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Abstract

In this dissertation, we consider the problem of making semantic search on text and
knowledge bases more precise and convenient. In a nutshell, semantic search is search
with meaning. To this respect, text and knowledge bases have different advantages and
disadvantages. Large amounts of text are easily available on the web, and they contain
a wealth of information in natural language. However, text represents information in an
unstructured form. It follows no pre-defined schema, and without further processing, a
machine can understand its meaning only on a superficial level. Knowledge bases, on the
other hand, contain structured information in the form of subject predicate object triples.
The meaning of triples is well defined, and triples can be retrieved precisely via a query
language. However, formulating queries in this language is inconvenient and compared to
text only a small fraction of information is currently available in knowledge bases.

In this document, we summarize our contributions on making semantic search on text
and knowledge bases more precise and convenient. For knowledge bases, we introduce an
approach to answer natural language questions. A user can pose questions conveniently in
natural language and ask, for example, who is the ceo of apple?, instead of having to learn
and use a specific query language. Our approach applies learning-to-rank strategies and
improved the state of the art on two widely used benchmarks at the time of publication.
For knowledge bases, we also describe a novel approach to compute relevance scores for
triples from type-like relations like profession and nationality. For example, on a large
knowledge base, a query for american actors can return a list of more than 60 thousand
actors in no particular order. Relevance scores allow to sort this list so that, e.g., frequent
lead actors appear before those who only had single cameo roles. In a benchmark that we
generated via crowdsourcing, we show that our rankings are closer to human judgments
than approaches from the literature. Finally, for text, we introduce a novel natural lan-
guage processing technique that identifies which words in a sentence “semantically belong
together”. For example, in the sentence Bill Gates, founder of Microsoft, and Jeff Bezos,
founder of Amazon, are among the wealthiest persons in the world, the words Bill Gates,
founder, and Amazon do not belong together, but the words Bill Gates, founder, and Mi-
crosoft do. We show that when query keywords are required to belong together in order
to match, search results become more precise.

Given the characteristics of text and knowledge bases outlined above, it is promising to
consider a search that combines both. For example, for the query CEOs of U.S. companies
who advocate cryptocurrencies, a list of CEOs of U.S. companies can be retrieved from
a knowledge base. The information who is advocating cryptocurrencies is rather specific
and changes frequently. It is, therefore, better found in full text. As part of this thesis, we
describe how a combined search could be achieved and present and evaluate a fully func-
tional prototype. All of our approaches are accompanied by an extensive evaluation which
show their practicability and, where available, compare them to established approaches
from the literature.
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Kurzzusammenfassung

Diese Dissertation beschäftigt sich mit der Aufgabenstellung, semantische Suche in Text
und Wissensdatenbanken präziser und komfortabler zu machen. Semantische Suche ist
kurz gesagt eine „Suche mittels Bedeutung”. In diesem Kontext haben Text und Wissens-
datenbanken unterschiedliche Vor- und Nachteile. So ist Text in großer Menge im World
Wide Web verfügbar und enthält eine Fülle an Informationen. Für Nutzer von Suchma-
schinen ist die Suche nach Informationen über Schlagwörter einfach handzuhaben und hat
sich für viele Anfragen als effektiv herausgestellt. Allerdings sind Informationen in Text
unstrukturiert. Sie folgen keinem vorgegebenen Schema und ohne weitere Verarbeitung ist
die Bedeutung von Text für eine Maschine nur oberflächlich erkennbar. In der Konsequenz
ist es oft schwierig, präzise nach Informationen in Text zu suchen. Dagegen enthalten
Wissensdatenbanken strukturierte Information in Form von Tripeln aus Subjekt Prädikat
Objekt. Die Bedeutung von Tripeln ist für eine Maschine klar definiert und Tripel können
präzise über eine spezielle Abfragesprache gefunden werden. Allerdings ist das Formulieren
einer Abfrage in dieser Sprache umständlich. Zudem sind im Vergleich zu Text weniger
Informationen in Wissensdatenbanken verfügbar.

Angesichts dieser Eigenschaften ist eine kombinierte Suche in Text und Wissensdaten-
banken vielversprechend. Zum Beispiel kann für die Anfrage CEOs von US-Firmen, die
Kryptowährungen unterstützen eine Liste mit CEOs von US-Firmen aus einer Wissenda-
tenbank bezogen werden. Die Information, welche CEOs Kryptowährungen unterstützen,
ist relativ spezifisch und kann sich häufig ändern. Derartige Information ist daher schwie-
rig in einer Wissensdatenbank aktuell zu halten und lässt sich besser in Volltext, wie z.B.
aktuellen Nachrichten, finden.

In dieser Arbeit beschreiben wir in Kapitel 3.1 zunächst die Idee der Semantischen Voll-
textsuche, eine kombinierte Suche in Text undWissensdatenbanken. Wir präsentieren einen
voll funktionsfähigen Prototypen, der alle wichtigen Probleme adressiert, um Suchen ein-
facher und Ergebnisse präziser zu machen. Dazu gehören eine natürliche Sprachverar-
beitung, ein einfach zu verwendendes Benutzerinterface und eine einfach zu verstehende
Wissensdatenbank. Anhand des Prototypen evaluieren wir das Potential der Semantischen
Volltextsuche. Im Weiteren Verlauf der Arbeit präsentieren wir drei individuelle Problem-
stellungen, um semantische Suche auf Text oder Wissensdatenbanken präziser und kom-
fortabler zu machen. Diese Problemstellungen sind nicht nur relevant für Semantische
Volltextsuche, sondern darüber hinaus auch für andere Arten der semantischen Suche.

In Kapitel 3.2 stellen wir eine natürliche Sprachverarbeitungstechnik vor, um Ergebnisse
von Schlagwortsuchen in Text präziser zu machen. Anstatt der bloßen Existenz von Schlag-
wörtern an beliebigen Stellen in einem Dokument müssen die Schlagwörter innerhalb eines
Satzes in „inhaltlichem Zusammenhang” stehen, um als Treffer in Betracht zu kommen. In
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dieser Arbeit zeigen wir anhand von Experimenten, dass Semantische Volltextsuche durch
diese Technik präziser wird. Wir zeigen auch, dass die Technik verwendet werden kann,
um Tripel - ähnlich derer in Wissensdatenbanken - aus Text zu extrahieren.

Des Weiteren stellen wir in Kapitel 3.3 eine Technik vor um die Relevanz von Tripeln
aus Wissensdatenbanken für typähnliche Relationen wie profession oder nationality zu
berechnen. Anhand der Relevanz von Tripeln lassen sich Ergebnisslisten sortieren. Eine
Liste amerikanischer Schauspieler in der Wissensdatenbank Freebase enthält z.B. mehr
als 60.000 Einträge in beliebiger Reihenfolge. In einer nützlichen Sortierung erscheinen
Schauspieler mit häufigen Hauptrollen vor Schauspielern mit nur vereinzelten Nebenrollen.
Unser Ansatz bestimmt die Relevanz von Tripeln anhand von Informationen aus Text.
Da dies ein neuartiges Problem ist, erstellen wir mittels Crowdsourcing einen Datensatz
zur Evaluation. Dieser Datensatz ermöglicht es, unseren Ansatz mit Ähnlichen aus der
Literatur zu vergleichen. Er ist außerdem öffentlich für weitere Forschung verfügbar und
findet bereits Verwendung (z.B. WSDM Cup 2017).

In Kapitel 3.4 stellen wir einen Ansatz vor, um Anfragen in natürlicher Sprache aus ei-
ner Wissensdatenbank zu beantworten. Ein Benutzer kann Fragen in natürlicher Sprache
stellen, wie zum Beispiel who is the ceo of apple?, anstatt eine spezielle Abfragesprache
erlernen zu müssen. Ein großes Problem hierbei ist die Entitätserkennung und -zuordnung:
welche Wörter aus der Frage entsprechen welchen Entitäten aus der Wissensdatenbank.
Im Beispiel bezieht sich apple auf die Entität Apple Inc., die Firma, nicht auf Apple, die
Frucht, und ceo auf die Entität mit der synonymen Bezeichnung Managing Director. Unser
Ansatz löst gleichzeitig sowohl die Entitätserkennung und -zuordnung, als auch das Über-
setzen in die Abfragesprache durch eine Abbildung auf ein Learning-to-Rank Problem.
Wir evaluieren unseren Ansatz auf zwei, weit verbreiteten Benchmarks und übertreffen
zum Zeitpunkt der Veröffentlichung den Stand der Technik.

Semantische Suche stellt kein einzelnes, wohldefiniertes Problem dar. Daher haben wir eine
umfangreiche Zusammenfassung (158 Seiten) über das Gebiet der semantischen Suche auf
Text und Wissensdatenbanken erstellt. Darin wird das Gebiet in neun Bereiche klassifi-
ziert, basierend auf den zugrundeliegenden Daten (Text, Wissensdatenbanken, Kombina-
tionen davon) und der Art der Suche (Stichwörter, strukturiert, natürliche Sprache). Diese
Klassifizierung beschreiben wir im letzten Kapitel dieser Dissertation und vermitteln so
einen kurzen Überblick über dieses weitreichende Gebiet.
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1 Introduction

This thesis contributes to the field of semantic search on text and knowledge bases. Se-
mantic search is not a single well-defined problem, but an umbrella term for all kinds of
search with meaning. The kind of search and queries we consider in this work can be char-
acterized by the kind of result. Queries always ask for one or more entities. An example
query is who is the ceo of apple?1, but we also consider more specific queries like male
friends of Ada Lovelace who are philosophers. In all cases, we are concerned with making
the search convenient. This means making it easy to use, for example, by allowing a user
to pose a question in natural language instead of a complicated query language. We are
also concerned with answering queries precisely. That is, for a given query we want to
match and return the correct result or, in the case of a result list, rank it such that most
relevant results come first. The two data sources we consider for answering queries are
text and knowledge bases. With respect to convenience and preciseness, these are two
complementary sources of information. Let us understand this by first looking at search
on text followed by search on knowledge bases. Afterwards, we describe the individual
problems we address in this context.

Given a query consisting of keywords, search on text returns a list of documents that
match the keywords, or variations of them. For example, issuing the query first computer
programmer to a web search engine returns a list of web pages which match these keywords
in their text, title, or domain. As a top hit, we get a document with the title “Ada
Lovelace: The First Computer Programmer”. And we get the same match for variations
of query keywords like synonyms (computing) or spelling mistakes (computre). To match
this document, the search engine doesn’t have to understand the query or the document’s
content. In fact, the keywords match prominently in the title as well as in the document’s
text: Ada Lovelace has been called the world’s first computer programmer. Together, this
indicates to the search engine that this is a good hit for the query.

This kind of search has turned out to be very successful, which is somewhat surprising since
the underlying idea is rather simple. A major factor in the success is the massive amount
of data that is now available on the World Wide Web. For example, the English Wikipedia
alone contains about five million articles with detailed information on popular topics. For
popular queries, a web page with the answer that also matches the keywords is likely to
exist and formulating a keyword query is easy and intuitive for a user. Furthermore, the
search engine requires no deep understanding of the text or query. Instead, these are
treated as a mostly opaque and unstructured source of information.

1This example is from a benchmark [20] we use in one of our publications [17].
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Of course, major search engines nowadays apply a myriad of techniques to improve this
kind of search. For example, they analyze query logs and search sessions [77, 32], person-
alize results [59], and learn sophisticated ranking strategies [57]. However, the underlying
search paradigm still reaches a limit for queries that require a deeper understanding or
the combination of multiple sources of information.

Consider issuing the query male friends of ada lovelace who are philosophers on a web
search engine. Certainly, the information is available somewhere on the Web, but likely
not in a single document.2 For example, the Wikipedia article on Ada Lovelace mentions
that she was friends with Charles Baggage, but only his Wikipedia article mentions that
he was a philosopher and nowhere is explicitly mentioned that Charles Baggage is male.
However, the search still produces results, because keywords match “randomly” in various
parts of documents, e.g., some keywords may match in the title, some in the abstract, and
some in the main text. The user then needs to inspect each document, examine whether
the content is helpful, and manually compile the list of persons she is looking for. What
is needed is a deeper understanding of the query and documents.

Long queries with a narrow and specific intent as in this example are more common than
one might expect. It has been observed that the length of queries on major search engines
follows a power law distribution [46, 3]. Therefore, a significant proportion of queries
consists of long queries. Bendersky and Gupta [46] cite that 17% of search engine queries
contain five or more keywords. They note that long queries often have a narrow and
specific intent and consist of composite queries with different subqueries - like the query
above. They further argue that such queries may become even more frequent with the
increasing availability of voice search, dialogue, and question answering systems.

While text contains a wealth of information in unstructured form, knowledge bases contain
structured information. Here are some example statements about Ada Lovelace and Grace
Hopper in the form of subject predicate object triples:

Ada Lovelace is-a Computer Scientist
Ada Lovelace gender Female
Ada Lovelace place-of-birth London
Grace Hopper is-a Computer Scientist
Grace Hopper gender Female
Grace Hopper place-of-birth New York City

Such statements, or triples, follow a precise and pre-defined schema. For example, there
is only one way of expressing the birthplace of Ada Lovelace, whereas, in text, the same
fact can be expressed with various sentences.

