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Abstract

Entity Linking aims to connect mentioned names in a text to unambiguous entities
in a knowledge base. State-of-the-art approaches are deep neural network models
based on one or more instances of BERT. With the use of a Candidate Generation
step between Mention Detection and Entity Disambiguation, these approaches tend
to break the end-to-end capabilities of training deep neural networks. This thesis
aims to investigate an end-to-end approach that combines Mention Detection and
Entity Disambiguation in a single BERT-based model. We find that we are able to
reach near state-of-the-art performance, but that we are unable to reproduce previous
results with a similar approach.
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1. Introduction

Information extraction from text is an important component of many technologies
in contemporary society, such as search engines, recommendation systems, question
answering systems, and chatbots. Search engines are essential for navigating the
World Wide Web, which shows an increase in global use every year (ITU, 2020), and
for accessing the growing corpus of open-access scholarly literature (Ware and Mabe,
2015).

Search engines benefit from information extraction from both the search query and
the target documents (e.g., web pages or scholarly articles). The aim is to extract
features from the text to rank the search results according to relevance to the search
query (Croft et al., 2010).
Entity Linking is a common method for information extraction from unstructured

text. The task consists of two parts:

• first, Mention Detection discovers, in the target document, the text snippets
that reference entities;

• and second, Entity Disambiguation identifies the correct entity for each
discovered mention.

Figure 1 illustrates a simplified Entity Linking system.
An entity of interest can for example be a location, person or event. We define a

mention as the text snippet that references an entity. A Knowledge Base stores
entities of interest for disambiguation and may have additional information about
the entities. Wikipedia and Wikidata are frequently used as Knowledge Bases.
Let the following two sentences be example documents:

1. The Sun King ruled for over 72 years.

2. Sun King appears on Abbey Road.

The first document has the mention “The Sun King”, and the second document has
the two mentions “Sun King” and “Abbey Road”. We can infer that the documents
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Figure 1.: A simple Entity Linking system.

refer to different entities with the mentions of “The Sun King” and “Sun King”. Using
the context of each document, we can disambiguate each mention to the entity to
which they refer.

We assume that all the mentioned entities are in the Knowledge Base used by our
Entity Linking method. In other words, the Entity Linking method should aim to
disambiguate all these mentions.

The correctly annotated documents, with Wikipedia as a Knowledge Base, can be
illustrated like this, where text in braces ({...}) represent detected mentions, and text
in brackets ([...]) are the Wikipedia entities to which the mentions refer:

1. {The Sun King}[Louis_XIV] ruled for over 72 years.

2. {Sun King}[Sun_King_(song)] appears on {Abbey Road}[Abbey_Road].

A Knowledge Base can contain millions of entities and disambiguation can be a
challenge. Most Entity Linking approaches use an additional step of Candidate
Generation to narrow the search for potential entities to a subset of the Knowl-
edge Base. This step traditionally comes between Mention Detection and Entity
Disambiguation, using the mention text to search among aliases of entities in the
Knowledge Base. The result is a list of candidate entities for each mention, which
significantly simplifies the disambiguation task.
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1.1. Task Definition

Given a Knowledge Base KB storing all entities of interest and an input document
d, we define Entity Linking as finding the subset of entities E ⊂ KB appearing in
the document d and finding their respective mention spans M in the document. A
mention span m has the start and end position of the mention in the document.
With an Entity Linking method EL:

EL(d) = {M,E}

Furthermore, we assume a labeled dataset of documents D. Each reference to an
entity of interest in D is annotated with a position span m and an entity ID e from
the Knowledge Base KB. Using a subset of documents Dtrain ⊂ D (the “training
set”), we fit a model M to reproduce the annotated mention and entity labels. This
gives the followng approximation:

M(d) ≈ EL(d) = {M,E},∀d ∈ Dtrain

We evaluate the model on a subset Dtest (a discrete “test set”, such that Dtest ∪
Dtrain = ∅) to evaluate the model performance on unseen documents.

1.2. Motivation

Deep neural networks (Section 2.1) built on BERT (Devlin et al. (2019), see Sec-
tion 2.2 for details) are currently the state-of-the-art for Entity Linking and Entity
Disambiguation. Using two independent BERT models for Mention Detection and En-
tity Disambiguation already shows good results on Entity Linking benchmarks (Ravi
et al., 2021). However, recent research in Entity Linking suggests a co-dependence
between Mention Detection and Entity Disambiguation, and modeling the two tasks
with a joint training objective shows a better Entity Linking performance (Martins
et al., 2019; Kolitsas et al., 2018).

In light of these findings, we hypothesize that models with joint Mention Detection
and Entity Disambiguation have a better performance potential than disjoint models.
In order to jointly model the tasks with a neural network, we need to design an
end-to-end model with a joint training objective. In order to train end-to-end neural
networks, the operations in the network need to be differentiable. Differentiable
operations have a derivative, and thereby a gradient. This gradient is the basis for
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the training signal of the network. For more details on how we train neural networks,
refer to Section 2.1.

Unfortunately, the classic Entity Linking pipeline (Mention Detection→ Candidate
Generation → Entity Disambiguation) does not easily translate to an end-to-end
model. This is due to the Candidate Generation step where, to the best of our
knowledge, there are no differentiable methods available. Consequently, Candidate
Generation between Mention Detection and Entity Disambiguation creates a roadblock
when training deep neural networks: the training signal (i.e., the gradient) cannot be
evaluated for Candidate Generation and thus does not reach all the trainable weights
of the model.

Innovations in Candidate Generation methods generally come from incorporating
more prior knowledge about the Knowledge Base entities (Ganea and Hofmann, 2017;
Ravi et al., 2021). Ideally, the evaluation of new Candidate Generation methods
should be independent of Entity Disambiguation models. Similarly, Entity Linking
methods that can employ any Candidate Generation method should be compared
using the same Candidate Generation method. That way, Entity Linking methods can
be compared on equal terms, and Candidate Generation methods can be evaluated
across models.

There have been attempts to model Entity Linking without Candidate Generation
(Broscheit, 2019), or where Candidate Generation is an optional step (Chen et al.,
2019). When not using Candidate Generation, these methods do not perform on par
with the state-of-the-art. However, they show a proof of concept for Entity Linking
with a single model trained end-to-end. Both these approaches rely heavily on BERT
as a basis for their models.
Of particular interest to us is the approach of Chen et al. (2019), who propose

an end-to-end model entirely agnostic to Candidate Generation: the model can be
evaluated with any Candidate Generation method, or indeed none at all.
In this thesis, we attempt to reproduce the results of Chen et al. (2019) and find

that we are unable to do so. However, our model achieves a strong performance when
using Candidate Generation. We also show that training on larger datasets can give
a performance increase.

1.3. Contribution

In this thesis, we aim to answer the following questions:

• Can we reproduce the model and performance of Chen et al. (2019)?
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• Can we improve performance by changing the model architecture and training
procedure relative to Chen et al. (2019)?

• Does the model benefit from additional training data?

• How does Candidate Generation impact the performance of this model?

• How well does the model generalize to entities that it has not trained on?

• How well does the model perform on entities in the categories organizations,
locations, persons and events?

1.4. Chapter Overview

In the next chapter, Chapter 2, we will provide the necessary background knowledge
on deep learning — the methodology of training large neural network models, and
introduce the neural network architecture “BERT”, which we use in our approach.
Next, Chapter 3 gives an overview of the research on Entity Disambiguation and

Entity Linking, focusing primarily on the recent neural network models that have
improved the state-of-the-art. The chapter culminates in the method of Chen et al.
(2019), which currently report state-of-the-art results.

In Chapter 4, we detail our model architecture, training procedure, Knowledge
Base and Candidate Generation modules. We contrast this to Chen et al. (2019) and
highlight the known differences to their method.
Chapter 5 introduces the evaluation criteria for Entity Linking and the datasets

we use for training and evaluation. The chapter then details the experiments and
results which motivate the modifications to the approach of Chen et al. (2019).
Next, Chapter 6 presents the final results of our best-performing models and

compares them to the state-of-the-art for Entity Linking. We also give an in-depth
analysis of some strengths and weaknesses of the model.

Finally, Chapter 7 summarizes the findings of this thesis and answers the research
questions posed in Section 1.3.
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2. Background

This chapter gives a theoretical introduction to methods we rely on in this thesis.
Section 2.1 introduces artificial neural network models and the methods we use to
train them. Section 2.2 details the neural network architecture known as BERT,
which is the basis for our model.

2.1. Deep Learning

Large neural networks differ from other machine learning methods in that they
largely remove the need to manually extract and select features of the data. In text
documents, an extracted feature could for example be the frequency of words in the
document. Instead, neural networks will often take raw, unprocessed input data and
learn to extract feature representations that are specific to the task on which
they train.
Deep learning is the methodology used to train deep neural networks. We focus

on supervised learning in this thesis, where a model trains by predicting known
ground-truth labels of a dataset. In contrast, unsupervised learning can be used, for
example, to learn task-independent feature extraction.

2.1.1. Artificial Neural Network Models

Artificial neural networks are a collection of machine learning methods that are
loosely inspired by biological neural networks in the animal brain. Networks may have
different architectures and use different computations, and can train on a wide variety
of tasks. Categories of artificial neural network architectures include feedforward
neural networks, convolutional neural networks, recurrent neural networks, and
transformers.
The feedforward neural network is the most basic neural network architecture.

The input data is represented numerically, and transformed through the model by a
sequence of linear transformations. Each linear transformation uses a weight matrix

6



W and a bias vector b to produce an “activation” z. For an input vector x, the linear
transformation is:

z = WTx+ b

Each linear transformation is followed by a non-linear activation function g(z).
Without non-linear activation functions, a neural network can only model linear
functions, and would be inadequate to model complex data such as images and text.

A linear transformation and an activation function make up a layer of the neural
network. The layers between the first layer (the input layer) and final layer (the
output layer) are called hidden layers. The output h of a layer with index n is
computed as:

hn = gn(hn−1W
T
n + bn)

The input layer takes the data point vector x as input. The output layer produces
a prediction ŷ. For a classification task, the prediction can, for example, be a vector
of probabilities for different classes. We refer to the latent vectors h in the hidden
layers as hidden representations.
Given a feedforward neural network with an input layer, a hidden layer, and an

output layer (with indexes 1, 2, and 3, respectively), we can represent the computation
of a forward pass of a data point x through the network as:

ŷ = g3(g2(g1(xW
T
1 + b1)W

T
2 + b2)W

T
3 + b3)

The weights in the weight matrix W and biases in the bias vector b are what we call
trainable parameters of the model. When designing a neural network, we decide
the number of hidden layers (the “depth” of the network) and the dimensionality
of the hidden representations h (the “width” of the network). These architectural
parameters decide the size of the network. The high representational power of deep
neural networks comes from using dozens of hidden layers, each with thousands of
trainable weights.
In addition to feedforward neural networks, multiple families of neural network

architectures exist. For example, Convolutional Neural Networks are common in
image processing; Recurrent Neural Networks allow for input and output sequences
of arbitrary length; and Transformers apply the self-attention mechanism to associate
data over longer distances, such as in text. Transformer networks are particularly
relevant in this thesis, and is the basis of the BERT network discussed in Section 2.2.
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2.1.2. Training Deep Neural Networks

In supervised deep learning the neural network learns to predict ground-truth
labels from input data. Consequently, supervised learning requires a dataset where
the true labels are known for all data points. In a classification task, the ground
label of a data point is the correct class of that data point.

