
Master’s Thesis
Computer Science

Creating a RDF Knowledgebase from

OpenStreetMap Data

Axel Lehmann

Examiner: Prof. Dr. Hannah Bast
Advisers: Patrick Brosi

Albert Ludwig University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair of Algorithms and Data Structures

Mai 5th, 2021

Writing Period
05. 11. 2020 — 05. 05. 2021

Examiner
Prof. Dr. Hannah Bast

Second Examiner
Prof. Dr. Fabian Kuhn

Advisers
Patrick Brosi

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work.
I hereby also declare that my thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

We present osm2ttl, a tool for converting OpenStreetMap data into valid RDF data
for use in SPARQL engines. The output we generate retains all data provided
by the OpenStreetMap, and we add some explicit spatial relations ogc:intersects,
ogc:contains, ogc:intersects_area, and ogc:contains_area.

The spatial and non-spatial data stored in the OpenStreetMap is curated by volunteers
providing mostly accurate and recent data. The internal representation of non-spatial
data can not enforce certain data types, formats, or the use of special characters and
thus all data is treated as text. To conform with the rigid grammars of the RDF
standard, we implemented conversions into both the N-Triple and Turtle grammar.

The ogc:intersects_area and ogc:contains_area describe the spatial relation of named
areas with other named areas. ogc:intersects and ogc:contains describe the spatial
relation of all other types with named areas. To generate these relations more
efficiently, we use a directed acyclic graph storing named areas.

Through the addition of these relations, a SPARQL engine without explicit GeoSPARQL
support can answer spatial queries.

Zusammenfassung

Wir präsentieren osm2ttl, ein Werkzeug zur Umwandlung von OpenStreetMap Daten
in gültiges RDF zur Verwendung in Triplestores. Das von uns erzeugte Ergebnis
beinhaltet alle Daten, welche von der OpenStreetMap zur Verfügung gestellt wer-
den. Wir fügen außerdem einige räumliche Relationen (ogc:intersects, ogc:contains,
ogc:intersects_area sowie ogc:contains_area) hinzu.

Die Daten der OpenStreetMap werden von Freiwilligen gepflegt und aktualisiert. Wir
wandeln die Daten in gültige RDF-Triple um und nehmen dafür nötige Ersetzungen
vor.

Die Relationen ogc:intersects_area und ogc:contains_area beschreiben die Beziehun-
gen zwischen benannten Flächen. Durch ogc:intersects und ogc:contains werden die
Beziehungen anderer Typen mit diesen benannten Flächen ausgedrückt.

Durch diese Relationen kann eine SPARQL Engine ohne explizite GeoSPARQL-
Unterstützung Geo-Anfragen beantworten.

iii

Contents

1. Introduction 1
1.1. Problem . 1
1.2. Contribution . 2

2. Related Work 9
2.1. OpenStreetMap as RDF . 9

2.1.1. Sophox . 9
2.1.2. LinkedGeoData . 10

2.2. Linking Knowledge Graphs with OpenStreetMap 10
2.3. Usage of OpenStreetMap data . 10
2.4. Query languages . 11

2.4.1. Overpass API . 11
2.4.2. SPARQL and GeoSPARQL 11

2.5. OSCAR . 12

3. Background 13
3.1. OpenStreetMap . 13

3.1.1. Stored data and download sources 13
3.1.2. Non-spatial data: tags . 14
3.1.3. Spatial data: node, way, and relation 15
3.1.4. Area . 15

3.2. Resource Description Framework (RDF) 16
3.3. Well-known text (WKT) . 17
3.4. Directed Acyclic Graph (DAG) . 18

3.4.1. Undirected and directed graph 19
3.4.2. Directed Acyclic Graph . 19

3.5. R-tree . 20

4. Approach 23
4.1. Problem Definition . 23
4.2. Overview . 23
4.3. Reading OpenStreetMap (osmium) 24
4.4. Writing valid RDF . 25

4.4.1. Implementation . 25
4.4.2. Turtle Prefix . 26

4.5. OpenStreetMap as spatial objects . 28

v

4.6. Serialization of spatial objects . 28
4.7. Geospatial lookup . 29

4.7.1. Fixed grid . 29
4.7.2. R-tree . 30
4.7.3. Directed Acylic Graph . 30
4.7.4. Spatial lookup of non-named areas 31

4.8. OpenMP . 34
4.9. Runtime . 37

5. Experiments 39
5.1. Real world data . 39
5.2. Breakdown of runtime geometry . 41
5.3. Savings through Directed Acyclic Graph 41
5.4. Runtime growth with respect to input size 43
5.5. Exploring data using QLever . 46

6. Future work 49
6.1. Relations for relations . 49
6.2. Computation on multiple machines 49
6.3. Better index structure . 50
6.4. Split sparse/multipart areas . 50
6.5. Combining intersection and containment checks 50
6.6. More GeoSPARQL predicates . 50
6.7. additional predicates — OSCAR . 50

7. Conclusion 51

8. Acknowledgments 53

9. References 55

A. Appendix 59

vi

List of Figures

1. Point coordinates stored in Wikidata 2
2. Overpass result: Places of worship in Altstadt Freiburg 3
3. GeoSPARQL result: Places of worship in Altstadt Freiburg 4
4. GeoSPARQL result: Freiburg Minster 4

5. RDF overview . 19
6. Examples of Graphs with two nodes 20
7. Different representation for spatial areas 21

8. osm2ttl dataflow . 24
9. Boost.Geometry ring concept . 29
10. Flow of spatial data . 30
11. Node-Way information only . 31
12. Object Complexity . 37
13. Relations with DAG . 38

14. Envelope and area of KIT . 42
15. Minimum area/envelop ratio impact 44
16. Way segment of the Bundesautobahn 5 45
17. GeoSPARQL result: Buildings inside Stühlinger 47

vii

List of Tables

1. OpenMP Durations . 36

2. Results from real world runs . 40
3. Geometry parts runtime . 41
4. Spatial comparisons . 43
5. Minimum area/envelop ratio impact 43
6. QLever result statistics for spatial queries 46

ix

List of Algorithms

1. Create DAG . 32
2. Directed Acyclic Graph: FindSuccessors 32
3. Directed Acyclic Graph: PrepareFindSuccessorsFast 33
4. Directed Acyclic Graph: FindSuccessorsFast 33
5. Reduce DAG . 33
6. dumpWayRelations . 35

xi

List of Listings

1. Excerpt Freiburg Minster in Wikidata (Turtle) 5
2. Excerpt Freiburg Minster in OpenStreetMap (XML) 6
3. Overpass query for all places of worship in Altstadt Freiburg 6
4. SPARQL query for all places of worship in Altstadt Freiburg 7
5. SPARQL query for all places of worship in Altstadt Freiburg with

Wikidata entry and Gothic architecture 7

6. Structure of a single RDF line with highlighted space characters. . . 16
7. A way as a node list with unique predicates (TTL) 17
8. A way as a node list with blank nodes (TTL) 18

9. Basic osm2ttl arguments selecting facts 25
10. Single RDF line implementation . 26
11. TTL-Prefixes used by Sophox . 27
12. TTL-Prefixes used by LinkedGeoData 27
13. TTL-Prefixes used by osm2ttl . 27

14. Q2: All buildings inside the Stühlinger 59
15. Q3: Elements with tag railway intersecting RVF Zone A. 59
16. Q4: Restaurants in Landkreis Emmendingen. 60
17. Q5: University buildings inside of Berlin. 60
18. Q6: Highway parts of the Bundesautobahn 5 – Frankfurt — Basel. . 60
19. Q7: Everything in Freiburg. 61

xiii

1. Introduction

Knowledgebases like Wikidata store vast amounts of factual data. This data be can
made explorable through SPARQL-Engines like QLever [BB17] using the SPARQL
Query Language [SH13]. There are many different triplestores which provide Resource
Description Framework (RDF, Section 3.2) input data as knowledge graphs [Ali+21]
which have different indexing and storage capabilities.

To support geospatial data the GeoSPARQL [PH12] standard was published in 2012,
but support in triplestores is still lacking [JHS21].

In this thesis we present osm2ttl, a tool for converting OpenStreetMap data into
RDF. To ensure compatibility with triplestores, we implemented the N-Triples [SC14]
and Turtle [CP14] standards. We enrich the data with explicit geospatial relations
regarding areas.

To improve usability inside knowledge graphs, we differentiate between named areas,
and all other types of OpenStreetMap data. This distinction allows us to generate
a transitively reduced directed acylic graph of the named areas. With the directed
acylic graph we can reduce the number of comparisons, and thus the number of triples
stored in the RDF file.

All other relations are calculated with respect to the directed acylic graph, and for
each element only relations with the smallest named areas are added. The directed
acylic graph speeds up computation since bigger areas which are known to contain
the current area can be skipped. It also reduces the number of relations stored in the
RDF file.

1.1. Problem

Knowledgebases such as Wikidata provide huge amounts of factual data. For example,
the entry of the Freiburg Minster (Q250212) as shown in Listing 1 contains data about
architectural style (P149), coordinate location (P625), located in the administrative
territorial entity (P131), and many more. However, it does not contain the information
that the minster is located inside Altstadt Freiburg (Q445502). Altstadt Freiburg has a
different coordinate location (P625) but the same value for located in the administrative
territorial entity (P131) as Freiburg Minster. It is not possible to infer the spatial

1

(a) Altstadt Freiburg coordinates (b) Freiburg Minster coordinates

Figure 1.: Point coordinates of Altstadt Freiburg (a) and Freiburg Minster
(b) provided by Wikidata. © Wikidata: All structured data from the main, Property,

Lexeme, and EntitySchema namespaces is available under the Creative Commons CC0 License; text in

the other namespaces is available under the Creative Commons Attribution-ShareAlike License; additional

terms may apply.

relation of these two entities since both only share a link to their parent (P131) and
have a single point (P625) location, each as shown in Figure 1.

Given the data stored in Wikidata we can not formulate a SPARQL query which
selects all places of worship inside Altstadt Freiburg which are build in a gothic
architectural style (Q176483). To formulate this query, spatial information about the
area of Altstadt Freiburg would be required.

OpenStreetMap provides spatial information about the whole planet, but does not
contain much factual and historic data. The OpenStreetMap entry for the Freiburg
Minster as shown in Listing 2 contains information about wheelchair accessibility
and opening_hours, but no information about architectural style. The Overpass API
query as provided in Listing 3 yields all places of worship inside Altstadt Freiburg as
shown in Figure 2.

1.2. Contribution

Our tool osm2ttl provides a way to transform OpenStreetMap data into RDF. This
transformation generates valid RDF files in both N-Triples and Turtle format. The
RDF data can then be fed into a triplestore, allowing the usage of the SPARQL query
language. The Overpass query from Listing 3 can then be expressed as shown in
Listing 4, and the result can be found in Figure 3.

We explicitly link OpenStreetMap entities to Wikidata entities if the information
is provided in the OpenStreetMap input data. Through this link, the data of both
independent knowledgebases can be joined, enabling us to answer queries neither
could answer alone.

2

Figure 2.: Places of worship inside Altstadt Freiburg provided by Over-
pass. This is the result of the query from Listing 3. © Overpass API; Base map

and data from OpenStreetMap and OpenStreetMap Foundation

Jovanovik, Homburg, and Spasic [JHS21] show that GeoSPARQL support in triple-
stores is lacking. To alleviate this problem, we calculate the intersection and contain-
ment for OpenStreetMap nodes, ways, and unnamed areas inside named areas.

Combining the knowledgebases with the explicit containment relations allows us to
execute the query from Listing 5, yielding the Freiburg Minster as the singular result
as shown in Figure 4.

3

Figure 3.: Places of worship inside Altstadt Freiburg provided by QLever
using osm2ttl. This is the result of the query from Listing 4.

Figure 4.: Freiburg Minster inside Altstadt Freiburg provided by QLever.
This is the result of the query from Listing 5.