2We ignore the unlikely case where someone has manually compiled such a list.
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Triples can be extracted automatically, e.g., from Wikipedia Infoboxes, or collected man-
ually. The currently largest general purpose knowledge base is Freebase3 [24], which
contains a mix of automatic extractions and manual curations totaling about three billion
statements on 40 million entities.

To retrieve statements from a knowledge base a structured query language called SPARQL4

is used. The following shows an example query for female computer scientists and their
place of birth:5

select ?entity ?place where {
?entity is-a Computer Scientist .
?entity gender Female .
?entity place-of-birth ?place .

}

The result is an unordered list of tuples of persons and their place of birth, containing,
for example, (Ada Lovelace, London) and (Grace Hopper, New York City). In contrast to
search in text, the semantics of the query is precisely defined by the query language, as is
the content of the knowledge base. If the answer is part of the knowledge base it can be
retrieved via the correct query. However, formulating the query can be difficult for a user
in the first place. It requires understanding the query language and the knowledge base
schema, for example, what predicates and entities exist and what their identifiers are.

Knowledge bases allow precise and semantic queries, however, there will always be some
information that is too specific to be included in a knowledge base, like who is friends with
whom.6 As a result, only a relatively small part of the world’s knowledge is available in
structured form. This is supplemented by a wealth of information available in full text.
Combining search on knowledge bases and search on full text allows answering queries
which cannot be easily answered by either one. Consider again the query for male friends
of ada lovelace who are philosophers. A knowledge base query can be used to obtain a
list of male philosophers. Finding out who was friends with Ada Lovelace can then be
achieved via a full-text query. We consider the combined search on text and knowledge
bases a promising search paradigm and present a viable approach as part of this work.

3Freebase was acquired by Google in 2010 and has been discontinued in 2015. All of the data is
supposed to be migrated to Wikidata [82].

4https://www.w3.org/TR/rdf-sparql-query/
5We glance over a few syntax details of SPARQL for better readability, e.g., we omit namespaces.
6This has two reasons: First, adding new information in an accurate and complete way and keeping

it up to date is expensive. Second, some circumstances are difficult to express in structured form, for
example, sentiment or controversial or vague statements.

https://www.w3.org/TR/rdf-sparql-query/
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In this document, we summarize our work on problems that arise when answering semantic
search queries using text, knowledge bases, or their combination. The queries above are
good examples of the kind of queries we consider. They involve entities and their attributes,
and they have one or more entities as a result. Such entity queries have been shown to
make up a significant proportion of queries. In a query log analysis of a major web search
engine, [70] found that almost 60% of queries had entities or their attributes as the desired
result and more than 70% of all queries contained an entity or attribute. For academic
search, [54] find that even 92% of all queries contain an entity.

We are concerned with making search convenient. This means making the search easy
to use. For example, we present an approach that answers natural language questions,
arguably the most convenient way of searching for a user. We are also concerned with
answering queries precisely. That is, for a given query we want to match and return the
correct result or, in the case of a result list, rank it such that most relevant results come
first. In this context, we address and contribute to the following problems.

In Section 3.1, we introduce semantic full-text search, a combined search on text and a
knowledge base. We present a fully functional prototype that includes our approaches on
problems to make the search more precise and convenient. For example, we apply a novel
natural language processing technique, contextual sentence decomposition, that returns
more precise and semantic matches from the full text than the conventional matching
strategy described above. We also provide an intuitive user interface with context-sensitive
suggestions to construct queries, and we create a knowledge base that is easy to understand
and use. In a quality evaluation, we show the potential of semantic full-text search.

Afterwards, we describe three individual problems that make search on text or knowledge
bases more precise and convenient. These problems are not only relevant for semantic
full-text search, but have applications beyond and on their own.

In Section 3.2, we describe how to perform contextual sentence decomposition. We already
show in Section 3.1 that this technique can be used to get more precise results for semantic
full-text search. In Section 3.2, we extend the technique to extract triples from text, similar
to those contained in a knowledge base. In an evaluation, we compare our approach to
existing approaches from the literature and show that our extracted triples are preferable
for applications in semantic search.

In Section 3.3, we address how to return precise results for certain knowledge base queries.
For example, on Freebase, a query for american actors returns a list of 64,757 actors in
no particular order.7 We present a technique to compute relevance scores in order to
rank results such that, e.g., actors with frequent leading roles are ranked before those who
only had few supporting roles. Crucially, we compute relevance scores from text, because

7This example is taken from our publication [15].
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the required information is not reliably present in the knowledge base. Since this is a
novel problem, we provide a benchmark created via crowdsourcing. We propose a variety
of algorithms to compute ranking scores and evaluate them using our benchmark. The
benchmark is also publicly available and already fosters further research on the problem
(e.g., WSDM Cup 2017 [48]).

In Section 3.4, we show how to answer natural language questions from a knowledge base
by automatically translating into a SPARQL query. A user can, for example, ask who is
the ceo of apple? and is presented with the result from the knowledge base. This makes
the search more convenient since the user doesn’t have to formulate a structured query.
A major problem in the translation is entity recognition and disambiguation: which words
from the question correspond to which entities from the knowledge base. In the example,
apple refers to the entity Apple Inc., the company, not to Apple, the fruit, and ceo to the
entity Managing Director, a synonym. Our approach solves both, entity recognition and
disambiguation and query translation, by mapping to a single learning-to-rank problem.
The approach focuses on giving precise results and improved the state of the art on two
widely used benchmarks at the time of publication.

As we stated at the very beginning, semantic search is not a single well-defined problem.
To give an overview of the vast field, we wrote an extensive survey on semantic search on
text and knowledge bases [16] (156 pages). The survey classifies the field into nine groups
based on the type of data that is used (text, knowledge bases, and their combination)
and the kind of search that is performed (keyword, structured, and natural language).
We describe the survey and our classification in Section 3.5 and thereby provide a short
overview of the vast field.

This document summarizes our publications on the problems introduced above and is
structured as follows. Chapter 2 lists all of our publications and attributes the work to
individual authors. In Chapter 3, we present the core of our work on these problems. Each
section, 3.1 to 3.4, describes one problem and corresponds to one or more publications.
In each section, we first give a concise description of the problem, related work, and
our contributions. Then, we present the main ideas behind our approach, followed by a
description of our experiments and main results. In all parts, we focus on the core of our
approach. Detailed technical descriptions are available in the corresponding publications.
In many places, we refer to our survey, which contains an extensive overview of a lot of
recent related work. Finally, we conclude this dissertation with an outlook on future work
in Chapter 4.



6

2 List of Publications

The following first lists our peer-reviewed publications followed by non peer-reviewed pub-
lications. For each publication, we give a short description and attribute the work to
individual authors. The publications are grouped by topic which are ordered by how we
describe them in the rest of this document. Note that authors for each publication are
listed alphabetically by convention.

In the digital version of this dissertation, titles below (and in the references) are clickable
and lead to an electronic copy.

2.1 Publications With Peer Review

A Case for Semantic Full-Text Search [9], Position Paper, SIGIR-JIWES 2012
DOI : 10.1145/2379307.2379311
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Position paper that motivates semantic full-text search and describes the requirements
and resulting challenges. We address these as part of the papers below.

All authors wrote the paper.

Semantic Full-Text Search with Broccoli [12], SIGIR 2014
DOI: 10.1145/2600428.2611186
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Demo paper that presents our semantic full-text search prototype, its web application,
and its public API. Covered in Section 3.1.

Research and implementation is based on the work listed below. All authors wrote the
paper.

http://ad-publications.cs.uni-freiburg.de/JIWES_semanticsearch_BBBH_2013.pdf
http://dx.doi.org/10.1145/2379307.2379311
http://ad-publications.cs.uni-freiburg.de/SIGIR_BroccoliDemo_BBBH_2014.pdf
http://dx.doi.org/10.1145/2600428.2611186
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Easy Access to the Freebase Dataset [11], WWW 2014
DOI: 10.1145/2567948.2577016
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Demo paper that describes how to transform Freebase into a knowledge base that is easy
to use and search. The paper also presents a web application that provides convenient
access. Covered in Section 3.1.

HB, BB, and EH conducted the research. BB and EH implemented the ideas. FB adapted
the semantic full-text search interface for the web application. HB, BB, and EH wrote the
paper.

Open Information Extraction via Contextual Sentence Decomposition [19],
ICSC 2013, DOI: 10.1109/ICSC.2013.36
Hannah Bast and Elmar Haussmann

Research paper that describes how to identify the parts of a sentence that semantically
“belong together”. The paper also describes how to extend the technique to extract triples
from text (Open Information Extraction). Covered in Section 3.2.

Both authors conducted the research and designed the evaluation. EH implemented the
ideas and performed the evaluation. Both authors wrote the paper.

More Informative Open Information Extraction via Simple Inference [18],
ECIR 2014, DOI: 10.1007/978-3-319-06028-6_61
Hannah Bast and Elmar Haussmann

Research paper that describes how to apply simple inference to increase informativeness
of triples from Open Information Extraction. The technique can be incorporated into the
triple extraction process from above [19]. Covered in Section 3.2.

Both authors conducted the research and designed the evaluation. EH implemented the
ideas and performed the evaluation. EH wrote most of the paper with guidance and input
by HB.

http://ad-publications.cs.uni-freiburg.de/WWW_FreebaseEasy_BBBH_2014.pdf
http://dx.doi.org/10.1145/2567948.2577016
http://ad-publications.cs.uni-freiburg.de/ICSC_csdie_BH_2013.pdf
http://dx.doi.org/10.1109/ICSC.2013.36
http://ad-publications.cs.uni-freiburg.de/ECIR_csdie-inf_BH_2014.pdf
http://dx.doi.org/10.1007/978-3-319-06028-6_61
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Relevance Scores for Triples from Type-Like Relations [15], SIGIR 2015
DOI: 10.1145/2766462.2767734
Hannah Bast and Björn Buchhold and Elmar Haussmann

Research paper that describes how to compute relevance scores for knowledge base triples.
The scores can be used to properly rank results of entity queries on a knowledge base.
Covered in Section 3.3.

All authors conducted the research and designed the crowdsourcing experiment and eval-
uation. BB and EH implemented the ideas and performed the evaluation. All authors
wrote the paper.

WSDM Cup 2017: Vandalism Detection and Triple Scoring [48], WSDM 2017
DOI : 10.1145/3018661.3022762
Stefan Heindorf, Martin Potthast, Hannah Bast, Björn Buchhold, and Elmar Haussmann

Overview paper for the WSDM Cup 2017 and its two tasks, vandalism detection and triple
scoring. The task is based on the work described in Section 3.3.

SH and MP organized the vandalism detection task. HB organized the Triple Scoring task.
HB, BB and EH defined the triple scoring task, created a benchmark via crowd sourcing,
and defined sensible evaluation metrics. SH, MP, and HB wrote the paper.

More Accurate Question Answering on Freebase [17], CIKM 2015
DOI : 10.1145/2806416.2806472
Hannah Bast and Elmar Haussmann

Research paper that describes how to translate natural language questions to SPARQL
queries. This can be used to perform question answering on a knowledge base. Covered
in Section 3.4.

Both authors conducted the research and designed the evaluation. EH implemented the
ideas and performed the evaluation. Both authors wrote the paper.

http://ad-publications.cs.uni-freiburg.de/SIGIR_triplescores_BBH_2015.pdf
http://dx.doi.org/10.1145/2766462.2767734
http://ad-publications.cs.uni-freiburg.de/WSDM_cup_HPBBH_2017.pdf
http://dx.doi.org/10.1145/3018661.3022762
http://ad-publications.cs.uni-freiburg.de/CIKM_freebase_qa_BH_2015.pdf
http://dx.doi.org/10.1145/2806416.2806472
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Semantic Search on Text and Knowledge Bases [16], FNTiR 2016
DOI : 10.1561/1500000032
Hannah Bast and Björn Buchhold and Elmar Haussmann

An extensive survey (156 pages) over the huge field of semantic search on text and knowl-
edge bases. Covered in Section 3.5.

All authors contributed in deciding the overall structure and scope of the survey. All
authors surveyed the literature and prepared summaries for systems to include or exclude.
All authors wrote the survey.

http://ad-publications.cs.uni-freiburg.de/FNTIR_semanticsearch_BBH_2016.pdf
http://dx.doi.org/10.1561/1500000032
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2.2 Publications Without Peer Review

The following lists one publication at a non peer-reviewed venue and one invited publica-
tion.

Broccoli: Semantic Full-Text Search at your Fingertips [10], CoRR 2012
Hannah Bast, Florian Bäurle, Björn Buchhold, and Elmar Haussmann

Research paper that describes a semantic full-text search prototype, Broccoli, including all
important components: natural language pre-processing, search index, and user interface.
Covered in Section 3.1.

All authors conducted the research on the general search paradigm, system design, and
user interface. HB and EH conducted the research on contextual sentence decomposition.
EH implemented it. HB and BB conducted the research on the search index and query
processing and BB implemented it. BB, FB, and EH implemented the data pre-processing
steps for the prototype (Wikipedia XML parsing, tokenizing, entity recognition and link-
ing). FB implemented the user-interface. All authors performed the evaluation and wrote
the paper.

