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Abstract

Increasing loads on the Low-voltage network (LVN) does require constant status

checks. The health status of a LVN can be determined using automated Electrical

grid power system state estimation (SE). The reformulation of State estimation task

(SE-task) uses heterogeneous graph concepts. Using Graph Neural Networks (GNNs),

applied complex voltage can be gained in spare measured girds. A date fitting concept

is presented for parsing LVN into a proper data structure. The author presents

GNN GSETR, capable of performing SE. A great performance of 99 % is reached by

GSETR, knowing all power measurements. Moreover, this work demonstrates the

robustness of the model. For this purpose, the measured power data is only sparsely

available to the model. A 91 % accuracy is achieved, in this second scenario.
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1. Introduction

The electric power grid, arguably the largest complex system on Earth, is recognized as

the greatest engineering achievement of the 20th century [25]. Former power concepts

of the grid, with separated industrial parks, centralized electricity generators, and

neighborhoods, are vanishing. Decentralized power injections by households with

photovoltaic systems and upcoming electrical energy-intensive interactors endanger

the health state of Low-voltage networks (LVNs). The problem of gaining the grid

state is named State estimation task (SE-task). Since 2022 is the Fraunhofer Institute

for Solar Energy Systems (ISE) researching with Graph Neural Network (GNN) to

analyze LVNs.

1.1. Motivation

A GNN learns data together with topological structures. Besides Electrical grid

power system state estimation (SE), many tasks have been formulated in a graph

fashion, e. g. teaching a GNN model finding a spelling error in a sentence [24].

The figure 1.1 provides an impression of the special graph topologies in LVN. A

heterogeneous citation graph is compared with the LVN Allensbach. In comparison,

the LVN topology is more flat. The natural representation of a LVN as a graph

and in the past years increasing performances for GNN architectures for temporal

graphs, [9] and [8], motivate to choose such an architecture. With the determined

energy transition, LVN becomes a more active part of the electrical system. [13]
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(a) Cora citation graph [17] (b) Allensbach LVN graph

Figure 1.1.: Two different graph sets. Plotted with different settings.

Therefore, it is required to gain knowledge about the state of all LVNs. Each SE

must be computed frequently, to well monitor a system’s state. Generally, the SE is

automatically determined by a SE-solver. The advancements of Artificial intelligence

(AI) techniques can omit the limitations of these physical laws, when applied to

the SE-task. A GNN can be more robust against noisy measurements and lack of

information. Further, it may be used for SE forecasts.

1.2. State estimation task

An adapted treatment for LVNs, solving the SE-task is presented in this work. The

knowledge about the applied complex power in a whole LVN is the state of the grid.

This work re-formulates the SE-task for a GNN. Power measurements within a LVN

are transformed into a temporal heterogeneous graph dataset. The dataset contains

different node and edge types. Node types are used to hide features from a model.

Two scenarios are defined: (1) with all features present for a GNN and (2) one, where

features are only sparsely available. This mechanism (2) represents a more realistic

2



case and is testing the robustness of a GNN model. Two GNN models, GSETR and

GSENR, are proposed by the author. Each is learning the state of a LVN. GSETR

performs in (1) nearly perfect, with an accuracy of 99 %, and in (2) well, with 91 %.

However, GSENR is introduced for future research.

1.3. Structure

An overview of related research and the SE project at the ISE provides chapter 2.

The third chapter 3 presents the LVN as a heterogeneous graph and defines the

SE-task. Moreover, basic concepts of Machine Learning (ML) and the processing of

heterogeneous data by GNN model are stated. The approach of the SE-task in GNN

fashion is defined chapter 4. Based on an on-top definition, the data fetching is also

sketched. The chapter 5 is showing the reproduction experiments and analysis of the

former project. These results flow into the models of chapter 6. Applying GSETR

and GSENR on two scenarios is contained in chapter 7. Moreover, a benchmark and

baseline for future research are made. A conclusion, with a discussion and additional

refinements, summarizes this work in chapter 8. This includes questions about the

reliability of this work.
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2. Related work

Different approaches for handling temporal graph problems and solving the SE-task

are done by other researchers. Selected works are presented below, as well as in

section 2.1 the project state on ISE for solving the SE-task.

Evaluating on temporal taxi data to forecast the traffic speed on each node in the

graph is done by [27] . The author presents scenarios for learning from all node

features and from spatial node features. The proposed GNN architectures use a

Gated Recurrent Unit (GRU)-Graph Convolution Network (GCN) and Long-Short-

Tearm memory (LSTM)-GCN attempt. The authors of [8] developed this model

further to CTGCN.

Using a GNN model design to solve the SE-task with supervised learning is done

before by [7] . The electrical grid is extended. For each node, four labeled nodes were

added for the features and the targets. Two feature nodes provide measured complex

current and complex voltage to the GNN model. These nodes form a bipartite graph.

Target nodes are used for learning the real and imaginary parts of the node state. The

authors suggest a heterogeneous model using Graph Attention (GAT) techniques.

[17] also performs SE, but in a LSTM fashion. Complex current, complex power,

active power, and reactive power are defined as input features. For selected nodes,

these node attributes are available to the model. The authors also describe noticed

differences, when applying GNN learning to electrical grid data.
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2.1. GNNSE 2023

Since 2022 is the ISE researching AI tools for SE. Below is a summary of the project

status until March 2023.

The project state until March 2023 is referenced as [20] . Reliable published results

are referenced as [11] (September 2022). This differentiation is required, since code

from [20] is used to reproduce [11] .

Up to twenty GCN layer uses [11] to solve the SE-task in an LVN. A LVN is represented

as a heterogeneous graph. Each node is associated with features and targets. For

the features, only active power and reactive power are used. The node target vector

contains voltage magnitude and voltage angle. A heterogeneous GNN model learns

the targets.

(a) Comparing voltage magnitude (b) Comparing voltage angle

Figure 2.1.: Violin plots, comparing targets (green) with estimated targets (orange).

[11]

The project is adapted by [20] . The author reduced the number of GCN layer to five

and the number of samples for training and validation. Training samples are filtered

based on the standard deviation, and validation samples are dropped randomly. A

normalization was applied to some data. Further, the bias weight of the last linear

6



layer is pre-defined, for all node types. However, [20] also concludes, that the model

is poor in variance.
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3. Basics

This chapter provides all the basic concepts required for understanding this work.

First, in section 3.1, the basic electrical grid and the graph data structures gets

defined. Further, is the SE-task formal defined. After introducing ML concepts in

the section 3.2, the GNN model architecture is explained in section 3.3.

3.1. Electrical grid as heterogeneous graph

The fundamental basics of electrical grids are covered in the following subsections:

Begin and end of a LVN are defined in section 3.1.1. This falls together with section

3.1.2, the representation of a LVN as a heterogeneous graph. A qualified graph data

structure is covered in section 3.1.3. In the last section 3.1.4, is the SE-task for LVNs

covered.

3.1.1. Low-voltage network

Nominal voltage Vnom is the defined voltage in an electrical network at normal

operation. Standardized German electrical grid classes relevant for this work are

listed below:

network level 5 A medium-voltage network provides a fixed nominal voltage or

supply voltage of Vnom,nl5 = 10 kV or up to Vnom,nl5 = 30 kV. For simplicity,

this network is represented as a single bus called slack i(s).

9



Network level 6 The transforming network consists of a transformer, often located

at the city border, with Vnom,nl5 input from the slack bus and output Vnom,nl7.

network level 7 The LVN is by a transformer connected with the network level 5

and provides Vnom = Vnom,nl7 = 0.4 kV to the city with 50 Hz.

[6] Such a structure is in figure 3.1, with tree topology for the LVN. For simplicity,

notes LVN in the following also the transformer and slack bus. This may represent a

Figure 3.1.: Abstract illustration of slack bus (green) via transformation (over-

lapped circles) connected to LVN, consists out of seven buses (dark

gray) linked by wires. Each node holds a vector (red) with a complex

voltage. Interactors (cyan) are linked to nodes.

street with five households. A filled circle (node) represents an electrical grid bus.

The slack node is green-notated, and the LVN dark gray. Each node with a house

represents a bus with participants in the electrical grid. As presented, also buses

with no participants are also possible. On each node in the grid is a complex voltage

applied (red), where the plotted values are in relative representation, as in section

3.1.4 defined. Further, there exists by construction only one slack node and may

be considered the tree root. For this research, only LVNs with tree topology are

respected.

10



3.1.2. Heterogeneous graph

A graph Gt = (N ,E,R,Σ(N )
t ,Σ

(E)
t ) represents an LVN at a time stamp t ∈ T ,

with

• nodes N := {i|i = 1 . . .N} representing the buses,

• the branches E ⊂ N ×N connected by the N := |N | different nodes,

• the edge attributes Σ
(E)
t and

• node attributes Σ
(N )
t .

The graph time series G := [G1, . . . ,GT ]
⊤ contains independent graphs Gt, in order

by increasing timestamps t = 1 . . . T . In G are collected timestamps notated as

T = {t|t = 1 . . . T}. The set of all edges is bidirectional,

∀(i, j) ∈ E =⇒ (j, i) ∈ E

, and without self-loops, i. e. (i, i) /∈ E. In a heterogeneous graph Gt, each node

i ∈ N is associated with a node type

∀i ∈ N =⇒ ∃r(N )
i ∈ R(N ).

Further, for each edge, there is an edge type

∀(i, j) ∈ E =⇒ ∃r(E)(i,j) ∈ R
(E).

Such a graph contains Node-edge-node-type links (nent-links) r(i,j) ∈ R

(r
(N )
i , r

(E)
(i,j), r

(N )
j ) = r(i,j),

with R ⊂ R(N ) ×R(E) ×R(N ) representing all nent-link in G. The argument r(N )
i

is mapping r(N )
i : N −→ R(N ) and r(E)(i,j) maps r(E)(i,j) : E −→ R(E).

