorithm and its variants, Contraction Hierarchies [21] introduced
by Geisberger et al. uses preprocessed data to improve query times. The central
routine of the algorithm consists on contracting nodes. Thereby a node and its
adjacent arcs are taken out from the graph. Furthermore, additional arcs, called
shortcuts, are added whenever a shortest path goes through the contracted node.
Thus, the lengths of the shortest paths are preserved between the remaining nodes
in the graph.
All nodes in the graph are contracted following a specific node order. This order

plays an important role on the number of shortcuts to be added. To compute the
node order, there are several heuristics such as the edge difference. This is the
number of shortcuts that would have to be added if the node was contracted minus
the number of arcs incident to that node.
After the contraction process, a new graph is created consisting of nodes and edges

of the original graph and all shortcuts. Shortest paths can be found by a bidirectional
search. On the one hand in the forward search (Dijkstra from the source) only arcs
with non-decreasing order are considered, which is called the upwards graph. On
the other hand in the backward search (Dijkstra from the target) only arcs with
non-decreasing order are considered and is called the downwards graph. Therefore,
the total shortest path consists of the shortest paths on the upwards graph and on
the downwards graph.

15

Chapter 4

Route Planning in Public
Transportation Networks
This chapter begins with an overview of a common format for time table data.
Later on, it elaborates on how to model public transportation networks as graphs.
Finally, it gives a brief overview of a variant of Dijkstras algorithm to consider
multiple criteria (multi-label Dijkstra) and transfer patterns. For more details on
transfer patterns see Chapter 6.

4.1 General Transit Feed Specification (GTFS)
Time table data is represented in several files called GTFS-feed. Each of these files
represent a particular feature of the transit network, such as trips, stops, routes,
times, fares. The following files are required to form a GTFS-feed:

• agency.txt: Data from entity that provides the GTFS-feed.

• stops.txt: Data about locations for alighting and boarding vehicles. For ex-
ample, latitude, longitude, name of the stop, and so on. We refer to a stop
also as station.

• trips.txt: Data from trips, which are series composed of two or more stops at
specific time. Example of this data is the name of the trip and head sign. The
latter, refers to the destination of the trip, for instance direction : main train
station.

• routes.txt: Data about routes, which are groups of trips that users identify
normally as lines. Examples of this data are the name of the route and the
type of vehicle (tram, subway, bus).

• stop_times.txt: Data of the arrival and departure time of a vehicle at a par-
ticular stop. The associated trip of the vehicle and the stop sequence are also
included.

17

• calendar.txt: Data of the days of the week where a trip is available, as well as
the start and end date.

4.2 Modelling Public Transportation Networks as
Graphs

Data obtained by a GTFS-feed such as stations (trains stations, bus stops), lines
(trams, buses, trains) and time tables can be used to build a graph. There are two
common approaches to model these data as graphs: The time-expanded and the
time-dependent approach [28]. Both models require a special treatment to manage
transfers. The time-expanded approach yields to a very large graph, but it is more
robust for complex scenarios, whereas the time-dependent has better performance
in terms of computing shortest paths. A detailed discussion about advantages and
disadvantages of both models is given in [30].

4.2.1 Time-Expanded Model
A node in the time-expanded graph corresponds to a specific time event, such as
departure or arrival at a particular station. These nodes are called departure nodes
and arrival nodes. Arcs between nodes represent either traveling on a vehicle between
stations or waiting at a station. The cost of arcs between stations is commonly the
time it takes to go from one station to the other with the specified vehicle. To enable
transferring to another vehicle in a station, for each departure node a transfer node
with the same time is added. This transfer node is connected by an arc to its
respective departure node, this arc represents boarding a vehicle. Arrival nodes are
connected to the first transfer node with greater time, these arcs represent alighting
from a vehicle at a station. Transfer nodes are ordered by time and connected by
arcs that represent waiting time. Because this is a graph with non-negative arc
costs, Dijkstras algorithm can be used to compute shortest paths. An example of
this graph is shown in Fig 4.1.

4.2.2 Time-Dependent Model
In this model each node in the graph represents a station. If there is a vehicle
traveling between two stations an arc is added. For this graph there are no fixed
costs but a cost function that depends on the time a particular arc is evaluated. Fig.
4.2 shows an example of a time-dependent graph. This graph is significantly smaller
than the time-expanded but needs a special treatment to enable transfers. One
extension of this model, which handles transfers is the train-route-model. Here, for
each station there is a station node and for each line that stops at this station there
is a route node. Route nodes have arcs to and from the station node. Outgoing arcs

18

Figure 4.1: Time-expanded graph with two lines and three trips. Line l1 has trip
t1 and t2 and goes from Mannheim to Karlruhe. Line l2 has trip t1 and
goes from Mannheim to Freiburg via Karlsruhe. Nodes labeled with t
are transfer nodes.

19

of a station node have normally a fixed cost representing the minimum transfer time
(transfer buffer). Arcs going from route nodes to station nodes allow to transfer
to another vehicle in that station and normally have a fixed cost of zero. Fig. 4.3
illustrates the train-route-model model.

Mannheim Freiburg

Offenburg

Karlsruhe

Figure 4.2: Time-dependent model with connections from Mannheim to Freiburg.
These are via Karlsruhe, via Offenburg or a direct connection. Station
nodes are represented as squares.

4.3 Algorithms

Both road and transit networks can be modelled as graphs. However, speed up tech-
niques used in road networks to compute shortest paths in general do not perform
well on transit networks [5]. For instance, hierarchical approaches have a positive
influence in road networks when computing shortest paths. But for transit networks
this is not the case as they lack of a hierarchy to exploit, especially within a city
and networks with poor structure. Moreover, transit networks have to handle trans-
fers, multiple critera and schedules, which makes the shortest path computation a
more complex problem compared to road networks. In the following section we give
an overview of an extension of Dijkstras algorithm to compute shortest paths with
multiple criteria and a brief description of transfer patterns. More details on routing
with transfer patterns are provided in Chapter 6.

20

l1

l2

s1

Mannheim Karlsruhe Freiburg

l3

l1

l2

s2

l3

l1

s3

Figure 4.3: Train-route-model with three lines. Line l1 goes from Mannheim to
Freiburg via Karlsruhe. l2 goes from Mannheim to Karlsruhe and l3
goes from Karlsruhe to Freiburg. Line nodes are circles and station
nodes are squares. Dotted arcs have cost of five minutes which is the
transfer buffer. Arcs from line nodes to station nodes have cost zero.

21

4.3.1 Multi-label Dijkstra
Dijkstras Algorithm can be extended to minimize multiple costs and thus present to
the user not just one optimal path, but a set of optimal paths. A cost is a tuple with
two or more components (ie. travel time, number of transfers). Each node in the
graph maintains a set of these tuples also called labels. Initially, all sets are empty
except for the source node which has one label. The elements in the priority queue
now are labels. As in the normal Dijkstras algorithm in each iteration an element
(now a label) is taken out from the priority queue and settled. The incident arcs of
the node where the label belongs are relaxed and new labels are created. If a new
label is incomparable to all labels in the label set of the tail node, then the new
label is inserted. Furthermore, labels no longer optimal are discarded. If one of the
existing labels in the set dominates the new label, the new label is not inserted. For
details on how to maintain Pareto label sets see Section 6.2
The multi-label Dijkstra can be adjusted to use it on all graph models described

before. Nevertheless, the running time of this variant with multiple criteria increases
by a factor of 10 compared with the normal Dijkstra with scalar costs [26].