A Quality Evaluation of Combined Search on Knowledge Base and Text [14],
Invited Paper at KI-Journal 2017, DOI: 10.1007/s13218-017-0513-9
Hannah Bast, Björn Buchhold, and Elmar Haussmann

Research paper that describes a detailed quality evaluation and error analysis of our
KB+Text search paradigm. Covered in Section 3.1.

All authors designed the evaluation and analysed results. BB and EH performed most of
the manual evaluation and error analysis. All authors wrote the paper.

http://ad-publications.cs.uni-freiburg.de/CoRR_Broccoli_BBBH_2013.pdf
http://ad-publications.informatik.uni-freiburg.de/KI_broccoli_quality_BBH_2017.pdf
http://dx.doi.org/10.1007/s13218-017-0513-9
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3 Contributions

3.1 Semantic Full-Text Search

Semantic full-text search combines the capabilities of full-text search and search in knowl-
edge bases. We have already motivated the idea in the introduction. In this section,
we describe the idea in detail and present a fully functional prototype. The prototype
addresses all important problems involved, including a natural language pre-processing
technique to find precise matches in full text, an easy-to-use knowledge base, and an
intuitive user interface to make the search convenient. We also describe an extensive qual-
ity evaluation that shows that our natural language pre-processing considerably improves
results and that our prototype can answer a wide range of questions. A demo of our
prototype, Broccoli, is available at http://broccoli.cs.uni-freiburg.de.

This section summarizes the work published in [10] at CoRR 2012, [9] as a position paper
at SIGIR-JIWES 2012, [12] at SIGIR 2014, [11] at WWW 2014, and [14] at KI-Journal
2017 (under submission).

3.1.1 Problem, Related Work, and Contributions

Consider the example query for plants with edible leaves and native to Europe.8 This query
can be expressed in semantic full-text search in the following way:

select ?entity where {
?entity is-a Plant .
?entity native-to Europe .
?entity occurs-with “edible leaves”

}

The query language is a subset of SPARQL extended with the special occurs-with relation.
For the example, it combines search in full text and a knowledge base as follows. The
first two triple patterns (is-a Plant, native-to Europe) match entities that are a plant
and native to Europe in the knowledge base. One of the matches is, besides many other
plants, broccoli. The special relation occurs-with requires that each plant, such as broccoli,
is mentioned along the words edible and leaves somewhere in the full text. This requires
that mentions of entities, e.g., broccoli, have been identified in the full text. For example,
in the following sentence, matching words and entities are underlined:

The edible portions of broccoli are the stem tissue, the flower buds, as well as the leaves.

8This and the following example queries and sentences are taken from our publication [10].

http://broccoli.cs.uni-freiburg.de
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In principle, this co-occurrence doesn’t have to be restricted to a sentence but could also
be within a larger unit, like a paragraph or document. The co-occurrence can also be in
any text document, for example, in the Wikipedia article for broccoli or on a gardening
website about leafy green vegetables. What is essential for a correct result, however, is
that the co-occurrence provides evidence that broccoli indeed has edible leaves. We come
back to this important problem below. Together, the results from the knowledge base and
the full text can be used to infer a list of plants that match the query.

This kind of search combines the strengths of search on text and search on knowledge
bases. Large knowledge bases, such as Freebase, focus on facts that are easy to define and
extract automatically. A plant’s origin is, for example, often part of Wikipedia’s infobox.
This makes it easy to find for an extraction system in order to populate the knowledge
base. Once part of the knowledge base, it is straightforward to obtain a list of plants that
are native to Europe, given the correct query.

Finding a full-text query to obtain this list from text is difficult. An answer requires
factual knowledge in the first place, for example, that broccoli is a plant or that Italy (the
originating country of broccoli) is a part of Europe. To determine whether broccoli has
edible leaves it is the other way around. Corresponding facts are rather specific, more
difficult to extract automatically, and, therefore, unlikely to be included in a knowledge
base. However, the information is likely to be present in text, and it is easy to formulate a
full-text query. The combination of both search paradigms allows answering queries that
cannot be easily answered by either one.

Semantic full-text search uses combined data: a knowledge base as well as text in which
entity mentions from the knowledge base are identified (like broccoli in the example sen-
tence above). Queries are semi-structured: They are from a subset of SPARQL where
the structured part matches facts in the knowledge base while the keywords given via the
occurs-with relation match in the full text. There are two major approaches for searching
in combined data that is followed in related work.

One prominent approach is that of creating virtual documents. All of the information
pertaining to a specific entity is collected in a virtual document. For example, a document
can be constructed for an entity by adding the subject, predict, and object of triples that
have the entity as subject or object, together with text associated with that entity, like
its Wikipedia page. Search can then be performed via classical keyword search. Since
each document corresponds to an entity, results are lists of entities. This also allows
applying traditional ranking functions from information retrieval, like BM25. Compared
to semantic full-text search, keyword queries are more convenient to formulate for a user.
However, our query language is far more powerful and allows more precise searches. The
drawback is that a structured query needs to be constructed in the first place.
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The virtual document approach has been popular, especially for searching the Semantic
Web. The Semantic Web consists of triples similar to those in a knowledge base. Triples
can be contributed by anybody, for example, via semantic markup in web pages. Because
content can also be referenced and interlinked, the data from the Semantic Web is also
referred to as linked open data (LOD). No global schema of triples is enforced. Many of
the triples contain literals so that a huge part of the data is actually text. Therefore, the
two main challenges that approaches need to overcome are the sheer amount of data and
the inconsistent schema.

Two established benchmarks to evaluate approaches for searching the Semantic Web are
the TREC Entity Tracks (2010 and 2011) [4, 5] and the SemSearch challenges (2010 and
2011) [47, 81]. Two example queries from these benchmarks are airlines that use boeing
747 airplanes and astronauts who walked on the moon. The benchmarks come with a set
of queries and desired results as well as a collection of triples extracted from the Semantic
Web. Indeed, the best performing systems used keyword search on virtual documents
with special attention to ranking. For example, [23] use a fielded inverted index with an
adaptation of BM25 that boosts matches from certain relations. Since the kind of queries
in these benchmarks are good examples for semantic full-text search, we used the two
benchmarks in the evaluation of our prototype (see below).

The second prominent approach for searching in combined data is to perform keyword
search on text, identify entities in the results, and rank them. Information from a knowl-
edge base is usually applied in the ranking phase, but without formulating or translating
to a precise SPARQL query that is used to restrict the result set. For example, the sys-
tem described in [42] (the winning submission at the TREC Entity Track in 2009 [6])
issues queries to Google and identifies entities in the result documents using named entity
recognition and disambiguation techniques. This establishes a link between the entity
and its mention in text. Entities are then ranked using a combination of relevance scores
based on how well the entity and the text surrounding the entity mention (document,
sentence, or web table) match the query. In [76], the authors use the knowledge base to
identify related similar entities (e.g., via the number of hops from one entity to another)
that weren’t matched prominently in text but that should be ranked higher. In contrast,
semantic full-text search allows very precise and complex queries on the knowledge base
that restrict the result set in the first place. Then, a simplistic ranking suffices to give
good results as we show in our evaluation.

Besides the two approaches discussed above, there are various approaches for performing
semantic search on text and knowledge bases alone. Details on related work in all of these
areas is available in our survey on semantic search [16]. There are a few systems that
perform combined search using (semi-) structured queries in a similar way to ours. We
describe their difference to our semantic full-text search prototype below.
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A good prototype implementation of semantic full-text search should give correct results
and be easy to use. This requires the following, which we elaborate on next: finding correct
matches in text with the occurs-with relation, an easy to use knowledge base, an intuitive
user interface, and an efficient index and query processing. We have addressed these
problems in our fully functional prototype, called Broccoli. Figure 1 shows a screenshot
of our final prototype answering the query from above.

Words 

Cabbage (34) 

Broccoli (58) 

Lettuce (23) 

Instances: 

1 - 3 of 421 

House plant (17) 

Garden plant (24) 

Crop (16) 

Classes: 

1 - 3 of 28 

  Broccoli 

Ontology: Broccoli 

Broccoli: is a plant; native to Europe. 

Document: Edible plant stems 

The edible portions of Broccoli are the stem tissue, the flower buds, as 

well as the leaves. 

 

Cabbage 

Ontology: Cabbage 

Cabbage: is a plant; native to Europe. 

 
Document: Cabbage 

The only part of the plant that is normally eaten is the leafy head. 

Your Query: 

Plant 

occurs-with edible leaves 

native-to 

Hits: 1 - 2 of 421 

Europe 

   

occurs-with  <Anything> 

Relations: 

1 - 3 of 7 

cultivated-in  <Location> 

belongs-to   <Plant family> 

(67) 

(58) 

 type here to extend your query … 

Figure 1. From our publication [10]: A screenshot for our example query. The structured query is
visualized as a simplified tree on the top (the triple ?entity is-a Plant is expressed by the root).
Below, results are grouped by entity. Each result provides evidence from both the knowledge
base and the full text. The search field on the top left can be used to extend the query. Below,
suggestions for subclasses and instances of plants and additional relations are shown. These can
be used to further refine the query. The suggestions are context-sensitive: They take the query so
far into account and always lead to results. More screenshots can be found in [10].

As mentioned above, an important component of semantic full-text search is the occurs-
with relation. It allows specifying co-occurrence of entities with words in text. Identifying
that this co-occurrence is semantic is essential for the full-text part of queries. Consider
the query plants with edible leaves and the following sentence with underlined matches:

The usable parts of rhubarb are the edible stalks, however its leaves are toxic.

All query elements (a plant, rhubarb, and words edible leaves) co-occur in the sentence,
however, rhubarb is clearly a wrong answer (its leaves are toxic). Indeed, this problem is
even more pronounced when restricting co-occurrence to the same paragraph or document,
as we show in the experiments below. Ideally, the above match should be avoided, but
it should still match a query for plants with edible stalks. We address this problem by
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identifying words that “semantically belong together”, which we call contexts. Intuitively
the words rhubarb, edible and leaves do not belong together in the sentence above but
the words rhubarb, edible, stalks do. Once identified, co-occurrence can be restricted to
contexts and matches are more likely follow the intent of the query. The technique behind
this idea is called contextual sentence decomposition and described in detail in Section 3.2.
In this section, we introduce the basic idea and present an evaluation of the impact on
semantic full-text search.

For finding results in text, formulating a keyword query via the occurs-with relation is easy,
and the challenging part is semantically matching the keywords. This is the opposite for
structured queries on a knowledge base. The result set is well defined and easy to retrieve
because it is fully specified via the query language. However, the structured query can be
difficult to construct in the first place. It uses unique entity as well as relation identifiers
from the knowledge base. These are often opaque and difficult to determine. On top, the
query must adhere to the (usually complex) schema of the knowledge base. For example,
in Freebase, which we use for our prototype, the (seemingly) simple query for the winners
of the Palme d’Or looks like this:9

select ?name where {
?x ns:award.award_winner.awards_won ?m .
?m ns:award.award_honor.award ?a .
?a ns:type.object.name ”Palme d’Or”@en .
?x ns:type.object.name ?name .

}

Who won a Palme d’Or is expressed via an intermediate award nomination object (?m)
that connects the award (?a) and the person receiving the award (?x). The intermediate
object is often referred to as mediator and allows to express n-ary relations, e.g., to link
the person not only to the award but also to the date it was received and for which work
it was awarded. Constructing the query above is not feasible without being acquainted
with the schema of the knowledge base. The unwieldy relation and entity identifiers are
especially problematic. This is apparent in Figure 1, which would look unpleasant without
readable entity and relation identifiers.

We follow two approaches to tackle this problem. On the one hand, we construct a cu-
rated version of Freebase with simplified schema and readable identifiers. In this process,
we resolve, for example, the complex award nomination relation from above to a binary
awards-won relation. We also give entities their canonical and readable name as an iden-
tifier. Given the size of Freebase, this curation needs to be an automatic process.

9For readability, we omit namespace prefix definitions. The example query is from our publication [11].
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On the other hand, we design a user interface that helps in incrementally constructing
queries. A user can start to construct a query by selecting a class or entity (like Palme
d’Or) and is presented with relations with meaningful names (e.g., awards-won) for this
class or entity. At each step, she is guided by meaningful context-sensitive suggestions.
Whenever the query is extended, new suggestions take the query so far into account so
that all suggestions actually lead to results. This avoids constructing queries without
results. Together, the curated knowledge base and user interface make it more convenient
to explore the knowledge base and construct the correct query.

Once a query is constructed, the text and knowledge base must be searched to retrieve
results. Besides reasonable query times (< 100ms per query) several features are essential
for our user interface, in particular, context-sensitive suggestions for words, classes, enti-
ties, and relations. Since no existing index structure provides this, we developed a special
index that can answer our queries efficiently. The index and query engine is explained in
detail in [13]. We don’t consider it here any further since the corresponding work is not
part of this thesis.