4

Listing 1: Excerpt Freiburg Minster in Wikidata (Turtle)

wd:Q250212 rdfs:label "Freiburg Minster"@en ;
skos:prefLabel "Freiburg Minster"@en ;
schema:name "Freiburg Minster"@en ;
rdfs:label "Katedralo Nia Sinjorino"@eo ;
skos:prefLabel "Katedralo Nia Sinjorino"@eo ;
schema:name "Katedralo Nia Sinjorino"@eo ;
...
wdt:P373 "Freiburg Minster" ;
wdt:P625 "Point(7.852222 47.995556)"^^geo:wktLiteral ;
wdt:P131 wd:Q2833 ;
wdt:P17 wd:Q183 ;
wdt:P646 "/m/09vk99" ;
wdtn:P646 <http://g.co/kg/m/09vk99> ;
wdt:P31 wd:Q2977 ;
wdt:P1004 "9cd57b23-0e8f-4b4d-bd2d-8013f9a7e0b6" ;
wdt:P1612 "Cathedral, Freiburg" ;
wdt:P227 "4132384-1" ;
wdtn:P227 <https://d-nb.info/gnd/4132384-1> ;
wdt:P149 wd:Q176483 ;
wdt:P214 "132561921" ;
wdtn:P214 <http://viaf.org/viaf/132561921> ;
wdt:P708 wd:Q260287 ;
wdt:P244 "n83135744" ;
wdtn:P244 <https://id.loc.gov/authorities/names/n83135744> ;
wdt:P454 "20014414" ;
wdt:P1435 wd:Q11691318 ;
wdt:P856 <http://www.freiburgermuenster.info/> ;
wdt:P571 "1200-01-01T00:00:00Z"^^xsd:dateTime ;
wdt:P910 wd:Q9528736 ;
wdt:P140 wd:Q1841 ;
wdt:P112 wd:Q690990 ;
wdt:P5383 "7843" ;
wdt:P691 "kn20070305011" ;
wdt:P417 wd:Q345 ;
wdt:P7561 wd:Q75106529 ;
wdt:P138 wd:Q859115 ;
wdt:P7859 "lccn-n83135744" ;
wdt:P825 wd:Q345 ;
wdt:P186 wd:Q121649 ;
wdt:P2048 "+116"^^xsd:decimal ;
wdt:P2971 "3221" ;
wdt:P8596 wd:Q104549317 ;
p:P373 s:q250212-EAF588A6-F346-417C-942E-3C45FEAD618C .

5

Listing 2: Excerpt Freiburg Minster in OpenStreetMap (XML)
<way id="110404213" visible="true" ...>
<nd ref="1160187359"/>
...
<nd ref="1160187359"/>
<tag k="addr:city" v="Freiburg im Breisgau"/>
...
<tag k="amenity" v="place_of_worship"/>
<tag k="building" v="cathedral"/>
<tag k="contact:website" v="https://www.freiburgermuenster.info"/>
<tag k="denomination" v="roman_catholic"/>
...
<tag k="name:en" v="Freiburg Minster"/>
...
<tag k="opening_hours" v="Mo-Sa 10:00-17:00; PH,Su 13:00-19:30"/>
<tag k="religion" v="christian"/>
<tag k="tourism" v="attraction"/>
<tag k="wheelchair" v="limited"/>
...
<tag k="wikidata" v="Q250212"/>

</way>

Listing 3: Overpass query for all places of worship in Altstadt Freiburg
// Altstadt Freiburg
relation(1960176);
// Print outline
out geom;

map_to_area;

(
way[amenity=place_of_worship](area);
node[amenity=place_of_worship](area);
relation[amenity=place_of_worship](area);

);
(._;>;);
out;

6

Listing 4: SPARQL query for all places of worship in Altstadt Freiburg
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX osm: <https://www.openstreetmap.org/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?osm_id ?hasgeometry WHERE {
osmrel:1960176

↪→ (ogc:contains_area+/ogc:contains)|ogc:contains_area+|ogc:contains
↪→ ?osm_id .

?osm_id osmt:amenity "place_of_worship" .
?osm_id geo:hasGeometry ?hasgeometry .

}

Listing 5: SPARQL query for all places of worship in Altstadt Freiburg with Wiki-
data entry and Gothic architecture

PREFIX osmrel: <https://www.openstreetmap.org/relation/>
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osm: <https://www.openstreetmap.org/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
SELECT ?osm_id ?wikidata_id ?hasgeometry WHERE {
?osm_region rdf:type osm:relation .
?osm_region osm:wikidata wd:Q445502 .
?osm_region

↪→ (ogc:contains_area+/ogc:contains)|ogc:contains_area+|ogc:contains
↪→ ?osm_id .

?osm_id geo:hasGeometry ?hasgeometry .
?osm_id osmt:amenity "place_of_worship" .
?osm_id osm:wikidata ?wikidata_id .
?wikidata_id wdt:P149 wd:Q176483 .

}

7

2. Related Work

We provide a generic tool for the conversion from OpenStreetMap data into RDF
triples. The problem with the generic conversion is defining clear boundaries for
relatedness. We focus on the OpenStreetMap and RDF aspects of the tool, but
provide some insight into the usage regarding SPARQL with the added context of
GeoSPARQL.

2.1. OpenStreetMap as RDF

In this section we introduce other projects which convert OpenStreetMap data into
RDF. We highlight some key aspects of the respective implementation, and provide
short comparisons and differences to our implementation.

2.1.1. Sophox

The currently defunct Sophox [Wik21b] project uses Python, and the Python li-
bosmium bindings, to convert the OpenStreetMap data into RDF. They dump the
spatial data for each OpenStreetMap object as well-known text (WKT) [IEC16],
and use a well designed set of TTL prefixes derived from OpenStreetMap URLs, see
Listing 11.

They do not convert possibly invalid tag-keys, but only record the occurrence of
such keys. The associated values are thus lost and not represented in the dumped
data. They have special rules for handling wikidata and wikipedia tags to provide
the option to link these datasets with the OpenStreetMap data. The RDF data is
feed into Blazegraph which implements basic circle/distance and box queries using
GeoSpatial [Beb21].

We convert all OpenStreetMap tags into triples using the NT [SC14] or Turtle [CP14]
grammar. We reuse the prefixes defined by Sophox (Listing 11), with slight modifica-
tions regarding the prefix names.

9

2.1.2. LinkedGeoData

Stadler et al. [Sta+12] describe a system for transforming the OpenStreetMap into
RDF. They interlink the data with DBpedia, GeoNames and other datasets providing
a SPARQL endpoint. They want to provide better support for spatial queries using
PostGIS in the future. Using a different set of prefixes, as shown in Listing 12, they
provide their own interpretation of the OpenStreetMap data.

We do not introduce a new namespace, and reuse the prefixes defined by Sophox,
as stated in Subsection 2.1.1, since these are based on the URLs provided by the
OpenStreetMap project. Further we try to replicate the data as provided by the
OpenStreetMap as-is without changing the semantics, or other aspects of the data.

2.2. Linking Knowledge Graphs with OpenStreetMap

Tempelmeier and Demidova [TD20] discuss problems of linking OpenStreetMap
data with equivalent entities in knowledge graphs. They show that many OSM
entities in Germany are not linked to the respective Wikidata entities. They looked
at different categories of entities, namely cities, train stations, mountains, and castles.
Within these categories, cities have the highest percentage of link coverage with
approximately 70%, mountains the smallest with approximately 5%.

We can not improve this link coverage, since we do not correlate knowledgebase
entities with the data provided by the OpenStreetMap in any other way. This linkage
can be improved outside of our work, and the resulting triples can be merged with
ours.

2.3. Usage of OpenStreetMap data

Bast, Brosi, and Näther [BBN20] use OpenStreetMap data to provide suggestions for
changes to the data. They do not evaluate spatial data as their suggestions are only
based on the name-tags in the OpenStreetMap.

We use the provided possibility to link Wikidata and Wikipedia entries directly using
the respective tags. This allows for a reverse search of all OpenStreetMap objects
linking to the same knowledgebase entity. These reverse links could be used to
provide more insight into the data and suggestions to where other changes could be
necessary.

10

2.4. Query languages

In this section we introduce two query languages and highlight their differences and
usage. We introduce them here as the support of the GeoSPARQL extension in
current software was a factor deciding the scope of our tool.

2.4.1. Overpass API

The Overpass API [Wik20] [Lin16] provides a read-only access to OpenStreetMap
data. This API allows for the search inside an area or bounding box, near previously
selected elements, and by tags. The syntax of this API is focused on spatial data and
especially on working with the data provided by the OpenStreetMap project. An
example of this syntax is shown in Listing 3.

2.4.2. SPARQL and GeoSPARQL

The SPARQL Protocol and RDF Query Language [SH13] describes a structured way
of retrieving RDF data. RDF triplestores, and search engines like Blazegraph [Beb21]
and QLever[BB17] represent the data as graphs. The basic implementations do not
handle spatial relations explicitly, and rely on the presence of a applicable predicate
linking the requested entities. If such explicit links are missing, a basic triplestore
can not be used to query this data.

The GeoSPARQL [PH12] extension defines capabilities and querying methods for the
retrieval and usage of spatial data.

Jovanovik, Homburg, and Spasic [JHS21] compare triplestores for their GeoSPARQL
capabilities. The proposed compliance benchmark shows that triplestores can be
improved in regards of GeoSPARQL.

Version 9.4 of Ontotext GraphDB implements the GeoSPARQL support as an optional
plugin [Ont21]. This plugin supports the coveredBy function which we store as
the contains relation. They also provide support for simplifying geometries using
the simplify function using the Douglas-Peuker algorithm. We provide the same
functionality using the same algorithm, but we implemented a minimal threshold
for the number of nodes a geometry needs to have in order to be simplified. This
threshold allows us to keep objects with fewer nodes exact.

11

2.5. OSCAR

Bahrdt [Bah20] presents “OSCAR: a textual and spatial exploratory search engine for
OpenStreetMap data”. OSCAR requires the use of a custom query language. This
enables the author to optimize the data storage and query parser to resolve spatial
queries.

OSCAR provides text search capabilities using inverted indices and other index
structures.

We do not provide search capabilities but the data generated by osm2ttl can be added
to a generic triplestores. Then all search capabilities provided by the triplestore can
be used.

OSCAR partitions the world into cells and stores information in them. This allows
the system to perform queries based on the relation of these cells. The internal
representation allows the author to provide additional search functions not defined
in the GeoSPARQL standard. These additional functions are Along Path, Nearby,
Cardinal Direction, and Betweenness.

We store the spatial relations of the OpenStreetMap data for the duration of the
computation. Named areas and their relations are kept in-memory for use in the
generation of relations of other objects. All objects which are not named areas are
only kept in-memory for the computation of these relations. After the relations
for a given object are dumped the object is remove from memory. We therefore
convert the spatial information into triples, and allow any RDF capable triplestore
to use the transformed data. We only calculate intersects and contains, and thus
a subset of the Simple Features Topological Relations defined by the GeoSPARQL
standard [PH12].

12

3. Background

In this chapter we introduce OpenStreetMap, what kinds of data are stored, and
how the data is stored. We introduce the Resource Description Framework, and
well-known text, as formats to store the data. Further, we introduce the concepts of
a directed acyclic graph and rectangle trees.

3.1. OpenStreetMap

In this section we provide an overview on how data is stored and organized inside the
OpenStreetMap. We introduce the relevant data types, data structures, and their
relations with each other.

Data is curated by many volunteers around the globe, and changes are made regularly.
In this thesis, we ignore these minute-by-minute changes and focus on the more static
dumps.

We present some aspects of stored data, and the usage thereof. In the following sub-
sections we introduce the spatial and non-spatial storage used by the OpenStreetMap.
We introduce the different storage objects in the order they are used and required,
starting with a generic key-value store. We then introduce the geometric objects
node, way, and relation. Afterwards, we introduce a non-explicitly stored geometric
object area which is used for our approach as explained in Chapter 4.

3.1.1. Stored data and download sources

OpenStreetMap stores many variants of data ranging from height lines and speed
limits, to opening hours, and public transport data. This multitude of data is
represented in the number of projects associated with the OpenStreetMap. As an
example, we mention the OpenRailwayMap [Wik21a] as a project documenting the
rail infrastructure of the world. They incorporate this data into the OpenStreetMap,
allowing anyone access to it. They introduce their own extensive set of tags, and
related values providing detailed data1.