For example, in Mention Detection, each word is assigned one of three classes: the
word is the first word of a mention (label “Beginning”); part of a mention, but not
the first word (label “Inside”); or not in a mention (label “Outside”). For example,
in the sentence “Abbey Road was released in 1969”, the word “Abbey” marks the
beginning of a mention, “Road” is inside a mention, and the other the words are
outside mentions.

Loss Function

In supervised deep learning, the loss function gives the model feedback on how close
its predictions were to the ground-truth labels. The loss function J is a function of
the model’s prediction ŷ on a given data point and the ground-truth label y of that
data point, and returns a scalar number. This scalar number is the loss of the model
on the data point.
The loss function is often a proxy for the actual performance of the model. For

example, the loss function of a classification task may measure the distance between
the prediction ŷ and the label y (giving a floating point number in the range [0, 1]).
For example, in binary classification, we may use the binary cross-entropy loss:

J(ŷ, y) = −y log(ŷ) + (1− y) log(1− ŷ)

For performance, however, we are only interested in the model’s accuracy in
selecting the correct class (giving either 1 for correct or 0 for wrong). Many com-
mon performance measures do not qualify as loss functions because they are not
differentiable. Consequently, they cannot be used for training a model.

Backpropagation and Optimization Strategies

We use data to train the model, and calculate the training signal as the negative
gradient of the loss function with regard to the model parameters (weights
and biases) with the given data. 1 Starting from the loss function, we calculate the

1The chain rule of calculus gives us the gradient as the partial derivative of the loss function with
regards to the parameters.
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gradient through the network in reverse order of the forward-pass. The network trains
by changing the trainable weights in the direction of the negative gradient, causing
the loss to decrease. When the loss decreases, the model improves at predicting the
correct labels for the training data.
Given an example model with one hidden layer, we first train the weights and

biases of the output layer, then the hidden layer, and finally the input layer. This
method to find the gradient is called backpropagation (Rumelhart et al., 1986),
and optimization following the negative gradient of a loss function is called gradient
descent.
Calculating the gradient for mini-batches of data is faster than for the whole

dataset, and allows the model to converge more quickly. Using stochastic gradient
descent, we train on mini-batches with a fixed number of data points randomly
sampled without replacement. A full iteration over the dataset is called an epoch.
We combine stochastic gradient descent with other optimization strategies to

encourage faster convergence of the training procedure. Most importantly, we want
to adapt the learning rate of the model for each trainable parameter. The learning
rate decides the length of each training step, or how far we follow the gradient in
the direction given by the current mini-batch of data.

Adam (Kingma and Ba, 2014) is a common optimization strategy to dynamically
adapt the learning rate. Specifically, it accumulates an exponentially decreasing
average of the squared gradient of each parameter. By multiplying the learning
rate with the accumulated squared gradient, the model is able to learn faster for
parameters that require large value changes, and slower for parameters that need
small value changes.
Layer normalization (Ba et al., 2016) also aims to speed up the training. By

normalizing the activations in a layer for each data sample, we achieve more stable
gradients. Compared to other normalization strategies, layer normalization preserves
the internal statistics of each sample. In turn, the input to the next layer in the
network always follows a standard normal distribution.

Because we need to calculate the gradient through the network, the operations in
the network need to be differentiable. The layers of the neural network consist
of linear transformations and activation functions, and the training signal depends
on the loss function. Consequently, the activation functions and the loss function
are restricted to the class of differentiable functions. The linear transformations are
always differentiable.
In this thesis, we use an end-to-end model for Entity Linking. An end-to-end
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model trains with a joint loss function for all sub-tasks (for Entity Linking: Mention
Detection and Entity Disambiguation). The training signal should not be interrupted
by undifferentiable functions. As a result, the joint loss function is the source of the
training signal for all parts of the model, and the model learns a shared representation
for all tasks.

Regularization

In machine learning, we use disjoint datasets to train and evaluate the model. Firstly,
we use a training dataset to calculate the training signal and train the model.
However, we are mainly interested in how well the model generalizes to new data.
Hence, we evaluate the model on a test dataset with data that does not appear in
the training dataset. Additionally, we may use a third distinct validation dataset
to evaluate the model during training, and to adapt the training procedure or the
architecture of the model. These three distinct datasets are usually subsets of the same
larger dataset. The data is often distributed as 80 % - 10 % - 10 % in, respectively,
the training, validation and test sets.

During training, the model may improve its prediction of the training dataset while
performance deteriorates on the validation and test datasets. This is what we call
overfitting: by fitting too well to the training data, the model loses the ability to
generalize to new data. Deep neural networks are particularly susceptible to this due
to their high expressive power: they may be able to model the training data perfectly,
and achieve a loss near zero.
Deep learning provides many regularization strategies to prevent overfitting.

These strategies aim to restrict the expressive power of the neural network and thereby
force the model to make useful generalizations during training.
Dropout is a common regularization strategy, where some of the weights in each

layer are randomly deactivated in each training epoch. This prevents the network
from becoming overly dependent on some weights in the network by forcing it to
make predictions without the deactivated weights.

Hyperparameters

Hyperparameters are any parameters that influence the model or the outcome of the
training procedure, but that are not trained by backpropagation. Both the model
architecture and the training procedure have hyperparameters. The depth and width
of the network are examples of architectural hyperparameters, while the learning

10



rate is an example of a training hyperparameter. When evaluating and changing
hyperparameters, we typically evaluate the model on the validation dataset.

2.2. BERT

The neural network architecture BERT (Devlin et al., 2019) is a large transformer-
based model for natural language processing. BERT networks have been used to set
new state-of-the-art results in multiple natural language processing tasks, including
Entity Linking. We differentiate between pretrained BERT, which is trained on
generic language understanding tasks, and finetuned BERT, which is further trained
for specific tasks.

A BERT model creates a numerical representation of text. However, unlike standard
language modeling methods, BERT produces contextualized word embeddings.
In contextualized word embeddings, the vector used to represent a word depends on
the other words in the text, thereby incorporating context into the word embedding.

The input data to BERT is close to raw text. BERT relies on a WordPiece tokenizer
to parse words to tokens in a vocabulary of 30,000 word-piece tokens. A common
word like “Sun” will be tokenized simply as “Sun”. Less common words may be split
in multiple tokens. For example, the word “tokenizer” becomes “token” and “##izer”.
We refer to the first token of a word as the “head token”. The subsequent tokens are
characterized as being part of the head token by the “##” prefix.

Figure 2 shows a schematic overview of the architecture of BERT, with three main
modules: the input layer, a stack of encoders, and an output layer.
The BERT network takes sequences of tokenized text as input. Initially, BERT

converts the input tokens to token embedding vectors. The vectors have the same
dimensionality (length) throughout the network. These initial vectors are comparable
to traditional word embedding methods, such as GloVe and Word2vec, which produce
word embedding vectors without contextualization.

Next, the token embeddings go through a series of transformer encoder modules.
The transformer encoders in BERT rely heavily on “self-attention” mechanisms, and
follow the architecture proposed by Vaswani et al. (2017). The first encoder takes
the initial vectors of the input layer as input, and the subsequent encoders take the
output of the previous encoder as input.
Each encoder uses multiple parallel computations of self-attention (so-called self-

attention “heads”) to create a new representation of each token. For a given token
vector, the self-attention is computed as a weighted dot product of the vector with
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Figure 2.: Schematic view of the BERT architecture.

all vectors in the sequence. The weights are trained to extract relevant information
from the context vectors. The attention of a token to its context tells us how that
token is impacted by its context.
Figure 3 shows an example of how the token “Abbey” may attend to the context

“Sun King appears on Abbey Road” in a given layer of the network. In this illustration,
the strength of a connecting line shows how strongly the “Abbey” token attends to
the context token. The subsequent representation of the “Abbey” token will depend
more on the tokens with a higher attention-connection.

Sun
King

Appears
On

Abbey
Road

Sun
King
Appears
On
Abbey
Road

Figure 3.: An illustration of self-attention between a word and its context.

While passing through the sequence of transformer encoders, the token embeddings
become increasingly contextualized (Ethayarajh, 2019). In fact, in the encoder
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transformers, the representation of a single token relies on all other tokens for context.
After the sequence of transformer encoders, the resulting token embeddings are

passed through the remaining network to produce outputs that are specific to the
task on which the network is trained. When finetuning a pretrained BERT network
for a new task, we need to define new output layers. The output layers take the
contextualized token vectors from BERT as input. While the output layers are
trained from randomly initialized weights, the BERT module already has a general
understanding of language. Consequently, a network based on a pretrained BERT
model can quickly converge to good results.

During pretraining, BERT trains jointly on two tasks: it learns to fill in missing
word-tokens in sentences through the Masked Language Model task, and it predicts
whether one text sequence naturally follows another in a Next Sentence Prediction
task. The former task requires predictions on individual tokens, while the latter task
requires predictions on longer text sequences.
A BERT network is characterized by three architectural hyperparameters: the

number of transformer encoders, the number of parallel self-attention computations
in each encoder, and the length of the token embedding vectors passed between the
encoders. The BERT instance we rely on in this work, dubbed BERT base, has twelve
encoders, each with twelve attention computations, and a token embedding length of
768.
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3. Related Work

This section gives an overview of existing research in Entity Disambiguation and
Entity Linking methods, including the trends leading up to the current state-of-the-art
in the field.

Most methods for Entity Linking treat the task of Mention Detection distinctly from
Entity Disambiguation. However, more recent research has found a co-dependence
between the two tasks and proposes models that perform both tasks end-to-end
(Kolitsas et al., 2018; Martins et al., 2019). Frequently, these models aim to train a
single model on a joint task of Mention Detection and Entity Disambiguation.

We will start this literature review with methods for (Named) Entity Disambigua-
tion. In the Entity Disambiguation task, the disambiguation system is provided with
ground-truth mention spans. Section 3.1 gives an overview of early works in the field,
where graph-based methods dominated the state-of-the-art for a long time. Next,
Section 3.2 presents the current state-of-the-art methods in Entity Disambiguation,
using artificial neural networks.
Finally, in Section 3.3, we look at the more recent work in Entity Liking, where

the model performs both Mention Detection and Entity Disambiguation. We have
particular focus on models training on joint training objectives encompassing both
Mention Detection and Entity Disambiguation.
The performance of a model on the Entity Disambiguation task is measured by

the accuracy of the model’s candidate assignments, and the results in Section 3.1 and
Section 3.2 follow this format. On the other hand, Entity Linking has two sources of
error: Mention Detection and Entity Disambiguation. Accordingly, we use the F1
score, defined as the harmonic mean of the precision and recall, for Entity Linking
performance. In Section 3.3, we mainly look at the Micro F1 score, which is averaged
over all mentions. Further details on the evaluation metrics we use in this chapter
can be found in Section 5.1.
Most papers in the field use the AIDA-CoNLL dataset of Hoffart et al. (2011) as

training data and testing benchmark. The results we list in this review are obtained
from evaluating on the test set of this dataset. Section 5.2 gives more details on this
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dataset.

3.1. Entity Disambiguation with Coherence Graphs

One of the first attempts at Entity Disambiguation was on person names. Bunescu
and Pasca (2006) rank a mention’s candidates (given by entities in Wikipedia dis-
ambiguation pages) with a similarity score between features extracted from the
context of the mention and the categories to which a candidate’s Wikipedia article
belongs. A Support-Vector Machine disambiguates each mention to a single candidate.
This model considers each document mention independently of other entities in the
document. Such a model is referred to as a local model.
Further improvements in the field came from Kulkarni et al. (2009) by modeling

the coherence of all the entities linked in a document. Following the vocabulary of
Ratinov et al. (2011), this is referred to as a global method. Like Bunescu and
Pasca (2006), their Candidate Generation step uses a lookup table with aliases.
Introducing a landmark disambiguation model, Hoffart et al. (2011) combine

multiple heuristics to improve on preceding methods. Namely, they use the prior
probability of a mention referring to a candidate entity (extracted from Wikipedia
hyperlink texts), the similarity between the context of the mention and a candidate
entity (a local model), as well as the coherence of the selected candidate set for all
mentions in a document (a global model). Before running the global coherence model,
candidates that stand out with high prior probability and high similarity scores are
assigned. The global assignment is cast as choosing a dense subgraph in a document
graph of mentions and candidates.