There are several related systems that perform Semi-Structured Search on Combined Data
[16, Section 4.6.2]. ESTER [8] was one of the first systems. It uses a special-purpose
index that also provides query suggestions from the text and knowledge base after each
keystroke. Compared to ESTER our user interface is far more involved and instead of
documents our system returns lists of entities. KIM [69] and its successor Mímir [80] allow
semi-structured search via two different indices based on off-the-shelf software, one for text
and one for the knowledge base. This causes efficiency issues when the structured part
of the query matches many entities (e.g., a query that requires the list of all persons in
Freebase). Both systems return lists of documents and provide no context-sensitive user
interface. STICS [49] finds documents with mentions of keywords, entities, or entities of
a certain category. A knowledge base provides the information which entity belongs to
which category, but no further relations from the knowledge base can be used in queries.
Suggestions for entities and categories are provided by a user interface and ranked by
coherence. For example, as the authors note, the suggestions for the category Ukranian
politicians rank the Klitschko brothers higher, once Angela Merkel is added to the query,
since they are long-time German residents. All of the systems above lack our natural
language processing technique to improve matches in the full text.
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In the next subsection, we describe our approaches to the problems discussed above by
means of our semantic full-text search prototype, Broccoli. Our main contributions are
the following:

• The novel idea of semantic full-text search, which combines search in structured data
with search in full text. Queries are a subset of SPARQL with a special occurs-with
relation that can be used to specify co-occurrence of entities and words in text. In
contrast to previous approaches, results are lists of entities (not documents).

• A novel kind of pre-processing that decomposes a sentence into contexts: parts
that semantically “belong together”. This is important for precise matches with the
occurs-with relation. The technique behind this decomposition is called contextual
sentence decomposition and described in detail in Section 3.2. In our evaluation in
this section, we show that it makes the search more precise.

• A curated version of Freebase with unique readable entity and relation names and a
simplified schema. We also improved the taxonomy, and the knowledge base comes
with entity popularity scores for ranking. This makes it is easy-to-use, both for
semantic full-text search and in other applications.

• An implementation of above components into a fully functional prototype system
with an intuitive user interface. The user can incrementally construct her queries
and is guided by meaningful suggestions on how to extend the query at each point.

• An extensive evaluation showing the potential of semantic full-text search in general
and the improvements due to contextual sentence decomposition in particular.

3.1.2 Approach

On a high level, our semantic full-text search prototype, Broccoli, works as follows. First,
a pre-processing pipeline takes as input a knowledge base and text. The pipeline links
entity mentions in text to the knowledge base and decomposes sentences into contexts.
The resulting contexts and knowledge base facts are stored in an index, which also provides
a query engine with context-sensitive suggestions. The query engine is instrumented by
a user interface which helps in constructing and executing queries and displays results.
We start by explaining the knowledge base we use, followed by a description of the pre-
processing pipeline and the user interface.

Easy-to-use knowledge base. As we illustrated above, the knowledge base should be
convenient for an end user. In particular, it should have readable entity identifiers and
an intuitive schema. This is not provided by the largest publicly available knowledge
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base, Freebase. We transform Freebase into an easy-to-use version using a few simple yet
effective techniques, which we describe in [11] and summarize below.

First, we obtain popularity scores for each entity by combining the number of mentions in
a reference text corpus and the number of knowledge base triples where the entity occurs
as subject or object. As a reference corpus, we use ClueWeb’12 [34] with entity mentions
by [45]. We use these scores to assign the most popular entity the canonical name and
resolve conflicts for other entities with the same name via heuristics. For example, for
persons, we append the notable profession, as in Michael Moore (Soccer Forward), and for
locations the containing country, as in Berlin (United States).

To simplify the schema, we resolve n-ary relations using a heuristic based on frequencies of
involved facts. Intuitively, more facts connect award winners to their award than for what
work or at what date it was won. Therefore, we create a new binary relation Awards-Won
and ignore facts about the date or award-winnning work involved. The query for the
winners of the Palme d’Or is now simple and intuitive:10

select ?x where { ?x Awards-Won "Palme d’Or" }

As part of the curation, we also merge duplicate types (like Person and person) by check-
ing for overlap on their members. Finally, we compute the transitive closure for manually
selected relations like profession and specialization-of. We use this to enhance the taxon-
omy, to ensure that, for example, a person who has the type Physicist (the specialization)
also has the type Scientist. All of the above problems are addressed in an automatic way.
The only required manual input is which relations to compute the transitive closures over.
Details on the applied heuristics can be found in the corresponding publication [11].

Pre-processing pipeline. The pre-processing pipeline takes a knowledge base and text
as input. Its main tasks are to link entity mentions in the text to the knowledge base,
split the text into sentences, and decompose the sentences into contexts. We describe the
pre-processing in more detail in [10].

Consider the following sentences, where mentions of the entity rhubarb are underlined:

The stalks of rhubarb are edible and its roots are medicinally used. However, the
leaves of the plant are toxic.

Identifying the first mention of rhubarb in the sentence is also known as named entity
recognition and disambiguation or entity linking. This is an established problem, and
a large body of approaches exists that solve this for any text input, e.g., [89, 72, 43].
The next two mentions, its and the plant, are references to the first mention of rhubarb.
Identifying these is also known as co-reference or anaphora resolution.

10The example query is from our publication [11].
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In our prototype, we use the following simple heuristics to identify all of these mentions.
Since we use Wikipedia as text, we can obtain initial entity mentions from its markup:
as an annotation rule (by Wikipedia) the first mention of an entity always references
its Wikipedia page. By mapping Wikipedia pages to entities in the knowledge base11

we obtain entity mentions of higher precision than would be possible with automatic
approaches. We then resolve references as follows. Whenever a part or the full name of
an entity is mentioned again, we recognize it as that entity (for example, Ada as Ada
Lovelace). This is restricted to the same section of a document, which our pipeline is also
able to identify. Additionally, we resolve pronouns to the last identified entity of matching
gender and identify the pattern the <class> as the last entity of matching class. This
identifies the references of its and the plant to rhubarb in the example above.

Given entity mentions in each sentence, the next step is to decompose sentences into parts
that “belong together”. This is important to achieve precise matches with the occurs-
with relation. For example, consider the query plants with edible leaves and the following
matching sentence with underlined matches:12

The usable parts of rhubarb, a plant from the Polygonaceae family, are the medicinally
used roots and the edible stalks, however its leaves are toxic.

We decompose this sentence into the following contexts:

(C1) rhubarb, a plant from the Polygonaceae family
(C2) The usable parts of rhubarb are the medicinally used roots
(C3) The usable parts of rhubarb are the edible stalks
(C4) however rhubarb leaves are toxic

After decomposition, the query for plants with edible leaves no longer matches any of these
contexts, since rhubarb no longer co-occurs with the words edible and leaves. Note that
entities and co-references (its refers to rhubarb) have been identified beforehand. Thus,
no information is lost as part of this process. The technique for this is called contextual
sentence decomposition and covered in detail in Section 3.2. It takes a deep grammatical
parse tree of the sentence as input and applies tree transformations to retrieve contexts.

The pipeline performing entity linking and sentence decomposition as described above is
implemented as a UIMA13 chain. This allows us to easily exchange components, for exam-
ple, to switch to a different entity linking strategy. The pipeline also contains components
that parse the Wikipedia markup and split the text into (Wikipedia) sections, sentences,
and words. UIMA also allows to scale out the pre-processing to a cluster of servers for
computation intensive tasks like the required sentence parsing for our decomposition.

11Freebase provides the corresponding Wikipedia page for each entity, if it has one.
12The example is taken from our publication [10].
13http://uima.apache.org/
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Index and user interface. Given the knowledge base and pre-processed text, we con-
struct our search index. The index and query engine are explained in detail in [13], which
is not part of the work of this thesis. The query engine reads results from the index and
applies a simplistic but, as our evaluation shows, effective ranking. For a query that only
uses the knowledge base, result entities are ranked by their popularity (see above). For
queries that use the full text, results are ranked by their number of matches in text. The
query engine also provides context-sensitive suggestions to the user interface.

We designed the user interface in an iterative process in which we developed ideas and
features, tested, and then revised them. In the end we came up with the user interface
already shown in Figure 1. It has the following main features as listed in our publication
[10], where we also show additional screenshots:

• Search as you type: Each keystroke updates the results and suggestions. Suggestions
are context-sensitive. They actually lead to hits and the higher-scored the hits, the
higher scored their suggestion.

• Pre-selected suggestions: New users may be overwhelmed by the multitude of sug-
gestions, therefore, the most likely suggestion is automatically highlighted.

• Visual query representation: The current query is always visualized as a tree. Sug-
gestions are displayed for the element in focus, which can be changed using clicks.

• Transparency: Results are grouped by entity, and displayed together with context
snippets that provide full evidence from the knowledge base and text.

The features above make it more convenient to construct queries. Furthermore, they
make results transparent. While the first is important for new users the latter is especially
important for researchers to identify mistakes. This helped in the analysis and evaluation
of the system which we describe next.
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3.1.3 Experiments and Results

Here, we report on our quality evaluation of our semantic full-text search prototype,
Broccoli, which we describe in our publication [14]. We performed the evaluation with
two goals in mind. First, we wanted to draw conclusions on the general potential of
semantic full-text search. Second, we wanted to evaluate to what extent decomposing
sentences into contexts makes results more precise.

The following was our experimental setup. As a text corpus, we used the English Wikipedia
from January 2013. We performed entity recognition and contextual sentence decomposi-
tion as described above. This way we recognized a total of 285 million entity occurrences
and decomposed 200 million sentences into 418 million contexts. To keep running times
reasonable we scaled out this computation to a cluster of eight servers, each with an 8-core
CPU and 16 GB of main memory. As a knowledge base, we used YAGO [79], which has
about 26.6 million facts on 2.6 million entities. YAGO is smaller than Freebase but was
the most promising knowledge base at that time. A larger knowledge base, like our cu-
rated version of Freebase from above, would improve all results presented here since more
questions are answerable directly from the knowledge base. The conclusions we draw on
the potential of semantic full-text search in general and the improvement due to context
decomposition are valid nonetheless.

We evaluated search quality using three benchmarks. Each benchmark consists of a set
of queries and a corresponding ground truth of relevant results, i.e., lists of entities. We
used 15 queries from the TREC Entity Track in 2009 [6]. An example query is Airlines
that currently use Boeing 747 planes. From the SemSearch Challenge 2011 [81], we used
46 queries, for example, Apollo astronauts who walked on the moon. We also derived ten
queries from manually compiled Wikipedia lists. These can be thought of as a query with
the ground truth provided by the corresponding list, for example, the List of participating
nations at the Winter Olympic Games.

For each benchmark, we manually translated each query into our query language in a
straightforward way (i.e., we didn’t tune the queries to the results). All constructed
queries make use of the text corpus via the occurs-with relation. The ground truth for
each query is usually a small, well-defined result set. We believe that in this case, the
quality of the result set as a whole is more important than the ranking within the result
set, i.e., the result set should be as precise as possible. Therefore, we first focused on set
related measures: precision, recall, and F1, the harmonic mean of precision and recall.
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We distinguished between three variants of semantics of occurs-with: co-occurrences re-
stricted to sections, sentences, and contexts. Table 1 shows our results. For all benchmarks,
sections achieve the highest recall. However, a lot of returned results are due to “random”
co-occurrences within a section. This causes a large amount of false-positives resulting in
the smallest precision and F1 score. Compared to sections, sentences decrease the num-
ber of false-positives resulting in a higher precision but at a cost of recall. Our contexts
further decrease the number of false-positives and also slightly increase the number of
false-negatives14. This results in an increased precision with a slight decrease in recall.
However, the increase in precision is far more pronounced, so that overall, contexts yield
the best precision and F1 score on all three benchmarks.

#FP #FN Prec. Recall F1

SemSearch
sections 44,117 92 6% 78% 9%
sentences 1361 119 29% 75% 35%
contexts 676 139 39% 67% 43%†

Wikipedia lists
sections 28,812 354 13% 84% 21%
sentences 1758 266 49% 79% 58%
contexts 931 392 61% 73% 64%∗

TREC
sections 6890 19 5% 82% 8%
sentences 392 38 39% 65% 37%
contexts 297 36 45% 67% 46%∗

Table 1. From our publication [14]: sum of false-positives and false-negatives and averages for other
measures over all SemSearch, Wikipedia list, and TREC queries. ∗ and † denote a p-value of < 0.02
and < 0.003, respectively, for the two-tailed t-test compared to the figures for sentences.

To evaluate the potential of semantic full-text search, we also computed and compared
ranking related measures. In a ranked list of results, Precision at K (P@K) is the precision
within the top K results. R-precision is the precision within the top R results, where R
is the number of relevant results according to the ground truth. The best system [28]
at the TREC Entity Track in 2009 achieved an average P@10 of 45% and R-precision of
55%. Our system achieved an average P@10 of 58% and R-precision of 62%, which is a
considerable improvement given the small range of results for previous systems.

14For TREC, the number of false-negatives actually decreases. This is due to how our parser pre-
processes Wikipedia lists. It appends each list item to the preceding sentence allowing contexts to cross
sentence boundaries. See our publication [14].
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However, these results are not directly comparable for several reasons. First, the TREC
system only used a text corpus, ClueWeb’09 [34] Category B, which, however, is bigger
(50 million web pages) than our corpus. Second, we constructed our queries manually
(albeit not tuning them to the result). This was permitted for this benchmark, albeit
submissions that used automatic approaches yielded better results. Still, we believe this
makes the problem easier for our system. This also motivates automatically translating
into structured queries, which we address for knowledge base search in Section 3.4. Last,
the ground truth was approximated via pooling results from the participants. This may
put systems that are evaluated later on the same ground truth at a disadvantage [74].