The binary adjacency matrix AN×N describes the neighborhood of nodes for a defined

node order, where Ai,j := 1 only if (i, j) ∈ E. The neighborhood set A(i) for node

i ∈ N contains all reachable nodes i ∈ N within one node-hop A(i) := {j|(i, j) ∈ E}.

The number of neighbors A(i) = |A(i)| of i is called the node degree of i.

11



Permutation invariant

For a binary permutation matrix PN×N , the order of nodes (row and column) in the

adjacency matrix A can be adapted PAP⊤. Two graphs Gt and G
′
t have the same

topology if they are isomorphic Gt
∼= G

′

t′
. This is the case if P exists, s. t.

A
′
= PAP⊤

Σ
′(N )

t′ ,k
= PΣ

(N )
t,k ,

for all node attributes Σ
(N )
t,k ∈ Σ

(N )
t [4]. In the case of a homogeneous graph, the

edge and node types lists are updated. The graph nodes are not represented in a

Euclidean space, even if the node attributes can be used for that.

Example

The figure 3.2 shows a heterogeneous graph Gt representing an LVN. An interactor

Figure 3.2.: (left) LVN with interactors (cyan). (right) A heterogeneous graph Gt,

with colored nodes.

(cyan) with the LVN e. g. generator, loader or storage is connected to one node.

Nodes are labeled with bus*. Nodes (dark green, orange, dark blue) are of different

node type. Interactors hold attributes as a vertical vector. Different edge types are

marked by the line width (small, wide).

12



In Gt are the interactors aggregated to node attributes. Each interactor, node Σ
(N )
t

and edge Σ(E)
t attributes are different regarding their type. InGt are nodes of different

types (color) R(N ) linked by edges of different types (width) R(E).

3.1.3. Data structure

An alternative representation of the graph Gt uses an adjacency list Alist ∈ R2×E for

representing the edges,

∀(i, j) ∈ E =⇒ ∃k, (A1,k
list, A

2,k
list) = (i, j)

, with 0 < k ≤ E . An adjacency list Arlist ∈ N2×E(r) contains all nent-link in Gt

matching to the respective type triple r ∈ R. The set R contains all nent-link

existing in G. Further contains a set N (r(N )) of all nodes of the type r(N ) ∈ R(N ).

Let be Gt a heterogeneous graph, e. g. like G6 in figure 3.3. The graph Gt is stored

Figure 3.3.: (left) LVN time sequence T = {5, 6}.

(right) The equivalent graphs G = [G5,G6]
⊤, with stacked list repre-

sentation.

in the following data structure:

• an adjacency lists Arlist for each nent-link r ∈ R,

13



• an edge feature matrix X(r)
t ∈ RE(r)×F(r) for each nent-link r ∈ R, with F (r)

the feature dimension,

• a node feature matrix X(r(N ))
t ∈ RN (r(N ))×F(r(N )) for each node type r(N ) ∈

R(N ), with feature dimension F (r(N )),

• a node target matrix Y (r(N ))
t ∈ RN (r(N ))×T (r(N )) for each node type R(N ), with

target dimension T (r(N )) and

• less structured metadata M .

It is to point out that this list-based data structure can store multiple isomorphic

graphs Gt
∼= G

′

t′
. The lists of Gt and G

′

t′
are stacked in this case.

Example

The heterogeneous graph G in figure 3.3 knows three node types (green, blue, organ)

and two edge types (small, wide). It is stored in the above-defined graph data structure.

G represents the LVN during the time window T . Therefore, the duplicated edges,

the edge attributes, and the time-dependent node attributes are stacked for all time

stamps t ∈ T . G may be stored as a collection of

• five adjacency lists, like Agreen,wide,blue
list ∈ N2×2 or Ablue,small,blue

list ∈ N2×4,

• five edge feature matrices, like X(green,wide,blue)
t ∈ R2×3 or X(blue,small,blue)

t ∈

R4×2,

• three feature matrices, X(green)
t ∈ R2×2, X(blue)

t ∈ R4×4 and X(orange)
t ∈ R2×1,

• three target matrices, Y (green)
t ,Y

(orange)
t ∈ R2×2 and Y (blue)

t ∈ R4×2, and

• some metadata (light green).
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3.1.4. State estimation

This section describes the SE-task and the approach to solving this task by numerical

methods. This is mainly done by (1) aggregating the interactors on the nodes and

(2) applying a SE solver.

In a nutshell, the SE aims to determine in graph Gt the grid state Y t ∈ RN×2,

defined as a list of all node states,

[yt,1, . . . ,yt,N ]⊤ = Y t.

A node state is the complex voltage yt,i = [y
(|V|)
t,i , y

(θ)
t,i ]

⊤ ∈ R2 at a node i ∈ N .

[25] The active power Pi and reactive power Qi at a node i ∈ N is gained by (1)

aggregating the power of Ki different interactors attached to this node

Pi =

Ki∑
k

Pi,k (3.1)

Qi =

Ki∑
k

Qi,k. (3.2)

An interactor k may be a power consumer, power generator, or power storage unit,

with Pi,k, Qi,k ∈ R. The power is flowing and balancing in the LVN between all nodes.

The figure 3.2 shows different interactors (cyan) attached to some nodes.

Let j be the imaginary number. As in appendix A.1 showed, is the complex power

Sn for a node n ∈ N computable by

Sn = Pn + jQn (3.3)

= V n · In∗ (3.4)

= |V n|ejθn · (
∑

m∈A(n)

Y n,m · V m)
∗. (3.5)

Node state yt,i is affected by its neighbors j,∀j ∈ A(i), hence at most by N − 1

nodes. Due to [25] follows from (3.5) for active power,

0 = −Pi +
N∑
j=1

|Vi||Vj | · (Gi,j cos (△θi,j) +Bi,j sin (△θi,j))
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with △θi,j = θi − θj . Respectively, it holds for reactive power,

0 = −Qi +
N∑
j=1

|Vi||Vj | · (Gi,j cos (△θi,j) +Bi,j sin (△θi,j)).

The number of unknown variables is at most 2(N − 1) [25].

Sate estimation solver

To solve the SE-task in Gt, the following assumptions are made:

• The graph topology is known and constant.

• The admittance on all edges is known.

• For slack node i(s), all information is known.

• For all nodes i,∀i ∈ N , all interactor powers Pi,k and Qi,k are known.

[16], [6] Under these conditions, the SE-task at a time stamp t can be solved indepen-

dent of all other time stamps t ̸= t
′ , with t, t′ ∈ T . Defining the complex power V s

at the slack node i(s) ∈ N in the convention,

|Vt,s| := Vnom,nl5 (3.6)

θt,s := 0◦ (3.7)

enables to solve the power flow at all nodes i,∀i ∈ N . [15] As stated before and due

to convention, the node state yt,i is represented in relative form,

y
(|V|)
t,i := δ(|V|)|Vi|

y
(θ)
t,i := δ(θ)θi,

with ψ = {|V |, θ} and

δ := [δ(|V|), δ(θ)]⊤ = [
1

Vnom
,
2π

360
]⊤.
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Let be trns(·) the function applying this transformation

y
(ψ)
t,i = trns(ψi, δ

(ψ)). (3.8)

The authors of [25] provide an overview of the developed methods for successfully

solving the SE-task. However, these methods are not covered in this work. Interested

readers are also directed to [6] , which introduces the Newton-Raphson method.

Example

The figure 3.1 shows a slack node (green) with complex voltage stated in polar

representation, yt,i = [y
(|V|)
t,S , y

(θ)
t,S ]

⊤ ∼ [|VS |, θS ]⊤. The generator edge (S, 1) ∈ E shifts

the voltage angle and reduces the voltage magnitude, e. g. due to admittance Y S,1.

3.2. Machine learning

The general ML concept is introduced in the following subsection. For this concept,

the graph topology is not respected. Nevertheless, GNN techniques follow these

exactly. However, section 3.2.1 tells about the training and section 3.2.2 about the

validation of the model.

3.2.1. Training

Training is one main part of ML and is covered in the following.

In ML, a model is a mathematic abstraction of a parameterized architecture, learning

the relation between an input signal H(0) = Xt ∈ RN×F(N ) and target signal

Y t ∈ RN×T . Let be MODEL such a model. Moreover, let be G = [Gt|t = 1 . . . T ]⊤

a dataset containing the time stamps ×. These samples Gt = (Xt,Y t), ∀t ∈ T are
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used for training the model. F (N ) is the number of node features and T of targets

for each node i,∀i ∈ N . MODEL contains L layer,

H(l) = f (l)(H(l−1), ·),

producing a new hidden valueH(l), with l := 1 . . . L. The output Ŷ t =H
(L) ∈ RN×T

is called the prediction or estimation. A basic layer type is the linear -layer,

H(l) =W⊤(l)H(l−1) +w
(l)
b ,

where the weight W⊤(l) ∈ RF(N )×F(H,l) and bias w(l)
b ∈ Rd are learnable parameters

[1]. Optionally, w(l)
b can be a non-learnable constant. Additional to the features, Xt

is also Y t accessible, hence performs MODEL supervised-learning [18]. In the task of

performing SE, the target domain is not a set of discrete labels, i. e. yt,i ∈ RT .

Batch set

Model MODEL processes dataset G sample by sample. Generally, the dataset size

T too large. Processing it at once leads to increased time consumption or reaches

computational limitations. Therefore, is the set T gapless divided into B ∈ N

sub-sequences,

[T⊤
1| ∥ T

⊤
2| ∥ . . . ∥ T

⊤
B|]

⊤ = [t|t = 1 . . . T ]⊤,

with concatenation operator ∥. Each batch sequence list T i| ∈ Nb contains the ordered

samples,

T i| = [t|(i− 1) · b < t ≤ i · b, t ∈ T ]⊤.

b ∈ N is the batch size, and for simplicity, it is assumed T = B · b. The batch set Gt

for T i| contains b graphs,

Gi| = [Gt|t = Ti|,0 . . . Ti|,b]
⊤.
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A sub-feature Multidimensional array (md-array) Xi| ∈ Rb×N×F(N ) contains all

feature values from the samples in Gi|. Respectively, holds the same for target and

prediction md-arrays Y i|, Ŷ i| ∈ Rb×N×T . Let be batch(·) a function performing the

above-defined split into batch sets,

(Xi|,Y i|) = batch(G,T i|).