4.3.2 Transfer Patterns
Routing with transfer patterns is a state-of-the-art algorithm for public transporta-
tion. It is based on precomputated data and allows for multi-criteria shortest paths
queries within milliseconds. Routing with transfer patterns has the following basic
components:

• Transfer patterns precomputation. All shortest paths between stations are
computed. From these paths the set of transfer patterns is extracted. A
transfer pattern denotes the sequence of stations where a transfer happens.
Afterwards, they are stored in directed graphs.

• Direct-connection tables precomputation. Time tables are stored in a special
data structure that allows for fast direct-connection queries at a specific time.

• Query graph construction. At query time, precomputed transfer patterns be-
tween source and target station are retrieved and a directed graph is built. A
query is: from station A, how to get to station B at time t (A@t→ B).

• Query graph evaluation. To obtain the shortest paths at a specific time a Dijk-
stra on the query graph is computed. Arcs are evaluated by direct-connection
queries.

22

Chapter 5

Combining Road and Public
Transportation Networks
In the previous chapters, we gave a description of how to model road and pub-
lic transportation networks as graphs, as well as algorithms to compute shortest
paths on such graphs. In the following, we recall these descriptions and explain our
approach to combine both networks. Finally, we describe how to join uni-modal
graphs into one multi-modal graph, which will be used later on to compute transfer
patterns.

5.1 Graph Model
In order to compute multi-modal routes, we build three different graphs. Each of
these graphs represents a mode of transportation: Walking Gw, traveling by car Gc

and using transit Gt. Once having the three graphs, they are combined into one
multi-modal graph Gm.

5.1.1 Transit Graph
First, the transit graph Gt has to be modeled. Therefore, it is necessary to extract
trips, stations and their corresponding schedules from a GTFS-feed. A trip is defined
as a sequence of stations s0, s1, ..., sn, n > 0 where a vehicle departs at a specific
time from station s0 and goes through each station consecutively until arrival in sn.
Trips that share the same sequence of stations at possibly different times and do not
overtake each other belong to a line. Each line is stored in a table as illustrated in
Table 5.1
Afterwards, the transit graph Gt(Vt, Et) is built in a time-dependent approach.

This model is similar to the train-route-model but with more nodes per station. For
each station i there is a station departure node sdi ∈ Vt and a station arrival node
sai ∈ Vt. For each line x that goes through a station si there is an arrival node
lxai ∈ Vt and a departure node lxdi ∈ Vt. Nodes in a station si are connected with
four types of arcs: Arcs from line arrival nodes to the station arrival node (lxai, sai)

23

Table 5.1: Times of two trips belonging to line 20. A vehicle departs at 8:00 from
station s5 and arrives at 8:05 at station s67, stays there one minute and
then goes through station s12, finally arrives at s40 at 8:15.

line 20 s5 s67 s12 s40

trip 1 8:00 8:05 8:06 8:10 8:10 8:15
trip 2 8:40 8:45 8:46 8:50 8:50 8:55

...

(alighting a vehicle), arcs from station arrival nodes to station departure nodes
(sai, sdi) (staying on a station possibility to transfer), arcs from station departure
nodes to line departure nodes (sdi, lxdi)(boarding a vehicle), arcs from line arrival
nodes to line departure nodes (lxai, lxdi)(staying on a vehicle at a station). All of
these arcs have cost zero with the exception of arcs from station departure to line
departure nodes that have an additional transfer buffer. This is the time a traveler
needs to change from one vehicle to another.
Additionally, there are time-dependent arcs connecting stations. These arcs go

from line departure nodes on station si to line arrival nodes on the subsequent
station sj (lxdi, lxaj) (traveling on a vehicle). These connections are also referred as
elementary connections [20]. Fig.5.1 illustrates the graph model.

l1a1 l1d1

l2a1 l2d1

sa1 sd1

Station s1

l3a2 l3d2

l2a2 l2d2

sa2 sd2

Station s2

EC

Figure 5.1: Graph model showing nodes and arcs of two stations. In this example
lines l1 and l2 stop in station s1. Lines l3 and l2 stop in station s2.
Note that line l2 stop in both stations, the arc labeled with EC is an
elementary connection between both stations.

24

5.1.2 Walk and Car Graphs
The walk graph Gw is a static road network, where each arc is weighted with the
time (in seconds) it takes to walk its corresponding road segment with average speed
of 4km/h. Remember that each intersection in the map corresponds to a node and
the road segment between intersections is represented as arcs.
Like the walk graph, the car graph Gc is a road network with the same properties.

The difference is on the weight of the arcs that correspond to the average travel time
depending on the road type (for highways the average speed is higher as for small
streets in the city). We consider speeds from 5km/h to 110km/h. For simplicity, we
assume for both road networks that all roads can be traveled in both directions and
no turn restrictions were considered.

5.2 Contracting Road Graphs
One way to have a more compact model is to contract the walk and car graphs with
Contraction Hierarchies before joining them into Gm [21]. Because we want to use
Gm to compute transfer patterns between stations, distances between stations must
be preserved. However, the actual path which consists of the sequence of nodes in
the road graph is not relevant, thus these nodes can be contracted. This contraction
process will result in a more compact model and less visited nodes during a Dijk-
stra search. For a transfer pattern computation it is necessary to compute for each
station one Dijkstra to everywhere, which is a very expensive computation. This
contraction process reduces the search time by avoiding unnecessary propagation of
results on the road graph. In chapter 6 we describe in detail these Dijkstra searches
and how transfer patterns are computed.

The contraction process can be divided into two tasks. First, it is necessary to
find for each station the nearest nodes in Gc and Gw. Second, all nodes in Gc and Gw

are contracted except the nearest nodes which have node order infinity. To define
the contraction order we use the edge difference heuristic with a fixed limit of 10.
This limit helps to maintain a low number of shortcuts added. But at the same
time it causes some uncontracted nodes that are not near a station. However, the
number of uncontracted nodes stays low compared with the total number of nodes
in the road graphs.

5.3 Joining Graphs into a Multi-Modal Graph
In the following we describe the steps to join the walk graph Gw with the transit
graph Gt. The same procedure is used to join the car graph Gc. The join process
can be divided into the following steps:

25

1. Contract the walk graph Gw with Contraction Hierarchies as explained in
section 5.2. After the contraction we obtain the set of uncontracted nodes
Vun.

2. Add all nodes in Vun to Vt

3. Add to Et arcs (u, v) ∈ Ew where u, v ∈ Vun. Note that these arcs could be
also shortcuts added during the contraction step.

4. For each station si find the nearest node nni ∈ Vun and add the following arcs:
• Arc from station arrival to nearest node (sai, nni).
• Arc from nearest node to station departure (nni, sdi).