A detailed error analysis on the TREC Entity Track questions revealed that most errors
are caused by an incomplete ground truth (55% of false-positives) or errors in third party
components (33% of false-positives and 63% of false-negatives): the knowledge base, the
constituent parser used for context decomposition, or our entity recognition. If we assume
all of these errors can be corrected, our system achieves an average F1 score of 86%,
P@10 of 94%, and R-precision of 92%. This motivates work on third party components
for correcting these errors. If we only assume a fixed ground truth (by adding missing
entities), our system achieves an average F1 score of 65%, P@10 of 79%, and R-precision
of 77%. Together, these results show the high potential of semantic full-text search.
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3.2 Contextual Sentence Decomposition

Contextual sentence decomposition is the task of decomposing sentences into parts that
semantically “belong together”. We have already presented the basic idea in the previous
section, where we also showed how it makes semantic full-text search more precise. As
will become clear, a closely related problem is to extract (subject) (predicate) (object)
triples from a sentence. Extracting these triples is an established task known as Open
Information Extraction (OpenIE) [7].

In this section, we describe an approach for contextual sentence decomposition and how
to extend it to extract OpenIE triples. Our goal is to extract as many correct triples as
possible but also to keep them minimal and informative. These properties are neglected in
previous work, but important in applications like semantic full-text search, where precise
facts are essential. In our evaluation, we show that our approach matches the state of the
art with respect to correctness but improves upon minimality and informativeness.

This section summarizes the work published in [19] at ICSC 2013 and [18] at ECIR 2014.

3.2.1 Problem, Related Work, and Contributions

The goal of contextual sentence decomposition is to compute, for a given sentence, all
sub-sequences of words in that sentence that semantically “belong together”. The sub-
sequences are called the contexts of the sentence. Consider the following sentence:15

(S1) Ruth Gabriel, daughter of the actress and writer Ana Maria Bueno, was born in
San Fernando.

A correct decomposition yields the following contexts:

(C1) Ruth Gabriel was born in San Fernando
(C2) Ruth Gabriel, daughter of Ana Maria Bueno
(C3) actress Ana Maria Bueno
(C4) writer Ana Maria Bueno

If we restrict co-occurrence of entities and words to these contexts, as we did with semantic
full-text search (see Section 3.1), matches become more precise. For example, if we search
for co-occurrences of a person with the word writer (with the intent of finding writers)
these only match in C4 for Ana Maria Bueno. Her daughter Ruth Gabriel no longer
co-occurs with the word writer.

15The example is taken from our publication [19].
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A highly related problem is that of extracting triples from a sentence. For example, from
the sentence above the following triples can be derived:

(T1) (Ruth Gabriel) (was born in) (San Fernando)
(T2) (Ruth Gabriel) (is) (daughter of Ana Maria Bueno)
(T3) (Ana Maria Bueno) (is) (actress)
(T4) (Ana Maria Bueno) (is) (writer)

Extracting such triples from a sentence is known as Open Information Extraction (OpenIE)
[7]. As can be seen, the triples T1-T4 are already close to the contexts C1-C4. What is
missing is an assignment of each word to subject, predicate, or object, and inserting the
implicit relation is in T3 and T4.

In this section, we first describe how to perform contextual sentence decomposition and
then how to extend it to an OpenIE system. We have already shown in the previous section
that our approach for decomposition can considerably improve results for semantic full-text
search. By extending our approach to an OpenIE system, we can directly compare it to
other approaches from the literature. This allows an intrinsic evaluation of the technique
based on extracted triples in addition to the extrinsic evaluation in the previous section.

Note that mapping subject, predicate, and object of an OpenIE triple to their corre-
sponding elements in a knowledge base is not considered part of the problem. For ex-
ample, in T1, the subject Ruth Gabriel, the object San Fernando, and the predicate
was born in could be mapped to their identifiers in Freebase: m.02z4mfm, m.0r0wy, and
people.person.place_of_birth, respectively. This distinguishes OpenIE from relation ex-
traction, where only triples of a given knowledge base relation, like place of birth, should
be extracted, but with many possible variations of mentioning it. An overview of relation
extraction and OpenIE can be found in our survey [16, Section 3.6]. Both problems are
examples of information extraction [75].

OpenIE triples can be used in, for example, knowledge base construction (after linking
to canonical entities and relations) or simple semantic querying, for example, to find all
subjects matching (?x) (was born in) (San Fernando).16

Early OpenIE systems, e.g., TextRunner [87], ReVerb [41], and KnowItAll [40], use shallow
natural language processing techniques, for example, part-of-speech tagging or chunking.
Using this shallow syntactic information they either apply hand-crafted or automatically
learned rules to identify triples. More recent systems, like OLLIE [58], ClausIE [37], and
our system, use a deeper linguistic analysis in the form of a syntactic parse tree of the
sentence. The parse tree expresses the grammatical structure of the sentence, which clearly
identifies nested phrases and clauses. This allows more powerful rules that also work

16A demo of such a system is available at: http://openie.allenai.org/.

http://openie.allenai.org/
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in complicated sentences, e.g., with nested relative clauses. OLLIE uses automatically
learned rules on this parse tree. ClausIE and our system use manually defined rules. In
contrast to ClausIE, our rules were developed with the additional goal of minimality (see
below) and a direct application for semantic full-text search. Our publications [19, 18] and
semantic search survey give more details on related approaches as well as related natural
language processing techniques like pos-tagging, chunking, and parsing.

OpenIE systems are usually compared based on accuracy and number of extracted triples.
Accuracy refers to the percentage of triples that are correct, i.e., that express a meaningful
fact which is also expressed in the original sentence. In addition to this, we also consider
minimality to be essential. Consider the following triple:

(Ruth Gabriel) (is) (daughter of the actress and writer Ana Maria Bueno)

This triple is correct, but it also contains two other facts, namely, that Ana Maria Bueno
is an actress and a writer. Hence the triple is not minimal. This is problematic for appli-
cations like semantic full-text search, which assume that co-occurrences are “semantic”. In
our evaluation, we consider minimality in addition to the standard measures of accuracy
and the number of extractions. This has not been addressed or evaluated in previous work.

Besides correctness and minimality, another important aspect of extracted triples is that
of informativeness. Consider the sentence17

(S2) The ICRW is a non-profit organization headquartered in Washington.

and the extracted triples:

(U1) (The ICRW) (is) (a non-profit organization)
(U2) (a non-profit organization) (is headquartered in) (Washington)

Both triples are correct and minimal, but triple U2 is, by itself, not informative. The
information that it is the ICRW that is headquartered in Washington is not explicit and
cannot be found with a search in these triples (without the information that the object of
U1 and subject of U2 refer to the same organization). Therefore, we propose to integrate
a set of simple inference rules into the extraction process to increase informativeness.
An informative triple that should be extracted instead of U2 is U3: (The ICRW) (is
headquartered in) (Washington).

Informativeness has previously been addressed in [41] but only as part of correctness
(uninformative triples were labeled as incorrect) and with a different definition, focusing
on the predicate part of triples (is the predicate by itself informative). We explicitly
consider informativeness of whole triples and in relation to the originating sentence.

17The example is taken from our publication [18].
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To summarize, our main contributions are the following:

• An approach for contextual sentence decomposition that is based on a grammatical
parse of a sentence. Compared to similar approaches, our output is tailored to an
application in semantic search.

• An extension of contextual sentence decomposition to extract OpenIE triples. In an
evaluation, we show that extracted triples match the state of the art with respect to
correctness, but are better than existing systems with respect to minimality.

• A way to increase the informativeness of extracted triples by using inference rules
during the extraction process. Our evaluation shows that a few simple inference
rules can mitigate many uninformative triples.

3.2.2 Approach

We first describe how to perform contextual sentence decomposition followed by how to
derive triples. This is described in more detail in [19]. We then outline how to improve
informativeness of triples, with details available in [18].

Contextual sentence decomposition is performed in two steps. In the sentence constituent
identification phase (SCI), we identify the basic “building blocks” of contexts and ar-
range them in a tree. Sentence constituent recombination (SCR) combines the identified
constituents to form contexts.

Figure 2 shows an SCI tree for our example sentence:

CONC 

ENUM 

Ruth Gabriel 

the actress writer 

REL 

ENUM 
daughter of Ana Maria Bueno 

REL 

was born in 

and 

San Ferando 

CONC 

CONC 

Figure 2. From our publication [19]: The SCI tree for our example sentence. The head of each
relative clause is printed in bold, filler words in striped rectangles.

(S1) Ruth Gabriel, daughter of the actress and writer Ana Maria Bueno, was born in
San Fernando.
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The goal of SCI is to compute such a tree for a given sentence. We distinguish between
three different types of internal nodes. ENUM nodes identify enumerations, where child
nodes belong to different contexts. In our example, the actress and writer are two separate
facts that describe Ana Maria Bueno, but have nothing to do with the rest of the sentence.
REL nodes mark relative clauses, which form separate contexts with their optional head18.
In our example, the nominal modifier (which we consider a type of relative clause) starting
with daughter of... is connected to its head, Ruth Gabriel, whom it describes. Finally,
CONC nodes group child nodes that belong to the same context. As is illustrated in
Figure 2, words of a sentence (terminals) are only contained in leaf nodes. Nodes can
be nested recursively and arbitrarily deep. In practice, deep nestings are rare, since the
sentence also becomes hard to read for humans. Note how the SCI tree already expresses
a lot of the semantic structure of the sentence.

S 

Ruth Gabriel 

NP NP 

PP 

VP 
was born 

NP 

in NP 

daughter 
NP 

NP NP 

of 

NP 

the actress writer 

and NP Ana Maria 
Bueno 

PP 

San Ferando 

, 

NP 

Figure 3. From our publication [19]: The constituent parse tree for our example sentence. It
arranges noun phrases (NP), verb phrases (VP) and prepositional phrases (PP), according to the
syntax of the sentence. For the sake of readability, the parse tree has been simplified.

A good starting point to derive the SCI tree is the constituent parse tree of the sentence.
Figure 3 shows the parse tree for our example sentence. It can be seen that the tree hier-
archically groups important constituents for the SCI tree. Identifying these constituents
based on a more shallow analysis, like part-of-speech tags, is difficult.

We carefully designed a small set of 14 (prioritized) rules to transform a parse tree into
an SCI tree. An applied rule in our example is: “in a sequence consisting of two NPs,
split by a comma, mark the second NP as REL and the first NP as its head” [19]. This
identifies the relative clause daughter of the actress and writer Ana Maria Bueno and its
head, Ruth Gabriel. Another applied rule is: “mark a node as ENUM for which children
all have the same type (e.g., NP)” [19]. This identifies the enumeration in the actress and

18In our publication, we also describe SUB nodes, which are REL nodes without the optional head.
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writer. The complete list of rules can be found in our publication [19]. After applying all
of the rules, we get the tree shown in Figure 2.

Given the SCI tree, computing contexts is straightforward. We first take out subtrees
labeled REL, and change the root of this new tree to CONC. If the relative clause had a
head, we attach it as first left child to the new tree. Then we recursively compute contexts
for each tree, which now only contain leafs, ENUM, or CONC nodes. The context of
a leaf consists exactly of the words contained in it. The contexts of an ENUM node is
computed as the union of the sets of all child node contexts. The contexts of a CONC
node is computed as the cross-product of the sets of its child node contexts. This gives us
the desired contexts C1 to C4 shown in the beginning.

To transform contexts into triples, we apply a set of (relatively) simple heuristics. In each
context, we identify the first explicit verb phrase and surrounding adverbs or prepositions
to be the predicate. The words before the predicate belong to the subject and the words
after it to the object. For example, in the context Ruth Gabriel was born in San Fernando
we identify was born in as predicate and can derive the subject and object accordingly.
Our heuristics also insert implicit verbs, for example, we use the verb is between the head
and its REL attachment (if it doesn’t begin with a verb). This allows deriving the triple
(Ana Maria Bueno) (is) (writer) from the context writer Ana Maria Bueno.

In a final step, we improve informativeness of extracted triples using inference rules. For
each triple, we first classify the predicate into one of five semantic relation classes.

OTHER(A′, B) ← OTHER(A,B) ∧ SYN(A,A′)
OTHER(A′, B) ← OTHER(A,B) ∧ SYN(A′, A)
OTHER(A,B′) ← OTHER(A,B) ∧ SYN(B,B′)
OTHER(A,B′) ← OTHER(A,B) ∧ SYN(B′, B)
IN(A,C) ← IN(A,B) ∧ PART-OF(B,C)
IN(A,C) ← IN(A,B) ∧ IS-A(B,C)
OTHER(A,C) ← IS-A(A,B) ∧OTHER(B,C)

Table 2. From our publication [18]: Inference rules for new triples.

