Automatic Generation of Frequency Maps for
Public Transit Networks

Supervisors
Prof. Dr. Hannah Bast
Prof. Dr. Georg Lausen
Patrick Brosi

Motivation

_ 033127 55
Sissach |55|25|32 02
24
31 15
Oa 02[30]26 54 44 47
56| 26/ 33f 03 s
11 59(27|22 — 0 -
43 58| 29| 36| Gelter- . gj 34
(I [l L 17
Ifingen10 58[26[21 kinden -
43 59| 29|37 \\
503 @ ®0 ;
02 48[17 12300532 22 22
| T
53 10] 40|47 28| 55|25 36 | |3553
50] 05
10 24| :
3557 59 I
0218 00 20 30 ' 32
40 38 30 29 [27
2605 2 18 : 19
00) 4 5302~ 4013 | [3951
5902 57 35 46 46 . [0826
57 30 2442_3 13 57 iR
— | . : R 31
’ . — T 01 =40
54[2403]40| 10[27]52|22 8
06|36/55 16 |49|30]06|36 34] I19I | Aarau

Section of the manually drawn Official Swiss Railway
frequency map [1]

Goal

* Automatic generation of frequency maps that (O)

can be used as blueprints for the manual
drawing of frequency maps.

Outline

Frequency Maps
GTFS data

Drawing of Frequency Maps
1. Extraction of the transit graph from GTFS data
2. Implementation of the Frequency Finding Algorithm
3. Extraction of the frequency coverages from interesting nodes
4. Drawing of the frequency graph in convenient manner

Evaluation
Summary of the contribution
Future Work

Frequency Maps

* Frequency Maps give information about the frequency coverage of transport medium in a
public transit network
12 37

22 47 r _
Winterthur
37 47
27 32 57 L
22 32 42
24 25
34 35
Zurich
15 25 35 44 45
\
34 44 54
- ™
Zug
. _J

Sample frequency graph

* Ex: Every hour 15t minute a train is leaving from Zug and it arrives to Zlrich at 25" minute

Every hour 24t minute a train is leaving from Zirich it arrives to Zug at 34t minute
5

GTFS Data

A General Transit Feed Specification is a collection of series of comma separated

Filename Required Defines

text files.

agency.txt
stops.ixt
routes.txt
trips.txt
stop_times.txt

calendar.txt

calendar_dates.txt

fare_attributes.txt
fare_rules.txt
shapes.txt
frequencies.txt
transfers.txt

feed_info.txt

Required
Required
Required
Required
Required

Required

Optional

Optional
Optional
Optional
Optional
Optional

Optional

One or more transit agencies that provide the data in this feed.

Individual locations where vehicles pick up or drop off passengers.

Transit routes. A route is a group of trips that are displayed to riders as a single service.
Trips for each route. A trip is a sequence of two or more stops that occurs at specific time.
Times that a vehicle arrives at and departs from individual stops for each trip.

Dates for service IDs using a weekly schedule. Specify when service starts and ends, as well as
days of the week where service is available.

Exceptions for the service IDs defined in the calendar.txt file. If calendar.txt includes ALL dates of
service, this file may be specified instead of calendar.txt.

Fare information for a transit organization's routes.

Rules for applying fare information for a transit organization's routes.

Rules for drawing lines on a map to represent a transit organization's routes.
Headway (time between trips) for routes with variable frequency of service.
Rules for making connections at transfer points between routes.

Additional information about the feed itself, including publisher, version, and expiration
information.

Google GTFS reference page [2] ©

1. Extraction of the transit graph from the GTFS Data

<<Java Class>>

(& Node
(default package)

trip_id,arrival_time,departure_time,stop_id,stop_sequence,stop_headsign, 4 id: String
pickup_type,drop_off_type,shape_dist_traveled,attributes_ch

& name: String
1,11:42:00,11:42:00,8050807,0,,0,0,,

4 outConnections: ArrayList<Edge>

1,11:46:00,11:46:00,8050806,1,,0,0, ,
1,11:52:00,11:52:00,8050805,2,,0,0,, a inConnections: ArrayList<Edge>
1,11:56:00,11:56:00,8050804,3,,0,0,, & outConnectionStationlds: ArrayList<String>
1,11:59:00,11:59:00,8050803,4,,0,0, , 4 tripIDs: Set<String>
1,12:05:00,12:05:00,8050802,5,,90,0,, & outConnectionJSONString: String
1,12:12:00,12:12:00,8091916,6,,0,0, ,
@ Node(String)
stop_times.txt [3] Node class
<<Java Class>>
(9 Edge
(default package)