The combination of the walk, car and transit graph is referred as multi-modal graph
Gm. Fig. 5.2 illustrates the multi-modal graph.

lxai lxdi

sai sdi

nniw nnic

Figure 5.2: Graph model showing nodes and arcs of station si. In this example line
lx stops in station si. The nodes nniw and nnic are the nearest nodes
in the walk and car graphs to si, respectively.

26

Chapter 6

Implementing Multi-modal Transfer
Patterns
This chapter elaborates on the implementation of multi-modal transfer patterns.
First, it provides a description of the selected cost model. Afterwards, it explains
how to compute profile queries to obtain optimal paths between all pairs of stations.
Later on, it provides an explanation on how to retrieve transfer patterns from re-
sults of profile queries and build from them a DAG. Finally, we describe a filtering
technique to remove undesirable routes and provide a small and reasonable set of
optimal paths for the user.

6.1 Transfer Patterns
This section is dedicated to give an overview of routing with transfer patterns.
We explain the Transfer Patterns algorithm and how to include different modes
of transportation. We refer on the following to the algorithms and components of
the original publication on transfer patterns by Bast et al. if not stated otherwise [7].

The basic idea of the Transfer Patterns algorithm is to exploit a special property
of transit networks. This is that given a source and target station there is a limited
number of transfer patterns that are optimal. A transfer pattern is described as the
sequence of stations on a path where a transfer happens. Having this in mind, then
at query time it is only necessary to search on this patterns the best option at a
specific time. Coupled with an efficient way to look up direct connections, query
responses of just a few milliseconds are possible even on very large networks.

Routing with transfer patterns is based on two components. The first is the
precomputation of the transfer patterns which is a time expensive process and one
of the main drawbacks of the algorithm. The second component is a structure
and algorithm that efficiently retrieves from time table data the next feasible direct
connection between two stations at a specific time.

27

6.2 Cost Model
One important criterion to choose a specific route is the total travel time, but there
are many other criteria that a user might want to use (price, minimum walking,
minimum car usage). Especially, in public transportation the number of transfers,
total travel time and monetary costs are factors considered to define the set of op-
timal paths. Using travel time as only criterion yields to exactly one optimal path.
Namely, the path with the smallest travel time, whereas multiple criteria scenario
could yield to a set of optimal paths. For instance, considering bicriteria (travel
time, number of transfers) a path with 30 min travel time and no transfers (30, 0) is
incomparable to a path with 20 min travel with one transfer (20, 1). Deciding which
of these options is the best depends on users preferences. One user would prefer an
option with no transfers and other user would prefer the fastest connection although
it implies more transfers. On the other hand, there are options that are strictly less
or worse than others. For example, a path with 10 minutes and no transfers (10, 0)
is less than other with 30 minutes and no transfers (30, 0). The latter option should
be prunned. In order to provide multiple options to the user and optimise multiple
criteria we implement Pareto sets [22] which contain non-dominated costs.

In our framework a cost c is a tuple (x, y, z) where x is the total travel time rel-
ative to the start time (e.g. 30min traveled since start), also refered as duration.
The second component y is the transfer penalty (i.e. number of transfers) and the
third component z is the total travel time by car. We say cost a with components
(x, y, z) is less or equal than cost b with components (x′, y′, z′) if all components of
a are less or equal than components of b:

(x, y, z) ≤ (x′, y′, z′) iff (x ≤ x′) ∧ (y ≤ y′) ∧ (z ≤ z′)
Cost a is less than cost b, we say also a dominates b in the Pareto sense, if one of

the following rules apply:

(x, y, z) < (x′, y′, z′) iff (x < x′) ∧ (y ≤ y′) ∧ (z ≤ z′)
(x, y, z) < (x′, y′, z′) iff (x ≤ x′) ∧ (y < y′) ∧ (z ≤ z′)
(x, y, z) < (x′, y′, z′) iff (x ≤ x′) ∧ (y ≤ y′) ∧ (z < z′)

Cost a and b are incomparable if neither (x, y, z) ≤ (x′, y′, z′) nor (x′, y′, z′) ≤
(x, y, z).
Note that the walk duration is not a component of our costs and hence not consid-
ered as a Pareto criterion. An additional criterion implies more comparisons so that
its implementation would lead to excesive precomputation times.

To obtain the optimal paths with more than one criterion, we use a multi-criteria
Dijkstra[27]. This algorithm maintains a set of Pareto-optimal labels rather than a
single cost value per node. Now, instead of settling a node, labels are settled. Each

28

label contains the tentative cost to that node and the current time. We denote the
tentative cost of a label l as lc and the current time as lt. This time corresponds to
the departure time plus the duration component of the cost. For initial labels with
cost zero lt is the same as the departure time.

6.3 Multi-label Profile Queries
We want to compute optimal transfer patterns between stations. Therefore, we need
to compute for each station a multi-label Dijkstra on Gm to all other stations. In the
following we call this search profile query. A profile query begins with initial labels
at all departure events. Initial labels have cost zero on all components. The starting
node can be the station arrival node or the station departure node. Starting the
profile query at the station arrival node allows for initial walking/car usage, whereas
starting from the station departure node walking/car usage at the beginning is not
possible.
If all labels have the same departure time, it suffices to compare them in the

Pareto sense. However, with different departure times, it is necessary to extend
the dominance relation to preserve patterns departing at different times. A label a
dominates a label b if a departs after b and a has lower or equal costs than b:

a(dt, c) < b(dt, c) iff (dta > dtb) ∧ (ca ≤ cb)
The comparison of the costs is performed as explained in section 6.2. One example

is a label that departs at 9:45 and arrives at a specific node at 10:30 with cost (45,
0, 0) dominates other label that departs at 9:30 and arrives at 10:40 with cost (70,
0, 0). Labels with the same departure time are compared in the Pareto sense.

6.4 Storing Transfer Patterns
After computing a profile query for a given station A, the settled labels at each
reachable station B represent the optimal paths from station A to B. Each of these
labels are backtracked by referring to the parent label to obtain the complete path.
From this path we extract the sequence of stations where a transfer happens. Note
that in our scenario a transfer can also be a change of transportation mode. All
transfer patterns with source station A are stored in a Directed Acyclic Graph (DAG)
for station A. This graph contains a root node representing the source station A, a
target node for each reachable station B, and several prefix nodes Ci representing
a station in a transfer pattern AC1, ..., CnB. Arcs in a DAG are labeled with the
mode of transportation, which for our implementation are car, walk and transit.
Fig.6.1 shows an example of this structure.

29

A B C D

DC

E

Figure 6.1: The graph represents transfer patterns AE, ABE, AC, ABC, ABDE
and ABCDE. Circle nodes are prefix nodes, the diamond node is the
root node and the square nodes are target nodes. Dashed lines repre-
sent walking between stations. Note that transfer patterns ABDE and
ABCDE are multi-modal patterns.