For example, IS-A expresses hyponymy, the relation between a specific instance and its
more generic term, in triple U1: (The ICRW) (is a) (non-profit organization). The pred-
icate is headquartered in expresses a location placement, IN, in triple U2: (a non-profit
organization) (is headquartered in) (Washington). Other relation classes are SYN (syn-
onymy), PART-OF (meronomy, for “part-whole” relationships), and OTHER for all re-
maining relations. Based on the semantic relations, we apply a set of seven inference rules
shown in Table 2 to derive new triples.
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In the example, the rule “if A IS-A B and B IN C → A IN C”19 matches. We, therefore,
conclude (The ICRW) (is headquartered in) (Washington). Crucially, this inference step
can only be performed during triple extraction for a given sentence, when involved subjects
and objects refer to the same words in a sentence. In the example, it must be clear that a
non-profit organization in triples U1 and U2 actually refer to the same real-world entity.

We also remove existing triples that we consider uninformative depending on how they were
used to derive new triples. For example, we remove triple U2 in favor of the inferred triple
above. While our rules are manually selected and simplistic, they improve informativeness
of extracted triples as our evaluation shows.

3.2.3 Experiments and Results

We have already described an extrinsic evaluation of contextual sentence decomposition
in Section 3.1, which showed that contexts make semantic full-text search more precise.
Here, we describe an evaluation based on extracted OpenIE triples from [19]. Our system
is called CSD-IE in the following.

For evaluation, we used two datasets from [37]: 200 random sentences from the English
Wikipedia and 200 random sentences from the New York Times. We compared our system
against three state-of-the-art OpenIE systems: ReVerb [41], using learned rules on part-
of-speech tags, OLLIE [58], using learned rules on a parse tree, and ClausIE [37], using
manually defined rules on a parse tree. In the first experiment, which we describe in [19],
we didn’t apply our inference technique to improve informativeness. We evaluated this
separately in a second experiment.

For the first experiment, we extracted triples with each of the four systems and manually
assigned two labels for each triple: one for correctness (yes or no) and one for minimality
(yes or no). From these labels, we computed the following accumulated measures for each
system as defined in [19]:

precision wrt accuracy (prec-a): the percentage of triples labeled as correct
precision wrt minimality (prec-m): the percentage of correct triples labeled as minimal

coverage: the percentage of words of the sentence that occur
in at least one extracted triple for that system

average triple length in words: average length of extracted triples for that system
in words (ignoring special characters)

19More formally: IS-A(A, B) ∧ IN(B, C) → IN(A, C)
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ReVerb OLLIE ClausIE CSD-IE

#facts 249 408 610 677
#facts correct 188 230 421 474
prec-a 75.5% 56.4% 69.0% 70.0%
prec-m 87.2% 80.4% 57.0% 76.8%
coverage 47.2% 62.7% 95.4% 97.5%
triple length 7.3 9.7 11.0 8.4

Table 3. From our publication [19]: Results of our quality evaluation on the Wikipedia dataset.

Table 3 shows the results for the Wikipedia dataset. The results on the New York Times
dataset are very similar and gave no additional insights. For both datasets, the results for
previous systems closely agree with those reported in [37], confirming our labeling.

In comparison to the other systems, CSD-IE extracts the largest number of correct facts
(#facts correct). It also provides the highest coverage (coverage) and largest number of
extracted facts overall (#facts). ReVerb produces a higher percentage of minimal and cor-
rect triples, however, for a considerably lower number of extracted facts. In an application
for semantic search this can be detrimental to search quality. In particular, this is likely
to cause missing extractions, which in turn lead to missing results (lower recall).

Compared to ClausIE, the most similar system, CSD-IE achieves similar precision with
respect to accuracy (prec-a) and coverage. The triples extracted by CSD-IE are shorter on
average (triple length). Furthermore, the precision wrt minimality (prec-m) is 20% higher.
This is a considerable improvement that can be attributed to the fact that our rules were
explicitly tailored towards minimality.

An investigation of errors for CSD-IE on both datasets reveals that most of the inaccurate
extractions are caused by mistakes in the parse trees. This is also what we observed in
the analysis of our results in Section 3.1. Small mistakes, like attaching a subtree to the
wrong parent, cause wrong extractions for all contexts and triples involving that parent-
child relationship. Current state-of-the-art parsers still make such mistakes for about 8%
of parent-child relationships.20 More details on parsing and an overview on the current
state of the art are available in our survey [16, Section 3.3].

We believe there are two worthwhile directions to handle wrong extractions caused by the
parser. First, we could compute confidence scores for triples. Some parsers can provide
an estimate of their confidence for each subtree being correct. Wrong subtrees should
get assigned a low confidence score and triples from such subtrees could be assigned low

20Results in [52, Table 1] show that the best performing parser attaches 92% of words correctly. This
is for a dependency tree, which is similar to a constituent tree with respect to parent-child relationships.
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scores. Second, it would be interesting to extract triples without the help of a parse tree.
This could be achieved via learning a task-specific extractor from scratch, i.e., without a
pipeline of cascading tools that propagate errors. This has been shown to work well for
other natural language processing tasks, especially sentence parsing [35].

In a second experiment, which we describe in [18], we investigated how our inference rules
improve the informativeness of extracted triples. We manually assigned two labels for
triples extracted from the 200 Wikipedia sentences from above: one for correctness (yes or
no) and one for informativeness (yes or no). A correct triple was considered informative
if there is no extraction that is more precise, according to the sentence it was extracted
from. We gave an example for this above.

#facts #facts corr #facts corr-inf prec corr prec corr-inf
No Inference 649 429 385 66% 90%
Inference 762 484 444 64% 92%

Table 4. From our publication [18]: Results for our quality evaluation with inference (top row)
and without inference (bottom row) over the labels correct (corr) and informative (inf). prec corr
refers to the percentage of all triples labeled correct, prec corr-inf to the percentage of correct
triples labeled informative. The experiments used a faster parser, hence the results differ slightly
from those in Table 3.

The results in Table 4 show that about 90% of all correctly extracted triples are informa-
tive. After applying our inference rules this increases to 92%. In addition recall increases.
The number of correctly extracted triples increases by 13% (#facts corr) and the number
of triples both correct and informative by 15% (#facts corr-inf). Since a few incorrect
triples are inferred the overall percentage of correct triples (prec corr) drops by 2%, but
at a higher recall.

An error evaluation shows that many incorrectly inferred triples are caused by wrong
parses or a wrong mapping of predicates to their semantic class. Eliminating these should
obviate the small negative effect on precision. A more sophisticated mapping to semantic
classes could be achieved by utilizing “relational patterns” as, e.g., described in [65]. To
further increase informativeness, it may also be interesting to automatically learn inference
rules, as, e.g., described in [56, 84, 63]

Overall, the results show that CSD-IE achieves good precision and high recall, while
providing very good coverage and minimality. We attribute this to the fact that our
original motivation for this problem is an application in a semantic search engine. Hence
our rules were developed and tailored with minimality in mind. The results also show
that already a few simple inference rules can improve informativeness of extracted triples.
Especially minimality and informativeness are important in applications like semantic
search where a precise representation of facts is beneficial.
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3.3 Relevance Scores for Triples

In the previous section, we have described a technique that makes semantic search in full
text more precise. In this section, we show how to improve the results of structured queries
on a knowledge base. In particular, we address how to rank results of queries that return
a list of entities, such as american actors. For the queries we consider, the information
required for a good ranking is not contained in the knowledge base. Therefore, we describe
a variety of algorithms to compute relevance scores from a text corpus. Since this is a
novel problem, we also describe a benchmark that we designed. On this benchmark,
our methods achieve an agreement of about 80% with the ground truth and outperform
existing methods from the literature. The benchmark and our code are publicly available
via http://ad.informatik.uni-freiburg.de/publikationen.

This section summarizes the work published in [15] at SIGIR 2015.

3.3.1 Problem, Related Work, and Contributions

Knowledge bases are queried using a structured query language called SPARQL. A struc-
tured query has precisely defined semantics, and the corresponding result set is well-
defined. For example, here is a query for american actors in SPARQL:21

select ?entity where {
?entity has-nationality American .
?entity has-profession Actor .

}

This returns 64,757 matches on Freebase in no particular order.22 Clearly, when presenting
this huge result set to a user, a ranking is desirable. A straightforward ranking would be
by some form of popularity. This can be measured, e.g., by the number of occurrences in
a reference text corpus, which leads to the following top-5 results:
George Bush,Hillary Clinton,Tim Burton,Lady Gaga, Johnny Depp
All persons in this list are actors in the sense that they had a role in some movie. For
example, George Bush appeared in the documentary Capitalism: A Love Story and Tim
Burton had various cameo roles. However, in this list, only Johnny Depp is best known for
being an actor. Hillary Clinton and George Bush are better known for being politicians,
Lady Gaga as a musician, and Tim Burton as a film director. Consequently, one would
expect Johnny Depp to be ranked before all others.

21This example, including results and relevance scores, is taken from our publication [15].
22An order can be specified explicitly, e.g., with an ORDER BY clause, but this doesn’t solve the

problem we consider here.

http://ad.informatik.uni-freiburg.de/publikationen
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The set of american actors is huge, but an ordering also makes sense for smaller result
sets. Consider the query for professions of Ronald Reagan in Freebase:
Actor, Lifeguard, Politician, Radio Personality, Soldier, Spokesperson,
All of them are correct (indeed, Reagan worked as a lifeguard in his youth), but his main
professions are certainly Politician and Actor. In this case, ranking by the popularity of
a profession makes no sense at all.

Queries as above are also typical queries for semantic full-text search (see Section 3.1).
However, such queries are likely to appear for any kind of semantic search that utilizes a
knowledge base. Hence, we consider this an interesting and relevant problem on its own
that warrants a separate study.

In this section, we address the problem behind the examples above, which we defined in
[15] as follows:

Definition: Given a type-like relation from a knowledge base, for each triple
from that relation compute a score from [0, 1] that measures the degree to
which the subject belongs to the respective type (expressed by the predicate
and object). In the remainder, we often refer to these scores simply as triple
scores.

Another way to describe the problem for the score of the profession Actor of Johnny Depp
is: “how surprised would we be to see Actor in a list of professions of Johnny Depp” [15].

The desired scores for some of the entities in the queries above might look as follows:

Tim Burton has-profession Actor 0.3
Tim Burton has-profession Director 1.0
Johnny Depp has-profession Actor 1.0
Ronald Reagan has-profession Actor 0.6
Ronald Reagan has-profession Lifeguard 0.1

The actual score of a triple is ill-defined in our definition above. This is similar to the notion
of relevance in information retrieval. There, a document is assigned a relevance score (in
the case of graded relevance) given a query. It is common practice to determine document
relevance via judgments from different people, simply because the actual relevance score
of a document can be subjective. In our experiments (see below), we also collect feedback
from multiple judges and show that there is a strong consensus on our relevance scores.

Once relevance scores are computed, it becomes straightforward to use these scores to
rank the results of our example queries. In the first case (american actors), a ranking can
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be derived by combining the scores with a popularity for each entity. In the second case
(“professions of a single person”), the scores directly infer a ranking.

In this work, we consider scoring triples from type-like relations, such as profession or
nationality (we use both in our evaluation). These present the biggest challenge in terms
of ranking. For functional relations like date of birth or height, no ranking is needed or
trivially achieved. For example, for height, simply ranking by this value will often be
sufficient. Triples from non-functional relations between two concrete entities like invested
in (between two organizations) or featured in song (between a musician and a song she
featured in) are often better ranked by a single scalar from the knowledge base, like the
value of the investment or the length of the song feature. Finding such a single scalar is
difficult for type-like relations. For example, for the profession relation, the (computed)
scalar depends on the actual profession: For a musician, it may be the number of records
sold, while for an actor the appearances in high-grossing movies are more relevant.

Our motivation is ranking results of entity queries like american actors. Here, we focus on
computing scores for individual triples in the first place. This has several reasons. First,
scores as above are often all that is needed to obtain a good ranking, for example, for the
query for professions of a single person. Second, our scores can serve as a crucial ingredient
for approaches that rank results of entities queries. We discuss some of these approaches
below. Finally, as our evaluation shows, computing good relevance scores is difficult and
requires tailored approaches. These warrant a separate study.

To the best of our knowledge this is the first work addressing how to compute this kind
of relevance scores for triples. There is some work on estimating scores for the correctness
or accuracy (is the numeric value, e.g., a population count, off by some margin) of triples.
Correctness scores can come from the system that extracted the triple, e.g., a probability
provided by a machine learning classifier [58, 62]. They can also be inferred, for example,
via a witness count as indicated by the number of times a given triple was extracted
or found. Correctness scores are important, e.g., in knowledge fusion [38] or knowledge
base construction [68, 63], where the task is to construct a consistent knowledge base
from extractions from different sources. In this case, correctness scores can help resolving
conflicting statements, e.g., if extracted triples disagree on the place of birth of a person.
Correctness and accuracy scores are different to our relevance scores, where we assume
non-conflicting facts and estimate a “degree of belonging”. A beneficial side effect of our
appoches is that incorrect triples are likely to get a low score.