Loss function

Let the MODEL predicts Ŷ i| for Y i|. The loss L = loss(Y i|, Ŷ i|) is computed by a

loss function,

loss :(RT×N×T ,RT×N×T ) −→ R.

The L1-loss is a common loss function, as it is defined as L1-norm,

L =
1

T TN

T∑
t=1

N∑
i=1

T∑
ψ=1

|y(ψ)t,i − ŷ
(ψ)
t,i |. (3.9)

As for L1-Loss is the loss node-vise computed during all timestamps.

Process of training

Minimizing L, regarding the performance metric loss(·),ç is the objective of the weight

parameter optimization MODEL
′
= OPT(MODEL, L).

As in algorithm 1 sketched, during learning, batch set after batch set is processed.

Optionally, a transformation function trns used to modify values,

trns :RT×N×T −→ RT×N×T .
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Algorithm 1: Phase of MODEL training by supervised learning. Learn the
model to fit the data.

1 Function model_training():
Input: MODEL, G, b, trns
Output: MODEL

2

// Iterate over batch samples
3 for i := 1 . . . B do
4 (Xi|,Y i|) = batch(G,T i|)

5

6 Ŷ i| = MODEL(Xi|) // predict output
7 if trns then

// If defined, apply transformation
8 Y i| = trns(Y i|)

9 Ŷ i| = trns(Ŷ i|)

10

11 L = loss(Ŷ i|,Y i|) // Compute loss
12 MODEL = OPT(MODEL, L) // Optimize weight parameter

13

14 return MODEL

3.2.2. Validation

The task of the validation is to control the learning target. The concept for this is

described below.

Let be G defined as for the training, but containing samples not used for training.

During the validation phase are no changes to the model applied, no parameter

learning happens. Let be acc(·) a well-defined accuracy function,

acc :(RT×N×T ,RT×N×T ) −→ R.

The metric acc(·) is used to measure how well the model learned the desired target.

Process of validation

The validation process of the model MODEL is stated in algorithm 2. After processing
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Algorithm 2: Phase of MODEL validation. Control the behavior of the model.
1 Function validation():

Input: MODEL, G, ACCbest, denorm
2

// Iterate over samples
3 for t := 1 . . . T do
4 Ŷ t = MODEL(Xt) // predict output

// Stack new targets and prediction to previous
5 Y = [Y ⊤ ∥ Y ⊤

t ]
⊤

6 Ŷ = [Ŷ
⊤ ∥ Ŷ ⊤

t ]
⊤

7 if denorm then
// If defined, apply denormalization

8 Y = denorm(Y )

9 Ŷ = denorm(Ŷ )

10 ACC = acc(Y , Ŷ )
11

// Check if this model is the best yet seen
12 if ACC > ACCbest then

// Save MODEL and new best accuracy
13 SAVE(MODEL,ACC)

all samples, the accuracy ACC computed and compared with the best before-seen

accuracy ACCbest. The best accuracy and model are stored for later use. If the target

values are normalized, they need to be denormalized before being provided to the

accuracy function.

3.2.3. Process of evaluation

Different models are compared by the evaluation, as shown in the following sketched.

Dataset G with before not respected sample is used. Let’s assume the set {ACCk |k =

1 . . .K} contains the best accuracy on G from K different model. The mean bench-

mark result is ACC(avg) and the standard deviation is ACC(σ). Let be acck(·) a
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function computing this benchmark

(ACC(avg),ACC(σ)) = acck({ACCk |k = 1 . . .K}).

3.3. Graph Neural Network

In the following subsection, a GNN model architecture is introduced that is compatible

with the previously described concept of ML. A homogeneous GNN model is in section

3.3.1 first presented and further in section 3.3.2 generalized into a heterogeneous

GNN model.

The overall motivation of GNN models is to combine two kinds of information:

• The embedded values, that are provided by the node attributes of the graph.

What information is embedded in the node features?

• The graph structured, defined by nodes and their neighbors. How do linked

nodes influence each other?

[4] A model respecting the graph topology is called GNN model.

3.3.1. Homogeneous graphs

Within this section, the Message-passing framework (MPF) for homogeneous graphs

is defined.

Let be the dataset G = [G1, . . . ,GT ]
⊤ containing homogeneous graph samples.

Further, let be MODEL a GNN model learning supervised. Different from for general

ML is the input for a GNN model a graph sample Gt,

Ŷ t = MODEL(H(0),Alist,X
E
t ).

Therefore, the input is composed of (1) the node features H(0) := Xt ∈ RN×F(N ) ,

(2) the graph topology Alist and (3) the edge features XE
t ∈ RE×F(E) .
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Message-passing framework

A GNN layer learning the graph structure is called MPF. Let be m(l)
i a neural

message receiving at node i. m(l)
i consists out of, into it passed node embeddings

from all neighbors h(l−1)
j ,∀j ∈ A(i). A single message sent from a neighbor j to i is

aggregated by ϕ(·). These messages are merged by an aggregation function into the

neural message m(l)
i := ⊕

j∈A(i)
(·).

From observing graph properties, two qualities should be respected for processing a

graph Gt:

• The set of nodes N , edges E and node neighbors A(i) for i ∈ N can be various

large.

• The nodes i ∈ N are not ordered, hence are multiple adjacency matrices A
′

possible.

[4] The message aggregation function ⊕
j∈A(i)

(·) should therefore fulfill one of the

following properties:

• Is invariant to the node order in the adjacency matrix A,

f(PAP⊤) = f(A). (3.10)

• Is consistent with node order,

f(PAP⊤) = P f(A). (3.11)

Defined as a permutation matrix P . [4]

Let be f (l)msg a MPF defined as

h
(l)
i = f (l)msg(h

(l−1)
i ,Alist,H

(l−1),XE
t ) (3.12)

= λ(h
(l−1)
i , ⊕

j∈A(i)
(ϕ(h

(l−1)
i ,h

(l−1)
j ,xE

t,(i,j)))) (3.13)

= λ(h
(l−1)
i ,m

(l)
i ). (3.14)
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With an update function, λ(·) regulates the influence between the past layer l − 1

and the neural message. [4] Moreover, notice is that the edge features are not to be

updated.

Graph Convolution

A simple MPF for a GCN architecture generates the message

m
(l)
i =W

(l)
selfh

(l−1)
i +W

(l)
neigh

∑
j∈A(i)

xE
t,(i,j) · h

(l−1)
j√

A(i)A(j)
(3.15)

and is update by

h
(l)
i = λ(h

(l−1)
i ,m

(l)
i )

=m
(l)
i

[22]. For the equation (3.15) is property (3.10) fulfilled. In this kind of graph

convolution, the number of nodes N is not changing, and the graph structure remains.

Due to this property, iterating over many GCN layer 0 << l < L can lead to the

known issues below:

Vanashing signals Assuming W (l)
self <<W

(l)
neigh and focusing on node i ∈ N . The

node features h(0)
i and direct neighbor signals h(0)

j ,∀j ∈ A(i) are vanishing.

Over-smooting Signals in hidden values become too similar, h(l)
i ≃ h(l)

j .

[4]

Gatv2 Convolution

An attempt to be stable against the node degree is to assign attention weights to each

neighbor j,∀j ∈ A(i). The Graph Attention 2 layer (GATv2) uses these weights to
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define the importance of neighbor j for node i. Further, it uses GATv2 a Multilayer

perceptron (MLP) to learn edge scores,

si,k = a
⊤σatt(W

⊤(l)
att [h

(l)
i ∥ h(l)

k ] +W
(l)
Eattx

E
t,(i,k)), (3.16)

for all edges (i, k),∀k ∈ A(i). Further, are a ∈ R2F(N ) , W (l)
att ∈ RF(N )×F(H,l) and

W
(l)
Eatt ∈ RF(E)×F(H,l) learnable weight parameters and σatt(·) a non-linear function.

Knowing the edge scores, a softmax based attempt produces a normalized attention

weight 0 < αi,j < 1 for each neighbor j of the node i,

αi,j =
exp(si,j)∑

k∈A(i) exp(si,k)
. (3.17)

Using (3.17) the message aggregation and update of the hidden value may be

h
(l+1)
i = αi,iW

(l)
atth

(l)
i

∑
j∈A(i)

αi,jW
(l)
atth

(l)
j ,

for all i,∀i ∈ N . [23], [2], [21]

Example

The example in appendix A.2 provides an intuition for the MPF. Node-degree insta-

bility and the problem of vanishing signals are also illustrated.

3.3.2. Heterogeneous graphs

In this subsection is the MPF from (3.13) generalized to process a heterogeneous

graph Gt.

Gt contains different nent-links r ∈ R, with different node feature dimension F (r(N ))

and different edge feature dimension F (r). Each nent-link requires therefore its own

MPF f
(l,r)
msg . This has the effect of learning each nent-link more distinct. However,

this requires additional weight parameters for each nent-link .
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Massage-passing framework map

Let be MODEL a heterogeneous model with layer l a GCN layer. This layer is a

MPF map. The input for the first layer of MODEL consists of features for all node

types,

H(0,r(N )) =X
(r(N ))
t ∈ RN (r(N ))×F(r(N ))

,∀r(N )
i ∈ R(N ),

and edge types,

X
(r)
t ∈ RE(r)×F(r)

, ∀r ∈ R.

The last layer output and target value are defined as

Ŷ
(r(N ))
t ,Y

(r(N ))
t ∈ RN (r(N ))×T (r(N ))

, ∀r(N ) ∈ R(N ).

The MPF map l in MODEL contains a nent-link map,

{f (l,r)msg : ∀r ∈ R},

with MPF f
(l,r)
msg (·). Focusing a node i ∈ N , with neighbors j, k ∈ A(i) of different

type r(N )
j ̸= r

(N )
k . This heterogeneous sub-graph G

′
t is processed:

(1) The respective nent-links r(i,j) and r(i,k) are mapped into different MPFs.