1https://wiki.openstreetmap.org/wiki/OpenRailwayMap/Tagging

13

https://wiki.openstreetmap.org/wiki/OpenRailwayMap/Tagging

The data stored inside OpenStreetMap is provided under the umbrella of the Open-
StreetMap Foundation [Fou21] with its basic mission statement2:

The OpenStreetMap Foundation is an international, not-for-profit, demo-
cratic organisation with the tasks of supporting the OSM project, running
and protecting the OSM database, and making it available to all. [. . .]

The OpenStreetMap Foundation is there to protect the OSM data to keep
it Free and Open.

Downloads for the whole planet are provided free of charge by the OpenStreetMap
project. Partial downloads can be obtained from Geofabrik [Kar21]. Geofabrik strips
the data of metadata to ensure GDPR compliance3, which also reduces the dataset
size.

The OpenStreetMap data files provided on this server do not contain
the user names, user IDs and changeset IDs of the OSM objects be-
cause these fields are assumed to contain personal information about the
OpenStreetMap contributors and are therefore subject to data protection
regulations in the European Union.

3.1.2. Non-spatial data: tags

All data not contributing to spatial shapes is stored as key-value pairs known as tags.
These tags are associated with spatial objects (nodes, ways, and relations). To ensure
that all current and future data can be stored, all keys and all values are stored as
UTF-8 strings. Validation and conversion of data must be handled in the programs
consuming OpenStreetMap data.

The choice of using UTF-8 strings allows the OpenStreetMap project to store names
and other data in many languages. We omitted most of them in Listing 2, but
name:en is the key for the name in the English language, and name:de is the key
for storing the name in the German language. The unsuffixed key name stores the
locally used name, since translations are provided in the suffixed variants.

The missing enforcement of value type and/or explicit values requires the handling
of invalid entries in all consuming products. To illustrate we present the key ad-
min_level4. This key shall be used to represent the administrative hierarchy inside a
country. These levels should always be a positive integer n ∈ {1, 2, . . . , 11}, but e.g.
there are 18 nodes in India with admin_level=A5.
2https://wiki.osmfoundation.org/w/index.php?title=Mission_Statement&oldid=7116
3https://download.geofabrik.de/
4https://wiki.openstreetmap.org/wiki/Key:admin_level
5https://overpass-turbo.eu/?w=%22admin_level%22%3D%22A%22+global&R

14

https://wiki.osmfoundation.org/w/index.php?title=Mission_Statement&oldid=7116
https://download.geofabrik.de/
https://wiki.openstreetmap.org/wiki/Key:admin_level
https://overpass-turbo.eu/?w=%22admin_level%22%3D%22A%22+global&R

3.1.3. Spatial data: node, way, and relation

Spatial data is stored in specific objects inside the OpenStreetMap. The simplest
object is a single point (latitude and longitude) named node. A node has x, y values
representing the longitude and latitude respectively. Tags can be associated with a
node, but are not required to. In Table 2 we present the number of nodes in the
source file in the nodes (src) row, and the number of nodes with at least one tag in
the nodes (fact) row. Most nodes do not contain anything besides the latitude and
longitude values.

To represent streets, buildings, and other simple geometries, the way data structure
is used. It has optional tag storage, but does not contain latitude and longitude data
and instead a list of NodeRef entries which are node ids. This approach ensures that
changes on the nodes are propagated to all ways which they are part of. Through
the storage of nodes as an ordered list inside the ways, ways can only represent single
lines or closed areas (if the first and last node are the same) consisting of a single
shape without holes.

For more complex geometric shapes and other relations, the relation structure can
be used. It has a similar base structure as ways, but stores a sorted list of object,
role pairs. For spatial relations the roles outer and inner are most commonly used.
Spatial data is evaluated explicitly in the OpenStreetMap, which means no special
order of inner and outer members is required. Libraries such as Boost.Geometry [Boo]
require a specific order of these elements as we will explain in Section 4.5.

Other roles such as member and label exist, e.g. the label role is usually applied to a
node, and represents where the name tag should be located in the rendered tiles.

Organizational relations exist as well, e.g. Germany (51477) is a member_state of
the European Union (2668952). It is also part of Germany, highway default values
(8131479), and Germany, federal public holidays (2188155), in both cases with the
role apply_to.

3.1.4. Area

Areas are not stored explicitly inside OpenStreetMap data, but are used by the
rendering layer. A relation or way can be marked as an area by using the tag
area:yes, but other values are used even though they are not encouraged6. Relations
with type=boundary shall be marked as areas as well as closed ways7.

6https://taginfo.openstreetmap.org/keys/area
7https://wiki.openstreetmap.org/wiki/Area

15

https://taginfo.openstreetmap.org/keys/area
https://wiki.openstreetmap.org/wiki/Area

Listing 6: Structure of a single RDF line with highlighted space characters.
Subject␣Predicate␣Object␣.

3.2. Resource Description Framework (RDF)

Hayes and Patel-Schneider [HP14] define RDF triples as simple elements separated
by a single space (0x20 only) between each element, and finished by a dot as shown
in Listing 6. To allow the storage of data in different languages, Unicode code points
are represented in either verbatim UTF-8, a two byte escape sequence (\uXXXX), or
four byte escape sequence (\UXXXXXXXX) depending on its value.

The N-Triple (NT) [SC14] dialect is more verbose than the Turtle (TTL) [CP14]
dialect, which is shorter but more complex in terms of syntax rules. Both dialects
share the same Subject, Predicate, and Object definitions used for the line structure as
shown in Listing 6. TTL allows for multiline data where the subject is omitted, and
only predicates and objects are present since the subject does not change. Further,
they share definitions for the elements representing these more abstract concepts.
These equalities follow from the representation of the triples as a knowledge graph.
Subjects are internal nodes, Predicates are edges, and Objects can be internal nodes
and leaves.

We will now introduce the explicit types and their usage.

The most universal entry type is an Internationalized Resource Identifier (IRI). IRIs
are primarily used to represent relations and entities, and can be used in all places of
an RDF triple. They are the only allowed type for predicates. IRIs can be generic
nodes inside the knowledge graph as well as the edges. This allows for predicates to
act as subjects, and to store information about the predicate itself inside the same
structures.

Subjects can be either an IRI or a Blank Node. Blank Nodes are used to represent
more complex relations and relations with metadata.

An example for this kind of relations would be a list of spatial coordinates (nodes)
forming a way. In this case, the order of nodes is important and must be stored inside
the RDF file. A solution without blank nodes would be to introduce a new relation
for each position in the node list, as shown in Listing 7. This would introduce many
unique relations (ex:member_X), and selecting all nodes of any given way would
result in either a complex union, or the inclusion of any triple since the predicate
could not be fixed to a single value.

The alternative solution introduces blank nodes and uses up to three predicates as
shown in Listing 8. The predicate ex:member links the way to a blank node for each

16

Listing 7: A way as a node list with unique predicates (TTL)
osmway:42 ex:member_0 osmnode:23
osmway:42 ex:member_1 osmnode:3
osmway:42 ex:member_2 osmnode:21
osmway:42 ex:member_3 osmnode:42
osmway:42 ex:member_4 osmnode:1337
osmway:42 ex:member_5 osmnode:4711
osmway:42 ex:member_6 osmnode:815

real node. This blank node links to each real node via ex:node, and to the index inside
the node list, which is represented as an integer literal via ex:index.

Subjects on their own do not contain much data but are required to differentiate
between distinct entities which share the same attribute values. The explicit values
are often stored inside the literals, or through a combination of literals and relations.

Literals store quoted values which are not nodes inside the knowledge graph. They
represent factual data such as numbers or names. Literals can have suffixes detailing
the type of value or in the case of strings the language of the value. A typed literal is of
the form "value"^^IRI, where IRI represents the type the value should be interpreted
as, e.g. xsd:integer for an integral value. A literal with language information is of
the form "value"@language, where language is a valid RFC 3066 [Alv01] language
tag.

In Figure 5 we provide an overview on where each type can be used. The most
universal type is the IRI, which can be used in most places. Literals have the most
specific usage, and can be further specified by a type annotation or a language tag.

3.3. Well-known text (WKT)

Introduced as ISO:13249-3 [IEC16] the well-known text standard defines textual rep-
resentations of spatial features. To represent the data provided by the OpenStreetMap
project, a subset of the defined features is sufficient. In our implementation we use
Point, LineString, Polygon, and MultiPolygon strings to map the spatial structures.

These primitives are contained in a hierarchical order represented by the number of
used parenthesis, for x and y values. Integers and floating point numbers can be used
as values for coordinates.

A Point is represented as POINT(x y) where the coordinates are separated by a
single whitespace. A LineString is a list of points, but does no introduce additional
parentheses as no further differentiation of features is required. Therefore, a LineString
has the form LINESTRING(x0 y0, x1 y1, ...) where each xi yi pair is a Point.

17

Listing 8: A way as a node list with blank nodes (TTL)
osmway:42 ex:member _:10
_:10 ex:node osmnode:23
_:10 ex:index "0"^^xsd:integer
osmway:42 ex:member _:11
_:11 ex:node osmnode:3
_:11 ex:index "1"^^xsd:integer
osmway:42 ex:member _:12
_:12 ex:node osmnode:21
_:12 ex:index "2"^^xsd:integer
osmway:42 ex:member _:13
_:13 ex:node osmnode:42
_:13 ex:index "3"^^xsd:integer
osmway:42 ex:member _:14
_:14 ex:node osmnode:1337
_:14 ex:index "4"^^xsd:integer
osmway:42 ex:member _:15
_:15 ex:node osmnode:4711
_:15 ex:index "5"^^xsd:integer
osmway:42 ex:member _:16
_:16 ex:node osmnode:815
_:16 ex:index "6"^^xsd:integer

Well-known text Polygons allow for exclusions inside, thus they introduce a second
level of parentheses to group the used LineStrings. A polygon describing a simple
square with sides of length 10 has the form POLYGON((0 0, 0 10, 10 10, 10 0)).
In contrast to the OpenStreetMap area, the first corner is not repeated as the last
element. To remove a triangular area from the previously introduced square the
following form is used: POLYGON((0 0, 0 10, 10 10, 10 0),(2 3, 5 7, 7 4)).
The area of a Polygon is always defined by the first LineString, and each subsequent
LineString removes regions of the polygon.

MultiPolygons combine multiple Polygons, adding another level of parentheses. They
are written as MULTIPOLYGON(((x0 y0,...), ...), ...), allowing for the addition
with the first LineString of each entry, and exclusions via all other LineString entries,
of multiple areas.

Other WKT primitives are defined, but are not used in this thesis.

3.4. Directed Acyclic Graph (DAG)

In this section we introduce the concept of a directed acyclic graph. This variant of a
generic directed graph allows for the usage of some properties in the implementation

18

Figure 5.: RDF overview. This diagram shows the possible usage for IRIs (ev-
erywhere except LanguageTags), Blank nodes (as Subject and Object),
and Literals (only as objects).

of this thesis, and is further explained in Subsection 4.7.3. We provide a visual
representation of the various graph types in Figure 6.

3.4.1. Undirected and directed graph

A undirected graph is a graph G = (V,E) where V is the set of vertices, and E is the
set of edges E = {{x, y} | x, y ∈ V }. Edges are represented as sets of two vertices,
thus {x, y} = {y, x} | x 6= y.

A directed graph is a graph G = (V,E) where V is the set of vertices, and E is the
set of edges E ⊆ V × V . Edges are represented as ordered pairs of two vertices, thus
(x, y) 6= (y, x) | x 6= y.

A vertex v is reachable from u when there exists a path (e0, e1, . . .) with e ∈ E, such
that there exists a sequence of vertices (v0, v1, . . .) for which there are edges such
that every edge following another edge starts with the same vertex as the previous
ends. This ensures the direction and connectivity of the path in the directed graph
setting. In the undirected graph setting, each edge must only contain one node from
the previous edge to ensure connectivity.

3.4.2. Directed Acyclic Graph

A directed acyclic graph introduces the requirement that there exists no vertex v
which can reach itself via a path. This restricts the set of edges E to not contain
any self-loops (x, x) | x ∈ V . Further, it prohibits the addition of edges to the
graph G which would enable the creation of a path with a sequence of vertices
(v0, v1, . . . , vn) | v0 = vn.