The most widely used benchmark dataset to date, the AIDA-CoNLL dataset, was
also introduced by Hoffart et al. (2011). They establish the first results for Entity
Disambiguation on the dataset with an accuracy of 81.9 %. We will later rely on this
dataset for training and evaluation and discuss it further in Section 5.2.

Improving the document coherence graph of previous work, Chisholm and Hachey
(2015) complement the graph with a large corpus of web links. They follow the
general approach of Hoffart et al. (2011) by first assigning entities with a high local
score before using coherence to assign remaining mentions. Their new global model
improves on the state-of-the-art with an accuracy of 88.7 %.
Further improvements from Pershina et al. (2015) also came from new global

methods. They use a “Personal Page Rank” algorithm to improve the coherence of
the global candidate graph. Their candidate graph contains candidate—candidate
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edges wherever one of the candidate entities’ Wikipedia article links to the Wikipedia
article of the other. Combined with heuristics on the local similarity score for each
mention, they report an accuracy of 91.8 % on AIDA-CoNLL.

Inspired by new language models where words are embedded in a continuous vector
space, Yamada et al. (2016) proposes embedding words and entities to the same
vector space. The entity embeddings are combined with a graph model to perform
global disambiguation of multiple document mentions jointly. They achieved a state-
of-the-art at the time, with an accuracy on AIDA-CoNLL of 93.1 %. This model may
be the last method to improve the state-of-the-art in Entity Disambiguation without
using some artificial neural network component (Sevgili et al., 2020).
The embedding method of (Yamada et al., 2016) for words and entities has later

become known as Wikipedia2vec and will be an essential module in the approach of
this thesis.

3.2. Neural Entity Disambiguation

In recent years, deep neural network models have consistently been the state-of-the-art
for Entity Disambiguation. Traditionally, networks for natural language processing
have been recurrent models with Long Short-Term Memory (LSTM) units. However,
more recent works in Entity Disambiguation have focused almost exclusively on
large transformer networks such as BERT and have allowed further leaps on Entity
Disambiguation benchmarks.
One of the first approaches using deep neural networks was by He et al. (2013).

The network initially trains on an unsupervised denoising task using an auto-encoder
architecture. The encoder thereby learns a general language model. Next, they
finetune the encoder to find a maximum similarity between a document and entities
that appear in the document. The entities are represented by their Wikipedia pages.
They use a dataset of 40 million Wikipedia hyperlinks for the finetuning stage.

The results of He et al. (2013) suggest that local information is sufficient to reach
a high performance on Entity Disambiguation without considering global coherence
between entity sets. They point out that global information is used as a fall-back
when the model is not sufficiently confident with local information. However, they
found an increase in accuracy from 84.8 % to 85.6 % when combined with the best
global method at the time.

Ganea and Hofmann (2017) proposes a new state-of-the-art system by successfully
combining a neural network model for local information with a global disambiguation
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graph. Their neural network only receives the document as input and does not rely
on prior information. In line with the advantages of deep learning, their model can
implicitly learn to produce a document representation to solve the disambiguation
task.
Their local model produces a contextualized embedding of the mention using an

attention mechanism on the mention context. The model is one of the first examples
of neural attention for Entity Disambiguation. Furthermore, using differentiable
message-passing for the global model allows them to train the local and global models
jointly and end-to-end. With an accuracy of 92.2 %, they improved on the previous
best of Yamada et al. (2016).
They also introduce a more sophisticated Candidate Generation by combining

prior probabilities from entity hyperlink statistics with alias searches from the YAGO
Knowledge Base.

The current state-of-the-art in Entity Disambiguation is achieved by Yamada et al.
(2019) using a model based on pretrained BERT. Inspired by the pretraining tasks of
BERT (Devlin et al., 2019), they propose a denoising auto-encoder task on masked
entities. Specifically, entities are masked at random, and the model needs to construct
an embedding for the masked entity that allows it to predict the missing entity. They
train their model on Wikipedia articles, using hyperlinks as labels.
Unlike previous works using global coherence graphs, Yamada et al. (2019) itera-

tively disambiguate entities in order of confidence while appending previously assigned
entities to the input. After further fine-tuning the model on the AIDA-CoNLL training
set, they report an accuracy of 95 %, establishing a new state-of-the-art performance.

3.3. Entity Linking

We define Entity Linking systems as any system that performs both Mention Detection
and Entity Disambiguation. All the research articles in this section have reported
results on Entity Linking.

Mention Detection and Entity Disambiguation have been treated mostly as separate
problems even in the Entity Linking literature. Strong Entity Linking performance
has come from using state-of-the-art Entity Recognition systems to detect mentions,
followed by Candidate Generation, and finally novel Entity Disambiguation methods
to pick candidates and filter over-sampled mentions. However, some recent works
have shown that end-to-end deep learning can solve the two tasks jointly, and that it
may be beneficial for both Mention Detection and Entity Disambiguation to do so.
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The methods we describe here rely on deep neural networks to create contextual
mention embeddings in a continuous vector space. Accordingly, Entity Linking
methods align with the state-of-the-art Entity Disambiguation methods described
in Section 3.2. However, with the added challenge of Mention Detection, we see
a variation in the research in how the two tasks are combined. Approaches range
from optimizing the traditional Entity Linking pipeline of Mention Detection →
Candidate Generation → Entity Disambiguation, to circumventing the two former
tasks by directly classifying all words to entities.

Performance in Entity Linking is not directly comparable to performance in Entity
Disambiguation because the addition of Mention Detection gives a new source of
errors. The combination of Mention Detection and Entity Disambiguation motivates
using the F1 score rather than accuracy as a measurement of performance.

3.3.1. An End-to-End Model for Entity Linking

Arguably, Kolitsas et al. (2018) were the first to propose a joint model for Entity
Linking. Given an input document, they over-generate potential mentions. Next,
using the YAGO knowledge graph inherited from Hoffart et al. (2011) for Candidate
Generation, they consider all spans that have at least one candidate. Finally, they
use a bi-directional LSTM model to create vector embeddings for all the potential
mention spans. The model is trained to maximize the vector-similarity between a
mention embedding and its ground-truth candidate.
The similarity score between each mention embedding and their respective can-

didates is combined with other scores: firstly, the conditional probability of the
candidate being referred to by the relevant mention text; and secondly, the similarity
score from the attention model of Ganea and Hofmann (2017). This gives the local
mention–candidate score. Finally, a global disambiguation network promotes stronger
coherence by filtering the many over-sampled mentions and assigning a coherent
entity set for the document.

After training and testing the model on the AIDA-CoNLL dataset, they achieved a
Micro F1 score of 82.4, with 100 being the highest achievable score. When they train
the model for only Entity Disambiguation and use a separate program for Mention
Detection, they observe a drop in performance to 74.6 in Micro F1 score. This fall in
performance indicates that the system indeed benefits from jointly modeling Mention
Detection and Entity Disambiguation. Their Knowledge Base only contains around
500K entities, but is designed to contain virtually all entities that appear in the
AIDA-CoNLL dataset. Notably, their model is only trained on the AIDA-CoNLL
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dataset.

3.3.2. The Potential of a Local Model for Entity Linking

Similarly, Martins et al. (2019) argue in favor of jointly training a model on Entity
Recognition and Entity Disambiguation. Their model is trained on a multitask
objective that covers both of these tasks. For comparison, they also train two
specialist models on each respective task. When comparing the performance, they
find that the joint model performs better on both tasks than the respective specialists.

Only local information is used in their bi-directional LSTMs model with attention.
In other words, the model disambiguates each mention based on its context, and does
not consider the other entities disambiguated in the document. Their results come
close to that of Kolitsas et al. (2018), with a Micro F1 score of 81.9. It is also worth
noting that the Entity Recognition task is more complex than Mention Detection, as
the model also needs to classify the entity type of a mention.

3.3.3. A Simple Approach to End-to-End Entity Linking with BERT

As with Entity Disambiguation, the next wave of state-of-the-art Entity Linking
models are based on BERT (Devlin et al., 2019). The first use of BERT for end-to-end
Entity Linking in Broscheit (2019) uses a simplification of the Entity Linking task.

They cast Entity Linking as a simple classification task, where each word token is
classified, and classes are the entities in the Knowledge Base. Additionally, there is the
class of “no entity” for words that are not part of entities. They use a relatively small
Knowledge Base of 500K entities. This method circumvents the need for Candidate
Generation and unifies Mention Detection and Entity Disambiguation to a single
task. The model classifies all document tokens at once, making this a local model.

Because of the large number of classes, the model needs to train on a large dataset.
For pretraining, they train the model on Wikipedia hyperlinks in sentences from
Wikipedia articles, before they finetune most of the network on the AIDA-CoNLL
training set. Similar to Kolitsas et al. (2018), all entities that are in AIDA-CoNLL
are added to the Knowledge Base. This addition results in 1000 extra entities that
are outside of the top 500K Wikipedia entities. Training on one GPU, their model
trains for 42 days.
By comparing three results from the ablation study of Broscheit (2019), we can

learn more about how BERT works as a language model for Entity Linking. When
training only on the AIDA-CoNLL training set (no pretraining on Wikipedia), the
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model achieves a Micro F1 score of 49.6. Despite the relatively low score, this shows
that BERT has a potential to learn Entity Linking. However, this model cannot
generalize to entities that it has not seen during training.
To familiarize the model with more entities, they pretrain with Wikipedia as a

training set, before finetuning on AIDA-CoNLL. They compare two models: one
where they only train the output classification layer, and one where they train the
whole model, including BERT. The former achieves a Micro F1 score of 67.8, and the
latter 79.3 on AIDA-CoNLL. The first model already shows a big increase from the
model not trained on Wikipedia, which again suggests that BERT has a lot of prior
knowledge useful for Entity Linking. The performance increase in the best model
shows that BERT can learn additional entity knowledge with this pretraining task.

3.3.4. Entity Linking with Entity Embeddings for BERT

With a novel method to introduce entity knowledge to BERT, Poerner et al. (2020)
takes a different approach to Entity Linking. To adapt entity vectors to BERT,
Poerner et al. (2020) project the word and entity vectors of Wikipedia2vec (Yamada
et al., 2016) to the domain of BERT input encodings using the word vectors that are
in common for the two vector domains as guides. By introducing entity knowledge on
BERT’s premises, BERT requires no further training to learn about entities. They
dub their entity-enhanced model E-BERT.