(2) Each MPF processes its input.

(3) The outputs of these MPFs are aggregated to update the hidden value of node

i.

For each nent-link are the adjacency list Arlist, required node features H(l,r(N )) and

edge features X(r)
t mapped to its respective framework f (l,r)msg , i. e.

h
(l)
i = ⊕

r∈R
(f (l,r)msg (h

(l)
i ,A

r
list,H

(l,r(N )),X
(r)
t )).

And further for each node i,∀i ∈ N .

The nent-link aggregation ⊕
r∈R

(·) should fulfill either (3.10) or (3.11), to be consistent

with the neural message aggregation ⊕
j∈A(i)

(·). [12]
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Node type map

Assuming the model MODEL has a layer l of other kind than a MPF. This layer is a

Node type map (NT map),

{f (l,r(N )) : ∀r(N ) ∈ R(N )},

processing for each node type r(N ), the hidden values

H(l,r(N )) = f (l,r
(N ))(H(l−1,r(N ))).

Example

The figure 3.4 shows a heterogeneous batch set Gi| and two mapping layers. For each

Figure 3.4.: (left) A batch set Gi| with batch size b = 2 as input for a MPF map.

The following NT map processes the node features for each node type

r(N ) (right).

nent-link in Gi| contains the MPF map a parameterized MPF f
(l,r)
msg (·). Each f (l,r)msg

gets as input the edges, node features, and edge features from Gi|, regarding r. Each

f
(l,r)
msg applies an inner update as defined in (3.14). For the finale update of i(A) is the

nent-link aggregation of three outputs is required. The update to the other nodes is

trivial. The next layer is a NT map f (l,r(N )). These linear layers are learning distinct,

the hidden values for each node type.
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4. Approach

Taking the SE-task, this chapter presents the adaptation to the GNN approach.

Formulating the SE-task for heterogeneous graph learning is defined in section 4.1.

Based on this, it provides the second section 4.2, an overview of the data fetching. In

the third section 4.3 is the validation metric presented. The last section 4.4 provides

information about the project code.

4.1. Concept

Learning a GNN model to solve the SE-task is based on the concept, presented in

this section. First are the concepts for the different node and edge types defined in

section 4.1.1. In the second section 4.1.2 follows the association with attributes.

This work is only focusing on the topology of the Allensbach LVN. Since [20] only

focused on learning one topology, this work continues on this setup. It is assumed

that a LVN contains metadata M , as required below.

4.1.1. Node types and edge types

This work uses the in [11] proposed node types

R(N ) := {slack, measured, unmeasured}
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and edge types

R(E) := {transformer, line}.

The node types represent:

slack node This node i(s) ∈ N (slack) determines the complex voltage |V |(s) and θ(s)

provided for the LVN [6]. The slack node is always determined via the metadata

M and it holds N (slack) = 1.

measured node For these nodes i,∀i ∈ N (meas) are power measurements available.

unmeasured node Due to physical limitations, reduction of monetary costs, or

other technical difficulties, there are no measurements available on nodes i ∈

N (unmeas). Such a node may be an apartment building, just an underground

link, or a supermarket.

So stand the edge types for:

transformer edge The transformator connection slack node i(s) and node i, i ̸= i(s).

The network level 6 transformer is defined as a 0.4kV -transformer.

line edge Collection of standardized electrical wires used in the German LVN.

4.1.2. Features and targets

It is assumed that at most the information is available, as required for solving the

general SE-task. In general SE:

• the active power and reactive power must be available for all nodes, i. e. X(slack)
t

and X(meas)
t , and

• the wire properties are known, i. .e. X(∗,trafo,∗)
t and X(∗,line,∗)

t .
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These features are provided to a heterogeneous model MODEL. MODEL then

estimates Ŷ t for the system state Y t.

This work uses the feature dimension as defined by [11] . The node and edge attributes

available for the different types are defined in table 4.1.

Table 4.1.: Attributes and targets are available for different node and edge types.

Type Attribute/ Target Dimension

slack node x
(slack)
t,i := [P gener

i , Qgener
i ]⊤ F (slack) := 2

measured node x
(meas)
t,i := [P load

i , P gener
i , Qload

i , Qgener
i ]⊤ F (meas) := 4

unmeasured node x
(unmeas)
t,i := [0]⊤ F (unmeas) := 1

slack node yslackt,i := [|Vi|, θi]⊤ T (slack) := 2

measured node ymeas
t,i := [|Vi|, θi]⊤ T (meas) := 2

unmeasured node yunmeas
t,i := [|Vi|, θi]⊤ T (unmeas) := 2

transformer edge x
(∗,trafo,∗)
t,(i,j) := [Xi,j , Ri,j , Gi,j , Bi,j , τi,j , θ

(T )
i,j ]⊤ F (∗,trafo,∗) := 6

line edge x
(∗,line,∗)
t,(i,j) := [Xi,j , Ri,j , Gi,j , Bi,j ]

⊤ F (∗,line,∗) := 4

A positive signed feature value always represents injection and negative consumption

of power in the LVN. The different node features represent

generator Provided power P gener
i or Qgener

i at node i.

load The power P load
i or Qload

i is either consumed or provided. Possible injected

power by a storage unit is (1) used to demand the load on the attached node i

and (2) afterward provided to neighbor nodes j ∈ A(i).

For the node types, this means:

slack node By definition, it only provides power to its neighbors.

measured node Provided or consumed power is known.
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unmeasured node No data is available, as defined. However, target values are known

for supervised learning.

The two edge types holding the similar properties:

line edge The physical properties: series reactance, series resistance, shunt conduc-

tivity, and shunt susceptance are used. These edge features are relative to the

Vnom.

transformer edge All line edge features are available. The transformer also provides

information about its tab ratio and phase shifting to the model.

On all nodes, the target feature yt,i always the node state. This allows a combined

processing via

Y t = [Y
(slack)⊤
t ∥ Y (meas)⊤

t ∥ Y (nnmeas)⊤
t ]⊤

Ŷ t = [Ŷ
(slack)⊤
t ∥ Ŷ (meas)⊤

t ∥ Ŷ (unmeas)⊤
t ]⊤.

Hence, MODEL is learning the grid state Y t ∈ RN×T . The voltage magnitude target

y
(|V|)
t,i and the voltage angle target y(θ)t,i are the results from (3.8). The table A.1

provides the units for all physical properties.

4.2. Data fetching

By the ISE created and provided, LVN sets need to be parsed and stored in a graph

data structure compatible for GNN models. This section presents an overview of

the parsing, creating out of LVNs a data structure G. In the first section 4.2.1, the

actual parser concept is presented. Using the section above, section 4.2.2 describes

the attribute aggregation. Further, in section 4.2.3 are policies for assigning node

types defined.

32



4.2.1. Parser pipeline

In practice, different LVN {G′(1), . . . ,G
′(K)} are used. The parser merges these into

one dataset (graph time series) G as sketched in appendix C by algorithm 4 and

below in figure 4.1. The basic idea is:

Figure 4.1.: LVN as input for the filter and parser and a dataset G = [G⊤
0 ∥ . . . ∥

G⊤
T ]

⊤ as output.

(1) to parse and aggregate a LVN G(k) into independent graph samples G(k)
t ,

(2) repeat this for all K different LVN and

(3) concatenate all samples together into a single dataset

G =
K

∥
k=1

T (k)

∥
t=1

G
(k)⊤
t .

(1) is done:

(a) by aggregating interactors,

(b) assigning node types and edge types,

(c) collecting node attributes, and
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(d) storing the data in the graph data structure.

The algorithm 3 provides a more detailed view of the data fetching. Each sample

t is stored in the list and matrix representation, but with support for all possible

nent-link combinations

∀r ∈ Rds = R
(N ) ×R(E) ×R(N ).

In figure 4.2 is this Rds presented. For a nent-link not contained in a LVN G
′
, an

Figure 4.2.: All possible combinations of nent-link r ∈ Rds. [11]

empty frame is added. If the dataset always contains the structure for each possible

nent-link r, a model must also support all nent-links. As in figure 4.1 illustrate, can

G contain LVNs with different topologies. However, the in (b) applied assignment

should cover the same R.

4.2.2. Attribute aggregation

The in LVN value parsing and attribute aggregation from (a) are done for each sample

t. The SE-task is solved via a solver (section 3.1.4). The output gains all node states,

[|Vi|, θi]⊤, ∀i ∈ N . The interactors k = 1 . . .Ki on each node i ∈ N in sample Gt are
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processed twice. First generated by the solver are Pi and Qi, as in (3.1) and (3.2). A

second aggregation loop is generating, regarding the interactor types, the features

below:

P load
i =

Ki∑
k


−Pi,k M tells about load interactor

Pi,k M tells about storage interactor

0 else

P gener
i =

Ki∑
k


Pi,k M tells about generator interactor

0 else

Qload
i =

Ki∑
k


−Qi,k M tells about load interactor

Qi,k M tells about storage interactor

0 else

Qgener
i =

Ki∑
k


Qi,k M tells about generator interactor

0 else

The power values and complex voltages are node attributes. Values for the edge

attributes are directly collected from the LVN. The solver also provides the edge

attributes in the representation relative to Vnom.