6.5 Query Graph
To answer a query from station A to B at time t (A@t → B), the precomputed
transfer patterns between A and B must be retrieved from the DAG for station
A. Based on these patterns a query graph is constructed, where nodes represent
stations and arcs are either direct connections without any transfer in between or
paths on the car/walk graph between the stations. The first step on the construction
algorithm is finding the target node B in the DAG, we refer to this node as v. If
v is not found, no path between A and B exists. Otherwise, it inserts a node with
label B if not existing yet. The second step consists of adding to the query graph
all succesor nodes of v with labels U1, ..., Un and arcs (Ui, B). Additionally, on our
implementation for each arc the mode of transportation is stored. The second step
is repeated recursively for all succesors of v. Fig. 6.2 shows two query graphs
built from the DAG in Fig.6.1. One for query A@t → C and the other for query
A@t→ E.

A B C D E A B C

Figure 6.2: Query graphs built from DAG in Fig. 6.1. The left query graph corre-
sponds to the query A@t→ E and the right one to the query A@t→ C.
Walking edges are dashed. Other edges are direct connections between
stations.

30

6.6 Location-to-Location Queries

Answering location-to-location queries is a very desirable feature in realistic route
planning applications. A traveler normally wants to know how to get to a specific
location and not just to a station. Instead of a source and target station, a location-
to-location query takes as input a source location Ls, a target location Lt and a
departure time t (Ls@t → Lt). The result of such a query consists of routes that
do not depart before t and arrive at Lt. It includes the walking time to a set of
potential source stations, which are near the source location and the walking from
potential target stations, which are near the target location. We call these stations
entry stations of the source and target, EN(Ls) and EN(Lt) respectively.

6.6.1 Entry Stations

To compute EN(Ls) we define an heuristic based on the assumption that people
tend to accept little walking at the beginning and end of a journey. Therefore, we
fix an area around the source location of 400 m and declare all stations within this
area as entry stations from the source via walking. Entry stations from the target
are computed analogously.
To answer location-to-location queries we follow the approach introduced by Geis-

berger in [20], which consists on adding two extra nodes to the query graph, one for
the source location Ls and one for the target location Lt. Node Ls has outgoing arcs
to all nodes in EN(Ls) and the node Lt has incoming arcs from each of the nodes
in EN(Lt). Arcs connecting the source/target to entry stations have vehicle type
walk. The query graph is built in the same way as described in section 6.5 but now
retrieving transfer patterns for every pair of stations in EN(Ls) and EN(Lt). Fig.
6.4 shows an example of a query graph considering the source and target location.

G F B C

D H

Figure 6.3: DAG for station G. Dashed lines represent walking between stations.
Circle nodes are prefix nodes, the diamond node is the root node and
the square nodes are target nodes.

31

A B C

F

DG H

Ls Lt

Figure 6.4: Query graph for Ls@t→ Lt. Entry stations to the source are A and G.
Entry stations to the target are C and H. The query graph is built from
DAG for station G illustrated in Fig.6.3 and from DAG for station A in
Fig. 6.1. Walking arcs are dashed.

6.6.2 Evaluating the Query Graph
A query graph is evaluated by a time-dependent Dijkstra with multiple criteria [19].
During this Dijkstra search if an arc is of type walk or car, the cost is looked up in
a table with precomputed durations between all pairs of stations. Walking and car
durations are computed in the contracted Gw and Gc with a bidirectional Dijkstra
and following a contraction order as explained in section 3.3.2. Costs of transit arcs
are obtained via a direct connection query.

Direct Connection Queries Answering efficiently direct connection queries is a
essential ingredient in the transfer patterns algorithm. A direct connection query
answers the question I am on station A when can I be at station B with one
vehicle the earliest. A data structure holding schedules is needed to answer this
queries in an efficent way. This structure has two main components. The first one
is the set of lines, where each line has a list of trips sorted by departure time. Each
of these trips share the same sequence of stations and do not overtake each other.
The second component is maintaining a list of incident lines for each station. Each
element on the list contains a line that goes through this station and the position of
the station on the sequence of stations of that particular line. For example, consider
line 20 illustrated in Table 6.1 station s7 is the second station it visits and station
s40 is the fourth. Therefore, the incident list of station s7 contains an element (l20,
2) and the incident list of station s40 contains an elment (l20, 4).

The algorithm to answer a direct connection query si@t → sj using the described
structure first intersects the incident list of si and sj. The intersections results on
lines that stop at si as well as on sj. From these consider only the ones that stop

32

s7 s40

(l20, 2) (l13, 2)
(l3, 9) (l5, 9)
(l6, 1) (l20, 4)
(l6, 1) (l20, 4)
... ...

line 20 s5 s7 s12 s40

trip 1 8:00 8:05 8:06 8:10 8:10 8:15
trip 2 8:40 8:45 8:46 8:50 8:50 8:55
trip 3 9:00 9:05 9:06 9:10 9:10 9:15
trip 4 9:40 9:45 9:46 9:50 9:50 9:55
...

Table 6.1: Left table shows the incident lists of station s7 and s40. Right table shows
the trip times of line 20.

first at si and then at station sj. The next step is search for the first feasible trip of
the line. This is the first trip that departs after t from si. In the example of Table
6.1 a query s7@8:30 → s40 finds line 20 in both incident list of s7 and s40 and the
first feasible trip arrives at s40@8:55.

6.7 Types and Thresholds (TNT)
The combination of the graphs Gw, Gc and Gt into Gm allows to unlimited walking
and car usage. Furthermore, this combined graph with a Pareto-cost model pro-
duces a huge amount of path variations. Most of them have only a slight difference
between the car usage and total travel time. One reason of the increased number
of optimal paths is that each portion of transit between stations can be replaced
with car usage. Traveling by car, within a city, is usually faster than using public
transportation. So that replacing a portion of transit increases the car duration,
but decreases the total travel time. Note that in the Pareto sense a cost dominates
another cost only if it is less or equal in all components, therefore all these variations
are optimal. Consider the example of using the car to the nearest bus station and
then continue from there with a bus line. It is also optimal to go with the car to the
second nearest station on the bus and continue from there with transit. The first
option has lower car duration but more travel time, whereas the second option has
greater car duration but less travel time. As mentioned in Section 6.2, the walking
duration is not considered as a Pareto criterion. Therefore, a lot of Pareto-optimal
paths might possess high walking portions which also have to be filtered out to get
reasonable results.

In addition to the increase of optimal paths that are similar due to car usage,
another problem arises. Some of the resulting paths, although Pareto-optimal, are
unreasonable and thus unlikely that a user will choose them. Examples of such
unreasonable paths are: "take the car 3 hours, then a train 2 minutes" or "walk one
hour, take a bus 5 min, then a taxi 2 min".

33

Figure 6.5: Resulting paths which differ slightly on car usage and total travel time.
Two groups of very similar paths can be identified. The first composed
by paths with three transfers on the range of 25 to 31 min in car usage.
The second group have two transfers and are all in a range from 31 to
33 min in car usage.

Types and Thresholds(TNT) addresses the latter problems by filtering this large
set of variations to a small and representative set of optimal paths. In the following
section we give an overview of this concept introduced in [10].