& start_station_|ID: String
4 end_station_ID: String
& start_time: Time

& end_Time: Time

4 trip_ID: String

@ Edge(String,String, Time, Time, String)

Edge class

1. Extraction of the transit graph from the GTFS Data cont.

* Transit graph

Node: 8000339
In connections

Start
Start
Start
Start
Start
Start

Station
Station
Station
Station
Station
Station

8002238
8002238
8002238
8000988
8000988
8002238

arrival Time
arrival Time
arrival Time
arrival Time
arrival Time
arrival Time

00:
00:
00:
04:
04:
05:

04:00 Trip
04:00 Trip
04:00 Trip
52:00 Trip
53:00 Trip

ID:
ID:
ID:
ID:
ID:
ID:

8582:1, Service ID: 8582:
8582:2, Service ID: 8582:
8582:3, Service ID: 8582:
8583, Service ID: 8583:1:
8584, Service ID: 8584:1:

nwwuwnwN =

W N =
wuwn

04:00| Trip 8585, Service ID: 8585:1:

Out connections
End Station 8000988 depart
End Station 8000988 depart
End Station 8000988 depart
End Station 8002238 depart
End Station 8002238 depart
End Station 8000988 depart
End Station 8002238 depart

Time 00:
Time 00:
Time 00:
Time 04:
Time 04:
Time 05:
Time 05:

04:
04:
04:
52:
53:
04:
53:

00 Trip
00 Trip
00 Trip
00 Trip
00 Trip
00 Trip
00 Trip

ID:
ID:
ID:
ID:
ID:
ID:
ID:

8582:1, Service ID: 8582:1:1:
8582:2, Service ID: 8582:2:2:
8582:3, Service ID: 8582:3:3:
8583, Service ID: 8583:1:
8584, Service ID: 8584:1:
8585, Service ID: 8585:1:
8586:1, Service ID: 8586:1:1:

U Wunn WwWwNe=
W N =
mw wvwwn

Transit graph with out-connections and in-connections

2. Implementation of the Frequency Finding Algorithm

7.00, 7.27, 8.00, 9.00, 9.27, 10.00, 11.00, 11.27,, 23.00,
A Node

B Node]

1

7.00 - 23.00, Every one hour
A Node

7.27 - 23.27 , Every two hour

B Node]

Two nodes with set of departure times 9

2. Implementation of the Frequency Finding Algorithm cont.

* Main Goal:
Finding of the arithmetic progressions given a set of departure times

* Arithmetic progressions can be represented as frequency labels

* The algorithm is adapted from the “Frequency-Based Search for Public Transit”
research paper by Prof Dr Hannah Bast and Sabine Storandt

10

2. Implementation of the Frequency Finding Algorithm cont.

* Frequency finding algorithm

* Starts with the smallest departure t1 and search for the longest arithmetic
progression (AP) starting with t1

* Add the AP to a collection and mark all elements covered by the AP

* Then repeat the approach with the next unmarked element t2 as start time

 Running time of the algorithm is O(N3)

11

2. Implementation of the Frequency Finding Algorithm cont.

* Improved version of the frequency finding algorithm
* Introduce minimum AP length (K) which reduce iteratively

* Modifications
* Human friendly frequency finding
* Introduction of boundary filtering

12

3. Extraction of the frequency coverage between interesting
nodes

* Finding the frequency coverage between the two consecutive nodes is trivial

r N 9.00 am 7 N
———10.00 am
Node A ——11.00 am Node B
—12.00 am
\ < 1.00 pm \ /

The diagram with two consecutive nodes named A and B and out connections from Node A to Node B

13

3. Extraction of the frequency coverage between interesting
nodes cont.

* How to find the frequency coverage of two distantly located nodes A and G?