A related line of work is that of detecting fine-grained types of entities. There, the mo-
tivation is, given a sentence and the identified mention of an entity, infer its types from
a given type system. For example, from the input Ada wrote the first computer program
and the identified named entity (underlined), it could be inferred that Ada belongs to the
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person and programmer types of Wordnet [61]. The given input entity is not linked to a
knowledge base (or does have to exist in one). Recent approaches focus on providing very
fine-grained types. In [64], the authors match learned text patterns that are associated
with a type and devise a probabilistic model and integer linear program to avoid type
inconsistencies (e.g., a person cannot also have type organization). In [36], the authors
design a huge set of patterns and rules based on, e.g., the mention’s text (the mention Uni-
versity of Freiburg contains the type university) or verb phrases. The system is evaluated
with 16k different types. In contrast to triple scores, approaches for type detection assign
types in a binary fashion. Assigning Ronald Reagan the types Lifeguard and Politician
to the same degree is both, correct and desired. Furthermore, approaches are designed
to identify types from a taxonomy. While the profession relation describes part of a tax-
onomy, this is not the case for other type-like relations, e.g., nationality, which we also
evaluate on. Our approaches are designed to work with all type-like relations.

For ranking results of queries on a knowledge base, a typical approach is to adapt and
apply techniques from ranking in information retrieval. The adapted techniques usually
rank entities based on existing scores that are assumed to be given or from ranking signals
(machine learning features) that are computed from the knowledge base and query. For
example, in [39], the authors investigate how to define language models for a structured
SPARQL query and result graphs. The language models incorporate witness counts to
estimate the confidence and importance of a triple. These are assumed to be given. In
[31], the authors compare learning to rank methods for keyword queries on a knowledge
base. They devise a set of 26 features that incorporate, for example, the type of an entity
and the similarity between an entity and the query. Both of these example approaches
could benefit from using our triples scores in addition or instead of the scores or type
information they already use. More approaches for ranking results of entity queries can
be found in the ranking section of our survey [16, Section 5.1].

As part of our work on this problem we have created and published a benchmark which
has lead to a public challenge on triple scoring at WSDM 2017 [48] with good participation
(21 teams). Most of the approaches (including the winning approach) relied on finding
witnesses for each type from text and applying supervised learning methods. This is
similar to one of the approaches we suggest below.

There are several challenges we face for computing triple scores. First, we cannot compute
scores from the knowledge base alone. We found that the required information, especially
for less popular entities, is not available reliably, even in a large knowledge base like Free-
base. Therefore, we focus on computing relevance scores from text. Second, we cannot
rely on purely supervised learning. There are more than 3,552 different professions in
Freebase and relevance is expressed differently for each. Hence, a different model and
therefore labeled examples are required for each profession. This rules out manually la-
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beling examples, even with crowdsourcing. Finally, since this is a novel problem, we must
also establish a ground truth that allows a realistic and reliable comparison of approaches.

In summary, our main contributions are:

• The novel and interesting research problem of triples scores for type-like relations.
The scores are an essential component for properly ranking many popular kinds of
entity queries. Such queries occur, for example, as part of semantic full-text search.

• A benchmark to evaluate triple scores for the profession and nationality relations.
The benchmark consists of more than 14 thousand relevance judgments that were
obtained via crowdsourcing. The judgments confirm that there is a broad general
consensus on the problem definition of triple scores.

• A variety of approaches to computing triple scores from a text corpus. On our
benchmark, our best methods perform significantly better than non-trivial baselines
and achieve an agreement of about 80% with the ground truth.

3.3.2 Approach

We describe our approach that computes triple scores from a text corpus. Initially, we
also experimented with using a knowledge base, either as a supplement to a text corpus
or by itself. The scores we are trying to compute are certainly not explicitly expressed as
facts but may be implicit in other facts. For example, if a person has acted in a lot of
high-grossing movies, she is likely to be well-known as an actress, and that triple should
receive a high score. However, experiments showed that this knowledge is consistently less
available, especially for less popular entities.23 Therefore, we compute triple scores from
a large text corpus.

In the text corpus, we try to find “witnesses” for each triple. Optionally, each witness has
an associated significance, which we also compute. The higher the count and significance
of witnesses for a triple, the larger the score. For example, consider the following triples
for two of Johnny Depp’s professions:

Johnny Depp has-profession Actor
Johnny Depp has-profession Musician

We assume that, because he is more of an Actor than a Musician, he is more likely to
be mentioned along words like: actor, film, cast than album, band, or singer. The word
performed can be associated with Actor as well as Musician and has less significance for

23For example, in Freebase, out of 612 thousand persons with more than one profession, 400 thousand
have less than ten and 243 thousand have less than six facts (besides type and profession information).
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determining these professions. By counting the number of mentions of these words (and
their significance) along Johnny Depp in the text corpus, we can compute a score for each
profession triple. Ideally, this gives a much higher score for Actor than for Musician.

This approach involves three steps. First, we need to learn indicator words (like actor,
film, cast above) for each profession. Each word can be associated with a weight, de-
pending on how significant it is for the profession. Next, for a given entity, we need to
find co-occurrences with these words from which we derive an intermediate score. The
scores should be comparable across entities. Therefore, in a final step, we normalize the
intermediate scores to a desired output range, for example, the interval [0, 1].

We designed multiple variants of how to learn indicator words, how to use them to derive
intermediate scores, and how to normalize to the final output range. We shortly summarize
these in the following. Note that we use profession as an example relation, but our
approaches work for any type-like relation.

Our first step to learning indicator words is to derive positive and negative training exam-
ples for each profession. This is done in a weakly supervised fashion using the following
criteria: For a given profession, the positive training examples are persons who only have
that profession (according to the knowledge base). The intuition is that these triples
naturally have the highest score assigned. Correspondingly, negative training examples
are persons who don’t have the given profession at all. Clearly, these should have the
lowest score. For example, Marlon Brando is a positive example for the profession Actor,
because this is his only profession according to Freebase. Alan Turing would be a negative
example, because he is a Computer Scientist, Mathematician, and more, but not an Actor.

Next, we represent each person with a virtual document. This document consists of all
the words the person co-occurs with. To identify semantically co-occurring words we use
contextual sentence decomposition as described in Section 3.2. The virtual document of a
person now consists of all (of the words) of the contexts she appears in. In our experiment,
this gave better results than using whole sentences.

We now have a set of positive and negative examples (virtual documents of persons) for
each profession. From here, we consider multiple variants of learning indicator words and
deriving intermediate scores. We shortly mention the basic ideas, in our experiments we
also considered many slight variations:

• Binary classifier : Learn a classifier (logistic regression) that makes a binary decision
for each profession. Each person is represented by the bag-of-words of her virtual
document with words weighted by tf-idf. This way, the classifier will learn a weight
for each word. The intermediate score for a profession is the binary decision of the
classifier whether the profession is primary or not.
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• Count profession words: First, identify indicator words. A simple variant is to use
manually chosen prefixes of the profession, such as act for Actor. This as a baseline
in our experiments. A more complex variant is to compute and sum tf-idf scores for
words of the positive examples, sort by that score, and assign a weight of 1/r for
word at rank r. This gives weighted words for each profession. To get intermediate
scores, for each profession, count the prefix matches or sum up the word weights in
the virtual document of a person.

• Generative model: Identify weighted indicator words for each profession as with the
counting-based approach. Then apply a model, which, intuitively, generates the text
in the virtual document of a person. Maximizing the likelihood of the person’s text
gives a probability distribution over her professions as intermediate scores.

The approaches output different types of intermediate scores for each triple: word counts,
weighted sums, binary judgments (logistic regression), or probabilities. In the final step,
we normalize these for each person by mapping to the desired output range. In our experi-
ments, we map to the integers [0, 7] in order to facilitate comparison with our crowdsourc-
ing results. We either map to these scores on a linear scale or on a logarithmic scale, where
the next highest score corresponds to twice the intermediate score (sum or probability).
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3.3.3 Experiments and Results

Since this is a novel problem, we started by creating a new benchmark. To obtain a
large number of relevance judgments we used crowdsourcing. Each human judge is given
a description of the task. In general, the judges aren’t familiar with the problem and
a major challenge was describing the task in way that results in consistent and reliable
relevance scores. This gave us valuable insight into our problem and its definition, also
allowing us to verify whether there is a general consensus on our scores. We first describe
our crowdsourcing task, followed by results on the new benchmark.

Crowdsourcing Benchmark

We experimented with several different crowdsourcing tasks, refining the task definition
and description along the way. Figure 4 shows the final task that worked well.

Figure 4. Adapted from our publication [15]: Excerpt of the crowdsourcing task for Ludwig van
Beethoven. His professions must be classified into primary or secondary by dragging each profession
into the respective box. The Wikipedia link to his page can be used to find additional information
(important for lesser known persons). In addition, example classifications and further instructions
were provided (not shown here).

Judges must classify all of the professions of a single person into either primary or sec-
ondary. This worked better than asking for the label of a single profession of a person
(without showing the other professions). Judges then often simply labeled the first men-
tioned profession of a person in the Wikipedia article as primary. We used this strategy
as one of the (simple) baselines in our experiments.

Each person is judged seven times by different judges. The number of primary judgments
for each profession of a person is aggregated to give a score from 0 to 7. For the profession
relation, we ran the above task for a random selection of 298 persons (1225 triples) which
gave us 8575 judgments. The random selection takes into account the popularity (i.e.
the number of mentions in our text corpus) of persons, providing a fair selection across
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all popularity levels. We also evaluated the nationality relation, for which we selected 77
different people (162 triples) resulting in 1134 judgments.

To verify inter-annotator agreement we performed a control run of the above experiment
(with different judges) on one-third of the persons selected for the profession relation. We
also created random judgments choosing primary or secondary with equal probability.

Figure 5 shows a histogram of the results. As can be seen, judgments are far from random
and the control run provided very similar results.. This, together with a Fleiss’ Kappa
[44] of 0.47, shows that there is broad general consensus on the problem.
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Crowd Control Random

Figure 5. From our publication [15]: Histogram of score distribution of our crowdsourcing task,
the control run, and expected results for randomly (with p = 0.5) guessing judges (rounded).

Main Results

We evaluated our approaches using the above benchmark. As a text corpus, we used the
English Wikipedia where we recognized entity mentions as described in Section 3.1. As a
knowledge base, we used Freebase.

We performed experiments for the profession and the nationality relation. Experiments
on the nationality relation gave no major additional insights, hence we only describe the
main results for the profession relation here.

We compared our variants against several baselines. The first baseline selects the first
literal occurrence of a profession in the person’s textual description of Freebase to be
primary. The prefixes baseline applies the counting approach from above using prefixes
that were manually derived from the profession names (e.g., act for Actor). The Labeled
Latent Dirichlet Allocation (LLDA) [71] baseline is a topic model that can be learned in a
supervised fashion using our weakly-supervised training data. Given the text associated
with a person, it estimates a probability distribution over topics (e.g., professions).
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All scores were mapped to the range 0 to 7, which is the range we get from our crowd-
sourcing experiments. To map our intermediate scores to this range, we used the mapping
that gave best results: linear mapping for count-based approaches and logarithmic map-
ping for approaches that output probabilities. As main evaluation measures, we computed
accuracy-δ, which measures the percentage of triples that deviate by at most δ from the
ground truth score, and average score deviation, the average over all deviations. We
also computed rank based measures: Kendalls’ Tau, footrule distance, and nDCG. These
correlated well with accuracy-δ and we omit them for brevity.

Method
Accuracy (Acc) Average

Score
Diffδ = 1 δ = 2 δ = 4

First 41% 53% 71% 2.71
Prefixes 50% 64% 83% 2.07
LLDA 50% 68% 89% 1.86
Binary Classifier 47% 61% 78% 2.09
Weighted Indicators 57% 75% 94% 1.61
Generative Model 57% 77% 95% 1.61
Combined (GM + Classifier) 63% 80% 96% 1.57
Control Judges 76% 94% 99% 0.92

Table 5. Adapted from our publication [15]: Accuracies and average score deviation for the profes-
sion relation. The top part shows baselines, the middle part our approaches, and the bottom part
our control run.

Table 5 summarizes the results for the profession relation. We consider accuracy-2 the
most intuitive measure (percentage of triples with difference to ground truth score at most
two), hence it is emphasized. Note that accuracy-2 can be optimized by truncating results
to range between 2 and 5, which is never worse than predicting more extreme values.
However, this goes at the cost of other measures like average score difference [48]. We
performed no such truncation and our scores correlate well with average score difference.

The baselines perform well, but our more sophisticated approaches clearly outperform
them. Our best approach consists of a combination of the generative model and the
binary classifier (use the average of the two predicted scores if the binary classifier predicts
score 7). It achieves performance not far from human judges with a gap of 14%. For all
approaches we also evaluated many variants, including: using word pairs instead of single
words, using stemming, utilizing the knowledge base type hierarchy, other non-linear score
mappings, using tf instead of tf-idf etc. None of these improved results.
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An evaluation of errors showed two main sources. The first source of errors is word co-
occurrences that refer to the wrong entity. For example, Michael Jackson gets a high score
as a Film Director because he is often mentioned along directed or director, which however,
does not refer to him, but to a person directing one of his shows.24 Using co-occurrence
based on our context decomposition instead of full sentences helps in some, but not all of
these cases. The second source of errors are words that occur with a different meaning.
For example, John F. Kennedy gets a high score as a Military Officer, simply because he
had many political actions during his presidency with respect to the military. In some of
these cases, a deeper linguistic processing of text as, e.g., in fine-grained entity typing [64,
36] may help. In general, it appears that a deep natural language understanding will be
necessary to close the gap to human judges.