E-BERT is not trained end-to-end on Entity Linking because they rely on KnowBert
(Peters et al., 2019) for Mention Detection and Candidate Generation. However, they
report their findings on the Entity Linking rather than Entity Disambiguation.
To use E-BERT for Entity Disambiguation, they first use a local model to find

a context embedding of each mention. Next, they replace the most probable men-
tions of the document with the predicted candidate, represented by its projected
Wikipedia2vec vector. In the next iteration over the document, these entity vectors
provide additional information to the context of the unassigned mentions for the next
iteration. Reminiscent of Hoffart et al. (2011), this is the heuristic of first assigning
the most obvious entities from the local context, followed by a better informed global
assignment.
Raising the bar from Kolitsas et al. (2018), the result is a Micro F1 score of 85.0

on the AIDA-CoNLL test set.
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3.3.5. End-to-End Entity Linking with a Joint Task

Broscheit (2019) is not alone in proposing a model without Candidate Generation
and other heuristics. With a more flexible approach, Chen et al. (2019) propose
an end-to-end Entity Linking model with BERT, where Candidate Generation is
optional.
Unlike Broscheit (2019), they keep the distinction between Mention Detection

and Entity Disambiguation. The model produces two outputs for each word token:
one Mention Detection prediction and one entity embedding of each token. The
training objective allows the network to learn a projection from the embeddings
produced by BERT to entity Wikipedia2vec vectors from Yamada et al. (2016). A
token belonging to an entity mention should be projected to the correct entity vector
from Wikipedia2vec. Notably, this model does not pretrain on a large dataset, but
rather trains directly on the target AIDA-CoNLL dataset. The model looks at a
document only once to classify all its entities, making this another only-local Entity
Linking approach.

This approach is discussed in detail in Section 4.1, as this is the approach we base
ourselves on in this thesis.
When treating the entire Knowledge Base of 1M entities as potential candidates,

Chen et al. (2019) report a Micro F1 score of 70.7. Using the YAGO knowledge graph
of Hoffart et al. (2011) for Candidate Generation, the performance vastly improves to
a state-of-the-art F1 score of 87.7. According to Sevgili et al. (2020), these is the best
Entity Linking performance reported on the ADIA-CoNLL Test dataset. However, as
pointed out by Poerner et al. (2020), these results may not be directly comparable to
previous works due to a potential difference in Knowledge Bases. Specifically, Chen
et al. (2019) do not explicitly include all entities that appear in the AIDA-CoNLL
dataset in their Knowledge Base, nor report on the coverage of their Knowledge Base
on the dataset.
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4. Approach

In this thesis, we attempt to reproduce the results of Chen et al. (2019). This chapter
outlines our general approach to Entity Linking. Section 4.1 describes our Entity
Linking model for joint Mention Detection and Entity Disambiguation. Section 4.1
also features an analysis of the loss function and general aspects of our training
procedure. Section 4.2 gives an overview of how we construct our Knowledge Base.
Section 4.3 details our Candidate Generation method. Finally, we describe how to use
our trained model for inference in Section 4.4. Some differences between our model
and the model proposed by Chen et al. (2019) are further motivated by empirical
results in Chapter 5.
Our Python source code is available at https://github.com/amundfr/el-bert.

4.1. Joint Mention Detection and Entity Disambiguation

Our model is based on a pretrained instance of BERT-base-uncased from Huggingface1.
Additionally, we define two output heads: one for Mention Detection classification,
and one to produce entity embeddings for Entity Disambiguation. Both heads take
the final hidden state of the BERT model as input.

Figure 4 shows how data flows through the model. First, the tokenizer prepares an
input document of raw text for the model. Next, the model produces a contextualized
representation of each token, which finally passes to the output heads.

1https://huggingface.co/bert-base-uncased
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Figure 4.: General model architecture and example document predictions.

4.1.1. Known Differences

We are aware of the following differences to Chen et al. (2019):

• using uncased instead of cased version of BERT;

• using hidden layers in the output heads;

• the Candidate Generation module;

• the Knowledge Base;

• the weight parameter of the loss function.

We will detail the Knowledge Base and the Candidate Generation in this chapter.
The remaining differences are motivated by empirical results. These differences are
described in Chapter 5.

4.1.2. Output Heads

The Mention Detection head is a feed-forward neural network, which applies the
same transformation to each token embedding. For each token, it outputs a prediction
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vector of three scalar predictions pmd ∈ R3; each scalar is a prediction for one of
the three possible Mention Detection classes (the token being “Inside”, “Outside” or
“Beginning” of a mention, where “Beginning” is the first token of the mention). The
class with the highest prediction is considered the predicted class for that token. We
do not use an activation function for the Mention Detection predictions.
When using the WordPiece tokenizer, a word can be split in multiple tokens (e.g.

the word “tokenizing” into tokens “tokeniz” and “##ing”). The first token for each
word is called the head token. We only look at labels and predictions of head tokens,
and not the following tokens.

The following example shows the correct Mention Detection labels for an example
sentence (note that the the non-head token “##s” does not need a label):

Sun King appear ##s on Abbey Road
Beginning Inside Outside None Outside Beginning Inside

The Mention Detection head takes a contextualized token embedding hb ∈ Rd
b from

the BERT module, where db is the same hidden vector length used throughout BERT.
The Mention Detection head first applies a linear transformation to get the hidden
activation zmd ∈ Rdb . For this computation, it uses the weight matrix WMD

h ∈ Rdb×db

and the bias vector bMD
h ∈ Rdb :

zmd = hbW
MD
h + bMD

h

Next, it applies the GeLU activation function and a layer normalization (see
Section 2.1.2) to give the hidden representation hmd:

hmd = LayerNorm(GeLU(zmd))

Finally, the hidden token representation hmd passes through the output layer. The
output layer is again a linear transformation with a weight matrix WMD

o ∈ Rdb×3 and
a bias vector bMD

o ∈ R3. This produces a Mention Detection prediction pmd ∈ R3:

pmd = hmdW
MD
o + bMD

o

With hidden vector size db = 768, this output head has 768×768+768+768×3+3 =

592, 899 trainable weights.
The Entity Disambiguation head is also a feed-forward neural network working

on each token embedding in turn. It transforms the entity embeddings hb from BERT
to the target domain of Wikipedia2vec entities with dimensionality dw. The goal is
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to project a token embedding (specifically the token corresponding to the beginning
of a mention) to the embedding of the corresponding Wikipedia2vec entity.

The output head first applies a linear transformation with weight matrix WED
h ∈

Rdb×db and adds a bias vector bED
h ∈ Rdb :

zed = hbW
ED
h + bED

h

After activating with the GeLU activation function and normalization, we get the
hidden representation hed ∈ Rdw :

hed = LayerNorm(GeLU(zed))

Next, the output layer transforms the hidden representation hed to a predicted
embedding vector with weight matrix WED

o ∈ Rdb×dw and bias vector bED
o ∈ Rdw .

Additionally, this head uses the hyperbolic tangent (“tanh”) activation function to
give the final entity embedding êed ∈ Rdw :

êed = tanh(hedW
ED
o + bED

o )

The BERT embedding token hb and the hidden representation hed have db = 768

dimensions, while the Wikipedia2vec embeddings in the target domain have dW = 100

dimensions. The result is 768 × 768 + 768 + 768 × 100 + 100 = 667, 492 trainable
weights for the Entity Disambiguation output head.

Our model contrasts with Chen et al. (2019) with hidden layer in the output heads.
We motivate this with empirical results in Table 8.

In addition to the trainable weights in the output heads, the BERT base model
has around 109 million trainable weights. In fact, 98.86 % of the trainable weights of
our model are found in BERT. Table 1 shows a break-down of the number of trainable
weights in each module of the network.

Network Module # Weights

BERT 108,853,248
Mention Detection output head 592,899
Entity Embeddings output head 667,492

Total 110,113,639

Table 1.: Number of trainable weights in each module of the network, including bias
weights.
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4.1.3. Loss Function

The loss function needs to account for both the Mention Detection errors and the
Entity Disambiguation embedding errors. Consequently, our joint Entity Linking loss
function Jel is a weighted sum of two losses:

Jel = λJmd + (1− λ)Jed

Figure 5 shows a graphical representation of the inputs to the loss function. For
an analysis of how this loss function fulfills the criteria for end-to-end training, see
Appendix A.
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Figure 5.: The loss function in relation to the model outputs.

Mention Detection Loss

The Mention Detection loss Jmd is a cross-entropy loss. It takes the Mention Detection
predictions pmd ∈ R3 (one scalar prediction for each class) and the ground-truth
mention label gtmd ∈ {Inside = 1, Outside = 2, Beginning = 3} as input:
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Jmd(pmd, gtmd) = − ln
(
softmax (pmd)gtmd

)
= − ln

(
exp (pmd [gtmd])∑3
i=1 exp (pmd [i])

)

Because there is only one correct class, the cross-entropy is simply the negative
logarithm of the prediction of the ground-truth class. The cross-entropy takes a
probability in the range of [0, 1]. The loss function incorporates the softmax function
to transform the model output to a probability distribution.

Entity Disambiguation Loss

Next, the Entity Disambiguation loss Jed is a cosine difference loss. It takes the entity
embeddings êed from the Entity Disambiguation head and the Wikipedia2vec vectors
ew of the ground-truth entities:

Jed(êed, ew) = 1− cos(θ) = 1− êed · ew
‖êed‖ ‖ew‖

The normalized dot product is the cosine of the angle θ between the two input
vectors. This dot product represents the similarity between the two vectors. If the
two vectors are the same (maximum similarity), the angle between the two vectors is
0, and the similarity score is cos(0) = 1. To turn the similarity into a loss function,
we invert the similarity to a difference with the operation 1− similarity. The final
result is analogous to a sinusoidal difference.

Weighting the Loss

The Mention Detection loss is evaluated on all words in the document, whether or not
they are part of a mention. On the other hand, the Entity Disambiguation loss is only
evaluated once for each mention in a document. Because the Entity Disambiguation
loss is sparser than the Mention Detection loss, we compensate by suppressing the
Mention detection loss by a factor λ.
We compare the recommended setting of λ = 0.1 from Chen et al. (2019) with

three alternatives in Table 10, and we find the best performance with λ = 0.01.
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4.1.4. General Training Procedure

Our training procedure is similar to Chen et al. (2019). Like Chen et al. (2019), we
use the Adam optimizer with the default parameters proposed by Kingma and Ba
(2014): β1 = 0.9, β2 = 0.999.

For experiments with training hyperparameters such as mini-batch size, initial
learning rate, and epochs, refer to Section 5.4.2.

Mentions Without Entity Annotation

For various reasons, a dataset may have mentions annotated with mention labels
(“Inside”, “Outside”, “Beginning”) but no corresponding entity label. In that case,
we treat the mentions as labeled when calculating the MD loss but ignore it in the
ED loss. In practice, that means the model learns to identify mentions regardless of
whether they are in the Knowledge Base.

4.1.5. Document Pre-processing

We use the default WordPiece tokenizers described in Section 2.2 to prepare a
document for the model. The BERT models we use as a basis have corresponding
WordPiece tokenizers for cased and uncased text respectively. Our best-performing
models use the BERT-base-uncased model and the corresponding uncased tokenizer
with a vocabulary of around thirty-two thousand word pieces. When training a
BERT-base-cased model, we used the case sensitive tokenizer.

The maximum sequence length of BERT is 512 tokens, including a [CLS] and a
[SEP] token. That leaves space for 510 WordPiece tokens from the input document.
Accordingly, we split documents with more than 510 tokens in multiple sequences.

Figure 6 illustrates three strategies to split documents. In Strategy A, there is no
overlap between sequences from the same document. This strategy requires padding
of the final sequence. Strategy B places an overlap between the last two sequences.
Finally, Strategy C split the documents by distributing the overlap between all
sequences. Strategy B and C do not require padding, assuring maximum context in
each sequence.
We reason that Strategy C best distributes the context from the overlaps, and

this is the strategy we use. In practice, we see negligible differences in performance
between the strategies.

The tokens that are in the overlap between two sequences necessarily have predic-
tions from both sequences. For tokens with two predictions, we choose the Mention
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SPLITTING STRATEGY

Figure 6.: Illustration of three strategies to split long documents into multiple
sequences.

Detection classification with the highest predicted probability. We also select the
Entity Disambiguation embedding from the same sequence. We reason that the
sequence which produces the highest magnitude Mention Detection prediction has the
best context and, consequently, will have produced the best Entity Disambiguation
embedding.