=

11.20am 1220 pm

9.00 am

10.00 am 9.20 am 9.40 am
A Node 11.00 am B Node D Node F Node
12.00 pm 10.20 am 10.40 am
1.00 pm \ \ \ \

930am 9.00am 11.00am 10.00 am

A\ AN

=) [=

The diagram with multiple nodes and out connections

14

3. Extraction of the frequency coverage between interesting
nodes cont.

* Approach one:
* Navigate through all the out connections of node A and go to the next nodes
* Then navigate through all the out connections of that node again

e Until reach the node G

* Running time depends on the # of out connections and # of intermediate nodes

15

3. Extraction of the frequency coverage between interesting
nodes cont.

e Approach two:
* Retrieves the tripIDs of the trips which covers each of these node

* Get the intersection of the tripIDs
* Checks for the direction of the trip and collects the tripIDs into a collection

* Retrieves the departure times of each trip from Node A, the travel duration
and store them in collections

» Sort the staring times collection in ascending order, and feed to frequency
finding algorithm

16

4. Drawing of the frequency lines and nodes which resembles a
schematic map

» Experimented with four approaches

* Web application using Leaflet
* QGIS using GeoJSON
* Octi Tool

* Graphviz

17

01) Web Application using Leaflet

* Uses the client-server architecture
* Server is implemented in Java

* Client is a web page embedded with Leaflet map view

« Communication takes place using get requests and JSON objects

* Demo

18

02) QGIS Using GeoJSON

* QGIS: Quantum Geographic Information System

* GeolJson is a JSON format which is used to describe geographical features
* Nodes: Points .
* Frequency Lines: Line strings "type": "FeatureCollection®,

"features": [{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [47.586826, 7.636695]

"properties": {
"name": "Weil am Rhein",
"id": "8014428"

}

]

Ex for GeoJson node explanation 19

02) QGIS Using GeoJSON cont.

The Switzerland railway map rendered by QGIS with web mercator coordinates .

03) Octi Tool

Octi is a tool developed under the chair for Algorithms and Data Structures

Can renders maps, using GeoJSON data

Snaps station nodes to nodes on an octi-linear grid graph

Every node is connected by 45, 135, 225 and 315 degrees edges to its direct
neighbors

21

04) Graphviz

* An open source graph drawing tool

» Can draw graphs specifies in dot language scripts

Dot Language
* Dot is a graph description language
* Dot graphs are files with gv or dot extension

* Programs that can process Dot files
* dot
* neato
* fdp etc.

22

04) Graphviz cont.

Neato layout engine

* "spring model" layouts and attempts to minimize a global energy function -
default behavior

e Can position the nodes

* Orthogonal edge style is supported

23

04) Graphviz cont.

digraph g {

splines=ortho;

Nodel [pos = "10,15!'" ,fontsize=35, shape
Nodel"];

Node?2 [pos = "10,10!'",fontsize=35, shape
Node2"];

Node3 [pos = "4,5!'" fontsize=35, shape = box,width=3, height=3, label="
Node3"];

Node4 [pos = "16,5!",fontsize=35, shape = box,width=3, height=3 ,label="
Node4"];

Nodel -> Node2 -> Node3;

Node2 -> Node4;

box,width=3, height=3 ,label="

box,width=3, height=3 ,label="

Graph described in Dot language

Nodel

Node2

Node3 Node4

Graph rendered by neato layout engine

24

04) Graphviz cont.

Initial frequency graph rendered by Graphviz

25

04) Graphviz cont.

bspspapibopsbapipopaha

Zug

D5 b4 p5S BO 905 BO

4
(N
P

INHA
VG

Luzern

Edge overlapping problem .

04) Graphviz cont.

* Prevent overlapping of parallel edges
01) Using dummy nodes

[llL
{

Frequency graph with dummy nodes 27

04) Graphviz cont.

02) Modify the weight increasing mechanism of edges

Y

T T T 7T

Node 01 —0 O O O O—
(o] (@] Q (o] (o] (@)
—O l O O 9, O O O—
o) (@] ¢ /) T T (o}
dg
— O O — O O
o) O (o) (0] (0] Cell r—
snode

—O0—1—0—}—o0 ® ® ® ®
(o] (o} (o] (o} (o] (o] + (@)
—0 O O O O O O—
(o] (o] (o] (o} (o] (o]
O O O O O Node 02

| O

~7 ~7 ~7

~
~7

28

Maze object create by Graphviz

04) Graphviz cont.

Edge drawing mechanism
1) Collects all the out edges of nodes in the graph into a collection

2) For each out edge, create two snodes (sn and dn) which correspond to starting cell
and destination cell

3) Then finds the shortest path between sn and dn using the Dijkstra algorithm

4) Shortest path is stored by storing the reference to the next snode via n_dad
attribute and storing sedges in sedge attribute of snode

n-dad n-dad n-dad

Starting Snode Snode Destination Node

5) Once all the lines are routed as shortest paths, then the graph drawing starts and
completes the drawing of the graph

29

04) Graphviz cont.