19

a b

(a) Undirected Graph

a b

(b) Directed Graph

a b

(c) Directed Acyclic Graph Variant 1

ba

(d) Directed Acyclic Graph Variant 2

Figure 6.: Various types of graphs with two nodes a and b. (a): An undi-
rected graph with the nodes a and b with one edge. This graph allows the
traversal from a to b and vice versa. (b): A directed graph with the nodes
a and b with two edges. The edge a → b allows for the traversal from
a to b. The edge b → a allows for the traversal from b to a. (c/d): A
directed graph with the nodes a and b with only one edge. Transforming
the graph (b) into a directed acyclic graph requires that one edge must
be removed. This can either be the edge b → a resulting in the graph
(c) or the edge a→ b resulting in the graph (d).

3.5. R-tree

A tree can be seen as a special case of an directed acyclic graph. Depending on the
direction of the edges, it holds that indeg(v) = 1 or outdeg(v) = 1 for any node
except the root, where it holds that indeg(v) = 0 or outdeg(v) = 0 respectively. This
ensures that from any child node, only a single path to the root node exists. In the
more general directed acyclic graph, multiple paths can exist.

In most trees, the value of each node determines in which subtree smaller or bigger
values can be found.

A rectangle tree (R-tree) is a balanced tree for storing spatial data. Rectangles are
stored as nodes inside an R-tree, and all children are contained in the rectangle of
their parent node. The rectangle of the root node encapsulates all contained data.

20

(a) Areas as grid (b) Areas as binary tree (c) Areas as R-tree

Figure 7.: Different representation for spatial areas. The spatial areas 22, 24,
26, and 30 are represented in different formats. The outline style of the
areas is consistent between (a), (b), and (c) and depends on the nesting
level. (a): The areas as found in the world. 30 is inside 22, 22 and 26
are inside of 24. (b): The nesting levels of the areas as an unbalanced
tree. (c): The tree from (b) transformed into an R-tree, empty slots are
omitted. The area 24 is the envelope of the other areas and contains
them all.

21

4. Approach

In this section, we present the steps performed by our tool osm2ttl.

We start with refining the broad problem into smaller subproblems to solve, and then
present how they are solved. Further, we provide some insights into the memory
usage, storage and usage of spatial objects, and the use of multithreading.

4.1. Problem Definition

In Section 1.1, we introduced the problem of combining OpenStreetMap data with
knowledge bases such as Wikidata. To provide a solution to this problem we split it
into smaller problems. First, we need to read the OpenStreetMap data. Based on
this input, we transform the facts into valid RDF triples. Additionally, we need to
store the geometry as text using WKT. The spatial relations must be calculated, and
stored as RDF triples.

To calculate the spatial relations, we need access to all relevant spatial objects, and
their order and spatial hierarchy.

As the OpenStreetMap contains more than 6.5 billion nodes alone, calculating the
relations between each pair of objects would be an enormous task. We only use a
subset of objects for these calculations, and we ignore all objects which do not have
any tag as introduced in Subsection 3.1.2. We choose this subset since the usage of
untagged objects as RDF subjects would yield near to no information, given only
spatial coordinates are associated with these.

We further reduce the complexity of calculations by calculating the relations of named
areas with other named areas by creating a directed acyclic graph. This allows us to
sort all remaining objects into these named areas without the need to calculate all
relations. Additionally, this allows us to reduce the number of spatial calculations
since the topological order implied in the directed acyclic graph can be used.

4.2. Overview

osm2ttl is written in C++ using features from the C++17 Standard. We use the
GCC compile chain in combination with Make and CMake to generate the executable

23

Figure 8.: osm2ttl dataflow between disk and memory. Solid boxes represent
files on disk, dashed boxes are classes inside the osm2ttl program. Open-
StreetMap data is read from the OSM file by the OsmiumHandler. Data
is then passed to the FactHandler and dumped into the output RDF
document. Also, the data is passed to the GeometryHandler which stores
Nodes, Ways, and unnamed Areas on disk. It later retrieves the stored
objects and dumps the spatial relations into the RDF document. The
GeometryHandler contains the R-tree and DAG, as data is not stored on
disk we omitted these in the diagram.

file. We parse the provided data from the OpenStreetMap once, and transform
the information into our own representation. To reduce the memory load we store
spatial objects on disk as shown in Figure 8. Named areas are kept in RAM to
improve calculation speed for spatial relations. These calculations are performed
multithreaded using the OpenMP library which is introduced in Section 4.8.

The incoming data is handled by the OsmiumHandler which is responsible for reading
OpenStreetMap data, and passing it to the FactHandler and GeometryHandler. These
handlers transform the data either directly into RDF in the case of the FactHandler,
or into indexing structures.

In the following sections we provide insights into how these actions are performed.

4.3. Reading OpenStreetMap (osmium)

The OpenStreetMap project provides data dumps in different formats. We use the
osmium [Top13] library which provides readers for the various formats, and resolves
the referential geometries stored inside the OpenStreetMap into explicit geometries.

To interface with the osmium library, we defined a OsmiumHandler. The osmium
library provides the handler interface which defines methods for each OpenStreetMap
object type. These members are called for each element according to their type.

24

Listing 9: Basic osm2ttl arguments selecting facts
--no-facts Do not dump facts
--no-area-facts Do not dump area facts
--no-node-facts Do not dump node facts
--no-relation-facts Do not dump relation facts
--no-way-facts Do not dump way facts
--add-area-envelope Add envelope to areas
--add-area-envelope-ratio Add area/envelope ratio to areas
--add-way-envelope Add envelope to ways
--add-way-metadata Add information about the way structure
--add-way-node-order Add information about the node members in ways

Additionally, the area method is defined and called after an area is recognized by
osmium. The OsmiumHandler converts the data provide by the osmium library into
our own representation. This conversion is needed because the osmium library stores
data in a reused buffer to limit the memory consumption. The converted objects are
dumped as RDF as explained in Section 4.4 using the FactHandler and the geometries
are stored as explained in Section 4.6 using the GeometryHandler.

The OsmiumHandler and FactHandler contain logic to filter the amount of dumped
data, as shown in Listing 9. We added options to add the envelope (containing, axis-
aligned rectangle) for each way and area object. The optional way metadata contains
information about the number of nodes and unique nodes, as well as the information
whether or not the way is closed. Further, we added the possibility to dump the
members of ways, including the order information as presented in Section 3.2 and
Listing 8.

4.4. Writing valid RDF

We need to ensure that all triples written by osm2ttl are valid RDF triples. Since we
need to handle many of the possible variants of data, we need to implement most
of the underlying grammars. We convert the facts contained in OpenStreetMap
data into triples: these facts contain different languages, and special characters. We
store geometries that are formatted as well-known text which contain only ASCII
characters, but need to be annotated with type information. Additionally, we need
to store the spatial relations as their own predicates.

4.4.1. Implementation

To ensure the correct representation of all data entered by the volunteers of the
OpenStreetMap project, we implemented most of the N-Triples and Turtle grammars.

25

Listing 10: Single RDF line implementation
template <typename T>
void osm2ttl::ttl::Writer<T>::writeTriple(const std::string& s,

const std::string& p,
const std::string& o) {

_out->write(s + " " + p + " " + o + " .\n");
}

This allows us to dump all data without the need to omit any triple, unlike the
Sophox project introduced in Subsection 2.1.1.

We first implemented the overlapping parts of the grammars as explicit classes and
interfaces representing each data type and triple position. This approach ensured
compile-time correctness, but was very slow as each RDF value was created on the
heap. To solve the speed issue, we dropped the compile-time correctness guarantee,
and replaced the objects with functions working on std::string_view arguments.
Using std::string_view instead of std::string or const char**, removed the
need to handle C or C++ data types differently. It also sped up most functions using
them, since the data is only referenced by address and not copied.

We choose to always return std::string instead of writing directly to the output.
This decision was made because this way we can ensure that lines are fully assembled
before they are written to any output buffer.

To improve writing speeds, _out->write(...) as found in Listing 10 redirects the
output to a different file for each thread. This eliminates the need for locking the
output file, and still ensures correct lines. Writing to stdout instead of files disables
this optimization, but as _out->write(...) is called with a single string correct lines
are still guaranteed through the implementation of the << operator of stdout.

4.4.2. Turtle Prefix

As mentioned in Section 2.1, different projects introduce their own set of Turtle
Prefixes. Sophox (Subsection 2.1.1) introduces prefixes based on the URLs used
by OpenStreetMap, as shown in Listing 11. In contrast, LinkedGeoData (Subsec-
tion 2.1.2) introduces a complete new set of prefixes.

We choose to use prefixes similar to the Sophox project as shown in Listing 13. The
only difference between Sophox and our prefixes is that we choose to name the root
prefix osm instead of osmroot. This removes some bytes from the output data.

26

Listing 11: TTL-Prefixes used by Sophox
@prefix geo: <http://www.opengis.net/ont/geosparql#>
@prefix schema: <http://schema.org/>
@prefix wd: <http://www.wikidata.org/entity/>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

@prefix osmm: <https://www.openstreetmap.org/meta/>
@prefix osmnode: <https://www.openstreetmap.org/node/>
@prefix osmrel: <https://www.openstreetmap.org/relation/>
@prefix osmroot: <https://www.openstreetmap.org>
@prefix osmt: <https://wiki.openstreetmap.org/wiki/Key:>
@prefix osmway: <https://www.openstreetmap.org/way/>

Listing 12: TTL-Prefixes used by LinkedGeoData
@prefix dbpedia: <http://dbpedia.org/resource/>
@prefix foa:

↪→ <http://www.fao.org/countryprofiles/geoinfo/geopolitical/resource/>
@prefix georss: <http://www.georss.org/georss/>
@prefix owl: <http://www.w3.org/2002/07/owl#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

@prefix lgd: <http://linkedgeodata.org/triplify/>
@prefix lgdo: <http://linkedgeodata.org/ontology/>

Listing 13: TTL-Prefixes used by osm2ttl
@prefix geo: <http://www.opengis.net/ont/geosparql#> .
@prefix ogc: <http://www.opengis.net/rdf#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix wd: <http://www.wikidata.org/entity/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix osm: <https://www.openstreetmap.org/> .
@prefix osmm: <https://www.openstreetmap.org/meta/> .
@prefix osmnode: <https://www.openstreetmap.org/node/> .
@prefix osmrel: <https://www.openstreetmap.org/relation/> .
@prefix osmt: <https://www.openstreetmap.org/wiki/Key:> .
@prefix osmway: <https://www.openstreetmap.org/way/> .

27

4.5. OpenStreetMap as spatial objects

We introduced the storage of the spatial data inside the OpenStreetMap in Subsec-
tion 3.1.3. Most geometry libraries require ordered information, as does WKT as
introduced in Section 3.3.

We use Boost.Geometry for the calculation of spatial relations (Section 4.7), and
therefore we need to convert the geometries from the OpenStreetMap representation
into the one of Boost.Geometry. The osmium library handles this conversion and
provides its own helpers to store geometries as WKT, but we decided not to use
these but the ones provided by Boost.Geometry. Using Boost.Geometry allows us to
stream the WKT result into std::ostringstream instances for appending the RDF
type information, and setting the number of significant digits using std::fixed(7).
We can fix the number of digits after the decimal point to 7 as we will explain in
Section 5.1. In Figure 10 we provide an overview over the data flow, going from the
OpenStreetMap dump through Boost.Geometry to being stored inside an RDF file.

Using Boost.Geometry for the representation reduced the amount of work and code
needed for the serialization of the spatial data, which we will introduce in Section 4.6.

The aforementioned conversion of the spatial data is required since OpenStreetMap
enforces no order of relation members in regard of addition and subtraction of
included areas. Boost.Geometry and WKT, as presented in Section 3.3, have stronger
requirements. Both handle polygons by grouping the outer and inner members in
rings, each ring has exactly one outer part, adding to the area, and a variable number
of inner parts subtracting from it, as shown in Figure 9.

4.6. Serialization of spatial objects

We use Boost.Serialize for serialization of spatial objects. We store the geometry,
envelope, and ID of each node. For ways we additionally store the ID of all nodes to
speed up some relation calculations. Areas are stored with their area and whether or
not they are generated from a closed way.