4.2.3. Assignment of types

A type assignment is for all samples t ∈ T constant. These types are used for

feature and target selection. The assignment of follows Edge-type policy (ETP)

and Node-type policy (NTP). A chosen NTP assigns node types and an ETP edge

types.
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GNNSE2 policies

[11] proposes the assignment of the types defined below. One node i ∈ N , well tagged

in the graph metadata M , is assigned as slack node i(s) ∈ N (slack). A node i ∈ N

with over time constant zero active power is defined as unmeasured node else as

measured node:

r
(N )
i =


slack node M tells slack node functionality

unmeasured node Pt,i == 0,∀t ∈ T

measured node otherwise

The information about the edge type R(E) for edge (i, j) ∈ E is given by the metadata

M :

∀(i, j) ∈ E, r(E)(i,j) =


transformer edge M tells transformer edge functionality

line edge otherwise

UnmeasuredPQZero node-type policy

A slightly redefined NTP is UnmeasuredPQZero. In the case of Qt,i ̸= 0, with this

adaptation, no information is erased. A node i ∈ N with over time constant zero

active power and also reactive power is defined as unmeasured node else, as measured

node,

∀i ∈ N , r
(N )
i =


slack node M for slack node functionality

unmeasured node Pt,i == 0 ∧Qt,i == 0,∀t ∈ T

measured node otherwise

.

This policy removes no information from the electrical grid relevant for SE. When

assigning type unmeasured node instead of measured node aggregated information

can be lost,

x
(unmeas)
t,i ̸= x(meas)

t,i

[0]⊤ ̸= [P load
i , P gener

i , Qload
i , Qgener

i ]⊤.
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But for the power flow, only the information about the power at a node i is relevant,

[0]⊤ ≈ [P load
i + P gener

i , Qload
i +Qgener

i ]⊤

≈ [Pi, Qi]
⊤

≈ [0, 0]⊤.

Hence, the model can access all relevant active power and reactive power measurements.

However, the unmeasured node type is required, due to parser limitations.

RandomUnmeasured node-type policy

Related works defined graphs containing sparse information to test how robust a

GNN model is. Therefore, a more realistic second NTP is defined. k randomly chosen

non-slack nodes are defined as unmeasured nodes. Node type unmeasured node allows

removing information from X
(meas)
t . This assignment stated formally is:

∀i ∈ N , r
(N )
i =


slack node M tells about slack node functionality

unmeasured node i ∈ N (unmeas)

measured node otherwise

.

4.2.4. Data filter

Given a dataset G, there are additional operations possible to prepare the data for a

model. One option is to standardize all node attributes. The opposite thinking, is to

transform the node targets from a relative representation into the actual one. These

filters are defined in this section.

Value standardization

As per convention, the target values are in different relative representations, and

active power and reactive power are without modification by default. As from figure
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2.1 to extract, also the target values are distributed in different ranges. The commonly

used standard score is used to standardize the values

z
(r(N ))
t,i =

z
′(r(N ))
t,i − z̄(r

(N ))

σ
(r(N ))
z

.

All training and validation samples are pre-computed to gain the mean z̄ and standard

deviation σz,

z̄(r
(N )) =

1

TN (r(N ))

∑
t∈T

∑
i∈N (r(N ))

z
(r(N ))
t,i

σ(r
(N ))

z =

√√√√ 1

TN (r(N ))

∑
t∈T

∑
i∈N (r(N ))

(z
(r(N ))
t,i − z̄r

(N )))2.

As notated, this is done for all node features ∀z ∈ {P load, P gener, Qload, Qgener} and

each node type ∀r(N ) ∈ R(N ). The features of unmeasured node are constant in

time,

x
′(unmeas)
t,i = [0]⊤,∀t ∈ T =⇒ x

(unmeas)
t,i = [0]⊤, ∀t ∈ T .

By always taking special care of dividing by zero, i. e. σ(r
(N ))

z = 0, some attributes

are not touched. Also, the targets are normalized. The statistic values z̄(y) and σ(y)z

are defined over all nodes i ∈ N . This is done, since the attributes for the targets Y

are the same z ∈ {|V |, θ} for all node types. Hence, the standard score for a target

attribute is

z
(y)
t,i =

z
′(y)
t,i − z̄(y)

σ
(y)
z

.

4.2.5. Voltage transformation

The general complex voltage as the target value is represented via (3.8). This

transformation is reversed:

y
(|V|,+)
t,i = Vnom · y(|V|)

t,i

y
(θ,+)
t,i =

180

π
· y(θ)t,i .
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Let be trns−1(·) a function applying this reverse transformation,

Y (ψ,+) = trns−1(Y (ψ), δ(ψ)). (4.1)

4.3. Validation metric

This section defines the metric to control the learning of the model.

Let be yt,i = [y
(|V|)
t,i , y

(θ)
t,i ]

⊤ ∈ R2 the state of node i for sample t and ŷt,i =

[ŷ
(|V|)
t,i , ŷ

(θ)
t,i ]

⊤ ∈ R2 the estimation by MODEL. The basic threshold

ε(b) = [ε(|V|,b), ε(θ,b)]⊤ (4.2)

is defined as:

ε(|V|,b) = 10−3 pu

ε(θ,b) = 10−2 rad.

These values are defined for a potential application in the field. Applying the

transformation (4.1) means an actual threshold of:

ε(|V|,+) = 0.4V

ε(θ,+) = 0.6◦.

Let be the targets values ψ ∈ {|V |,Θ}. Starting with the definition of the accuracy

at a single node i ∈ N of a sample Gt. A predicted node target ŷ(ψ)t,i is defined as

correct, if it holds

ŷ
(ψ)
t,i ∈ Yψ

t,i, (4.3)

with

Yψ
t,i = {ŷ(ψ)t,i |y

(ψ)
t,i − ε(ψ) ≤ ŷ

(ψ)
t,i ≤ y

(ψ)
t,i + ε(ψ)}. (4.4)
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The family of sets Yψ
t,i contains all correct predictions for y(ψ)t,i . A prediction node

state ŷt,i is correct, if all targets within are correct

ŷt,i ∈ Y t,i,

with

Y t,i = {ŷt,i|
∨
ψ∈ψ

ŷ
(ψ)
t,i ∈ Yψ

t,i}.

For accuracy, all nodes i = 1 . . .N and all samples Gt, t = 1 . . . T are respected

ACC =
|{ŷt,i|ŷt,i ∈ Y t,i,∀i ∈ N , ∀t ∈ T }|

N · T
(4.5)

= acc(Ŷ ,Y , ε). (4.6)

The same is true for ACC|V| and ACCθ, focusing only on one target, ψ.

4.4. Code standard

In this section, code improvements and design choices are discussed.

The field of AI plays a significant and increasing role in our modern world. Therefore,

AI research should fulfill the highest standards for reproducibility. Still, absolute

transparency results can be a challenge, due to well-placed random parameters and

complex model architectures. Therefore, around fifty unit tests are defined, and a

straight-code style is used. More information about unit tests and code standards is

provided in appendix C.2.

40



5. Reproduction experiment

This section contains an analysis for the GNNSE 2023 model (GNNSE3 model). The

first section 5.1 analyses the known variance problem from [20] . A second section

5.2 analyzation determines a design problem for the validation of voltage angle. In

section 5.3 are the results collected.

The validation accuracy for the estimated node states is up to 50 %, with an voltage

magnitude accuracy of 50 % and for voltage angle 90 %. The author of [11] stated two

reasons: (1) the data distribution range for the target voltage magnitude is wider

than for voltage angle, and (2) the value accumulation is more steep for voltage

angle.

5.1. Poor variance

The section presents the analysis for the variance problem. The issue has been known

since [11] and in the following reproduced.

GNNSE3 model and closely related models never reached an accuracy better than

60 %. The benchmarks for the evaluation are listed in table 5.2. Comparing the value

distribution from [11] in figure 2.1 with the one for GNNSE3 model in figure 5.1, the

poor variance of the models is verified. The figure 2.1 contrasts the ground truth

(green) and estimated value (orange). In (a) is voltage magnitude and in (b) is the

voltage angle compared. On the y-axes, for each occurred value, there is a horizontal

bar with the amount of occurrence as its length. An ideal estimation would reflect
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Figure 5.1.: Violin plots comparing targets (green) with estimated target (orange)

for GNNSE3 model .

all target nodes on the y-axes. The first difference in the setup for the plots is the

by trns−1(·) transformed value range. By definition of the SE-task, full knowledge

about the slack node state is given. The model still estimates ŷt,s, but the results

for this node state are trivial. Since this is given, the results for slack node are not

represented in figure 5.1 and in the following plots. Further, the model is evaluated

on dataset ds1 and for the shape, no filling was applied.

5.1.1. Model learns only bias

The results in figure 5.1 can be taken into relation with the sample/time stamp t and

interpreted per node. Such a setup is illustrated in figure 5.2 for voltage magnitude

in (a) and voltage angle in (b). Each plot shows the values for a different node, with

the target values (green) and the value estimation of GNNSE3 model (orange). The

total target node mean is blue, and further is the basic threshold (4.2) range (gray)

in the background. The shape is forming the set of correct estimations Yψ
t,i. Again,

the poor variance of GNNSE3 model appears. It seems the trained GNNSE3 model

estimation is converged to the target mean value, with a small gap.
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Figure 5.2.: By GNNSE3 model estimated time series (orange) of target values

(green) with one plot per node. The target mean is blue, and the

threshold range is gray.

The nodes are selected based on the over-sampling estimation L1-loss. Selected is

(top) the smallest loss, (middle) the closest to the average loss, and (bottom) the

largest loss. This nearly constant estimation appears as the mean without outlier

influence. The model generalization is motivated to cross low-variance samples with

high density ranges, i. e. the model learns only the bias.
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5.2. Poor validation

This section shows the missing control functionality for the voltage magnitude esti-

mation.

In the following is an approximation of GNNSE3 model defined. Let be the estimated

value for node i be

ŷ
(ψ)
t,i = β(ψ) +

1

T

T∑
t=1

y
(ψ)
t,i +N (noise)

t,i

= β(ψ) + ȳ
(ψ)
i +N (noise)

t,i

∀i ∈ N and with ψ ∈ {|V |, θ} the targets and β(ψ) a respective offset. Using this

observation, Constant Mean Estimation model (CME model) can be learned by

Ŷ
(ψ)

= CME(X(ψ))

= CME(Y (ψ))

= [ȳ
(ψ)
i , . . . , ȳ

(ψ)
N ]⊤.