Modification of UpdateWt() function

static void updateWt (cell* cp, sedge* ep, int sz)

{

ep->cnt++;
int x = 10;
double exponentValue = exp(((double)1/sz) * 200) ;

double alwdPaths = (double)sz / x;
double costForOnePath = ((double)BIG / alwdPaths) * exponentValue;
costForOnePath = (costForOnePath > BIG) ? BIG :costForOnePath;

ep->weight += costFor(OnePath;

// This was the default version of updateWt function
if (ep->cnt > sz) {

ep->cnt = 0;

ep->weight += BIG;
}

30

04) G ra p h V I Z C O nt . Different ways of connecting Angle between
orthogonal edges with node orthogonal edge and the
node
Modification for creating the
XX XX
bidirectional edges 113446
Node Node
XX XX
Node < Node R -0.43633
45 | 53
25 482 53 25|32
Node Node
Zirich Zurich
-2.00712
XX XX
X J x| Node «—x | MNode 2.70526
Rendering of two values in edge label 31

04) Graphviz cont.

Frequency graph with bidirectional edges

32

04) Graphviz cont.

03 57
41 44 13
1113
3 34
52 09
1 150
od Winterthur (—
Lo 26—
25 39 607
19 43
na 37
54 35 29 54
0 23 339 14 5444
83 25 4 a7 B7
14 4! 7 0s 85 11 3
52 #o 17
Bl 19
06 b4 b330
44 149
36 24
10 49
08 bl 07
34 [0 00
00 04 (e 4o
L6 44
55
21
Zurich HB
40
83
03 54
B7 55
30 3q
P7 26
55 09
2 17
s 12
02 54 vE va ‘

28 25 59 39 51 51 56 09 24 2 2§ 20 1
33 33 21 3 ‘0003 3 07 4

Bidirectional edges between Zlrich HB and Winterthur
33

Evaluation

Time required for frequency finding algorithm and human-friendly frequency
finding algorithm

* Configurations: Intel(R) Xeon(R) CPU E5640 @ 2.67GHz, 65 GB

Round Time taken in Round Time taken in
milliseconds milliseconds
1 11096 1 9516
2 11095 2 9636
3 11124 3 9405
4 11051 4 9243
5 11110 5 9281
Time taken for frequency finding Time taken for human-friendly

algorithm frequency finding algorithm 34

Evaluation cont.

Evaluation of the frequency graph rendered on Swiss Railway GTFS data and
Deutsche Bahn GTFS data

=]
=

1

e 1

Il
e

=]
=

35
Frequency graph rendered on Deutsche Bahn GTFS data

Evaluation cont.

Evaluation on the trips covered by the frequency coverages out of the total trips

Start and stop station Total number of | Total number of | Percentage
departure times departure times

covered by the

frequency covers
Zurich HBF - Olten 68 63 92.64%
Zurich HBF - Basel SBB 7 77 100%
Olten - Bern 84 76 90.47%
Geneve - Luzern 15 14 93.33%
Sargans - Chur 88 83 94.31%

For the selected nodes, the total number of departure times covered by frequency coverages
in the Swiss GTFS dataset 36

Evaluation cont.

Start and stop station Total number of | Total number of | Percentage
departure times departure times
covered by the
frequency covers
Freiburg(Breisgau) Hbf - | 12 6 50%
Frankfurt(Main)Hbf
Karlsruhe Hbf - Stuttgart Hbf | 20 8 40%
Frankfurt(Main)Hbf -19 6 66.66%
Munchen Hbf
Stuttgart Hbf - Nuremberg | 7 7 100%
Hbf
Dusseldorf HBF - Stuttgart | 11 0 0%
HBF

For the selected nodes, the total numbers of departure times covered by the frequency coverages
in the Deutsche Bahn GTFS data 37

Evaluation cont.

Evaluation between the automatically generated frequency graph and the manually
created Switzerland Timetable-2017 graph

n
L3=3
S

iz id

HFE]

HILERT]
[

;53 £5
it

-
H

i

et

38

Switzerland Timetable-2017 Frequency Graph [1]

Evaluation cont.