4.2. Knowledge Base

A Knowledge Base is a collection of unique entities with unique identifiers. We
define our Knowledge Base around Wikipedia2vec: entities that have a vector in our
instance of pretrained Wikipedia2vec2 are considered entities of interest. This may
filter out some entities from the Knowledge Base that show up in the dataset. We use
the pretrained Wikipedia2vec trained on English Wikipedia from 2018 with vector
dimensionality 100.

2Provided here: https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
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The Wikipedia2vec vectors are the targets of the Entity Disambiguation head.
These vectors are our search domain and the Entity Disambiguation embeddings are
the queries.

For details on how we use the Knowledge Base for search during inference, refer to
Section 4.4. We evaluate the Knowledge Base in Section 5.2.

4.3. Candidate Generation

The Entity Linking system permits the use of Candidate Generation during evaluation.
It is important to note that the model does not rely on Candidate Generation in any
way during training and may also be evaluated without Candidate Generation.

We use a mapping from entity aliases to entities in the Knowledge Base to generate
our candidate sets. Given a mention text m, we get the set of candidate entities Ec

for which m is an alias. The resulting candidate set does not depend on the context
of the mention.
We use the candidate sets of Ganea and Hofmann (2017), who have collected

candidates from multiple sources. They collect aliases and candidates from hyperlinks
in Wikipedia articles and a web corpus inherited from Spitkovsky and Chang (2012)
and supplement with candidates from the YAGO knowledge graph.
We process the aliases of Ganea and Hofmann (2017) by changing them to lower

case and removing accents. This may merge some candidate sets, as compared to
using the aliases with accents and casing. Furthermore, we do not restrict the number
of candidates for a mention or use the prior probability of a mention referring to
a given candidate as provided by Ganea and Hofmann (2017). This is in line with
Chen et al. (2019). For an evaluation of the Candidate Generation module, see
Section 5.3.2.

When Candidate Generation fails and there are no candidates for a given mention
text, we fall back to default behavior without Candidate Generation. That is, we
treat all Knowledge Base entities as potential candidates.
Chen et al. (2019) uses the YAGO knowledge graph introduced by Hoffart et al.

(2011) when evaluating with Candidate Generation. Our Candidate Generation
module inherited from Ganea and Hofmann (2017) includes YAGO candidates. This
module has also been used for Entity Linking by Kolitsas et al. (2018).
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4.4. Model Inference

We can use the trained models for inference. In particular, we are interested in
evaluating the model’s performance on documents it has not seen during training.

First, we resolve overlaps between sequences from the same document as described
in Section 4.1.5. Next, the predicted Mention Detection classes decide the mention
spans in the document. Tokens with predicted class “Beginning” designate the start of
mentions. All tokens with predicted class “Inside” that directly follow are considered
part of the same mention. In the rare case that an “Inside” prediction does not
follow a “Beginning” prediction, we consider the token as the start of a mention. Any
WordPiece tokens that are not head tokens (because a word is tokenized to multiple
tokens) are assigned the prediction of their head token.

In the Entity Disambiguation stage, we treat the mentions independently.3 When
using Candidate Generation, we generate a set of candidates for each mention.
Without Candidate Generation, we consider all Knowledge Base entities as candidates
for each mention.

For each mention, we rank the set of candidates Ec by a similarity score. Unless we
use Candidate Generation, the candidate set contains all entities in the Knowledge
Base. In the similarity computation, the mention is represented by the model’s
Entity Disambiguation embedding on the first token in the mention (the “Beginning”
token). Each candidate is represented by their respective Wikipedia2vec vectors. The
similarity score between a candidate vector c and a token embedding e is a normalized
dot product:

sim(c, e) =
e · c

‖e‖2 ‖c‖2
where ‖v‖2 is the Euclidean norm of a vector v.
Finally, we assign the candidate with the highest similarity score to the mention in

question.

3This makes our model a local-only model, as it does not consider the global coherence of the
assigned candidates in a document.
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5. Experiments

We train and evaluate our models on the AIDA-CoNLL benchmark dataset to compare
Entity Linking methods on equal ground to previous models. In Section 5.1, we will
describe the evaluation criteria we use for Entity Linking. In Section 5.2, we present
the two datasets we use in our experiments. Next, in Section 5.3, we evaluate the
Knowledge Base and Candidate Generation system through these datasets. Finally,
in Section 5.4, we derive some hyperparameter settings for the model architecture
and the training procedure.

5.1. Evaluation Criterion

The evaluation criteria for Entity Linking need to account for all sources of error;
that is, Mention Detection and Entity Disambiguation. For Mention Detection, a
predicted mention span is a True Positive prediction if there is a corresponding
ground-truth mention and a False Positive prediction otherwise. In addition, we
may have False Negative ground-truth mentions in the document that the model
does not detect.1

For Entity Disambiguation, we require a correctly predicted mention. For Entity
Disambiguation alone, we can measure performance with the accuracy of correct
predictions. We combine this with the Mention Detection errors by defining correct
entity assignments on True Positive mentions as True Positive predictions. Next,
incorrect entity assignments on True Positive mentions are both False Negative and
False Positive predictions.

Using these categories of correct and incorrect predictions, we derive the following
performance metrics for Entity Linking:

• Precision: the ratio of True Positive predictions to number of predictions:

Precision =
True Positive

True Positive + False Positive

1True Negative predictions are not relevant for model performance.
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• Recall: the ratio of True Positive predictions to number of ground-truth
mentions:

Recall =
True Positive

True Positive + False Negative

• F1 score: the harmonic mean of the precision and recall:

F1 score = 2 · Precision · Recall
Precision+ Recall

The precision shows the likelihood that a model predicts correctly when it makes
a prediction. The recall tells us the likelihood of a ground-truth mentions being
correctly predicted by the model. Finally, the F1 score is of particular interest, as it
scores performance using both precision and recall. To achieve a high F1 score, the
Entity Linking system must strike a balance between predicting correctly (precision)
and finding all entities in a document (recall).
We use the F1 score as the primary performance measure of our models. In

particular, we look at the Micro F1 score, which denotes the average F1 score over
all mentions. 2

We only report performance on mentions of entities that are in our Knowledge
Base. Consequently, we ignore mentions of ground truth labels that are not in the
Knowledge Base, and we ignore predictions on these mentions. We treat mentions
without ground truth labels in the same way.

5.2. Datasets

We present two datasets that we use for training the model. The AIDA-CoNLL
dataset described in Section 5.2.1 is the primary dataset on which we train and
evaluate models. The Wikipedia Articles dataset described in Section 5.2.2 serves as
complimentary training data.

5.2.1. AIDA-CoNLL

The AIDA-CoNLL dataset from Hoffart et al. (2011) serves as the standard benchmark
dataset for Entity Disambiguation and Entity Linking. We rely on this dataset for
training and evaluation. The dataset has 1393 documents, distributed to a training
dataset, a validation dataset, and a test dataset. Table 2 shows the number of

2The Micro F1 score treats the dataset as if it was one document. In contrast, the Macro F1 score
calculates the average F1 score over documents.

33



documents, unique Wikipedia entities and mentions with entity annotations in the
respective subsets of the dataset.

Dataset Documents Mentions Annotated
Mentions

Unique
Entities

Train 946 23,396 18,541 4,084
Validation 216 5,917 4,791 1,644
Test 231 5,616 4,485 1,536

Total 1,393 34,929 27,817 5,593

Table 2.: Number of documents, mentions, mentions annotated with Wikipedia
entities and unique mentioned entities in the AIDA-CoNLL datasets.

As a result of our method of splitting documents described in Section 4.1.5, we get
a total of 1562 sequences from the 1393 AIDA-CoNLL documents. Table 3 shows the
distribution of document splits per subset of the dataset.

Sequences
Dataset Documents 5 4 3 2 1

Train 946 1 1 7 88 849
Validation 216 1 0 3 30 182
Test 231 0 0 0 20 211

Total 1393 2 1 10 138 1242

Table 3.: Count of how many AIDA-CoNLL documents are split in the respective
number of sequences.

5.2.2. Wikipedia Articles Dataset

We experimented with pretraining on a dataset of 50.000 annotated Wikipedia articles
before finetuning on the AIDA-CoNLL dataset. We split the dataset in a training
dataset, a validation dataset, and a test dataset. Table 4 shows the breakdown of
documents and mentions in each of the subsets.
Of the 187,826 unique entities in the Wikipedia Articles Train dataset, 2150

entities also appear in the AIDA-CoNLL training set. Consequently, 1934 entities in
AIDA-CoNLL Train do not appear in the Wikipedia Articles training dataset.
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Dataset Documents Mentions Annotated
Mentions

Unique
Entities

Train 48,500 595,458 474,008 187,826
Validation 500 5,599 4,432 3,538
Test 1,000 12,562 10,086 7,543

Total 50,000 613,619 488,526 191,838

Table 4.: Number of documents, mentions, mentions annotated with Wikipedia
entities and unique mentioned entities in the Wikipedia Articles dataset.

5.3. Module Evaluation

In this section, we evaluate key modules of our system on the AIDA-CoNLL dataset.
First, we assess the Knowledge Base in Section 5.3.1. Next, we review the Candidate
Generation system in Section 5.3.2.

5.3.1. Knowledge Bases

As described in Section 4.2, each Knowledge Base entity requires a Wikipedia2vec vec-
tor. The pretrained version of Wikipedia2vec has 2,592,608 Wikipedia entity vectors.
When evaluating with Candidate Generation, we include all Wikipedia2vec
entities in our Knowledge Base.

However, when evaluating the model without Candidate Generation, we use a
smaller Knowledge Base. Because each predicted entity embedding is compared to
all entity vectors in the Knowledge Base, using a smaller Knowledge Base significantly
reduces the evaluation time.

To construct the smaller Knowledge Base, we follow Chen et al. (2019) and make a
selection of the most popular entities. To decide the popularity of entities, we count
the number of times other Wikipedia articles link to a given entity. By setting the
minimum number of incoming links to 15, we get 1,081,226 entities. Similarly, Chen
et al. (2019) report using a knowledge base with one million entities based on the
same criterion of popularity.

Including AIDA-CoNLL Entities

Kolitsas et al. (2018); Broscheit (2019); Poerner et al. (2020) explicitly include all
entities that appear in the AIDA-CoNLL dataset in their Knowledge Bases. As
Poerner et al. (2020) point out, this assumes that we know which entities are in the
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test and validation datasets and may give an unfair advantage.
Regardless, we follow the same approach for better comparability with the men-

tioned methods. As a result, we include an additional 558 entities in the smaller
Knowledge Base that appear in the AIDA-CoNLL dataset but whose popularity
scores were too low. The resulting Knowledge Base covers 95.40 % of the unique
entities in the AIDA-CoNLL dataset and 98.33 % of the mentions. The entities
missing from the Knowledge Base have no Wikipedia2vec vectors.
Evaluating a model on AIDA-CoNLL Validation takes 60 minutes when using all

1,081,784 Knowledge Base entities as candidates. This corresponds to 0.75 seconds
per mention. When using Candidate Generation and 2,592,608 entities, evaluation
takes around 30 seconds. Some characteristics of the Knowledge Base are summarized
in Table 5.

No
Candidate
Generation

Candidate
Generation

Entities 1,081,784 2,592,608

Gold Recall on
AIDA-CoNLL entities

95.40 % 95.40 %

Gold Recall on
AIDA-CoNLL mentions

98.33 % 98.33 %

Evaluation time*
(minutes)

60 0.5

Evaluation time per
mention* (seconds)

0.75 0.007

Table 5.: Key characteristics of the Knowledge Base with and without using Candi-
date Generation. *Evaluation time measured on AIDA-CoNLL Validation.

