Conception, Implementation and Evaluation of the Safety-Critical Application "Intersection Movement Assist (IMA)" Based on Simulation and C-V2X Experimental Vehicles

First Examiner: Prof. Dr. Hannah Bast Second Examiner: Prof. Dr. Joschka Boedecker Supervisor: Christian Massong

Albert-Ludwigs-Universität Freiburg

Armando Miguel Garcia

Department of Computer Science Chair for Algorithms and Data Structures

Overview

0

The initiative

Safety potential of C-ITS

The question

How should be the V2X-Application IMA designed in order to ensure maximal <u>reliability</u> and <u>acceptance</u>?

Exchange of information between vehicles.

Low rate of missed warnings and usable information for the driver.

Very low rate of

false warnings.

The elements of the application

V2X Communication (C-V2X)

• Exchange of odometry data over direct communication between vehicles.

Localisation

Position detection.

HMI

• Advertisement of notifications and warnings.

Digital map

 Information about the location and size of intersections and junctions.

Algorithm

Computation of probability of collision.

6

The elements of the application

V2X Communication (C-V2X)

• Exchange of odometry data over direct communication between vehicles.

Localisation

• Position detection.

HMI

• Advertisement of notifications and warnings.

Digital map

• Information about the location and size of intersections and junctions.

Algorithm

Computation of probability of collision.

Key requirements

 Criticality estimation based on a single V2X-message.

6

- Processing of over 1000
 V2X-messages per second.
- Adjustable sensitivity for warnings.

Implementation of different approaches

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

02.09.2020

What are the possible outcomes?

OV = Other-vehicle EV = Ego-vehicle (having IMA)

What triggers the warning?

Time difference between both vehicles for reaching the intersection.

What triggers the warning?

Time difference between both vehicles for reaching the Point-of-Collision.

What triggers the warning?

Time difference between both vehicles for reaching the Point-of-Collision.

Distance between the ghost vehicles.

Evaluation and comparison

Albert-Ludwigs-Universität Freiburg

02.09.2020

The procedure

The performance indicators

	Dangerous situation	Non-dangerous situation
Warning given	Detected collisions (Warnings on time) Detected collisions (Warnings too late)	False Positives (False warnings)
Warning not given	Not detected collisions (False Negatives/ Missed warnings)	True Negatives (No warning needed, no warning given)

N N

REIBL

Results for dangerous situations (ETSI-Map)

6

351: OV turns left. EV drives straight.

Comparison across all four approaches

Dataset: Dangerous situations

Ñ

M

Comparison across all four approaches

Dataset: Non-dangerous situations

Ň

m

Validation (ETSI-based approach)

Use Case	Scenario	Trials	ΤР	\mathbf{TN}
IMA	Straight crossing path	16	1	1
IMA	Left turn into crossing	16	1	1
IMA	Other-vehicle turning left from right	16	1	1
LTA	Left turn with oncoming-traffic	8	1	1
LTA	Other-vehicle turning left ahead	8	1	1
LTA	Waiting before turning left	4	1	1
LTA	Waiting before turning left (after half turn)	4	1	1
IMA/LTA	Free-ride (Both vehicles moving)	1	1	x
IMA/LTA	Free-ride (Only one vehicle moving)	1	_	1

Summary and next steps

Albert-Ludwigs-Universität Freiburg

Potential of V2X-Communication for avoiding accidents at intersections was confirmed.

Recommended approach:

ETSI-based with map data.

Digital map: Mandatory for the implementation of LTA.

Biggest challenge:

Detecting the next maneuver of the Other-vehicle. Privacy requirements make this detection difficult.

Proposed next steps

FREIBURG

Fusion of conventional sensors and V2X-communication: CARLA Simulator offers a variety of sensors, e.g. RGB Camera, Depth Camera, DVS Camera, LiDAR, Radar, among others.

Optimization of parameters for increasing customer acceptance: Field study with volunteers for the topics warning time and HMI.

Implementation of AI-methods for detecting collisions:

Focus on comprehensibility of decisions.

Adaptable sensitivity of sensors:

By using V2X-communication, the sensitivity of conventional sensors can be adjusted when there is a motorcycle around.

Thank you!

Albert-Ludwigs-Universität Freiburg

FREIBURG

 [1] Evaluation of accidents registered on GIDAS (2005-2017), weighted to DESTATIS 2017. n = 27.714 accidents involving motorcycles (Germany, 2017).
 Study performed by: VUFO GMBH.

[2] Assessment of C-ITS application potential. Connected Motorcycle Consortium (CMC), 2020.

[3] Catalog for accident types: Guideline for determining types of accidents. GDV, 1998. (Original title: Unfalltypen-Katalog: Leitfaden zur Bestimmung des Unfalltyps).

Backup slides

Albert-Ludwigs-Universität Freiburg

Characteristics of approaches

	U
	2
	D
	\mathbf{m}
	ш
5	

Characteristics	Approaches			
	SAE	ETSI	$\mathrm{ETSI}_{\mathrm{Map}}$	Ghost
Accuracy of true warnings for IMA	+	++	++	+
Accuracy of notifications for IMA	++	+	+	+
Accuracy of true warnings for LTA	+		++	+
Accuracy of notifications for LTA	++		+	+
Robustness against false warnings	+		+	++
Independence of intersection geometry	_	++	+	+
Scalability regarding size of intersection	+	++	+	_

Adjustable sensitivity

C-V2X sub-channelization

R. Molina-Masegosa et al.: "LTE-V for Sidelink 5G V2X Vehicular Communications: A new 5G Technology for short-Range V2X Communications", IEEE Vehicular Technology Magazine 2017

Ř

M

ETSI-based approach at closed curves

Other use cases

Conspicuity Enhancement

Increase the perception of motorcycles by other road users.

02.09.2020

m

ZW