6.7.1 Filtering by Types
A cost is classified as reasonable or unreasonable based on the relative durations of
each mode of transportation. Relative durations of a mode m are zero(m), little(m)
and much(m). These follow the order zero(m) < little(m) < much(m). The
idea of including zero as relative duration is that the use of a transportation mode
implies some arrangements that have to be done like calling a taxi, buying tickets,
and so on. Distinguishing between little and much is important because there are
some options that not many people are willing to do, for example walking for long
distances. Moreover, the authors of [10] observed certain properties of each mode
of transportation that could be useful to define a classification of reasonable paths.
On the one hand, the car mode is expensive but fast and available everywhere. On
the other hand, the walk mode is slow but cheap and it is also available everywhere.
Meanwhile, the transit mode is limited to schedules and available only at stations
but is a medium-fast way of traveling. After an analysis of availability, velocity and
relative durations of each mode, three types were defined as reasonable:

34

1 Use the car for the whole journey. This option is normally the fastest but most
expensive route.

2 Use much transit, much walking but no car. This option is normally the
slowest but cheapest route.

3 Much transit, little walking and little car. This option is normally in terms of
price and time in between type 1 and type 2.

For practical use relative durations have to be converted to concrete thresholds.
The relative duration zero(m) is zero minutes for all modes, much(m) is infinity
and for little(walk) is 10 minutes. The little(car) is computed based on the pure
car duration in the following way: if the pure car duration is less than 20 minutes,
little(car) is zero minutes, otherwise it is the maximum between 10 minutes and 25
% of the pure car duration. This is the total travel time by car from one station
to another. In our implementation we already precompute such durations for the
evaluation of query graphs, so we also use them for the filtering process.

6.7.2 Discretization

One approach to alleviate the problem of having resulting paths with only a small
difference on the car duration is to discretize the car duration into blocks of time.
For example, a block could be ten minutes. First, the car durations component of
the cost are rounded up to the next block. For instance 24 and 25 min are rounded
to 30 min when taking blocks of ten minutes. After the rounding the tuples are
filtered in the Pareto sense to produce a set of non-dominating costs. Afterwards,
the original car durations are restored into the costs. Discretization was used in [10]
to filter out costs as well. Fig. 6.5 illustrates a query with similar values for total
travel time and car duration. Table 6.2 shows an extract of the same query with
discretized car durations.

After a profile query, labels at the target stations are used to extract transfer patterns
and build their respective DAG. After a profile query these labels are classified in
types, labels which not belong to a type are removed. Remember that our cost
is a triple (x, y, z) where x is travel time, y is transfer penalty and z is the car
duration. We maintain an additional walk duration in the cost to use it in the
filtering process. Afterwards, car durations of costs are discretized. After all the
filtering process, remaining labels are used to compute transfer patterns.

35

Duration Transfer penalty Car duration Discretized car duration
01:28:39 3 00:28:39 00:30:00
01:35:15 3 00:28:15 00:30:00
01:35:57 3 00:27:57 00:30:00
01:48:41 3 00:27:41 00:30:00
01:51:20 3 00:27:20 00:30:00
01:10:40 3 00:29:40 00:30:00
01:11:23 3 00:29:23 00:30:00
01:05:35 4 00:26:31 00:30:00
00:50:54 2 00:32:54 00:40:00
00:51:53 2 00:32:53 00:40:00
00:53:31 2 00:32:31 00:40:00

Table 6.2: Extract of tuples from a query and their discretized car durations. Shaded
rows remain in the optimal path set after the discretization process.

6.7.3 Observations
Discretization eliminates very similar paths. However, there could still remain sim-
ilar paths which are at the border of the time block. For example, costs with car
durations 29 min and 31 min are similar. But they belong to different blocks, so
both costs remain.

Filtering by types and discretization was used before only for normal queries (for
a given departure time), but we use it now as a post-filtering method for profile
queries. This filter process reduces the large set of optimal paths to a small and
meaningful set of paths. However, because this is a post-filtering process, profile
queries have to compute all possible optimal paths anyway. This profile queries take
much more time than profile queries without the car mode. Nevertheless, reducing
the number of labels computed by profile queries decreases the number of transfer
patterns. Consequently, query graphs are smaller and hence faster query times can
be expected. Results of profile query times are presented in Chapter 7.

36

Chapter 7

Evaluation
This chapter shows the results on real datasets with our C++ implementation.
We present precomputation times, query times and number of transfer patterns
generated with and without filtering. Furthermore, we evaluate their qualities in
comparison to Dijkstra.

7.1 Setup
For the experiments three datasets with different size and structure were chosen.
These correspond to the cities Vitoria-Gasteiz, Freiburg and Austin. The former is a
small network composed mainly of a bus network with 333 stations. In the following
this is abbreviated as Vitoria. The second is a more complex network with trams,
buses and trains. It compromises also stations from neighbouring small cities which
in total form a network of 1381 stations. The latter describes the biggest network
with 2,709 stations. Table 7.1 presents properties of the aforementioned networks.

Vitoria Freiburg Austin
Stations 333 1,381 2,709
Lines 40 569 228
Trips 2,733 2,328 4,852

Table 7.1: Overview of Vitoria, Freiburg and Austin networks. The number of trips
corresponds to trips of one day of the week.

The walk and car graphs are constructed for all datasets extracting data from OSM
files. We consider for these graphs the largest connected component. For the walk
graph we choose an average speed of 4km/h, whereas for the car graph speeds range
from 5km/h to 110km/h depending on the road segment type. Afterwards, these
graphs are contracted as explained in Section 5.2. Transit graphs for all datasets
are built from data of one day, which is extracted from a GTFS feed. Multi-modal
graphs are built by combining the car, walk and transit graph according to Section
5.3. Table 7.2 shows details of these graphs.

37

Vitoria Freiburg Austin
Transit graph
Nodes 2,092 18,342 20,262
Arcs 3,145 31,972 32,169
Walk graph
Nodes 10,237 110,403 357,845
Nodes (core) 372 1,121 3,780
Arcs 23,150 236,220 767,132
Car graph
Nodes 10,237 110,403 357,845
Nodes (core) 358 1,068 3,894
Arcs 23,150 236,220 767,132
Multi-modal graph
Nodes 2,822 20,531 27,936
Arcs 11,417 53,863 96,903

Table 7.2: Details of datasets used for the different networks. Nodes (core) are the
remaining nodes after contraction.

7.2 Pre-processing Time

First, we compute profile queries only on the transit graph, then on the transit com-
bined with the walk graph and finally on the complete multi-modal graph involving
the three modes of transportation (transit, walk, car). As can be seen in Table 7.3
the profile queries which include the car mode produce a extremely high amount of
labels compared with the transit only and transit and walk graph. One reason of
this increment is the large amount of similar paths with small variations on the car
duration. More details of this variations are presented in Section 6.7.
In the next step, we compute profile queries for several randomly selected stations

and report average profile query time and the total number of labels generated in
Table 7.4. For the Austin network only one sample could be calculated, whereas
for Vitoria and the Freiburg network various samples are used to compute profile
queries. This is due to the size and structure of Austin which creates too many
labels per node and hence leads to a very high profile query time of 120 minutes
for one station. Therefore, for the further evaluation only the Vitoria and Freiburg
networks are taken into account.