We define entities that appear in a Knowledge Base as “entities of interest” and
ignore entities that are not in the Knowledge Base during evaluation. This type of
evaluation is referred to as “In-Knowledge-Base evaluation” and is common in the
Entity Linking literature.3 This excludes 254 unique AIDA-CoNLL dataset entities
with a total of 461 mentions (80 mentions in Validation, 106 in Test, and 275 in
Train).

3The alternative is to treat entities that are not in the Knowledge Base as Entity Disambiguation
errors.
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5.3.2. Candidate Generation

Evaluation with Candidate Generation is significantly faster than searching the entire
Knowledge Base because the generated candidate sets never have more than a few
hundred candidates. Consequently, we do not need to limit the size of the Knowledge
Base to speed up evaluation, and we evaluate the Candidate Generation approach
described in Section 4.3 with all 2,592,608 Wikipedia2vec entities in the Knowledge
Base. Regardless, the Knowledge Base has the same coverage of AIDA-CoNLL
mentions and entities. Table 6 shows some statistics of the Candidate Generation
module when using this Knowledge Base.

Total Aliases 11,395,243

Knowledge Base entities with at
least one alias 2,105,095

Knowledge Base entities without
an alias 487,513

Table 6.: Candidate Generation statistics for entities in the Knowledge Base.

Importantly, we evaluate how the Candidate Generation system performs on the
target AIDA-CoNLL dataset. For this evaluation, we only consider mentions of
ground-truth entities that are in the Knowledge Base (see Table 5).

The gold recall is a measure of the performance of a Candidate Generation system.
We measure the gold recall as the proportion of mentions in a dataset for which the
ground-truth entity is one of the candidates. Assuming the model finds all the correct
mentions, the gold recall is the ceiling for recall when using Candidate Generation.
Table 7 lists the gold recall for the different AIDA-CoNLL datasets.

Gold Recall

Dataset Unique
Entities Mentions

AIDA-CoNLL Train 98.75 % 98.92 %
AIDA-CoNLL Validation 99.24 % 99.05 %
AIDA-CoNLL Test 98.71 % 99.11 %

AIDA-CoNLL 98.84 % 98.97 %

Table 7.: Candidate Generation gold recall on the AIDA-CoNLL dataset for entities
in the Knowledge Base.
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The AIDA-CoNLL entities have an average of 144 aliases. Each alias is a potential
mention text to refer to an entity. The ground-truth entity is the only candidate for
18.4 % and 17.0 % of mentions in the AIDA-CoNLL Validation and AIDA-CoNLL
Test sets. If the model detects these mentions correctly, it will predict the correct
entity regardless of the predicted Entity Detection embedding. In AIDA-CoNLL
Validation, there are on average 53 candidates per mention, and in AIDA-CoNLL
Test, there are on average 56 candidates per mention.

When the Candidate Generation finds no candidates for a given mention text, we
fall back to using all Knowledge Base entities as candidates. There are only four
mentions with no candidates in AIDA-CoNLL Validation and seven such mentions in
AIDA-CoNLL Test. In theory, this raises the gold recall on mentions to 99.13 % on
AIDA-CoNLL Validation and 99.27 % on AIDA-CoNLL Test. In practice, however,
the ground-truth entity only appears as a candidate if the model has predicted a
valid Entity Disambiguation vector for that entity.

5.4. Experiments

This section presents the empirical results motivating our hyperparameter settings.
The experiments in Section 5.4.1 motivate modifications to the model architecture,
and, in Section 5.4.2, we arrive at parameters for the training procedure. Finally, we
look at the impact of pretraining on the Wikipedia Articles dataset in Section 5.4.3.
We leave the AIDA-CoNLL Test dataset for final evaluation in Section 6.1 and

evaluate on the AIDA-CoNLL Validation dataset. The Entity Linking performance
results without Candidate Generation reveal the contrast between models best. How-
ever, we report Entity Linking results both with and without Candidate Generation
and on Mention Detection.

5.4.1. Model Architecture

We propose some modifications to the model architecture of Chen et al. (2019)
motivated by the empirical results presented in this section. We trained models for
30 epochs to evaluate these architectures, compared to 180 for the final model.

Extra Hidden Output Layer

The word tokens have a shared representation for Mention Detection and Entity
Disambiguation through the BERT module of the network. At the output heads,
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these representations diverge and the output heads need to transform the BERT
embeddings for the respective tasks. We aim to evaluate whether the model proposed
by Chen et al. (2019) with only one layer in the output heads has sufficient expressive
power to make this transformation. To that end, we compare their model to a model
with additional hidden layers in the output heads (the model described in Section 4.1).

With only one layer in each output head, the Mention Detection head has 768·3+3 =

2, 307 trainable weights, while the Entity Disambiguation head has 768 · 100 +

100 = 76, 900 trainable weights. The hidden layers in our model give an additional
768× 768 + 768 = 590, 592 trainable weights in each output head.

Table 8 summarizes the results of the two models. Evaluating without Candidate
Generation, the model with extra hidden layers achieves an F1 score 3.14 points higher
than the model with single-layer output heads. When evaluating with Candidate
Generation, the difference is only 0.85 points. Interestingly, the difference in Mention
Detection performance is only 0.02 points, suggesting that the extra output layer is
redundant for Mention Detection. In light of these results, we propose using extra
hidden layers on the output heads and use this in all following experiments.

Entity Linking (Micro F1)

Model
Mention
Detection
(Micro F1)

No
Candidate
Generation

Candidate
Generation

Hidden layers in output heads 96.91 55.87 89.01
Single layer in output heads 96.93 52.73 88.16

Table 8.: Micro F1 scores on the AIDA-CoNLL Validation dataset of a model with
hidden layers in the output heads and a model with only a single layer in
each output head.

Cased or Uncased Model

In contrast to Chen et al. (2019), we use the case insensitive (uncased) version of
BERT.

Table 9 shows results of two models trained with the same parameters with BERT-
base-cased and BERT-base-uncased as base models. The cased model shows a weaker
performance in Mention Detection and Entity Linking.

After comparing the models’ predictions, we find that the cased model has a lower
precision on Mention Detection. We observe that it depends strongly on upper-cased
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Entity Linking (Micro F1)

Model
Mention
Detection
(Micro F1)

No
Candidate
Generation

Candidate
Generation

BERT-base-uncased 96.91 55.87 89.01
BERT-base-cased 96.23 55.52 86.96

Table 9.: Results on the AIDA-CoNLL Validation dataset of two models trained
with respectively case sensitive and case insensitive BERT models.

first letters to find mentions and produces more False Positive predictions due to the
inconsistent casing in the AIDA-CoNLL dataset. From these results, we conclude
that we do not need information about casing to achieve a strong Mention Detection
performance, and we will henceforth use the uncased version of BERT as a basis.

5.4.2. Training

In this section, we investigate some training hyperparameters that are significant for
the performance of the resulting model. Following Chen et al. (2019), we train all
models using a linear learning rate scheduler with an initial learning rate of 2 · 10−5

and four input sequences in each mini-batch.

The Loss Function Hyperparameter

The loss function has two components: a Mention Detection loss and an Entity Dis-
ambiguation loss. These are balanced by a parameter λ, as described in Section 4.1.3:

Jel = λJmd + (1− λ)Jed

Following Chen et al. (2019), we train a model with λ = 0.1. We compare this
model to three other models trained with λ = 0.03, λ = 0.01 and λ = 0.005.

Table 10 shows the evaluation results of the various models trained with different
values for λ. We find that λ = 0.005 gives a marginally better Entity Disambiguation
result than λ = 0.01 when evaluating without Candidate Generation.
As expected, the Mention Detection performance decreases with lower λ values.

Interestingly, when using Candidate Generation, the Entity Linking performance also
decreases at λ = 0.01 and λ = 0.05. This performance decrease may be explained by
a stronger correlation between Entity Linking performance and Mention Detection
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performance because Candidate Generation significantly simplifies the disambiguation
task. To balance performance with and without Candidate Generation, we use
λ = 0.01 in future experiments.

Entity Linking (Micro F1)

λ value
Mention
Detection
(Micro F1)

No
Candidate
Generation

Candidate
Generation

0.1 96.91 55.87 89.01
0.03 96.66 59.64 89.09
0.01 96.53 61.10 88.88
0.005 96.20 61.16 88.57

Table 10.: Evaluation results on AIDA-CoNLL Validation for four models trained
with different λ values in the loss function.

Dropout

We use the default dropout behavior when training BERT, with a dropout probability
of 0.1. Unlike Chen et al. (2019), we do not use dropout on the final BERT embeddings
before the output heads. When trained with the dropout behavior of Chen et al.
(2019), we observe a performance penalty of 1.45 points in the F1 score on the
AIDA-CoNLL Validation dataset.

Epochs

The models discussed so far in this chapter train for only 30 epochs. Chen et al.
(2019) use 50,000 training steps and four sequences per mini-batch. After splitting
long documents, the AIDA-CoNLL Train dataset has 1055 sequences. Accordingly,
50,000 training steps are equivalent to 50000

1055/4 ≈ 190 training epochs.
To investigate the impact of the number of training epochs on model performance,

we trained models for respectively 30, 60, 90, 120, 150, 180, 210, and 240 epochs.
Figure 7 shows the performance results of evaluating on AIDA-CoNLL Validation.
We observe diminishing returns in performance when models train for more than

120 epochs. Between 120 and 180 epochs, the increase is 0.47 points in F1 score, and,
from 180 to 240, the increase is 0.23 points. To stay closer to the training budget of
Chen et al. (2019), we train our final models for 180 epochs.
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Figure 7.: Evaluation results on AIDA-CoNLL Validation for eight models trained
with different number of epochs.

5.4.3. Pretraining on Wikipedia Articles

We hypothesize that the model can benefit from training on more data than the
AIDA-CoNLL Train dataset provides. We pretrain a model on the Wikipedia Articles
dataset described in Section 5.2.2 and finetune on the AIDA-CoNLL Train dataset to
explore this hypothesis.
Because we are using two datasets, we double the training budget and allocate

50,000 training steps to pretraining and finetuning, respectively. The result is four
training epochs of pretraining on Wikipedia Articles Train and 180 epochs of finetuning
on AIDA-CoNLL Train. That is a total of 99,807 training steps.

Table 11 shows the evaluation results of the pretrained and finetuned model on the
AIDA-CoNLL Validation dataset. We compare the performance to the base model
trained for 180 epochs, with the hyperparameter settings derived in this chapter.
Compared to the base model, the pretrained model shows a performance increase
of 1.55 points on AIDA-CoNLL Validation when evaluating without Candidate
Generation.
By training on the Wikipedia Articles dataset, the pretrained model trains on

entities that appear in the AIDA-CoNLL Test and Validation sets which it would not
see from training only on the AIDA-CoNLL training set. We investigate the impact
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Entity Linking (Micro F1)

Mention
Detection
(Micro F1)

No
Candidate
Generation

Candidate
Generation

Pretrained Model 96.52 73.66 89.93
Base Model 96.47 72.11 89.16

Table 11.: Evaluation results on AIDA-CoNLL Validation for two models: a model
pretrained for 4 epochs on Wikipedia Articles and finetuned for 180
epochs on AIDA-CoNLL Train; and a model trained for 180 epochs on
AIDA-CoNLL Train.

of pretraining on entities that do not appear in the training set in Section 6.2.1.
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6. Results

In this chapter, we evaluate and analyze the results of the models derived in Chapter 5.
In Section 6.1, we present the results of our model on the AIDA-CoNLL Test dataset
and compare them to other state-of-the-art systems. In Section 6.2, we analyze the
results in more depth to expose some strengths and weaknesses.