The behavior of the model is approximated by N (noise)
t,i := 0 and the graph state is

the input feature X(ψ) = Y (ψ). That is, learning on a dataset A the Ŷ
(ψ)

, results

in estimating on all datasets B the total node means of dataset A. The behavior of

CME1 model and CME1 mode2 , defined in table 5.1, is related to the GNNSE3 model .

Therefore, CME1 model and CME1 mode2 are used for a technical proof. For CME1

Table 5.1.: Different training datasets and settings for CME models.

name training dataset β(|V|) β(Θ)

CME1 model ds1 0.0 0.0

CME1 mode2 ds2, ds3 −0.002 0.0

mode2 is a small mean shifting β(|V|) = −0.002 (motivated by figure 5.2) defined. The

benchmark results are presented in table 5.2. CME1 model is trained and evaluated

on the same dataset, so the estimation is the actual total node mean. An accuracy of
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Table 5.2.: Accuracies for evaluation on dataset ds1, with the different thresholds.

model Threshold ACC ACC|V| ACCθ

GNNSE3 model [10−3, 10−2]⊤ 0.517 0.517 0.983

CME1 model [10−3, 10−2]⊤ 0.608 0.608 0.993

CME1 model [10−3, 10−3]⊤ 0.450 0.608 0.453

CME1 mode2 [10−3, 10−2]⊤ 0.506 0.506 1.000

ACCCME1 model > 60 % and ACCθCME1 model ≈ 100 %, for an estimated mean, makes

the training trivial. A model validation cannot check the regression learning target.

It is also to be noticed that CME1 mode2 nearly reaches the performance of GNNSE3

model . Due to the accuracy metric, ACC|V| is always the limiting factor for ACC.

5.3. Conclusion

A short conclusion of the results from the past sections is contained in the lines

below.

For deep GNNs, the hidden values can become very similar. When applying GCN

layer, the model should therefore be more flat. The limitation of ACC < 60 %

comes from missing variance. Since for GNNSE3 model learning only applies to

the bias, it is required to choose a layer l,∀l = 1 . . . L − 1 with non-trainable bias

parameters. Furthermore, should the last layer l = L be a linear layer with learnable

bias parameter to make sure the model still orients to total node means. The threshold

ε(b) prevents controlling the learning target. However, since the complex voltage

angle θ is in practice not that relevant, this setup remains. The threshold ε(θ,b) still

provides information about leaned biases.
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6. Model approach

Taking respect to the analysis of the GNNSE3 model , different attempts are required

for future GNN model. This chapter presents two different models along with the

motivation for them. First in section 6.1 a model using the transformer filter, and a

second one in section 6.2 using normalization.

6.1. GSETR

In this section, a naive motivated model is presented, called GSETR.

6.1.1. Transformation

The motivation for this model is based on (A.6). In the following is j the imaginary

number. Using (A.6) and (3.8) gains for a node i ∈ N

Pt,i +Qt,i = δ(|V|)y
(|V|)
t,i exp(jδ(θ)y

(θ)
t,i ) · I

∗
i .

The node state arguments yt,i, in this equation, are the linear regression target.

Applying (4.1) on Y and Ŷ before passing these into the loss function loss(Y (+), Ŷ
(+)

),

slightly changes the regression target. This changes ŷt,i = [ŷ
(|V|)
t,i , ŷ

(θ)
t,i ]

⊤ into ŷ(+)
t,i =

[δ(|V|)ŷ
(|V|,+)
t,i , δ(θ)ŷ

(θ,+)
t,i ]⊤. All features are used as defined in section 4.1.2. However,

the model still estimates Ŷ t. This linear transformer can be seen, as a weight for the

influence, of the attribute losses on the total loss.
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6.1.2. Relative loss function

The GNNSE3 model uses L1-loss as in (3.9). Since the value ranges of voltage

magnitude y
(|V|,+)
t,i and voltage angle y

(θ,+)
t,i are not equally large, a relative loss

function is chosen. From the benchmark test in [5] is the Relative Root Mean Squared

Error (RRMSE) loss function selected,

L =

√√√√ 1
T NT

∑T
t=1

∑N
i=1

∑T
ψ=1(y

(ψ)
t,i − ŷ

(ψ)
t,i )

2∑T
t=1

∑N
i=1

∑T
ψ=1(y

(ψ)
t,i )

2
.

6.1.3. Convolution layer

Bringing the example in figure 1.1 together with the information in the table B.1.

LVN contain a relatively low number of edges, and the average node degree is less

than three. The node states yt,i,yt,j of two nodes i, j ∈ N with j ∈ A(i) are highly

related. Important information for the general SE-task is provided to the model

by edge features, i. e. the complex admittance values. Therefore, the GATv2 layer

is chosen for the message aggregation. Its MLP based edge attention also learns

edge features. Moreover, multiple attention weights can be learned, called heads.

Techniques like sub-graph sampling brings an information loss into the message flow

[4] . Therefore, these are likely not sufficient.

6.2. Standardized model

A second model, GSENR is defined, using normalized data as input.

A numeric stable model is required since, (1) the number of different LVNs is large, (2)

each contains a unique power flow, and (3) not-seen loads can occur. The node features

are node-vise normalized, and the targets are node-type independent normalized, as

defined in section 4.2.4. The appendix D provides more detailed information about

the models GSETR and GSENR.
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7. Experiments

In this chapter, first in section 7.1 the two model approaches are analyzed for the

UnmeasuredPQZero NTP. For the NTP RandomUnmeasured, a benchmark result is

presented in the second section 7.2.

The validation scenario is a cross-scenario. The different models are (1) trained and

validated on dataset {2, 4, 5} and (2) evaluated on dataset ds1. The training-validate

split is 75 % for training, without mixing the samples. This represents the case when

a model learns from the past and applies it to future measurements. All statistics are

for the basic threshold ε(b).

7.1. UnmeasuredPQZero policy

For this first experiment, the NTP UnmeasuredPQZero is used. Results and an

analysis are presented in section 7.1.1 and in section 7.1.2. The UnmeasuredPQZero

NTP leads to an unrealistic setup. Gained results, from this setup, are still relevant

for a first model selection.

7.1.1. GSETR

During the research, the GSETR model performed best regarding the accuracy metric.

Selected statistic values are presented in figure 7.1. The statistical values are collected

during 50 epochs, once for training (blue) and once for validation (orange). As for
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Figure 7.1.: Statistic values for GSETR during training and validation.
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[11] and GNNSE3 model remains, the estimation of the voltage magnitude in (c)

is the limiting factor. The GSETR converges instable, to a validation accuracy of

ACC ≈ 97 %. The subfigure (a) shows a validation frequency with a large amplitude.

On the other side, during training, the accuracy for voltage magnitude converges as

the learning rate drops. Evaluated on dataset ds1 the model reaches an accuracy

of ACC ≈ 99 %. Nearly all estimated targets in figure 7.2 are within the threshold

boundary. The voltage magnitude of the node 3 in (b) is often underestimated. For
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Figure 7.2.: Evaluation results of GSETR on dataset ds1. In the plots, there are

targets (blue) and estimated targets (orange). A target threshold (gray)

is in the background.

runs with a larger number of epochs, the validation accuracy becomes more stable as

the learning rate decreases more.
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Figure 7.3.: Evaluation results for GSENR variant one.

7.1.2. GSENR

Two architectures of the GSENR model are used for the experiment. For the variant

in section 7.1.2, after each GCN layer follows a batch normalization and a Rectified

Linear Unit (ReLU) activation function. In the second variant in section 7.1.2, batch

normalization is not applied after the first layer.

In both setups, all mean and standard deviation values are pre-computed on dataset

{2, 4, 5}. Pre-computed values are also preserved for the evaluation.

Full batch-normalization

An early overfitting of this model architecture can be concluded from figure 7.3. The

model learns the training set, but does not generalize to the validation data. As good

to see, in (a) diverges the training and validation accuracy. This is conformed by (b).

As the model is overfitting, the losses diverge too.
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Figure 7.4.: Training and validation results from GSENR variant two.

Late batch-normalization

When applying less batch normalization, the model is overfitting less. Results for

this architecture are in figure figure 7.4. The inference from (a) and (b) is also that

the model becomes more stable. The loss decreases over the different training and

validation epochs. The figure 7.4 also provides plots for the distribution of voltage

magnitude (c) and voltage angle (d). Plotted estimations are from the epoch with

the best validation accuracy. While the voltage magnitude target distribution is well

covered, the estimated voltage angle values are spread too wide. Evaluating this

model on dataset ds1 demon straits again, a low generalization, as the box plots
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collection in figure 7.5 is showing. On the y-axis is the value range. Each plot shows
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Figure 7.5.: Evaluation results in box plots from a GSENR with less batch normal-

ization.

18 pairs of box plots, representing the nodes. Each pair represents, in green, the

target values and, in orange, the estimated values. An ideal estimation of a node

would appear as two identical box plots. For the targets voltage magnitude in (a) and

voltage angle in (b), the model applies a wrong offset. This offset is equal for most

of the nodes. Therefore, the estimation for the most nodes is outside the threshold

boundary.

7.2. RandomUnmeasured policy

As stated in section 3.1, not all interactors within the LVN are known or monitored.

Robustness in this sense is required. A simple approach for such a benchmark setup

is presented in this section. The NTP RandomUnmeasured is applied to simulate this

behavior. Further, this setup is used to demonstrate that the model learns the node

states of i ∈ N (unmeas) from neighbor nodes j ∈ A(N (unmeas)), j ∈ N (meas).

Since the gsenr model provides poor benchmark results on NTP UnmeasuredPQZero,
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it is left out. Nine GSETR models with different initialization seeds are defined.

Furthermore, three seeds are used to define three different node assignment profiles of

RandomUnmeasured. With k = 9 nodes declared as unmeasured node, half of the node

features are suppressed. Each three of the three models is trained, validated, and

evaluated on each node assignment profile. In appendix D are additional benchmark

results listed.