All nodes, ways, and non-named areas are dumped to disk, as shown in Figure 8, and
later retrieved for the spatial lookup as described in Section 4.7. We store named areas
inside a vector which is then transformed into an R-tree, as introduced in Section 3.5,
and into the directed acyclic graph, introduced in Section 3.4. The delayed insertion
into the R-tree improves the runtime, as rebalancing of the tree can be performed
after all elements are inserted instead of after each individual insertion.

28

(a) Ring with one
outer member . . .

(b) . . . and a single in-
ner member

(c) . . . and two inner
members . . .

(d) . . . with an addi-
tional ring with a
single outer mem-
ber

Figure 9.: Boost.Geometry ring concept. (a): A ring with a single geometry.
This geometry is used as the outer border, everything inside is part
of the area of this ring. (b): The same ring (a) but with a second
(blue) geometry, this blue part is subtracted from the area as it is an
inner member. Everything inside the blue circle is no longer part of the
geometry. (c): The same as (b) but with an additional blue geometry.
Everything inside the blue circles is no longer part of the geometry. (d):
Two rings, to add an area inside an inner ring, another outer ring is
required. Everything inside the blue circles is no longer part of the first
outer ring. Everything marked white is part of a geometry consisting
of both rings. If the smaller outer ring is not part of the geometry the
same result as (c) is obtained.

4.7. Geospatial lookup

Calculating all spatial relations using node information only leads to incorrect data.
With node information alone containment and intersection of ways can not be solved,
as shown in Figure 11.

To ensure that we do not compare every OpenStreetMap entity with every other
entity, we introduced some ordering structures.

4.7.1. Fixed grid

Our first idea for reducing the number of spatial comparisons was to overlay the planet
with a fixed grid, and store for each cell the intersecting and contained entities. A
coarse grid with a side length of > 1.4◦ would keep the memory usage at a manageable
level, as for addressing each coordinate a single byte could be used, but did not reduce
the number of comparisons sufficiently that we could justify the memory usage. Finer
grid sizes were discussed, but larger features like countries would be stored in many
cells increasing the memory usage again. It became apparent that storing the explicit

29

boost:geometry RDFWKTOSM osmium

Figure 10.: Flow of spatial data from OSM to RDF. We read the spatial
data from the OpenStreetMap using osmium to convert the data into
boost:geometry structures. These structures are then converted into
RDF using the WKT standard.

geometries inside the grid requires too much memory, but storing only the IDs in
the grid and the objects in a vector was too memory-intensive as well. This was
problematic as the storage structure should be able to handle the whole planet.

With the split of the data into two parts this idea was replaced with an R-tree, and
with a directed acyclic graph for named areas.

4.7.2. R-tree

We store all named areas inside an R-tree, since being contained in an unnamed area
does not provide much insight. This R-tree (as introduced in Section 3.5) reduced
the number of potential intersection and containment candidates, and is not as
memory-intensive as the grid approach at the same time.

As no fixed grid is contained in the R-tree, selections which span multiple grid cells
in the fixed grid approach are handled more efficiently, since the computational
complexity of combining the results is handled before spatial relations are computed.
This was an important step in making the runtimes acceptable as we will discuss in
Section 5.1.

4.7.3. Directed Acylic Graph

To further improve the containment calculations, we generate a directed acyclic
graph. The directed acyclic graph is stored as an adjacency list, and implemented
using std::unordered_map<T, std::vector<T>>. This directed acyclic graph is
generated in a multithreaded manner from the named areas stored in the R-tree.
Using multithreading improves generation time significantly, but produces a subop-
timal result since unneeded edges may be calculated as shown in Figure 13. The
suboptimality is induced by the self-referencing usage of the directed acyclic graph
during its creation as described in Algorithm 1. It occurs since areas contributing to

30

(a) Blue way only
intersecting the
black area

(b) Blue way inter-
secting the black
area

Figure 11.: Node-Way information only. (a): Both nodes of the blue way are
contained in the black area, but the blue line leaves the area. This can
only be determined if the exact way geometry is analyzed because the
way is only intersecting the black area. (b): Both nodes area outside
the black area, given only the node information no relation with the
black area can be calculated. The blue line is intersecting the black
area, this can be found if the explicit way geometry is evaluated.

the set of successors can be examined at the same time, and thus the reducing edge
information is not available yet.

The successors of each vertex v can be computed recursively on a given directed
acyclic graph. We represent the directed acyclic graph with adjacency lists and
therefore the lookup accesses the data in random order as seen in Algorithm 2. To
improve lookup speed we precompute the list of successors for each vertex in G in
Algorithm 3. This simplifies the lookup to just retrieving a single list of successors as
shown in Algorithm 4.

To reduce the number of edges we perform transitive reduction on the directed acyclic
graph as described in Algorithm 5. We calculate the list of successors for each node
and for all of its successors, then we remove those entries in the list of the node
successors which already occur in any of the successors’ lists

The reduced edge set corresponds to the minimal contains relations for the unnamed
areas. This allows us to dump the reduced directed acyclic graph as RDF without
the need to recheck each explicit geometry again.

4.7.4. Spatial lookup of non-named areas

The directed acyclic graph did not only improve the computation of the ogc:contains_area
predicate, but is also used for the ogc:intersects, and ogc:contains predicates which
are calculated for all non-named area entities. In Figure 13 we present the possible

31

Algorithm 1 Create DAG
function createDAG(areas)

areas← sort(areas, ↓) . Sort areas by size from big to
small

for area ∈ areas do
skip← {} . Empty set for skipping areas
candidates← rtreeContains(area) . Candidates from rtree
candidates← sort(candidates, ↑) . Sort candidates by size from

small to big
for c ∈ candidates do

if c /∈ skip then
if area ⊆ c then

addEdge(area, c) . Insert contains information
into DAG

skip← skip ∪ c ∪ dagSucc(c) . Add successors (using the
DAG) to the skipset

end if
end if

end for
end for

end function

Algorithm 2 Directed Acyclic Graph: FindSuccessors
function findSuccessors(src)

tmp← {} . Empty list to store parents
findSuccessorsHelper(src, tmp) . Collect all parents

return unique(tmp) . Only return unique elements
end function

function findSuccessorsHelper(src, tmp)
if src found then . Node with id src exists?

for p ∈ P (src) do . Add direct parents
tmp← tmp ∪ p

end for
for p ∈ P (src) do . Add parents of parents

findSuccessorsHelper(p, tmp)
end for

end if
end function

32

Algorithm 3 Directed Acyclic Graph: PrepareFindSuccessorsFast
Require: successors is a map id→ parents denoted as sucessorsid
function prepareFindSuccessorsFast

for do
sucessorssrc ← findSuccessors(src)

end for
end function

Algorithm 4 Directed Acyclic Graph: FindSuccessorsFast
Require: successors is a precomputed map id→ parents denoted as sucessorsid
function findSuccessorsFast(src)

result← {} . Empty set
if sucessorssrc then . Successors for src exist?

result← sucessorssrc . Return successors
end if

return result
end function

Algorithm 5 Reduce DAG
function reduceDAG(dag)

for vertex ∈ dag do
for p ∈ P (vertex) do . For each successor . . .

for successor ∈ findSuccessors(p) do get successors
if candidate ∈ P (vertex) then . If successor of vertex and an-

other successor
removeEdge(vertex, successor) . Remove edge

end if
end for

end for
end for

end function

33

containment relations of the named areas Faculty of Engineering (TF)1, Building
51 2, and the three entrance doors: southern entrance3, lift entrance4 and northern
entrance5. As the Faculty of Engineering encapsulates Building 51 the doors are
contained in both, using the directed acyclic graph we can remove all candidates
which are higher up in the hierarchy because containment in these areas directly
follows from being contained in a lower level. We therefore can skip the spatial
comparisons for these areas, resulting in a speedup of the whole process.

We first calculate for each tagged node in which area it is contained. Nodes represent
single points, and therefore are always contained given that the border of an area is
treated as inside. The information which named area contains the node is stored in a
global hash table.

The speedup using the directed acyclic graph can be applied for ways as well. With
the usage of the information which tagged nodes are members of the way, and the
information where these nodes are contained, we can compute some containment
information before querying the R-tree for candidates. Since the directed acyclic
graph ensures tagged nodes are contained in the smallest areas possible, we do not lose
information through these computations. After all tagged nodes are accounted for,
the same candidate retrieval and containment and intersection checks are performed
as previously for unnamed areas.

The complete method handling ways is described in Algorithm 6. For the calculation
of node and unnamed area relations, some parts are omitted but the basic structure
is identical.

4.8. OpenMP

We use the OpenMP [Boa15] library for iterating over the stored spatial data. This
allows us to use the available computing capabilities of the machine running osm2ttl.

OpenMP offers different settings to distribute the workload. We ran some experiments
and provide a synthetic benchmark exploring these options.

Using a task-based distribution was always slower than other settings, since the
management overhead is the highest. Using the default settings led to significant
waiting times since near the end, only a single thread kept working for multiple hours
as all others were finished with their shares.

We found that using schedule(dynamic) for most loops optimized the runtime, with
the results of our synthetic benchmark shown in Table 1. schedule(dynamic) uses
1https://www.openstreetmap.org/way/4498466
2https://www.openstreetmap.org/way/98284318
3https://www.openstreetmap.org/node/2110601105
4https://www.openstreetmap.org/node/5190342871
5https://www.openstreetmap.org/node/2110601134

34

https://www.openstreetmap.org/way/4498466
https://www.openstreetmap.org/way/98284318
https://www.openstreetmap.org/node/2110601105
https://www.openstreetmap.org/node/5190342871
https://www.openstreetmap.org/node/2110601134

Algorithm 6 dumpWayRelations
function dumpWayRelations(nodeData)

for way ∈ ways do
if way ∈ DAG then . Skip if named area

continue
end if
skipNodeContained← {}
skipIntersects← {}
skipContains← {}
for node ∈ way do

if node ∈ nodeData then
skipNodeContained← skipNodeContained ∪ nodeData[node]

end if
end for

for c ∈ rtree(way) do
doesIntersect← false
if c ∈ skipIntersects then

doesIntersect← true
else

if c ∈ skipNodeContained then
doesIntersect← true
skipIntersects← skipIntersects ∪ successors(c)
writeIntersectsRelation(way, c)

else
if intersects(way, c) then

doesIntersect← true
skipIntersects← skipIntersects ∪ successors(c)
writeIntersectsRelation(way, c)

end if
end if

end if
if doesIntersect then

if c ∈ skipContains then
continue

else
if contains(way, c) then

skipContains← skipContains ∪ successors(c)
writeContainsRelation(way, c)

end if
end if

end if
end for

end for
end function

35

a fixed size for work packages. The serialized data from Section 4.6 is read one
OpenStreetMap element at a time in each thread, this ensures that each thread
locks shared resources only for the time needed. Reading one OpenStreetMap at a
time also reduces the memory needed to store the other elements of a work package.
The fixed size work packages reduce the management overhead which is required for
schedule(guided).

schedule(guided) starts with large initial chunks, and reduces the size of work
packages as time goes on. In theory, this allows for faster running tasks to pick
up more work, without the risk of reserving too many work units for any given
thread. We observe worse performance than schedule(static) in our synthetic
benchmark.

One exception from this choice is the dump of the named area relations, as no
calculations are necessary. We only convert the edges into RDF triples which is
reasonably fast, and schedule(static) is more efficient in this case.

Items auto 1 2 4 8 16 32 64

st
at
ic

512 47.91 55.74 41.66 38.49 32.97 36.70 40.33 ?
567 55.78 55.95 61.12 46.66 38.95 40.54 45.99 56.42
934 120.86 114.86 93.63 83.96 88.74 85.09 90.85 110.74
1024 151.06 135.39 106.64 96.00 96.60 100.95 111.49 122.44

dy
na

m
ic 512 35.53 35.77 37.17 34.87 34.59 37.48 33.78 ?