6.1. Final Model Results

In this section, we evaluate the models from Section 5.4 on the AIDA-CoNLL Test and
Validation datasets. Section 6.1.1 reports the results without Candidate Generation,
and, conversely, Section 6.1.2 reports the results with Candidate Generation.
Table 12 lists the architecture and training parameters used for the three models

that we evaluate: a model which is pretrained on the Wikipedia articles dataset and
finetuned on AIDA-CoNLL Train; a model which is only trained on AIDA-CoNLL
Train; and a model trained with the settings inherited from Chen et al. (2019).

6.1.1. Without Candidate Generation

Table 13 shows the performance of our best-performing model on the AIDA-CoNLL
Validation and Test sets when evaluated without Candidate Generation. We compare
with the results reported by Chen et al. (2019) and Broscheit (2019), who also report
Entity Linking results without Candidate Generation.
We find that our results are far from the performance reported by Chen et al.

(2019), both with and without pretraining. Without pretraining, we see a difference
to Chen et al. (2019) in F1 score of 11.4 points on AIDA-CoNLL Validation and 13.0
points on AIDA-CoNLL Test. On AIDA-CoNLL Test, our implementation trained
with the settings of Chen et al. (2019) achieves a score 2.7 points lower than our own
model without pretraining and 15.7 points below Chen et al. (2019).

From these results, we conclude that we are not able to reproduce the results of Chen
et al. (2019). However, we are able to improve the performance of our implementation
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Our Model Our Model
Pretrained

Our Imple-
mentation of
Chen et al.
(2019)

BERT-base Model Uncased Uncased Cased

Hidden Layers in
Output Heads

Yes Yes No

Training Epochs 180 4 + 180 190

Training Time 4 hrs 50 mins 8 hrs 37 mins 5 hrs 6 mins

Loss Function λ 0.01 0.01 0.1

Dropout Before
Output Heads

No No Yes

Table 12.: Characteristics of our best-performing models with and without pretrain-
ing and our implementation with the settings of Chen et al. (2019).

Validation Test

Mention
Detection
(Micro F1)

Entity
Linking

(Micro F1)

Mention
Detection
(Micro F1)

Entity
Linking

(Micro F1)

Our Model 96.47 72.11 95.10 56.41

Our Model
Pretrained

96.52 73.66 95.15 59.88

Our version of
Chen et al. (2019)

95.84 69.26 94.28 53.74

Broscheit (2019) 86.0 79.3

Chen et al. (2019) 83.5 69.4

Table 13.: Evaluation results on AIDA-CoNLL Validation and Test for our best-
performing model without Candidate Generation compared with other
Entity Linking models that do not rely on Candidate Generation.
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of their model using the modifications presented in Section 5.4. Pretraining on a
larger dataset also gives an increase in performance.

6.1.2. With Candidate Generation

We evaluate the same three model with Candidate Generation. Table 14 shows the
performance of the three models on the AIDA-CoNLL Validation and Test sets. Here,
we compare with the results of all papers mentioned in Section 3.3. For Chen et al.
(2019) the results are obtained with Candidate Generation. The results of Broscheit
(2019) are the same as above, as their model cannot use Candidate Generation.

We see a large performance increase when evaluating our models with Candidate
Generation. This is not surprising, given the advantage that Candidate Generation
gives in restricting the search space. The absolute difference from our base model to
the results reported by Chen et al. (2019) is significantly lower, with a difference of
4.4 points in F1 score on AIDA-CoNLL Validation and 4.7 on AIDA-CoNLL Test.

6.2. Error Analysis

To better understand the strengths and weaknesses of the proposed model, we conduct
a comprehensive analysis of its performance. Firstly, in Section 6.2.1, we will look
at how well the model generalizes to entities it has not seen during training and
how pretraining affects this. Next, in Section 6.2.2, we will look at characteristics of
entities where the model is likely to make errors.

6.2.1. Evaluation by Seen and Unseen Entities

By evaluating with data that is disjoint from the training dataset, we can assess how
well the model generalizes to unseen data. Although no documents appear twice
in the AIDA-CoNLL dataset, many entities appear in multiple contexts across the
AIDA-CoNLL Train, Validation, and Test datasets.

We evaluate a model’s capacity to generalize to new entities by splitting the
mentions in the AIDA-CoNLL Test dataset in two categories:

• mentions of “seen” entities which appear as labels in the AIDA-CoNLL Train
dataset and which the model has seen during training; and

• “unseen” entities, which do not appear in AIDA-CoNLL Train.
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Validation Test

Mention
Detection
(Micro F1)

Entity
Linking

(Micro F1)

Mention
Detection
(Micro F1)

Entity
Linking

(Micro F1)

Our Model 96.47 89.16 95.10 83.03

Our Model
Pretrained

96.52 89.93 95.15 85.08

Our version of
Chen et al. (2019)

95.84 87.95 94.28 80.71

Broscheit (2019) 86.0 79.3

Martins et al.
(2019)

95.72 85.2 92.52 81.9

Kolitsas et al.
(2018)

89.4 82.4

Poerner et al.
(2020)*

90.8 85.0

Chen et al. (2019) 93.6 87.7

Table 14.: Evaluation results on AIDA-CoNLL Validation and Test for our best-
performing model with Candidate Generation compared with other
Entity Linking models. *Poerner et al. (2020) does not perform Mention
Detection, but reports Entity Linking results with third-party Mention
Detection.
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The AIDA-CoNLL Test dataset has 4485 mentions of 1536 unique entities. There
are 1853 mentions of 883 unique unseen entities and 2632 mentions of 653 unique
seen entities. This yields 41.3 % unseen mentions and 57.5 % unseen entities.

We calculate a model’s Entity Disambiguation accuracy as the In-Knowledge-
Base recall excluding Mention Detection errors. As defined in Section 5.1, recall is
the ratio of correct predictions to mentions.

Without Candidate Generation

Table 15 shows the results of our base model and the pretrained model on seen and
unseen entities, evaluated without Candidate Generation on the AIDA-CoNLL Test
dataset. The models disambiguate the seen entities with Entity Disambiguation
accuracies above 93 %. We conclude from this that the models learn to recognize the
entities that appear in the training data and are able to predict them in new contexts
with high accuracy without the aid of Candidate Generation.

Entity Disambiguation Accuracy
Without Candidate Generation

All
Mentions

(%)

Seen
Entities
(%)

Unseen
Entities
(%)

Our Model 59.36 93.05 7.58

Our Model
Pretrained

62.98 93.79 15.86

Table 15.: Entity Disambiguation accuracy on In-Knowledge-Base entities in AIDA-
CoNLL Test categorized by whether or not they appear in AIDA-CoNLL
Train. Evaluation is without Candidate Generation and ignoring Mention
Detection errors.

In comparison, the models perform poorly on the unseen entities. The weak
performance suggests that the models do not learn to generalize to new entities well
enough for entity disambiguation without Candidate Generation. A remedy for this
problem is to train on more data, as exemplified by the pretrained model. The Entity
Disambiguation accuracy of the pretrained model is twice that of the base model on
unseen entities.
However, the pretrained model has encountered some unseen AIDA-CoNLL Test

entities in the Wikipedia Articles dataset. Accordingly, we evaluate the Entity
Disambiguation accuracy on entities that appear in neither training set. Around 22.5
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% of the mentions and 26.0 % of the entities in AIDA-CoNLL Test are unseen by both
models. On these mentions, the pretrained model achieves an Entity Disambiguation
accuracy of 3.5 %. The base model only achieves an accuracy of 1.4 %. We conclude
that the pretrained model generalizes better than the base model, but that neither
model is able to generalize reliably to unseen entities without Candidate Generation.

With Candidate Generation

When using Candidate Generation for evaluation, the models perform significantly
better. Table 16 shows the performance of the two models on AIDA-CoNLL Test
on seen and unseen AIDA-CoNLL Test mentions. The performance on unseen
entities is much higher than without Candidate Generation, and the difference in
performance between the two models is reduced. These results show that the models
have learned sufficiently to achieve high Entity Disambiguation accuracies with
Candidate Generation.

Entity Disambiguation Accuracy
With Candidate Generation

All
Mentions

(%)

Seen
Entities
(%)

Unseen
Entities
(%)

Our Model 88.07 97.15 74.60

Our Model
Pretrained

90.18 97.74 79.02

Baseline Model 63.90 70.55 54.04

Table 16.: Entity Disambiguation accuracy on In-Knowledge-Base entities in AIDA-
CoNLL Test categorized by whether or not they appear in AIDA-CoNLL
Train. Evaluation is with Candidate Generation and ignoring Mention
Detection errors.

We evaluate a baseline model, which predicts the candidate with the high-
est popularity (defined in Section 5.3.1 as the number of incoming links to an
entity’s Wikipedia article). The results of the baseline model are listed in Table 16,
and give us an indication of Candidate Generation on seen and unseen entities.
Interestingly, the baseline model also shows a significant performance gap between
seen and unseen entities.

The candidate sets for the unseen entities have, on average, half as many candidates
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as the seen entities. Consequently, the probability of finding the correct candidate
should be higher for unseen entities. Furthermore, a third of the candidate sets for
unseen mentions have the ground truth entity as the only candidate. In these cases,
the models default to the correct prediction. Accordingly, the unseen entities should
benefit more from the candidate sets than seen entities.
Contradictory to this, the performance gap of the baseline model between seen

and unseen entities tells us that the unseen entities are 16.5 % less likely to be the
most popular candidates. Moreover, the ground truth entity for seen entities are on
average the 1.8 most popular candidate, while for unseen entities, they are only the
3.7 most popular candidate.

To investigate the importance of entity popularity for our models, we look at the
correlation of entity popularity and entity frequency in the AIDA-CoNLL datasets.
We find a strong correlation between the frequency of seen entities in AIDA-CoNLL
Train and their popularity (Pearson’s r = 0.7992)1. On the other hand, the unseen
entities are poorly correlated with popularity, as confirmed above by their rank in
their respective candidate sets.

In conclusion, we hypothesize that the performance discrepancy between seen and
unseen entities could have a two-fold explanation: trivially, the models have not
trained on unseen entities and thus are unfamiliar with the target entities; additionally,
the unseen entities are inherently more difficult to disambiguate. Further research is
needed to investigate whether the models learn a prior probability distribution from
the training set.
Regardless of the models’ disadvantage on unseen entities, we see a large perfor-

mance increase on these entities when using Candidate Generation. The performance
increase is also much higher for unseen entities than for seen entities, where the
potential for improvement is lower.

The models show a similar performance difference between seen and unseen entities
in the AIDA-CoNLL Validation dataset. Moreover, 23.7 % of the mentions in the
Validation dataset are of unseen AIDA-CoNLL entities, while the same is true for
41.3 % of mentions in the Test dataset. This explains why the models perform better
on AIDA-CoNLL Validation than on AIDA-CoNLL Test.

6.2.2. Performance by Entity Types

We combine In-Knowledge-Base entities in AIDA-CoNLL Test with information from
Wikidata. Using the attributes of the corresponding Wikidata entities, we categorize

1The Pearson’s correlation coefficient is highly significant with p-value << .001.
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the entities as organizations (2985 mentions), locations (1704 mentions), persons (890
mentions), and events (116 mentions). Entities may fall into multiple categories.
These categories cover 68.5 % of the mentions in AIDA-CoNLL Test. Following the
approach in Section 6.2.1, we further split each category into entities that the models
have seen in AIDA-CoNLL Train, or that otherwise are unseen.2

For example, the Wikipedia Entity El Salvador corresponds to the Wikidata entity
Q792 . Using the instance-of and subclass-of attributes of the Wikidata entity, we
categorize it as an organization and a location.
We evaluate the Entity Disambiguation accuracy for entity mentions in each

category. The accuracy excludes Mention Detection errors and entities that are not
in the Knowledge Base. Table 17 shows the evaluation results of the base model
and the pretrained model with and without Candidate Generation on categories of
mentions in AIDA-CoNLL Test. The table header also lists the number of mentions
in each category.