The average profile query time of Freiburg (0.57 min) is less than the one of
Vitoria (1.97 min), although the network from Freiburg is larger. One explanation
can be found in the difference of lines and trips of the two cities. Vitoria has few
lines (40) but many trips (300), which means that each line in general has a high

38

Vitoria Freiburg Austin
Transit 155,175 100,517 652,282
Transit + Walk 475,721 351,907 2,013,686
Transit + Walk + Car 4,525,715 7,695,072 128,592,981

Table 7.3: Number of labels generated by random profile queries with different
graphs. When adding the walk mode the number of labels approx. triples,
whereas adding the car mode greatly increases the number of labels.

Vitoria Freiburg Austin
Number of samples 269 87 1
Profile query time (min) 1.97 0.57 2,634.55
Number of labels 1.94M 1.44M 128.59M

Table 7.4: Average profile query times and total number of labels for the profile
query. Note that calculating a profile query for Austin takes 2,634.55 min-
utes, so that further evaluations are done only with Vitoria and Freiburg.

frequeny. In contrast, Freiburg has 569 lines with only 2,328 trips. Note that in
each profile query a lot of labels with different departure times are also preserved.
Therefore, each profile query for Vitoria has to keep more labels than for Freiburg.
Details of pruning rules during a profile query are found in Section 6.3.
Remember that we maintain a set of Pareto non-dominated labels per node, which

in our implementation requires to compare every new label to all labels in the set.
These comparisons are needed to check if the new label is inserted and remove ex-
isting labels if necessary. Therefore, the precomputation time depends mainly on
the number of labels per node created and structure of the network. Fig. 7.1 shows
how the profile query time grows with increasing labels and that times for Vitoria
are higher than for Freiburg for the same number of labels due to the different ratios
of nodes and labels of the networks.

As already shown in Table 7.3 the car mode generates a lot of variations, which
are very similar or not reasonable as explained in Section 6.7. These variations are
later filtered out. However, the filter is done as a post-process which means that it
is nevertheless necessary to compute this huge amount of unreasonable paths. This
is the main drawback of our approach. This problem could be reduced by limiting
the walking and car usage or applying heuristics during the profile query to detect
and prune these unreasonable paths. To apply this approach on a large network
reducing the precomputation time is essential. However, for the Freiburg network
the precomputation of transfer patterns for all stations takes one day, which could
be considered the limit of feasibility.

39

Figure 7.1: Profile query time with total number of labels. The profile query time
grows with increasing labels. Furthermore, times for Vitoria are higher
than for Freiburg for the same number of labels due to the different ratios
of nodes and labels of the networks.

7.3 Number of Transfers Patterns

We run profile queries for randomly selected stations and register the average number
of labels and transfer patterns per station pair in Table 7.5. Note that although
Vitoria and Freiburg produce on average similar number of labels, the number of
transfer patterns for Vitoria is significantly lower (ten times less) than the ones
for Freiburg. One reason is that the Vitoria network has few lines but with high
frequencies. One line with high frequencies can produce many labels which at the
end compress into one transfer pattern. Freiburg has more than ten times more
number of lines, so it is more likely to have different combinations, hence more
transfer patterns.
Additionally, we register the number of labels and transfer patterns after the filter

process. This consists of the filter by types and by discretizing of the car durations.
Details of this post-process are found in Section 6.7. Results show that the filtering
process reduced the number of transfer patterns by a factor of 5 for Vitoria, and
a factor of 11 for Freiburg. Reducing the number of transfer patterns is especially
important to obtain fast queries, as it reduces the size of the query graph. Table 7.6
shows the difference in number of nodes and arcs of query graphs built from filtered
and unfiltered transfer patterns. It can be seen that a reduction of arcs of 92 % for
Vitoria and 81 % for Freiburg can be obtained.

40

Vitoria Freiburg
Samples 269 87
Labels before filter 430 421.16
Labels after filter 103.93 31.92
TP before filter 14.90 144.93
TP after filter 2.86 12.82

Table 7.5: Average number of labels generated by a profile query in a station node.
TP denotes the average number of transfer patterns per station pair.
Values are reported before and after the filtering process.

Vitoria Freiburg
QG Nodes w/o filter 44.94 89.45
QG Nodes w/ filter 5.87 29.67
QG Arcs w/o filter 123.21 338.12
QG Arcs w/ filter 9.36 63.13

Table 7.6: Average number of nodes and arcs of query graphs with one source and
one target station from one hundred queries of Vitoria and Freiburg.

7.4 Quality Evaluation
7.4.1 Transfer Patterns vs Dijkstra
We evaluate the quality of the results produced by our transfer patterns implemen-
tation by calculating precision and recall. We compute one thousand queries with
our implementation on transfer patterns and the same queries with the normal Dijk-
stra on the multi-modal graph. Afterwards, precision and recall are computed with
resulting paths from transfer patterns and from Dijkstra. Precision is the fraction of
retrieved paths that are relevant, while recall is the fraction of relevant paths that
are retrieved. For this evaluation relevant paths are the ones produced by Dijkstra.
Results show that the quality of the resulting paths is preserved due to the high
values for both precision and recall (see Table 7.7). Fig.7.2 and Fig.7.3 illustrate
the distribution of the results.

7.4.2 Transfer Patterns with TNT vs Dijkstra
We perform a second evaluation of our transfer patterns implementation combined
with Types and Thresholds and compare results with Dijkstra. As can be seen in

41

Precision Recall
Vitoria 98.3 % 96.5 %
Freiburg 99.1 % 94.0 %

Table 7.7: Average values of precision and recall on the evaluation of our implemen-
tation on Transfer Patterns against Dijkstra including the three modes
walk, car and transit.

Figure 7.2: Precision and recall of unfiltered Transfer Patterns versus Dijkstra for
Vitoria. Both values show almost 100 %, so that quality can be consid-
ered as preserved.

42

Figure 7.3: Precision and recall of unfiltered Transfer Patterns versus Dijkstra for
Freiburg. Both values show almost 100 %, so that quality can be con-
sidered as preserved.

Table 7.8 precision is preserved for both datasets with values near 100 %, which is
expected since the comparison between transfer patterns without filter and Dijkstra
also show comparable values. However, recall values are lower for both Vitoria
(34.7 %) and Freiburg (40.3 %), see Fig. 7.4 and Fig. 7.5. This decrease is due
to the high number of paths classified as unreasonable and thus filtered out either
by the walking or car threshold. The walking threshold is constantly set to 10
minutes, which means that higher walking durations are filtered out. As a result, in
Fig. 7.6 the value in the upper left corner which represent the pure walking path is
eliminated.

Precision Recall
Vitoria 93.4 % 34.7 %
Freiburg 98.9 % 40.3 %

Table 7.8: Average values of precision and recall on the evaluation of Transfer Pat-
terns with TNT compared with Dijkstra. The evaluation includes the
three modes walk, car and transit.