567 39.69 41.82 42.94 42.59 38.78 38.88 41.95 46.32
934 83.44 82.29 82.76 83.35 82.13 79.56 80.05 80.20
1024 96.31 94.44 96.78 93.65 97.30 94.57 96.56 93.42

gu
id
ed

512 47.67 47.00 46.30 45.88 45.02 46.38 48.20 ?
567 53.41 52.77 55.83 56.33 54.17 53.03 56.49 53.85
934 122.41 122.92 120.87 125.14 119.42 122.15 120.15 122.36
1024 151.01 151.78 151.14 152.60 151.52 153.13 152.80 151.15

Table 1.: OpenMP durations for various schedule settings. Number of mil-
liseconds required to consume the given number of items with simulated
workload. Depending on the given chunk size different runtimes are
achieved for the same number of items. auto has a different effects for
each of the modi (static, dynamic, guided). More details are available in
[Boa15, Table 2.5, Page 60–61]. ?: No values calculated as this machine
has 8 threads and the work would have been distributed such that each
thread would only work on a single (initial) package (512/64 = 8).

We explicitly disabled automatic data sharing for variables using the default(none)
directive. This reduces and limits undesired variable access or changes inside the
multithreaded parts of osm2ttl.

36

4.9. Runtime

We do not provide an asymptotic runtime analysis for the implemented data structures
and algorithms. A runtime analysis based on the number of objects alone does not
provide good estimates, as many simple objects are handled faster than a few complex
ones. Using the area covered by objects as a measurement unit has the same problem,
as large but simple objects, e.g. Black Forest6, can be processed faster than smaller
complex ones, e.g. Grass near Herbolzheim7 which consists of multiple inner and
outer parts, as shown in Figure 12.

An in-depth analysis of the runtime in regard to the possible requirements and
difficulties would have exceeded the time frame available for this thesis. We provide
an experimental evaluation of the running time in Section 5.2 and rationale in
Section 5.4.

(a) Black Forest (b) Grass near Herbolzheim

Figure 12.: Complexity of OpenStreetMap objects shown by two exam-
ples. The Black Forest (a) covers a large area with only a few corners.
The Grass near Herbolzheim (b) covers only a small area but uses
different inclusion and exclusion areas and many corners. Provided by:

OpenStreetMap | Map data © OpenStreetMap contributors

6https://www.openstreetmap.org/relation/3255371
7https://www.openstreetmap.org/relation/9186582

37

https://www.openstreetmap.org/relation/3255371
https://www.openstreetmap.org/relation/9186582

(a) © OpenStreetMap contributors; Base map and data from OpenStreetMap and OpenStreetMap Foundation; modified

TF

Building 51

Northern Lift Southern

(b) Relations without DAG

TF

Building 51

Northern Lift Southern

(c) Reduced DAG

Figure 13.: Non-reduced and reduced directed acyclic graph for Building
51. (a): Spatial location of the Building 51 inside the Faculty of
Engineering (TF) with highlighted entrances: northern (entrance),
southern (entrance), and lift (entrance). (b): Containment relations
between all objects. (c): Directed acyclic graph used to reduce relations
of all objects. Building 51 is part of the Faculty of Engineering (TF).

38

5. Experiments

In this section we present our results of using osm2ttl. We discuss some reasons why
the observed effects occur.

All runs were performed on two machines with AMD Ryzen 7 3700X 8-Core/16-
Threads Processors with 3.6− 4.4GHz and 128GB Ram (4× 32GB, 2133MHz) each.
Data was read from and written to a 2TB NVME Samsung 970 Evo+ for each
machine, and stored locally.

5.1. Real world data

We run osm2ttl on different datasets provided by Geofabrik[Kar21]. The datasets
in increasing size are Regierungsbezirk Freiburg1, Baden-Württemberg2, Germany3,
Europe4, and the whole Planet5. In Table 2 we provide basic statistics for each
dataset. Further, we split the runtime of the geometry calculation into smaller parts
in Table 3.

For each dataset we created a compressed output file doubling the size of the input.
This effect can be explained by the conversion from a binary format into a text format,
and the storing of coordinates multiple times.

The provided OpenStreetMap data stores coordinates only on a per node basis.
This allows the construction of the geometry of ways, relations, and areas through
referencing the nodes by their ID. To create valid WKT geometries we are required
to store the explicit coordinates at each position of each geometry.

Further, we can not store floating point numbers using the original 32-bit repre-
sentation used by protobuf since we require text to be WKT compliant. Storing
the geometries as well-known binary (WKB [IEC16] defined alongside WKT) would
reduce the output size, but would limit the compatibility with triplestores as capabili-
ties for handling binary input is required. The chosen WKT representation allows for
1https://download.geofabrik.de/europe/germany/baden-wuerttemberg/freiburg-regbez.
html

2https://download.geofabrik.de/europe/germany/baden-wuerttemberg.html
3https://download.geofabrik.de/europe/germany.html
4https://download.geofabrik.de/europe.html
5https://planet.openstreetmap.org/pbf/

39

https://download.geofabrik.de/europe/germany/baden-wuerttemberg/freiburg-regbez.html
https://download.geofabrik.de/europe/germany/baden-wuerttemberg/freiburg-regbez.html
https://download.geofabrik.de/europe/germany/baden-wuerttemberg.html
https://download.geofabrik.de/europe/germany.html
https://download.geofabrik.de/europe.html
https://planet.openstreetmap.org/pbf/

freiburg bawue germany europe planet?

input (.pbf) 123M 482M 3.4G 23G 55G◦

output (.bz2) 257M 1.1G 7.5G 48G 100G∗

ram usage 2.47G 2.82G 13.51G 90.11G 108G�

runtime facts 2.50m 10.07m 71.51m 7.56 h 16.68 h
runtime geometry 50.13 s 44.96m 15.30 h 12.28 d 47.02 d
runtime 3.34m 55.02m 16.49 h 12.59 d 47.72 d

fact triples 22.05M 89.51M 598.73M 3.38B 4.67B
geometry triples� 11.83M 47.99M 342.09M 2.28B 4.88B

nodes (src) 12.42M 46.71M 337.22M 2.72B 6.50B
nodes (fact) 605.65K 2.03M 14.05M 96.76M 164.42M
nodes (geom) 605.65K 2.03M 14.05M 96.76M 164.42M

ways (src) 1.82M 7.72M 55.03M 326.43M 718.51M
ways (fact) 1.80M 7.65M 54.61M 319.97M 706.17M
ways (geom) 1.80M 7.65M 54.61M 319.97M 706.17M

relations (src) 31.60K 101.67K 677.84K 5.51M 8.38M
relations (fact) 31.58K 101.63K 677.56K 5.51M 8.37M
relations (geom) 0 0 0 0 0

areas (src) 1.24M 5.43M 39.62M 234.80M 499.37M
areas (fact) 1.24M 5.43M 39.62M 234.80M 499.37M
areas (geom) 1.24M 5.43M 39.62M 234.80M 499.37M

Table 2.: Results from real world runs. File sizes as reported by ls -lh, RAM
usage as reported by osm2ttl/libosmium. ?:Incomplete/older code used,
not enough time to rerun with final code. ◦: Input contains metadata.
∗: 12 fraction digits, no additional metadata. �: Node locations (during
dump) stored on disk and not in RAM. �: Added relations in both
directions, e.g. ogc:contains and ogc:contained_by.

easy storage and retrieval of spatial data with any triplestore, as long as the WKT
strings are not dropped during insertion into the triplestore.

Using text to store coordinates results in the usage of 8 bit per digit. Initially we
stored 12 fraction digits, but later we reduced this to 7 as all digits after the 7th

are always 0. These digits are zero, because the protobuf files store coordinates as
integers with a factor of 10, 000, 000. Using this factor to divide the integers a floating
point value with 7 fraction digits is obtained. This dropped the required space for a
single floating point value from 15-17 characters (120-136 bits) to 10-12 characters
(80-96 bits) before compression.

40

freiburg bawue germany europe planet?

R-tree generation 0.02 s 0.08 s 0.60 s 3.50 s 7.34 s
Sorting named areas 0.01 s 0.03 s 0.29 s 2.13 s 1.47 s
Generating non-reduced DAG� 1.95 s 91.80 s 57.46m 10.67 h 26.80 h
Fast lookup non-reduced DAG 0.03 s 0.66 s 5.43 s 1.67m 2.36m
Reducing non-reduced DAG 0.05 s 0.12 s 0.99 s 7.47 s 15.88 s
Fast lookup DAG 0.01 s 0.11 s 1.29 s 13.50 s 26.48 s

Dump DAG and area relations 0.10 s 0.36 s 2.79 s 18.93 s 33.36 s
Relations for unnamed areas� 0.72 s 9.18 s 3.23m 1.79 h 6.98 h
Relations for nodes� 5.10 s 4.33m 1.70 h 18.90 h 60.51 h
Relations for ways� 40.96 s 38.88m 12.58 h 10.97 d 43.08 d

Table 3.: Geometry parts runtime. ?:Incomplete/older code used, not enough
time to rerun with final code. �: Calculations involving explicit geometries.

5.2. Breakdown of runtime geometry

In Table 3 we break down the runtime geometry times from Table 2 into smaller
parts. We denoted parts where operations on the explicit spatial data are performed
with �. It is apparent that calculations involving many coordinates require more
time to be computed. Even for the planet dataset, the runtimes of the non-geometric
operations are vanishingly small compared to the geometric parts. Totaling < 5
minutes in comparison to 47 days, however, these simpler calculations reduce the
amount required in the geometric parts significantly.

The impact of the directed acyclic graph which contributes a huge amount of time
to the non-spatial part is further explained in Section 5.3. Irrespective of the use of
the directed acyclic graph, the geometric calculations must be carried out, as these
determine the relations of the named areas to each other.

To further debug the duration of spatial comparisons, we provide a compile-time
option for writing detailed timing information as a .json file. This file can be
analyzed using the provided analyse.go or through other means.

5.3. Savings through Directed Acyclic Graph

The values from Table 4 show that for unnamed areas the directed acyclic graph
removes 1/4 – 1/3 of the intersection checks and 1/3 – 2/5 of the containment checks.
Node containment and way intersection checks are reduced by around 2/5. The DAG
has the highest performance impact on way containment where around 4/5 of checks

41

can be skipped for the europe dataset. The performance impact of the DAG increases
with the depth of the hierarchies inside the dataset.

The amount saved by the directed acyclic graph is restricted by the data in the
OpenStreetMap. Named areas are not contained in a single hierarchy, but multiple
hierarchies exist, e.g. administrative areas, religious areas, national parks, forests,
and many more. As these hierarchies can have overlapping areas, they do not form
one single hierarchy.

The directed acyclic graph also contains sparsely filled areas, e.g. relations such as
the Karlsruhe Institute of Technology6 shown in Figure 14 which have big envelopes,
but the actual area is very small in comparison.

Figure 14.: Envelope and area of Karlsruhe Institute of Technology. The
envelope enclosing the highlighted areas spans Baden-Württemberg and
Bavaria and contains multiple bigger cities including Stuttgart, Ulm
and Augsburg. Provided by: QLeverUI and Leaflet | Map data © OpenStreetMap contributors,

CC-BY-SA, Imagery © Mapbox

To determine the influence of such areas we added the --minimum-area-envelope-ratio
argument, which removes named areas from the R-tree and the directed acyclic graph
if the ratio of area/envelope is smaller than a given threshold. In Figure 15 Table 5
we show how this reduces the number of areas in which lookups are performed due to
their omission in the R-tree. This can speed up the calculations as fewer candidates
are returned by the R-tree but can remove small areas too, which in itself speeds up
calculations as the directed acyclic graph can be queried if any object is contained in
such an area, increasing the runtime again.

6https://www.openstreetmap.org/relation/3350207

42

https://www.openstreetmap.org/relation/3350207

freiburg bawue germany europe
D
A
G vertices 32.79K 146.46K 991.31K 5.54M

edges 40.19K 181.20K 1.23M 7.69M

un
na

m
ed

ar
ea

intersects skipped by DAG 60.94K 272.69K 1.61M 14.95M
intersects comparisons 179.71K 678.05K 4.44M 32.66M
intersects comparisons yes 56.37K 213.19K 1.48M 7.61M
contains skipped by DAG 46.81K 219.58K 1.24M 12.85M
contains envelope comparisons 70.51K 266.31K 1.85M 9.72M
contains comparisons 19.84K 59.89K 398.03K 4.76M
contains comparisons yes 13.86K 37.92K 253.33K 3.63M

no
de

contains skipped by DAG 2.67M 15.34M 96.58M 658.15M
contains comparisons 3.54M 17.68M 118.04M 903.54M
contains comparisons yes 740.68K 2.53M 17.62M 134.71M

w
ay

in DAG 31.12K 140.18K 935.95K 4.93M
intersects skipped by node info 109.72K 535.81K 4.32M 23.28M
intersects skipped by DAG 7.37M 55.66M 376.04M 2.21B
intersects comparisons 10.37M 66.95M 453.93M 2.98B
intersects comparisons yes 2.06M 8.72M 62.31M 404.87M
contains skipped by DAG 7.19M 54.80M 370.28M 2.18B
contains envelope comparisons 2.35M 10.11M 72.40M 461.92M
contains comparisons 2.27M 9.77M 69.83M 446.00M
contains comparisons yes 2.11M 9.04M 64.95M 418.67M

Table 4.: Number of performed and skipped spatial comparisons by entity
type.