2We do not consider whether or not entities appear in the Wikipedia Articles dataset.
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Before looking at the performance, we note some characteristics of the categories.
Firstly, we observe from the ratio of seen and unseen mentions in each category
that person and event entities in AIDA-CoNLL Test are unlikely to have appeared
in AIDA-CoNLL Train. Conversely, organizations and locations are likely to have
appeared in AIDA-CoNLL Train.

Moreover, we find that the average popularity score3 for organizations and locations
is over six times higher than the popularity of persons and events. Additionally,
organization and location entities have on average twice as many mentions per unique
entity as compared to persons and events.
Reflecting the results in Section 6.2.1, the models consistently perform better on

seen entities than on unseen entities across all categories. Furthermore, Candidate
Generation increases performance on both seen and unseen entities for all categories.

Without Candidate Generation

Without Candidate Generation, the models perform below the average for seen
persons and events. Interestingly, seen events see the poorest performance of seen
entities, while unseen events have the best performance.
To exemplify the base model’s predictions on the category of events, we look at

the two event entities most frequently mentioned in AIDA-CoNLL Test:

• The unseen event entity “National Hockey League” appears twelve times AIDA-
CoNLL Test. The model predicts it correctly in seven occurrences, all of which
with the mention text “NHL”. The remaining five occurrences have mention
text “National Hockey League”, and the model disambiguates incorrectly to
the entity “National League” (a North American baseball league) four times.
This entity is a seen entity appearing nine times in AIDA-CoNLL Train. For
the fifth incorrect prediction, the model predicts the related entity “Season
structure of the NHL”.

• The unseen event entity “FIS Alpine Ski World Cup” appears nine times in
AIDA-CoNLL Test, always with the mention text “World Cup”. However, the
model consistently predicts the seen entity “UCI Road World Cup” (a cycling
championship held in Europe) which appears five times in AIDA-CoNLL Train
with “World Cup” as the mention text. Interestingly, six entities appear in
AIDA-CoNLL Train with “World Cup” as mention text, and two of these appear

3The popularity of an entity is defined in Section 5.3.1 as the number of incoming links to its
Wikipedia article.
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at least as frequently as “UCI Road World Cup”. It is not clear from the context
why the model predicts this entity instead of other seen entities.

In both of these examples, the model predicts seen entities which appear with a
similar mention text when the ground truth label is an unseen entity. In these cases,
the model has overfit to the training data and recalls a seen entity without properly
considering the context.

The annotations for event entities are often ambiguous in the AIDA-CoNLL dataset.
Consider the following excerpt from a document with ground truth entity annotations
from AIDA-CoNLL Test:

SOCCER - {SPAIN} [Spain] PICK UNCAPPED ARMANDO FOR
{WORLD CUP} [1998_FIFA_World_Cup] CLASH. {MADRID}
[Madrid] 1996-12-06 {Spain} [Spain] coach {Javier Clemente} [Javier_Clemente]
has added uncapped Deportivo Coruna midfielder Armando Alvarez to
his squad for the {World Cup} [FIFA_World_Cup] qualifier against
Yugoslavia on December 14.

The document has two mentions of “World Cup” annotated with “1998 FIFA World
Cup” and “FIFA World Cup” (both are seen entities). In both instances, the model
predicts “1998 FIFA World Cup”, which is arguably correct for both mentions.
We observe the poorest performance in the category of unseen persons. Only

a third of the person entities in AIDA-CoNLL Test are seen entities. Furthermore,
seen person entities have a lower average frequency in AIDA-CoNLL Train than
other categories. We hypothesize that the models have little training experience with
disambiguating person entities in multiple contexts.

With Candidate Generation

When evaluating with Candidate Generation, seen events see the lowest performance
among seen entities. For unseen entities, the performance on persons is well above
average, and events again see the poorest performance.

On unseen persons, the performance increases considerably when using Candidate
Generation. In fact, the models perform almost as well on seen and unseen persons.
This is less surprising when we consider that there are only ten candidates on average
for persons, compared to over 50 candidates on average for other categories.
We hypothesize that the poor performance on both seen and unseen events is

related to the issues of annotation in AIDA-CoNLL as argued above. However, we
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also note that the model relies heavily on small candidate sets for event entities:
incorrectly predicted events have six times more candidates than correctly predicted
events. In contrast, organizations and locations have virtually the same number
of candidates for correct and incorrect predictions. These three categories have
comparable number of candidates, with an average of 56 candidates.

The difficulty of event entities may be related to the distribution of these entities
in the Wikipedia2vec vector space. For example, the entity “FIFA World Cup” is
only the 16th most similar entity to “1998 FIFA World Cup”, measured by cosine
similarity in Wikipedia2vec. This highlights a challenge of using the Wikipedia2vec
vector space for entity disambiguation: entities that appear in similar contexts need
to be disambiguated using features extracted from the context. The projection of
token vectors in the Entity Disambiguation head from 768 dimensions to 100
dimensions leads to a loss of information. Using a higher dimensional label space
may lead to better results, at the cost of more training data.

Similarity of Candidates by Entity Category

The similarity of candidates in each category gives us a comparison of dis-
ambiguation difficulty. If candidates are more similar to the ground truth entity,
the model must project the Entity Disambiguation vector more precisely to disam-
biguate correctly. We define similarity as the cosine-similarity of two entity vectors
in Wikipedia2vec. To compare each category of entities, we average the similarity
of the ten most similar candidates to the ground truth entity. In each category, we
consider all mentions with at least ten candidates:

• Organizations: For 2204 mentions, the ten most similar candidates are 64.6 %
similar.

• Locations: For 1474 mentions, the ten most similar candidates are 64.1 %
similar.

• Persons : For 147 mentions, the ten most similar candidates are 55.3 % similar.

• Events: For 57 mentions, the ten most similar candidates are 76.3 % similar.

From this, we can see that events have candidates that are relatively similar to
the target entity compared to organizations, locations and persons. This may explain
why this category still shows poor performance with Candidate Generation. We also
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see that persons, in addition to having considerably fewer candidates on average, have
less similar candidates.

In conclusion, the models benefit more from candidate sets with maximally different
candidates. This requires less precise embedding predictions from the model. As
illustrated by the category of person entities, this leads to a high performance even
on unseen entities.
In contrast, the relatively small differences between event candidates requires

proportionately more precise embedding predictions from the models. We have
observed that the models perform above average on unseen events without Candidate
Generation. However, with Candidate Generation the performance is below average
for both seen and unseen event entities. We believe this behavior is due to the high
similarity of candidates for event entities.
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7. Conclusion

Answering the research goals stated in Section 1.3, we conclude that

• We are not able to reproduce the results of Chen et al. (2019), neither
with the same architectural and training hyperparameters nor with custom
hyperparameters. Our attempt at reproducing their model performs 15.7
points in F1 score below the performance reported by Chen et al. (2019) when
evaluating without Candidate Generation on the AIDA-CoNLL Test dataset. In
the absence of any clear differences to their method, we propose no hypotheses
to explain this discrepancy.

• Relative to the results we obtain with the proposed settings from Chen
et al. (2019), we are able to improve the performance of the model. Using
an additional fully connected layer in the output heads, a case-insensitive BERT
model, and improved training hyperparameters, we improve the performance
by 2.7 points in F1 score on the AIDA-CoNLL Test dataset when evaluating
without Candidate Generation.

• The results of our best performing model improve by an additional
3.5 points in F1 score when pretraining the model on a dataset of 50,000
Wikipedia articles annotated with anchor text links. We found that the main
reason for this performance improvement is that the pretrained model has
been exposed to more of the entities that appear in the ADIA-CoNLL Test set.
However, the pretrained model generalizes slightly better than the base model
to entities that it has not seen during training on either dataset.

• When evaluating with Candidate Generation using the candidate sets
from Ganea and Hofmann (2017), the performance improves by 26.6 points
in F1 score on AIDA-CoNLL Test. This result is near the state-of-the-art,
but is still 4.7 points lower than the F1 score reported by Chen et al. (2019)
with Candidate Generation.

• Comparing the model’s performance on entities that it has seen during
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training to entities that it has not seen (unseen), we find that the
model generalizes relatively poorly to the unseen entities. Without
the aid of Candidate Generation, the model correctly disambiguates 93 % of
seen entities, and 8 % of unseen entities. When evaluating with Candidate
Generation, we observe an accuracy on seen entities of 97 %, and, conversely,
75 % for unseen entities.

• By categorizing entities as organizations, locations, persons and events, we
revealed large differences in performance between categories. We found
that the performance increased the most with Candidate Generation when the
generated candidate set contained relatively dissimilar candidates and when
the candidate sets were small.
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A. The Gradient of the Loss Function

Recall that, when training neural networks with backward propagation, the training
signal propagates backward from the loss function, through the output heads and the
network layers, towards the input layer. The training signal is the gradient of
the loss function with regard to the trainable weights at each layer of the network.
Figure 8 shows how the gradient moves from the loss function through the main
modules of the model.

Mention
Detection

Entity
Disambiguation

BERT

O, O, B, I, O, O, O, O, O, O, O

0.1
[...]
0.7

[...]
0.4
[...]
0.3

Loss Function
Jel

∂J e l
∂Jmd

∂J e l
∂J ed

∂J e l
∂pmd

∂J e l
∂ê ed

∂J e l
∂h b

∂J e l
∂h b

Figure 8.: The propagation of the training signal from the loss function through
the modules of the network.

Hence, to start the evaluation of the training signal, we calculate the gradient of
the loss function Jel with regard to its inputs.1 The inputs to the loss function are

1We do not calculate the gradient with regard to the labels, even though they are also inputs to
the loss function. The labels are not produced by the network and do not create a training signal
for model weights.
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the outputs of the network pmd and êed.
First, we calculate the gradient with regard to the Mention Detection predictions

pmd:

∂Jel
∂pmd

=
∂ (Jed(êed, ew) + Jmd(pmd, gtmd))

∂pmd

=
∂Jed
∂pmd

+
∂Jmd

∂pmd
=
∂Jmd

∂pmd

We can see that the gradient with regard to the Mention Detection error does not
depend on Entity Disambiguation errors. Next, the gradient with regard to the Entity
Detection embeddings êed does not depend on the Mention Detection predictions:

∂Jel
∂êed

=
∂ (Jed(êed, ew) + Jmd(pmd, gtmd))

∂êed

=
∂Jed
∂êed

+
∂Jmd

∂êed
=
∂Jed
∂êed

After training the network weights in the output layers, we look at the input to
the output layers. Both the Mention Detection head and the Entity Disambiguation
head take BERT embeddings hb as input. Hence, the training signal again depends
on both the individual loss functions. The gradient of the loss with regard to hb is:

∂Jel
∂hb

=
∂Jel
∂êed

∂êed
∂hb

+
∂Jel
∂pmd

∂pmd

∂hb

We see that the two gradients from the output heads merge to a sum that depends
on both output heads. Consequently, the BERT network producing the embeddings
hb for Mention Detection and Entity Disambiguation trains to tackle both tasks
simultaneously. This is the result and the aim of using a joint learning objective for
both Mention Detection and Entity Disambiguation.
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