Advantages of manually created frequency map

* Fewer edge crossings

* |In-connections and out-connections of the nodes are routed in consistent manner

* Grouping of frequency lines
e Ex: 15, 20, minute frequency coverages

39

Contribution

Developed a tool to extract the frequency graph as GeoJSON and Dot language from
arbitrary GTFS data

Experimented with 4 different approaches to render the frequency graph in a nice way

Reverse-engineered the method used by the ortho layout of NEATO engine and extended
it to better handle multigraphs (with many edges between two nodes)

Implemented multiline edge-label rendering to better support frequency maps

Evaluated our entire pipeline on the complete rail network of Switzerland and the long
distance network of Germany

40

Future work

* Makes the frequency finding algorithm tolerance for deviations in departures.
* Ex Karlsruhe HBF the departure times from Freiburg HBF as follows

* 8:57,9:56, 10:57, 11:56, 12:57, 13:57 ..

 Connects in connections of a node to its out connection

02 20 7 N\ 00 22
52 30 B 50 32
42 40 40 42
. J
10| 20] 30 30 |40
12| 02] 52 52 |42

A

50

22

_C

In and out connections are connected

41

Thank You for your attention!

42

Citations

1. Switzerland Timetable-2017 (Frequency Map).
http://www.bahnonline.ch/bo/18755/netzgrafik-fahrplan-schweiz-2017.htm.

2. General Transit Feed Specification
https://developers.google.com/transit/gtfs/reference

3. geOps, “Public Transporation Feed for Switzerland.”
http://gtfs.geops.ch.

43

Q&A Backup slides

e Data Model

route_id,service_id,trip_id,trip_headsign,trip_short_name,direction_id,block_id,shape_id,bikes_allowed,attributes_ch
03002.06 :3002,1:1:s,1,Neckarbischofsheim Nord,3002,,,,0,TS

03003.06 :3003,2:1:s,2,Untergimpern, 3003,,,,0,TS

03005.06 :3005,3:1:s,3,Hiuffenhardt,3005,,,,0,TS

03006.06 :3006,4:1:s,4,Neckarbischofsheim Nord,3006,,,,0,TS
03007.06 :3007,5:1:s,5,Hiffenhardt, 3007,,,,0,TS

03008.06 :3008,6:1:5,6,Neckarbischofsheim Nord,3008,,,,0,TS
03009.06 :3009,7:1:s,7,Hiffenhardt,3009,,,,0,TS

03012.06 :3012,091831,8,Neckarbischofsheim Nord,3012,,,,0,
03013.06 :3013,091831,9,Hiffenhardt, 3013, ,,,0,

03014.06 :3014,091831,10,Neckarbischofsheim Nord, 3014,,,,0,
03015.06 :3015,091831,11,Hiffenhardt, 3015, ,,,9,

03016.06 :3016,091831,12,Neckarbischofsheim Nord, 3016, ,,,0,

trips.txt

service_id,date,exception_type
10704:4:4:5,20171202,1
25358:1:5,20170626,1
25358:1:5,20170627,1
25358:1:5,20170625,1
25358:1:5,20171211,1
25358:1:5,20171210,1
25358:1:5,20170628,1
25358:1:5,20170629,1
25358:1:5,20170703,1
25358:1:5,20170702,1

calendar_dates.txt

<<Java Class>>

O Trip
(default package)

4 triplD: String

4 routelD: String

4 servicelD: String

4 headSign: String

4 nodeAndStopSequence: TreeMap<String,Integer>
4 nodeAndArrivalTimes: TreeMap<String, Time>

@ Trip(String)
Trip Class
<<Java Class>>
(3 Service
(default package)
& id: String

4 exceptionDates: ArrayList<Exception>
a range: Range

@ Service(String)

@ Service(Range)

@ addException(Exception):void
@ isActive(LocalDate):boolean

Service Class

A
Q&A Backup slides

Extraction of frequency coverage between interesting nodes cnt.

1 public ArrayList<String> searchTripsBetweenNodes(Node nodeA, Node nodeB) {
2 Set<String> intersection = new HashSet<String>(nodeA.tripIDs);

3 intersection.retainAll (nodeB.tripIDs);

4 ArrayList<String> list = new ArrayList<String>();

5

6 for (String tripID :intersection) {

7 if ((trips.get(tripID).nodeAndStopSequence.get (nodeB.id)

8 - trips.get(tripID) .nodeAndStopSequence.get(nodeA.id)) > 0) {
9 list.add(tripID);
10 ¥
11 ¥
12 return list;
13 7

Algorithm to find the triplDs which covers Node A and B .

Q&A Backup slides

Octi Tool