7.2.1. GSETR

The assignment of the node types influences the accuracy. If the distribution node

i ∈ N in the Allensbach gird (figure 1.1) is an unmeasured node instead of a measured

node drops the accuracy △ACC ≈ 8 %. However, the mean accuracy is for validation

and evaluation around 91 %. The evaluation results for one model are plotted in

Table 7.1.: Benchmark results from GSETR models.

Phase ACC(avg) ACC(σ)

Validation 91.0 % 0.032 %

Evaluation 91.6 % 0.036 %

figure 7.6 and figure 7.7. For half of the nodes, no features had been accessible for

the GSETR model. It can therefore be confirmed that the model learns the node

state i ∈ N from neighbor node j ∈ A(i). However, focusing on the last voltage

magnitude plot in (a), the one with the largest loss. There is, e. g. node eight, the

model is incapable of covering some outliers. The results for both targets adapting

well to the input sequence.
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Figure 7.6.: Evaluation results in box plots from a GSETR model.
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Figure 7.7.: Evaluation results of a GSETR. In the plots, there are targets (blue)

and estimated targets (orange). A target threshold (gray) is in the

background.
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8. Discussion

This chapter summarizes the results of the experiments. In section 8.1 the experiment-

results and open questions are discussed. Further is in section 8.2 the validation

metric criticized, used for this work. An additional research topic is suggested in

section 8.3.

8.1. Models

The section 8.1.1 and section 8.1.2 covering the results of the introduced models

GSETR and GSENR. Results from analyses are discussed in section 8.1.3.

8.1.1. GSETR

The accuracy of ACC99 % with the UnmeasuredPQZero NTP outperformed the

GNNSE3 model with ACC = 51 %. Problems stated in [11] are over come. Moreover,

the learning respects the graph structure. This is demonstrated with the Rando-

mUnmeasured NTP. Only for half of the nodes had information been accessible for

GSETR. The model GSETR and the mean accuracy of ACC(avg) = 91 % are the

first baseline. Additional attention heads and their aggregation could improve this

model. Following research can adapt this. However, it is likely that this model does

not perform well with different LVNs. Still, this is to show.
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8.1.2. GSENR

A second architecture uses standardized features and targets. Due to the applied

batch norm layers, the model is overfitting fast. Interested readers are linked to the

PairNorm presented in [26] . This norm aims to overcome the over-smooting of hidden

values by preserving a pairwise difference between hidden values. The author didn’t

apply countermeasures against this. Further researchers are pointed to this issue.

All datasets used in this work are of a synthetic nature. In the field, measurements

are mixed with some noise. It is likely that from a noise filter for the feature data,

the GSENR model would benefit. This also allows, the models to be tested in a

more realistic setting. Further allows the use of GATv2 dropouts, forcing parameter

weights to generalize. Edge normalization is a yet-to-be-tried option and should also

be considered.

Temporal models

The author of related work, used LSTM and GRU architecture. It can be interesting

to reproduce that work and compare the GSENR with it. Also, the adaptation of

these techniques may improve the model.

8.1.3. Evaluation data

More realistic scenarios can be created with more advanced NTP. Further presents

this work only benchmark results for one LVN. It is possible that the presented

models GSENR and GSETR performing only on the Allensbach LVN well. These

models have to be trained, validated, and evaluated on different topologies. Further,

there is a test on LVN with no synthetic nature to perform.
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8.2. Metrics

This section provides in section 8.2.1 a list of changes for the model validation.

The limitations of the current metric are addressed in section 8.2.3. Improving the

performance of the models based on ACC will not be sufficient. Limitations of the

models are to detect for further improvement. Furthermore, additional learning

targets can be defined.

8.2.1. Thresholds

The limitations of the defined accuracy was demonstrated. The control mechanism for

the voltage angle is not given. However, with an adapted threshold ε = [10−3, 10−3]⊤,

the regression learning target can be controlled again. The author proposes a threshold

ε(θ) that is relative large against measured outliers, i. e.

ε(ψ) = α · max
t∈T ,i∈N

{|y(ψ)t,i − ȳ(ψ)|}.

For 0 < α << 1, not all mean values ȳ(ψ) are correct by default

ȳ(ψ) /∈ Yψ
t,i,∃t ∈ T , ∃i ∈ N .

8.2.2. Node metric

Assuming a graph Gt with N = 19 nodes. Let only the node i ∈ N be sometimes

wrongly estimated. An accuracy for samples t = 1 . . . T is at least

ACC ≥ 1

TN
T (N − 1) =

18

19
≥ 94 %.

This issue, should be detected. Therefore, the accuracy for each node i could be

defined like

ACCi =
|{ŷt,i|ŷt,i ∈ Y t,i, ∀t ∈ T }|

T
.
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8.2.3. Extreme case metric

Applying SE gains knowledge about unusual behavior in the LVN. The main reason

why the SE is important, is to detect theses. However, the general accuracy treats

all samples equally. The accuracy acc should be applied again to samples containing

extreme cases. A filter for such samples Gt is to be defined.

8.3. Node-type policies

Using the RandomUnmeasured node type demonstrated that the distribution node is

essential for the Graph Neural Networks for state estimation (GNNSE). This setup

should be further developed. A strategic use of such a NTP can be used to determine

the most essential nodes. Monetary-costly measurement tools can then be placed in

a more strategic fashion.
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A. Basics

The first section A.1 provides the derivation of the complex voltage. The second

section A.2 shows an example of an instable message function.

A.1. Complex power in graphs

The derivation of the complex voltage is shown below.

Keeping the known Ohm’s law for Direct current (DC) in the mind V = R · I. Com-

parable to DC, for Alternating current (AC) it holds in the complex representation

V = Z · I (A.1)

⇐⇒ 1

Z
=

I

V
(A.2)

⇐⇒ Y =
I

V
(A.3)

with the complex impedance

Z = R+ jX

and complex admittance

Y = G+ jB.

The symbol j is the complex number. The table A.1 provides an overview of the

physically arguments. In AC also holds Kirchhoff’s circuit law for parallel circuits. It
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states, that the current at all nodes n,∀n ∈ V is the total in- and out-going current

at any time zero

In =
∑

m∈A(n)

Im. (A.4)

[10]

Again, similar to DC in AC exists a complex power as the product of complex voltage

and complex conjugate current

S = V · I∗.

But in AC, this power has no physical meaning. The complex voltage V represented

in polar form from the known Euler’s formula

V = |V |(cos(θ) + j sin(θ))

⇐⇒ V = |V |ejθ

where |V | is the absolute value and θ the argument of the pointer V . The complex

power S can be used for the relationship to active power P and reactive power Q

S = P + jQ (A.5)

⇐⇒ |V |ejθ · I∗ = P + jQ. (A.6)

With (A.3) and (A.4) to compute the complex power Sn for node n ∈ V is

Sn = |V n|ejθn · In∗ (A.7)

⇐⇒ Sn = |V n|ejθn · (
∑

m∈A(i)

Y n,m · V m)
∗ (A.8)

Y n,m is the edge admittance between the nodes n and m. [10]

A.2. Concatenation message aggregation

A short example of a MPF.
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Table A.1.: Physical components and their units. Fitted date defines the unit for

non-normalized data used for training and validation.

Symbol Note Unit Fitted Data

V Voltage V (Volt)

|V | Voltage magnitude V (Volt) pu (per unit Vnom)

θ Voltage angle ◦ (Degrees) rad (Radiant)

I Current A (Amper)

R Resistance Ω (Ohm)

P Active power W (Watt) 106 W

Q Reactive power Var (Volt-ampere reactive) 106 Var

S Power VA (Volt-ampere)

Z Impedance Ω (Ohm)

X Series reactance Ω (Ohm) pu (per unit Vnom)

R Series resistance Ω (Ohm) pu (per unit Vnom)

Y Admittance S = Ω−1 (Siemens)

G Shunt conductivity S (Siemens) pu (per unit Vnom)

B Shunt Susceptance S (Siemens) pu (per unit Vnom)

τ Tab ratio pu (per unit Vnom)

θ(T ) Phase shift ◦ (Degrees)
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Let be MODEL a model with two layers. And let be Gt a graph, as figure A.1 shows.

Each layer is a MPF f
(l,r)
msg (·). The hidden values h(0)

i = xt,i from the node i ∈ N are

the input for the update function λ(·) The single messages are simple; the neighbor

features

h
(l−l)
j = ϕ(h

(l−1)
j , ·).

A concatenation message aggregation function is defined as

m
(l)
i = ⊕(cc)

j∈A(i)
(h

(l)
j )

=∥j∈A(i) h
(l)
j .

At least is the update function

h
(l)
i = λ(h

(l−1)
i ,m

(l)
i )

= [h
(l−1)
i ∥m(l)

i ]⊤.

Both layers of MODEL are applied to sample Gt to generate two stages of hidden

values, H(1) and H(2). (1) f (l,r)msg is applied on all nodes i,∀i ∈ N . (2) Then message

passing is applied again for all nodes, with the input h(1)
i to gain h(2)

i . The instability

that comes due to ⊕(cc)

j∈A(i)
(·) is illustrated in figure A.1. After two iterations, the hidden

values h(2)
1 for node bus01 contains the signal from bus02 (orange). The ideal property

(3.10) is fulfilled for ⊕(cc)

j∈A(i)
. However, the feature number for bus03 is increasing

fast. The message aggregations are instable against the node degree. In h(2)
3 are the

features h(0)
1 = xt,1 (green) and h(0)

2 = xt,2 (orange) two times represented and will

be in h(3)
3 six times, an over-smoothing of the signals appears.
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Figure A.1.: An example of a concatenation MPF with two layers (arrows). The

input graph (most left) is forwarded through the first (middle) and

the second layer (left).
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B. Datasets

All LVN used for this work are of synthetic nature. This chapter provides an overview

of these data. Moreover, in the section B.1 is the creation of the used data sketched.

The table table B.1 contains all used datasets provided by the ISE.

Table B.1.: Overview of different datasets, containing LVN of Allensbach.