The car threshold depends on the pure car duration (minimum pure car duration
= 20 min) and its 25% limit (see Section 6.7.1). Fig. 7.6 shows an examplary query
from Freiburg. There, the pure car duration is 37 minutes which means that car
usage is allowed but with a car threshold (maximum limit) of 10 minutes. However,
the majority of the displayed paths with car usage are located at high car dura-

43

Figure 7.4: Precision and recall of Transfer Patterns with TNT versus Dijkstra for
Vitoria. Precision is preserved with values near 100 %, whereas recall
decreases due to the filtered paths.

Figure 7.5: Precision and recall of Transfer Patterns with TNT versus Dijkstra for
Freiburg. Precision is preserved with values near 100 %, whereas recall
decreases due to the filtered paths.

44

Figure 7.6: Examplary query with various different paths. The car threshold de-
termined by the TNT filter allows only few paths with car usage. The
majority of the paths are close to the pure car duration path and exceed
the 10 minutes car threshold and hence are filtered out.

tions. This makes sense since the car is more flexible and faster than other means
of transportation. All these options are eliminated except for the pure car dura-
tion path. This leads obviously to a low recall value. Increasing the car threshold
(dotted line) to higher values less paths with car usage are filtered out and hence
higher recall values are reached. Fig. 7.7 illustrates that for car thresholds which
are close to the pure car duration very high recall values of up to 96.7 % for this
query are achieved. There, only the aforementioned pure walking path is filtered out.

For paths with pure car duration of more than 20 minutes the recall value can
be increased by changing the car threshold. However, for paths with lower pure
car duration car usage is zero when applying the TNT filter. This might lead to
even lower recall values. Fig. 7.8 shows both relative and cumulative frequencies
of the pure car duration of one thousand queries of Freiburg. The median value is
17.6 minutes and furthermore 59.3 % of the queries possess less than 20 minutes of
pure car duration. This means that for 59.3 % of the queries car usage is not allowed
and hence leads to a great decrease of the recall number. This fact depends on the
network size and structure. Bigger cities with larger distances exhibit a higher me-
dian of pure car duration. This can be seen in Fig. 7.9 with the Austin network,
which has a median of 34.8 minutes. There, 20.3 % of the queries show lower pure
car duration than the 20 minutes limit of the TNT filter, which is much less than

45

Figure 7.7: Recall values depending on the car threshold of the examplary query in
Fig. 7.6. For car thresholds which are close to the pure car duration
very high recall values are achieved.

for the small network of Freiburg.

The settings of the TNT filter decreases the recall values in two different ways.
First, all queries with less than the 20 minutes of pure car duration are filtered out.
Second, even if the pure car duration is higher and car usage is allowed a lot of
path options are prohibited due to the maximum possible car duration (maximum
between 25 % of pure car duration and 10 minutes). Especially for small networks
these thresholds eliminate the majority of paths with car usage. This raises the
question of whether these TNT settings are adequate for small cities or if they have
to be adjusted to get reasonable and more paths with car usage.

7.5 Query Times
We compute location-to-location queries, choosing random locations from the walk
graph and departure times in a time window of twelve hours starting at 8 am.
Stations within 400 m around source and target were chosen as entry stations. If
there is no station in this area, then the nearest station is taken as entry station.
Table 7.9 presents average query graph size, build and evaluation time. Results
show average construction and evaluation times of 10 and 14 milliseconds (ms), for
Vitoria and Freiburg, respectively. Most of the total query time is consumed by the
construction of the path, which includes backtracking resulting labels on the target

46

Figure 7.8: Relative and cumulative frequencies of the pure car duration of one thou-
sand queries in Freiburg. The median value is 17.6 minutes which is lower
than the 20 minutes limit of the TNT filter.

Figure 7.9: Relative and cumulative frequencies of the pure car duration of one thou-
sand queries in Austin. The median value is 34.8 minutes which is clearly
higher than the 20 minutes limit of the TNT filter.

47

Figure 7.10: Screenshot of a route in Freiburg using transit and walking.

node and retrieving data for the client. To visualize the routes we use the java client1

from [33]. Fig. 7.10 and Fig. 7.11 show to screenshots of routes in Freiburg, one
only with transit and walking and the other including car as alternative. The rest
of the build and query times are direct connection queries and look up durations.
Details of construction and evaluation are provided in Section 6.5.
In previous work [6], the possibility to change the thresholds was possible and to

try the query again, which we are not able to do since patterns are already precom-
puted with fix thresholds. However, our query times are on the order of milliseconds
which implies lower computational costs for the server and less computations, be-
cause search space (query graph) is significantly lower than normal Dijkstra.

Vitoria Freiburg
Entry Stations 5.21 2.41
Nodes QG 49.03 114.46
Arcs QG 175.17 484.55
Build QG time (ms) 0.16 0.40
Evaluation QG time (ms) 2.53 4.34
Build paths time (ms) 8.17 10.09
Total query time (ms) 10.86 14.83

Table 7.9: Average query graph size, build and evaluation time. Average number of
entry stations for source and target. QG denotes query graph.

1http://panarea.informatik.uni-freiburg.de/routeplanner

48

Figure 7.11: Screenshot of an alternative route in Freiburg with transit, walking and
car.

49

Chapter 8

Conclusions and Future Work

In this work we focus on multi-modal and multi-criteria route planning with transfer
patterns. A precomputation of the transfer patterns is required and at query time
precomputed data is used to provide optimal routes to the user.
For the precomputation we build first a multi-modal graph comprising three

graphs. Each of these graphs represents a mode of transportation. These modes
are walk, car and public transportation (transit). For the latter, a time-dependent
approach is followed. To have a more compact graph, road graphs (car, walk) are
contracted using Contraction Hierarchies leaving uncontracted nodes that are close
to a station. Uncontracted nodes are then combined with the transit graph.
The second step of the precomputation is to use the multi-modal graph to compute

multi-label profile queries for each station with a Pareto-cost model. This model
generates a huge amount of variations which we filtered in a post-processing step
with Types and Thresholds (TNT). However, as the filter process is done after the
precomputation, the computation of all these unreasonable paths have to be done
anyway. For this reason, we consider our approach for large networks not feasible.
This is the main drawback of our approach and one of the issues to examine in
future work. The precomputation time could be reduced by limiting the walk and
car usage. As we assume that a reasonable route should have a limited amount of
walking/car usage, it makes sense to limit these in the graph and avoid unnecessary
propagation of results on road nodes. Another way would be applying an order
in the Pareto sets to reduce Pareto comparisons. Furthermore, implementing the
important stations heuristic of the original publication on transfer patterns would
reduce the precomputation time [7].

After the precomputation, unreasonable paths are filtered out in a post-process.
This process filters paths by types and then discretizes car durations to reduce the
number of paths with small differences in the car duration component. After the
filter process transfer patterns are extracted and stored in directed graphs. The
results indicate that using this filtering process reduces significantly the number of
transfer patterns per station pair. At query time this reduction is reflected as small
query graphs and thus fast query responses.

51

We provide an evaluation of our implementation calculating precision and recall
compared to Dijkstra. This shows that quality is preserved for both precision and
recall. In a second evaluation we compare Transfer Patterns with TNT filter versus
Dijkstra. Here, precision is also preserved, whereas recall is significantly lower due
to the selected thresholds of the filter. In future works the influence of the network
size and structure on the thresholds have to be analyzed and pointed out in detail.
Walk and car limits have to be adapted to each city. In our case, the used settings
lead to low car usage in Freiburg.
The presented approach has fast query responses and can be used to compute

location-to-location queries to serve requests from the route planner client in [33]
for the Freiburg network 1.