0.00 0.01 0.10 0.20 0.25 0.50 0.75 0.90

freiburg 33672 33667 33405 33003 32674 22300 4550 1191
bawue 147330 147318 146322 144677 143342 100414 23609 5907
germany 998931 998793 991235 976859 968346 671116 158069 39496

Table 5.: Minimum area/envelop ratio impact. Number of named areas stored
in the R-tree and DAG with the given minimum area/envelope ratio.
50%: around 1/3 of the areas are ignored. 75%: around 1/6 remains.
Visualization of the data is available in Figure 15.

5.4. Runtime growth with respect to input size

We observe an exponential growth of runtime in the spatial part of the calcula-
tions. This exponential growth is partially visible in Figure 15 where we plotted the

43

0 0.1 0.2 0.25 0.5 0.75 0.9
103

104

105

106

Minimal area/envelope ratio

N
um

be
r
of

ar
ea
s

germany
bawue
freiburg

Figure 15.: Minimum area/envelop ratio impact on the number of areas in
R-tree and DAG. The data for this plot can be found in Table 5.

area/envelope ratio effect. Baden-Württemberg consists of 4 Regierungsbezirke, the
first naive assumption would be that Baden-Württemberg has roughly four times the
amount of data than the Regierungsbezirk Freiburg.

This assumption is valid for the number of named areas which are confined to the
specific dataset, and which match the used hierarchy which filtered the data, but does
not apply to many other relevant data items. The number of comparisons required
does not depend on the number of named areas alone. If only the freiburg dataset is
considered, the areas Black Forest7 and Protestant Church in Baden8 areas are part
of this dataset. If we now look at the bawue dataset, Black Forest intersects both
Regierungsbezirk Freiburg9 and Regierungsbezirk Karlsruhe10 The Protestant Church

7https://www.openstreetmap.org/relation/3255371
8https://www.openstreetmap.org/relation/6153362
9https://www.openstreetmap.org/relation/2106112
10https://www.openstreetmap.org/relation/22027

44

https://www.openstreetmap.org/relation/3255371
https://www.openstreetmap.org/relation/6153362
https://www.openstreetmap.org/relation/2106112
https://www.openstreetmap.org/relation/22027

in Baden additionally intersects the Regierungsbezirk Stuttgart11 which increases the
number of objects possibly contained in it. The growth of such areas does not increase
the number of named areas itself, but the number of spatial comparisons.

Moving upwards in the hierarchy of datasets, bigger areas are introduced as well,
e.g. the whole German border is not part of the smaller datasets where only partial
information can be found. These bigger areas are, in general, more complex geometries
and therefore require more time during the directed acyclic graph creation. More
comprehensive datasets introduce objects which are not bound to the lower hierarchy
levels, e.g. way segments such as Bundesautobahn 5 12 (Figure 16) can intersect
the highest hierarchy levels of the smaller dataset. This explicit way intersects the
Regierungsbezirk Karlsruhe (Baden-Württemberg) and Regierungsbezirk Darmstadt
(State of Hessen). The first administrative entity which can encapsulate this way is
the German state border.

Figure 16.: Way segment of the Bundesautobahn 5. The highlighted way
crosses multiple administrative levels and intersects Baden-Württemberg
and Hesse. It is contained in neither of them but in Germany. Provided

by: OpenStreetMap | Map data © OpenStreetMap contributors

These problems, combined with the need for explicit geometry comparisons as shown
in Section 4.7, are partially responsible for the limited usability of the directed acyclic
graph as discussed in Section 5.3.

The R-tree as introduced in Section 3.5 could also perform better if replaced with
an index structure which is not axis-aligned, since most real world objects are not
aligned with the sides of the axis-aligned envelope boxes. Using a smarter index
structure could reduce the number of candidates, and thus reduce the number of
geometric calculations.

11https://www.openstreetmap.org/relation/22041
12https://www.openstreetmap.org/way/143772437

45

https://www.openstreetmap.org/relation/22041
https://www.openstreetmap.org/way/143772437

5.5. Exploring data using QLever

Using osm2ttl we can explore the data stored in the OpenStreetMap with a triplestore
engine, e.g. QLever. We performed queries against the transformed OpenStreetMap
with, and without linking Wikidata. For all queries the result only contains the
subject, which is a valid IRI pointing to the OpenStreetMap site for the given OSM
object, and the stored WKT entries. The runtime and result sizes for these queries
are presented in Table 6. We provide images of the results for the queries Q1 and
Q2 only, the graphical representation of the other results does not provide further
insights.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Lines? 2 3909 5645 358 851 2130 313101

Computation 184ms 4503ms 999ms 229ms 145ms 168ms 339ms

Table 6.: QLever result statistics for spatial queries. The Qx queries are
introduced in Section 5.5. All values are taken from the QLeverUI webpage,
the number of displayed items is capped at 100. ?: Areas from ways
are returned multiple times, once as a LINESTRING and once as a
MULTIPOLYGON geometry.

Q1 Places of worship with gothic architecture inside of Altstadt Freiburg
The previously introduced query in Listing 5 selects all places of worship inside
the Altstadt Freiburg, the spatial result is presented in Figure 4.

Q2 Buildings inside of Stühlinger
The query from Listing 14 selects all buildings inside the Stühlinger area, a
subset of the spatial result is presented in Figure 17.

Q3 Elements with tag railway intersecting RVF Zone A (Listing 15)

Q4 Restaurants in Landkreis Emmendingen (Listing 16)

Q5 University buildings inside of Berlin (Listing 17)

Q6 Highway parts of the
Bundesautobahn 5 — Frankfurt - Basel (Listing 18)

Q7 Everything in Freiburg (Listing 19)

46

Figure 17.: Buildings inside Stühlinger provided by QLever using osm2ttl.
This is an excerpt of the result obtained by executing the query
from Listing 14. Stühlinger is located on the west of the
Mannheim–Karlsruhe–Basel railway (Rheintalbahn). The outline and
area of buildings inside Stühlinger are highlighted with blue color. Provided

by: QLeverUI and Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

47

6. Future work

In this section, we present some ideas and thoughts on how to improve osm2ttl.

6.1. Relations for relations

As shown in Table 2 we do not calculate spatial relations for OpenStreetMap relations
which do not form areas, as introduced in Subsection 3.1.4. Calculating these would
e.g. allow to state which areas a given bus line intersects. This data could be used
for suggestions regarding tickets, especially in more complex situations like traveling
beyond fare network boundaries and borders.

One problem with calculating these relations is that the same argument as for the
need to calculate the relations for ways explicitly holds. As relations can consist
of ways, nodes, and most importantly other relations, we would need to sort the
relations to ensure dependencies are resolved first. Further, ways can represent inner
and outer borders of area relations. The difference in member semantic through
inner and outer would require the inversion of the contains relation for inner ways.
Calculating the relations with explicit geometries resolves these issues but increases
the computation time as shown in Table 3.

The information which node or way intersects which area can be used to improve the
intersection aspect of the relation calculation in the same way as for ways.

6.2. Computation on multiple machines

Serializing the named areas and the directed acyclic graph into a file, and adding
logic for selecting work-packages could enable computation on multiple machines.
The unnamed areas, ways and nodes are already stored on disk while reading the
OpenStreetMap data. The calculated node-area must be combined and shared, too.
Otherwise, the calculation of way-area intersections would be less efficient.

49

6.3. Better index structure

The current R-tree implementation, introduced in Section 3.5, organizes the contained
data using their bounding boxes which are axis-aligned. As many spatial objects in
the real world are not perfectly aligned this induces inefficiencies as more candidates
are returned than needed. Reducing the number of candidates would speed up the
spatial calculations as fewer explicit checks would be performed.

6.4. Split sparse/multipart areas

We discussed the problem of sparse and multipart areas, e.g. the Karlsruhe Institute
of Technology with its Campus Alpin, Garmisch-Partenkirchen, in Section 5.3. It
could be beneficial to split such areas into multiples. We see the challenges of keeping
track of the parts as relations need to reference the whole area. The R-tree and
directed acyclic graph require unique identifiers as otherwise the inclusion or exclusion
of one part would rule out all others, which could be possible candidates on their
own.

6.5. Combining intersection and containment checks

We calculate the intersection and containment in separate checks. In the worst case
this requires examining the explicit geometry twice. If these calculations can be
combined, a speedup could be possible.

6.6. More GeoSPARQL predicates

We only implemented intersects and contains from the GeoSPARQL standard [PH12].
Other GeoSPARQL predicates are disjoint, touches, equals, and more.

6.7. additional predicates — OSCAR

Predicates for filters provided by OSCAR e.g. distance could be implemented between
areas. This would allow a coarse estimate for the distance of contained entities. This
could enable a triplestore to filter the result set before computing the exact distances
using the explicit geometries.

50

7. Conclusion

Our tool osm2ttl provides a solid basis for working with OpenStreetMap data and
RDF. We implemented functionality to write RDF Triples in both N-Triple and Turtle
format according to the respective grammar. We provide a baseline implementation
for calculating geometric relations, and some insights into associated problems.

With osm2ttl we are able to solve the problem described in Section 1.1. We en-
abled QLever to solve the problem without changing their implementation. This
independence allows for further refinement of the data as proposed in Chapter 6.

We provide a suite of tests to ensure the correctness of osm2ttl, and a Dockerfile to
specify a reproducible environment.

The source code for osm2ttl is licensed under the GNU General Public License v3.0
or later and available on GitHub:

https://github.com/ad-freiburg/osm2ttl

51

https://github.com/ad-freiburg/osm2ttl

8. Acknowledgments

I want to thank Patrick Brosi for the time he made available for me during the
writing of this thesis. He provided deeper insights into the OpenStreetMap, spatial
relations, and suggestions regarding details of the implementation. He was always
available for questions and provided constructive criticism on the written part of the
thesis.

I thank Prof. Dr. Hannah Bast for the interesting topic of this thesis, and her
interest in the progress, and the results of osm2ttl. I am thankful for the provided
infrastructure and exclusive access to both machines for the duration of this thesis.

I thank Prof. Dr. Fabian Kuhn for agreeing to examine my thesis as well.

I want to thank all other members of the chair, which provided pointers on how to
write and structure the thesis, and involuntary agreed to hear me ramble about less
important details of the implementation not entirely relevant to their work.

Also, I want to thank Ellie Thiem and Johanna Götz for reading through incoherent
sentences and weird words. Elmar Frerichs for reviewing the content and improving
the clarity of the thesis.

Finally I want to thank my parents, who supported me throughout my studies and
especially during times with slow progress.

53

9. References

[Ali+21] Waqas Ali et al. “A Survey of RDF Stores & SPARQL Engines for Querying
Knowledge Graphs”. In: CoRR abs/2102.13027 (2021). arXiv: 2102.13027.
url: https://arxiv.org/abs/2102.13027.

[Alv01] H. Alvestrand. RFC 3066 — Tags for the Identification of Languages.
2001. url: https://tools.ietf.org/html/rfc3066.

[Bah20] Daniel Bahrdt. “OSCAR: a textual and spatial exploratory search engine
for OpenStreetMap data”. PhD thesis. University of Stuttgart, Germany,
2020. url: https://nbn-resolving.org/urn:nbn:de:bsz:93-opus-
ds-109328.

[BB17] Hannah Bast and Björn Buchhold. “QLever: A Query Engine for Efficient
SPARQL+Text Search”. In: Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM 2017, Singapore,
November 06 - 10, 2017. Ed. by Ee-Peng Lim et al. ACM, 2017, pp. 647–
656. doi: 10.1145/3132847.3132921. url: https://doi.org/10.1145/
3132847.3132921.