ID Title Samples Buses Lines Trafo. Gener. Load Storage

ds1 Allensbach 2020 first week 672 19 17 1 15 34 9

ds2 Allensbach 2019 35 040 19 17 1 15 34 9

ds3 Allensbach 2020 35 040 19 17 1 15 34 9

ds4 Allensbach 2021 35 040 19 17 1 15 34 9

ds5 Allensbach 2022 35 040 19 17 1 15 34 9

ds6 Allensbach 2022 typhoon 35 040 19 17 1 15 34 9

ds7 Allensbach 2022 typhoon 1 35 040 19 17 1 15 34 9

B.1. Synthetic grids

The following sketches the workflow for creating the synthetic data.

Synthetic grids are created by the following steps:

(1) A geographical area (e. g. a German city) is selected.
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(2) Geo-reference data are mapped to this area. This gains the position of buildings

and wires in the electrical grid. These node and edge data are converted into a

graph topology.

(3) Interactors are added and become attached to the nodes, depending on a chosen

scenario. A scenario mainly tells about the composition of interactor types.

Interactor types may be:

Storage units provides or consumes power at a node, e. g. a E-vehicle.

Generator provides power to the grid, e. g. a photovoltaic system.

Load consumes power at a node, e. g. a heat pump.

(4) Interactor profiles are added by the SynPRO tool. This tool is developed byt

the ISE. [3] A profile imitates interactions with the electrical grid over time.

This may be

• a electrical car loading each work day at night,

• a heat pump is running only on cold days or

• a photovoltaic system injects power into the electrical grid depending on

the brightness of the days.

The time interval t = 1 . . . T of the LVN is over one year, with a sample every 15

minutes.
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C. Code approach

This chapter provides in section C.1 additional information about the data pipeline.

The second section C.2 provides motivations regarding the project code.

C.1. Passing pipeline

How the a LVN is processed is explained in more detail below.

The algorithm 4 shows the data parsing pipeline. The input LVNs is parsed into

the output dataset G. An inner calling routing is presented in algorithm 3. The

reimplemented pipeline was chopped and extended into DataCacher, SEGridFil-

ter, HeteroGridParser and SEDataFilter. The input electrical grid time series is

implemented in pyPSA and the output is a list with HeteroData items.

C.2. Further code adaptions

Additional relevant code adaptions are mentioned.

One bottleneck in [20] is the not-testable grid parser, with insufficient code and behavior

documentation. Due to its hard-coded behavior, this parser is not extendable to suit

different training settings. Therefore, nearly the entire parsing pipeline has been

redesigned.
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C.2.1. Missing unit tests

The code provided by [20] is historical, growing, not well maintained, and sparsely

documented. Not a single unit test was defined. A wide set of hard-coded settings and

a lack of missing configuration options inhibit the reproducibility of experiments with

different settings. Different data preparation, metrics, and use case implementation

are problems for reliability as well.

However, some ground truth is defined ahead of previously coded behavior. Con-

figurations are redefined and placed for all settings. These are associated with the

ground truth. This makes sure that, after further research, the former models still

work. During the process of result reproducing and code rewriting procedure, around

50 deterministic tests were created. If required, a test provides the option to set a

seed. Each used function is part of at least one test. Redefining atomic tests for all

basic functions exceeds the resources available for this work.

C.2.2. Code

The author chooses the Google style [19] for docstrings. This style is applied to all

functions in the project. Further, is all code PEP8 [14] compatible. The former

project is also separated into two projects. One provides utils for all GNN projects at

the ISE and one is the actual GNNSE project. Therefore, many classes are divided

into base classes and SE related classes.
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Algorithm 3: Reimplemented parser applyes SE to gain targets, defines features
and merges all data into a dataset.

1 Function grid_parsing():
Input: G

′(k) = [G
′(k)
1 , . . . ,G

′(k)

T (k) ]
⊤: LVN time series

Output: G(k): Graph time series
2

// Gain time invariant data, some from fist timestamp
3 N = HeteroGridParser.get_nodes(G

′
0)

4 E = HeteroGridParser.get_edges(G
′
0)

5 M = HeteroGridParser.get_metadata(G
′(k))

6

// Resolve node type and edge types, also gain edge feature
7 for i ∈ N do
8 r

(N )
i = HeteroGridParser.resolve_node_type(G

′(k), i)

9 R(N ) = [r
(N )
1 , . . . , r

(N )
N ]⊤

10 for (i, j) ∈ E do
11 r

(E)
(i,j) = HeteroGridParser.resolve_link_type(G

′
0, (i, j))

12 R(E) = [r
(E)
(1,1), . . . , r

(E)
(E,E)]

⊤

13

// Iterate over time stamps in graph time series
14 for G

′
t ∈ G

′(k) do
// Apply state estimation for ground truth data

15 Y
′
t = HeteroGridParser.newton_raphson(G

′
t)

16

// Collect target and feature values for each node
// Respect the node type

17 for i ∈ N do
18 yt,i = HeteroGridParser.get_complex_power(G

′
t, i, r

(N )
i )

19 xt,i = HeteroGridParser.get_interactor_power(G
′
t, i, r

(N )
i )

20 Xt = [xt,1, . . . ,xt,N ]⊤

21 Y t = [yt,1, . . . ,yt,N ]⊤

22

// Build graph

23 G
(k)
t = (N ,E,R,Xt,Y t)

24 G(k) = [G
(k)
1 , . . .G

(k)

T (k) ]
⊤

25

26 return G(k)
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Algorithm 4: Parsering pipeline from LVN to dataset G.
1 Function data_parsing():

Input: [G
′(1), . . . ,G

′(K)]⊤: Electrical grid time series
Output: G: Graph time series

2

// Resolve cache name
3 cache_name =

DataCacher.resolve(G, SEGridFilter, SEDataFilter, HeteroDataParser)
// Try loading and returning cache name

4 if cache_name exists then
5 return cache_name −→ G

6

// Filter on graph time series list, e.g. select time stamps.
7 for G

′(k) ∈ [G
′(1), . . . ,G

′(K)]⊤ do
8 G

′(k) = SEGridFilter.apply(G
′(k))

9

// Parse and merge list of time series
10 for G

′(k) ∈ [G
′(1), . . . ,G

′(K)]⊤ do
11 G(k) = HeteroDataParser.parse(G

′(k))

12 G = [G
(1)
1 , . . .G

(1)

T (1) ,G
(2)
1 , . . .G

(K)

T (K) ]
⊤

13

// Filter on graph dataset e.g. normalize data.
14 G = SEDataFilter.apply(G)
15

// Save under cache name
16 G −→ cache_name
17

18 return G
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D. Models

This chapter provides additional information to reproduce the results presented in

this work. In section D.1 the setup of the GSETR model is explained. The setup of

section D.2 is provides information for the GSENR model.

D.1. GSETR Architecture

Due to the general parser HeteroGridParser is the set R maximal. Therefore, the

finale model architecture is large. As sketched in section 3.3.2 exist a transformation

from a homogeneous GNN model MODEL into a heterogeneous GNN model. This

transformation is also used. Due to this setup, the model is defined as homogeneous.

The model GSETR uses four layers:

(1) GATv2 with H(1) ∈ R16×∗, EdgeDim = ∗, no bias

(2) GATv2 with H(2) ∈ R16×16, EdgeDim = ∗, no bias

(3) GATv2 with H(3) ∈ R16×16, EdgeDim = ∗, Heads = 2, no bias

(4) general layer of a linear layer with H(4) ∈ R16×2

Only after the first layer is not a batch norm applied. Each layer output is passed

through a ReLU activation function.
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D.2. GSENR Architecture

The model GSENR uses four layers:

(1) GATv2 with H(1) ∈ R16×∗, EdgeDim = ∗, Heads = 4, no bias

(2) GATv2 with H(2) ∈ R16×16, EdgeDim = ∗, Heads = 4, no bias

(3) GATv2 with H(3) ∈ R16×16, EdgeDim = ∗, Heads = 4, no bias

(4) general layer of a linear layer with H(4) ∈ R16×2

After each layer is a batch norm applied. Each layer output is passed through a ReLU

activation function. For this model, the mean square error loss function is used.

D.3. Benchmark models

Below are the differences between the models listed. They were used in the benchmark

experiment. Further, are all the statistics are presented.

The GSETR models are identified by their initialization seed. For the three different

node-type policies, their seed is also used for identification. All models are trained

in parallel on the same host for 200 epochs. The host provides 32 CPU and 8 GB

graphic card storage. Each model uses at most 20 GB RAM. However, someone

ignored the reservation of the node and ran jobs too. In table D.1 are relevant training

dates for each model.
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Table D.1.: Benchmark stats for the models GSETR.

Model NTP Val ACC Eval ACC Runtime (h)

1001 1001 0.960 0.957 9.8

1002 1001 0.956 0.954 9.8

1003 1001 0.955 0.965 9.8

1004 1002 0.867 0.882 9.8

1005 1002 0.870 0.881 9.8

1006 1002 0.873 0.895 9.3

1007 1003 0.903 0.903 9.3

1008 1003 0.903 0.911 9.3

1009 1003 0.901 0.894 9.3
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Acronyms

CME model Constant Mean Estimation model

GNNSE3 model GNNSE 2023 model

md-array Multidimensional array

nent-link Node-edge-node-type link

AC Alternating current

AI Artificial intelligence

DC Direct current

ETP Edge-type policy

GAT Graph Attention

GATv2 Graph Attention 2 layer

GCN Graph Convolution Network

GNN Graph Neural Network

GNNSE Graph Neural Networks for state estimation

GRU Gated Recurrent Unit

ISE Fraunhofer Institute for Solar Energy Systems
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LSTM Long-Short-Tearm memory

LVN Low-voltage network

ML Machine Learning

MLP Multilayer perceptron

MPF Message-passing framework

NT map Node type map

NTP Node-type policy

ReLU Rectified Linear Unit

RRMSE Relative Root Mean Squared Error

SE Electrical grid power system state estimation

SE-task State estimation task
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