1http://panarea.informatik.uni-freiburg.de/routeplanner/

52

Bibliography
[1] Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-

gorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25,
2005. SIAM, 2005.

[2] General transit feed specification (gtfs). https://developers.google.com/
transit/gtfs/, October 2012.

[3] Open street map (osm). http://www.openstreetmap.org, October 2012.

[4] Leonid Antsfeld and Toby Walsh. Finding multi-criteria optimal paths in multi-
modal public transportation networks using the transit algorithm. In Proceed-
ings of the 19th ITS World Congress 2012, 2012.

[5] Hannah Bast. Car or public transport - two worlds. In Susanne Albers, Helmut
Alt, and Stefan Näher, editors, Efficient Algorithms, volume 5760 of Lecture
Notes in Computer Science, pages 355–367. Springer, 2009.

[6] Hannah Bast, Mirko Brodesser, and Sabine Storandt. Result Diversity for
Multi-Modal Route Planning. In Daniele Frigioni and Sebastian Stiller, edi-
tors, 13th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems, volume 33 of OpenAccess Series in Informatics
(OASIcs), pages 123–136, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[7] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Har-
relson, Veselin Raychev, and Fabien Viger. Fast routing in very large public
transportation networks using transfer patterns. In ESA (1), pages 290–301,
2010.

[8] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik
Schultes. In transit to constant time shortest-path queries in road networks. In
ALENEX, 2007.

[9] Manuel Braun. Multi-modal route planning with transfer patterns. Master’s
thesis, University of Freiburg, December 2012.

[10] Mirko Brodesser. Multi-modal route planning. Master’s thesis, University of
Freiburg, April 2013.

53

https://developers.google.com/transit/gtfs/
https://developers.google.com/transit/gtfs/
http://www.openstreetmap.org

[11] P. Fleming D. Corne, K. Deb and J. Knowles. The good of the many outhweighs
the good of the one: evolutionary multiobjective optimization. In coNNectionS
1 (1), pages 9–13. IEEE Neur. Net. Soc, 2003.

[12] George B. Dantzig. Linear programming and extensions. princeton university
press. 1962.

[13] Daniel Delling, Julian Dibbelt, Thomas Pajor, DorotheaWagner, and Renato F.
Werneck. Computing and evaluating multimodal journeys. Technical report,
Karlsruhe Institute of Technology, 2012.

[14] Daniel Delling, Julian Dibbelt, Thomas Pajor, DorotheaWagner, and Renato F.
Werneck. Computing multimodal journeys in practice. In SEA, pages 260–271,
2013.

[15] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating multi-modal
route planning by access-nodes. In ESA, LNCS, pages 587–598, 2009.

[16] Daniel Delling, Thomas Pajor, and Renato Fonseca F. Werneck. Round-based
public transit routing. In ALENEX, pages 130–140, 2012.

[17] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-constrained mul-
timodal route plannning. In Proceedings of the 14th Meeting on Algorithm
Engineering and Experiments, 2012.

[18] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[19] Müller-Hanneman M. Schnee M. Disser, Y. Multi-criteria shortest paths in
time-dependent train networks. In WEA, volume 5038, pages 347–361, 2008.

[20] Robert Geisberger. Advanced Route Plannning in Transportation Networks.
PhD thesis, Karlsruhe Institute of Technologie, 2011.

[21] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, pages 319–333, 2008.

[22] P. Hansen. Bricriteria path problems. In Fandel, G., Gal, T. (eds.) Multiple
Criteria Decision Making - Theory and Application, pages 109–127, 1979.

[23] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Systems Science
and Cybernetics, 4(2):100–107, 1968.

54

[24] H. Ishikawa. Global optimization using embedded graphs. PhD thesis, New York
University, 2000.

[25] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas
Willhalm. Partitioning graphs to speed up dijkstra’s algorithm. In WEA, pages
189–202, 2005.

[26] Mathias Müller-Hanneman and Mathias Schnee. Finding all attractive train
connections by multi-criteria pareto search. In ATMOS, pages 246–262, 2004.

[27] Mathias Müller-Hanneman and Mathias Schnee. Finding all attractive train
connections by multi-criteria pareto search. In ATMOS, pages 246–262, 2004.

[28] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos D.
Zaroliagis. Timetable information: Models and algorithms. In Frank Geraets,
Leo G. Kroon, Anita Schöbel, Dorothea Wagner, and Christos D. Zaroliagis,
editors, ATMOS, volume 4359 of Lecture Notes in Computer Science, pages
67–90. Springer, 2004.

[29] Anna Sciomachen Paola Modesti. A utility measure for finding multiobjec-
tive shortest pahts in urban multimodal transportation networks. In European
Journal of Operational Research, pages 495–508, 1998.

[30] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis.
Efficient models for timetable information in public transportation systems.
ACM Journal of Experimental Algorithmics, 12, 2007.

[31] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest
path queries. In ESA, pages 568–579, 2005.

[32] Jonas Sternisko. On compact representation and robustness of transfer patterns
in public transportation routing. Master’s thesis, University of Freiburg, March
2013.

[33] Niklas Meinzer Patrick Brosi Susanne Eichel, Adrian Batzill. Multimodal route
planner. http://panarea.informatik.uni-freiburg.de/routeplanner/,
2012.

[34] Haicong Yu and Feng Lu. Advanced multi-modal routing approach for pedes-
trians. In Consumer Electronics, Communications and Networks (CECNet),
2012 2nd International Conference on, pages 2349 –2352, april 2012.

55

http://panarea.informatik.uni-freiburg.de/routeplanner/

	Introduction
	Related Work
	Route Planning in Road Networks
	OSM Data
	Modelling Road Networks as Graphs
	Algorithms
	Dijkstra and Extensions
	Contraction Hierarchies

	Route Planning in Public Transportation Networks
	General Transit Feed Specification (GTFS)
	Modelling Public Transportation Networks as Graphs
	Time-Expanded Model
	Time-Dependent Model

	Algorithms
	Multi-label Dijkstra
	Transfer Patterns

	Combining Road and Public Transportation Networks
	Graph Model
	Transit Graph
	Walk and Car Graphs

	Contracting Road Graphs
	Joining Graphs into a Multi-Modal Graph

	Implementing Multi-modal Transfer Patterns
	Transfer Patterns
	Cost Model
	Multi-label Profile Queries
	Storing Transfer Patterns
	Query Graph
	Location-to-Location Queries
	Entry Stations
	Evaluating the Query Graph

	Types and Thresholds (TNT)
	Filtering by Types
	Discretization
	Observations

	Evaluation
	Setup
	Pre-processing Time
	Number of Transfers Patterns
	Quality Evaluation
	Transfer Patterns vs Dijkstra
	Transfer Patterns with TNT vs Dijkstra

	Query Times

	Conclusions and Future Work