[BBN20] Hannah Bast, Patrick Brosi, and Markus Näther. “staty: Quality Assurance
for Public Transit Stations in OpenStreetMap”. In: SIGSPATIAL ’20:
28th International Conference on Advances in Geographic Information
Systems, Seattle, WA, USA, November 3-6, 2020. Ed. by Chang-Tien Lu
et al. ACM, 2020, pp. 207–210. doi: 10.1145/3397536.3422342. url:
https://doi.org/10.1145/3397536.3422342.

[Beb21] Brad Bebee. GeoSpatial · blazegraph/database Wiki · GitHub. [Online;
accessed 16-March-2021]. 2021. url: https://github.com/blazegraph/
database/wiki/GeoSpatial/94288ff3afdf4fea1dfed84cb3a715ee4773adf8.

[Boa15] OpenMP Architecture Review Board. OpenMP Application Programming
Interface – Version 4.5. [Online; accessed 26-April-2021]. Nov. 2015. url:
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.

[Boo] Boost. Boost C++ Libraries. [Online; accessed 1-April-2021]. url: https:
//www.boost.org/.

[CP14] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 Turtle — Terse RDF
Triple Language. Feb. 2014. url: https://www.w3.org/TR/2014/REC-
turtle-20140225/.

55

https://arxiv.org/abs/2102.13027
https://arxiv.org/abs/2102.13027
https://tools.ietf.org/html/rfc3066
https://nbn-resolving.org/urn:nbn:de:bsz:93-opus-ds-109328
https://nbn-resolving.org/urn:nbn:de:bsz:93-opus-ds-109328
https://doi.org/10.1145/3132847.3132921
https://doi.org/10.1145/3132847.3132921
https://doi.org/10.1145/3132847.3132921
https://doi.org/10.1145/3397536.3422342
https://doi.org/10.1145/3397536.3422342
https://github.com/blazegraph/database/wiki/GeoSpatial/94288ff3afdf4fea1dfed84cb3a715ee4773adf8
https://github.com/blazegraph/database/wiki/GeoSpatial/94288ff3afdf4fea1dfed84cb3a715ee4773adf8
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.boost.org/
https://www.boost.org/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/

[Fou21] OpenStreetMap Foundation. Main Page — OpenStreetMap Foundation,
[Online; accessed 26-April-2021]. 2021. url: https://wiki.osmfoundation.
org/w/index.php?title=Main_Page&oldid=8219.

[HP14] Patrick Hayes and Peter Patel-Schneider. RDF 1.1 Semantics (W3C
Recommendation). Feb. 2014. url: https://www.w3.org/TR/2014/REC-
rdf11-mt-20140225/.

[IEC16] ISO/ IEC. Information technology — Database languages — SQL multi-
media and application packages — Part 3: Spatial. ISO/IEC:13249-3:2016.
2016. url: https://www.iso.org/standard/60343.html.

[JHS21] Milos Jovanovik, Timo Homburg, and Mirko Spasic. “A GeoSPARQL
Compliance Benchmark”. In: CoRR abs/2102.06139 (2021). arXiv: 2102.
06139. url: https://arxiv.org/abs/2102.06139.

[Kar21] Geofabrik GmbH Karlsruhe. Geofabrik. [Online; accessed 26-April-2021].
2021. url: https://www.geofabrik.de/.

[Lin16] Wen Lin. “OpenStreetMap in GIScience: experiences, research and appli-
cations, edited by Jamal Jokar Arsanjani, Alexander Zipf, Peter Mooney
and Marco Helbich, Cham, Springer, 2015, 324 pp., US$179.00 (hard-
cover), ISBN 978-3-319-14279-1”. In: Int. J. Geogr. Inf. Sci. 30.4 (2016),
pp. 823–824. doi: 10.1080/13658816.2015.1077965. url: https://doi.
org/10.1080/13658816.2015.1077965.

[Ont21] Ontotext. GeoSPARQL support — GraphDB Free 9.4.0 documentation.
[Online; accessed 16-March-2021]. 2021. url: https://graphdb.ontotext.
com/documentation/9.4/free/geosparql-support.html.

[PH12] Matthew Perry and John Herring. OGC GeoSPARQL - A Geographic
Query Language for RDF Data. OGC 11-052r4. 2012. url: https://
portal.ogc.org/files/?artifact_id=47664.

[SC14] Andy Seaborne and Gavin Carothers. RDF 1.1 N-Triples — A line-based
syntax for an RDF graph. Feb. 2014. url: https://www.w3.org/TR/
2014/REC-n-triples-20140225/.

[SH13] Andy Seaborne and Steven Harris. SPARQL 1.1 Query Language (W3C
Recommendation). Mar. 2013. url: https://www.w3.org/TR/2013/REC-
sparql11-query-20130321/.

[Sta+12] Claus Stadler et al. “LinkedGeoData: A core for a web of spatial open data”.
In: Semantic Web 3.4 (2012), pp. 333–354. doi: 10.3233/SW-2011-0052.
url: https://doi.org/10.3233/SW-2011-0052.

[TD20] Nicolas Tempelmeier and Elena Demidova. “Linking OpenStreetMap with
Knowledge Graphs - Link Discovery for Schema-Agnostic Volunteered
Geographic Information”. In: CoRR abs/2011.05841 (2020). arXiv: 2011.
05841. url: https://arxiv.org/abs/2011.05841.

56

https://wiki.osmfoundation.org/w/index.php?title=Main_Page&oldid=8219
https://wiki.osmfoundation.org/w/index.php?title=Main_Page&oldid=8219
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.iso.org/standard/60343.html
https://arxiv.org/abs/2102.06139
https://arxiv.org/abs/2102.06139
https://arxiv.org/abs/2102.06139
https://www.geofabrik.de/
https://doi.org/10.1080/13658816.2015.1077965
https://doi.org/10.1080/13658816.2015.1077965
https://doi.org/10.1080/13658816.2015.1077965
https://graphdb.ontotext.com/documentation/9.4/free/geosparql-support.html
https://graphdb.ontotext.com/documentation/9.4/free/geosparql-support.html
https://portal.ogc.org/files/?artifact_id=47664
https://portal.ogc.org/files/?artifact_id=47664
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://arxiv.org/abs/2011.05841
https://arxiv.org/abs/2011.05841
https://arxiv.org/abs/2011.05841

[Top13] Jochen Topf. Osmium Library — A fast and flexible C++ library for
working with OpenStreetMap data. 2013. url: https://osmcode.org/
libosmium/.

[Wik20] OpenStreetMap Wiki. Overpass API — OpenStreetMap Wiki, [Online;
accessed 31-March-2021]. 2020. url: https://wiki.openstreetmap.
org/w/index.php?title=Overpass_API&oldid=2080108.

[Wik21a] OpenStreetMap Wiki. OpenRailwayMap — OpenStreetMap Wiki, [Online;
accessed 31-March-2021]. 2021. url: https://wiki.openstreetmap.
org/w/index.php?title=OpenRailwayMap&oldid=2110469.

[Wik21b] OpenStreetMap Wiki. Sophox — OpenStreetMap Wiki, [Online; accessed
15-March-2021]. 2021. url: https://wiki.openstreetmap.org/w/
index.php?title=Sophox&oldid=2105584.

57

https://osmcode.org/libosmium/
https://osmcode.org/libosmium/
https://wiki.openstreetmap.org/w/index.php?title=Overpass_API&oldid=2080108
https://wiki.openstreetmap.org/w/index.php?title=Overpass_API&oldid=2080108
https://wiki.openstreetmap.org/w/index.php?title=OpenRailwayMap&oldid=2110469
https://wiki.openstreetmap.org/w/index.php?title=OpenRailwayMap&oldid=2110469
https://wiki.openstreetmap.org/w/index.php?title=Sophox&oldid=2105584
https://wiki.openstreetmap.org/w/index.php?title=Sophox&oldid=2105584

A. Appendix

Listing 14: Q2: All buildings inside the Stühlinger
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?osm_id ?hasgeometry WHERE {
osmrel:1960198

↪→ (ogc:contains_area+/ogc:contains)|ogc:contains_area+|ogc:contains
↪→ ?osm_id .

?osm_id geo:hasGeometry ?hasgeometry .
?osm_id osmt:building ?building .

}

Listing 15: Q3: Elements with tag railway intersecting RVF Zone A.
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?osm_id ?hasgeometry WHERE {
osmrel:4221993

↪→ (ogc:contains_area+/ogc:intersects)|ogc:contains_area+|ogc:intersects
↪→ ?osm_id .

?osm_id geo:hasGeometry ?hasgeometry .
?osm_id osmt:railway ?railway .

}

59

Listing 16: Q4: Restaurants in Landkreis Emmendingen.
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?osm_id ?hasgeometry WHERE {
osmrel:1946117

↪→ (ogc:contains_area+/ogc:contains)|ogc:contains_area+|ogc:contains
↪→ ?osm_id .

?osm_id geo:hasGeometry ?hasgeometry .
?osm_id osmt:amenity "restaurant" .

}

Listing 17: Q5: University buildings inside of Berlin.
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?osm_id ?hasgeometry WHERE {
osmrel:62422

↪→ (ogc:contains_area+/ogc:contains)|ogc:contains_area+|ogc:contains
↪→ ?osm_id .

?osm_id geo:hasGeometry ?hasgeometry .
?osm_id osmt:building "university" .

}

Listing 18: Q6: Highway parts of the Bundesautobahn 5 – Frankfurt — Basel.
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?osm_id ?hasgeometry WHERE {
?osm_id geo:hasGeometry ?hasgeometry .
?osm_id osmt:ref "A 5" .
?osm_id osmt:highway "motorway" .

}

60

Listing 19: Q7: Everything in Freiburg.
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osmt: <https://www.openstreetmap.org/wiki/Key:>
PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?osm_id ?hasgeometry WHERE {
osmrel:62768

↪→ (ogc:contains_area+/ogc:contains)|ogc:contains_area+|ogc:contains
↪→ ?osm_id .

?osm_id geo:hasGeometry ?hasgeometry .
}

61

	1 Introduction
	1.1 Problem
	1.2 Contribution

	2 Related Work
	2.1 OpenStreetMap as RDF
	2.1.1 Sophox
	2.1.2 LinkedGeoData

	2.2 Linking Knowledge Graphs with OpenStreetMap
	2.3 Usage of OpenStreetMap data
	2.4 Query languages
	2.4.1 Overpass API
	2.4.2 SPARQL and GeoSPARQL

	2.5 OSCAR

	3 Background
	3.1 OpenStreetMap
	3.1.1 Stored data and download sources
	3.1.2 Non-spatial data: tags
	3.1.3 Spatial data: node, way, and relation
	3.1.4 Area

	3.2 Resource Description Framework (RDF)
	3.3 Well-known text (WKT)
	3.4 Directed Acyclic Graph (DAG)
	3.4.1 Undirected and directed graph
	3.4.2 Directed Acyclic Graph

	3.5 R-tree

	4 Approach
	4.1 Problem Definition
	4.2 Overview
	4.3 Reading OpenStreetMap (osmium)
	4.4 Writing valid RDF
	4.4.1 Implementation
	4.4.2 Turtle Prefix

	4.5 OpenStreetMap as spatial objects
	4.6 Serialization of spatial objects
	4.7 Geospatial lookup
	4.7.1 Fixed grid
	4.7.2 R-tree
	4.7.3 Directed Acylic Graph
	4.7.4 Spatial lookup of non-named areas

	4.8 OpenMP
	4.9 Runtime

	5 Experiments
	5.1 Real world data
	5.2 Breakdown of runtime geometry
	5.3 Savings through Directed Acyclic Graph
	5.4 Runtime growth with respect to input size
	5.5 Exploring data using QLever

	6 Future work
	6.1 Relations for relations
	6.2 Computation on multiple machines
	6.3 Better index structure
	6.4 Split sparse/multipart areas
	6.5 Combining intersection and containment checks
	6.6 More GeoSPARQL predicates
	6.7 additional predicates — OSCAR

	7 Conclusion
	8 Acknowledgments
	9 References
	A Appendix