24This and the following error example are taken from our publication [15].
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3.4 Question Answering on Knowledge Bases

The previous section was concerned with making knowledge base search more precise. In
this section, we address how to make the search more convenient. We present an approach
that automatically translates a natural language question into a structured query on a
knowledge base. This makes searching the knowledge base easy by allowing the user to
freely formulate her questions in natural language, without knowing about a query lan-
guage or the structure of the underlying data. In addition to providing precise translations,
we also consider efficiency. We make sure that questions can be answered in an interactive
manner within at most one second. At the time of publication, our approach improved
the state of the art in terms of quality and efficiency on two large established benchmarks.

This section summarizes the work published in [17] at CIKM 2015. In the following, the
examples are taken from this paper.

3.4.1 Problem, Related Work, and Contributions

Mapping a search desire to the corresponding structured query on a knowledge base can
be difficult, even for an expert. For example, consider answering the (seemingly) simple
question who is the ceo of apple? on the knowledge base Freebase.25 The SPARQL query
to retrieve the answer is:

select ?name where {
?0 leadership.role Managing_Director .
?0 leadership.company Apple_Inc .
?0 leadership.person ?name

}

This matches the following triples in the knowledge base:26

m.0k8z leadership.role Managing_Director
m.0k8z leadership.company Apple_Inc
m.0k8z leadership.person Tim_Cook

The triples contain an abstract “leadership” entity (m.0k8z) with three relations: role,
company, and person. The relations and the leadership entity connect the entities Man-
aging_Director and Apple_Inc to the answer Tim_Cook we are looking for.

25This query is from the WebQuestions benchmark [20] which we use in our evaluation. For illustration
purposes, we omit namespace prefixes and use readable identifiers in the corresponding SPARQL query.

26We have updated the triples with the current CEO. The original Freebase data still mentions Steve
Jobs. Freebase is being migrated to Wikidata [82], which is constantly updated with new information.
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To construct the query above, a user would need to find the identifiers of the correct
entities and relations and connect them in the correct way. This can be facilitated by an
interactive construction guided by suggestions like our semantic full-text search prototype
provides (see Section 3.1). However, this still passes some of the complexity to the user. It
would be far more convenient to ask the question in natural language and automatically
get the structured query that produces the answer. This is the problem we address here.

Answering natural language questions is a difficult task. Here, we focus on answering
questions from a knowledge base, albeit a very large one. As we show in our evaluation
in this section, this is hard enough to warrant a separate study. Our survey [16, Section
4.6, 4.7, 4.8] provides an overview of the state of the art on question answering on text,
knowledge bases, and the few works that attempt a combination.

The challenge in answering natural language questions stems from the high variation and
ambiguity inherent in natural language. This becomes apparent when looking at two
important subproblems of the translation process: identifying knowledge base entities
and identifying knowledge base relations that are mentioned in the question. If these
subproblems were solved perfectly, the correct query would be trivial to infer in most
cases. However, matching entities is difficult because there are many ways of mentioning a
specific entity (synonymy) but a single mention might also refer to many different entities
(polysemy). For example, the mention of apple in the query above refers to 218 entities
in Freebase but only one entity, Apple_Inc, is actually correct. The same problem holds
for matching relations but is even harder. It can involve n-ary relations and some of the
relations might only be mentioned implicitly. For example, the question above contains
no word or synonym of the query’s relation names person, company, or role. This problem
becomes even harder with the size of the knowledge base. Allowing weak and fuzzy matches
drastically increases the search space. On the other hand, only allowing strict and lexical
matches misses many correct matches.

Our goal is to answer questions from a large knowledge base like Freebase, which contains
about 2.9 billion facts on 44 million entities. To keep the problem manageable, we focus
on “structurally simple” queries. These involve two or three entities and either a single
binary or n-ary (n > 2) relation. In the example above, the result entity Tim_Cook
is connected to the entities Apple_Inc and Managing_Director via an n-ary leadership
relation. In SPARQL, this n-ary relation is represented using several binary relations, and
the special leadership entity (m.0k8z) also referred to as mediator in Freebase. This is a
typical way of representing n-ary relations for n > 2 in triple stores.27 While this may
sound restrictive, it still allows answering a wide variety of questions, as can be seen from
our evaluation.

27More generally, one can represent a k-ary relation by a special entity (one for each k-tuple in the
relation) and k binary relations between the special entity and the k entities of the tuple.
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Given that the involved problems are mainly concerned with natural language, it is un-
surprising that a lot of recent work on question answering on knowledge bases has come
from the natural language community. There, it is addressed as part of semantic parsing:
translating the meaning of a sentence (or in this case, question) to a formal representation
of its meaning (in this case, the SPARQL query)

Recent work can be roughly categorized into two groups. The first group only considers a
fixed set of query structures as we do, e.g., [86, 85, 25, 22, 83, 88]. This puts the focus on
the hard problems of matching relations and entities in the question. The second group
of approaches allows a translation to (in theory) arbitrary queries, e.g., [30, 20, 53, 21,
1]. These systems either rely on a pre-trained syntactic parser or, essentially, are parsers
by themselves. This increases complexity and introduces new problems. In particular,
the huge space of possible patterns must be searched efficiently. Note, however, that the
two approaches are complementary. Any system will have to deal with the problem of
matching relations and entities. In contrast to our approach, previous approaches lack
a proper addressing of the entity matching problem and either assume matching entities
are given or only perform very simplistic matching. A very recent system that is close to
ours is [1]. It follows our approach in applying a learning-to-rank strategy and focuses on
answering more complex queries. More details on related approaches and systems can be
found in our publication [17] and survey on semantic search [16, Section 4.7].

Besides quality, we also consider efficiency aspects, which is neglected in previous work.
In particular, we took care that questions can be answered in an interactive manner, that
is, within a second. Furthermore, we made sure that our approach works well on multiple
datasets (with different kind of questions). A lot of previous approaches were evaluated
only on one dataset.

Our main contributions are the following:

• A new end-to-end system that translates a natural language question into a SPARQL
query on a knowledge base. In contrast to previous work, the system treats entity
identification in the question as an integral part of the problem and also considers
efficiency aspects.

• A joint disambiguation of entities and relations mentioned in the question. This
is achieved by applying learning-to-rank techniques to learn a pairwise comparator
of query candidates. Previous approaches framed this ranking as a classification or
parsing problem.
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• An improvement over the state of the art (at the time of publication) on two estab-
lished benchmarks in terms of quality and efficiency. The two benchmarks exhibit
quite different challenges. Many previous systems were evaluated and work well on
only one of the benchmarks.

3.4.2 Approach

In the following, we describe how to answer natural language questions from a knowledge
base. We use Freebase for our examples and in our evaluation. However, our approach
is not specific to Freebase, but works for any knowledge base with entities and possibly
n-ary relations between them.

On a high level, the approach can be split into four steps, which we explain in the following.
As a running example, assume we are trying to answer the following question (from the
WebQuestions benchmark):

what character does ellen play in finding nemo?

Entity identification. We begin by identifying entities from the knowledge base that are
mentioned in the question. In our example, ellen refers to the tv host Ellen DeGeneres
and finding nemo refers to the movie Finding Nemo. However, these words are ambiguous,
for example, ellen could also refer to the actor Ellen Page and finding nemo to a video
game with the same name.

Often, entities are not mentioned with their full knowledge base name, but with a synonym
or alias. To find these, we utilize CrossWikis [78], which was built by mining the anchor
text of links to Wikipedia entities (articles) from various large web crawls. CrossWikis
covers around 4 million Wikipedia entities and provides prior probability distributions
p(e|s), of entity e being mentioned by text span s. We extend these distributions with
information about Freebase entities (details are in our publication [17]). This way, we
are able to recognize around 44 million entities with about 60 million aliases. In order
to keep the number of matched entities as small as possible without affecting recall we
apply part-of-speech (POS) tagging to the question and restrict matches to reasonable
POS sequences (mainly nouns).

Note that the disambiguation above can be helped by facts from the knowledge base.
In our example, the fact that Ellen DeGeneres actually performed in the movie Finding
Nemo makes the joint mentioning of both entities more likely. Therefore, instead of fixing
the mentioned entities at this point, we delay the decision and jointly disambiguate entities
and relations in a later step. The result of this step is a set of entity mentions p(e|s) with
attached probabilities. Subsequent steps also make use of a popularity score of each entity.
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Template matching. Next, we match a set of query templates to the question using
the previously identified entities. Figure 6 shows our templates. Each template consists
of entity and relation placeholders. A matched template has these placeholders filled and
corresponds to a query candidate, which can be executed against the knowledge base to
obtain an answer.

e1 t
r1

e1 m
r1

t
r2
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r1 e2
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t
inventor

m
employment

t
company
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film performance film
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Ellen DeGeneres Finding Nemo

who invented scrabble?

what company did henry ford work for?

what character does ellen play in finding nemo?
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#3

Template

characterr3

Example Candidate Question

Figure 6. From our publication [17]: Query templates and example candidates with corresponding
questions. A query template contains entity placeholders ei, relation placeholders ri, a mediator
m and an answer node t.

Conceptually, we match the templates as follows. Let E be the set of all entities matched to
a subsequence of the question in the previous step. Consequently, a word in the question
can be part of several entity matches. For each template, fill the entity placeholder(s)
with entities ei ∈ E for which the words in the question don’t overlap. Then, look up
relations Ri for each entity ei in the knowledge base and create a query candidate for each
relation. If multiple entities are part of the template, the relations must connect them in
the knowledge base. This avoids generation of query candidates that have no answer.

For our example, we match template #3, besides others, as follows. We map e1 and e2 to
Ellen DeGeneres and Finding Nemo, respectively. Then we look up relations r1 as film
performance and r2 as film. These connect the two entities in the knowledge base because
Ellen DeGeneres played in Finding Nemo. One of the possible relations for r3 is character,
which generates the correct candidate shown in Figure 6 (center of bottom row).

Technically, this matching process is more involved to perform efficiently. In particular, for
matching template #3, we need to find r1 and r2 in connected triples (e1, r1,m), (m, r2, e2)
given e1 and e2. Such queries are slow in current triple stores.28 We, therefore, constructed
a special inverted index for faster lookup. Details can be found in our publication [17].

In this step, we favor recall over precision and generate a lot of query candidates, most
of them wrong. Wrong candidates can be identified in a later step, but a missing correct
candidate will lead to a wrong final answer. For our example question, we generate 356
candidates, only one of which of is correct. The final result of this step is the set of all
generated query candidates.

28In our experiments we use Virtuoso: http://virtuoso.openlinksw.com.

http://virtuoso.openlinksw.com
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Relation matching. The query candidates still miss the fundamental information about
which relations were actually mentioned in the question. We distinguish four ways of
matching relations of a query candidate to the question text:

• Relation name: We match the name of the relation to words in the question. We
distinguish between literal matches (e.g., the relation named character matches the
word character), synonyms based on word embeddings and cosine distance [60] (e.g.,
started matches founded), and word derivations extracted from Wordnet [61] (e.g.,
high matches elevation).

• Distant supervision [62]: We learn indicator words for each relation using text from
Wikipedia where entity mentions were identified. This allows deriving noisy training
examples: A sentence expresses relation r if it contains two co-occurring entities that
are in relation r according to a knowledge base. For each relation, we rank the words
by their tf-idf to learn, for example, that born is a good indicator for the relation
place of birth.

• Supervised learning: Our evaluation benchmarks come with a training set of ques-
tions and corresponding answer entities. We can use this to derive positive and
negative training examples: Generate all query candidates for a question; if a query
candidate answers the question it is a positive, otherwise, a negative example. As in-
dicator features, we concatenate the n-grams of the question with the relation name.
This way we can learn a logistic regression classifier.

• Deep (supervised) learning: Using the same supervised data, we can train a deep
neural network instead of a logistic regression classifier. This is an extension of our
work and not described in [17]. We provide technical details below (Section 3.4.4).
In our experiments, we explicitly state when we use the neural network.

Each of the techniques provides a confidence score that we use for ranking candidates.

In our example, a word learned using distant supervision for the relations film performance
and film (between an actor and the film she acted in), is play. Furthermore, the word
character matches the relation with the same name.

Ranking. We now have a set of query candidates with information about which entities
and relations match which parts of the question how well. In a final step, we rank these
to find the best matching candidate. Note that performing ranking at this final step has
the strong benefit of jointly disambiguating entities and relations. A candidate can have
a weak match for an entity, but a strong match for a relation, and vice versa. We can
identify these combinations as correct, even when one of the matches seems unlikely when
considered separately.
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To rank the candidates, we apply learning to rank [57]. The training data from the
benchmarks allows sorting the generated candidates for each question by how well they
answer it. Using the ranked list of candidates, we learn a comparator (a random forest
[26]) that, given two candidates, decides which should be ranked first. We engineer a
total of 23 features for this. These indicate how well entities and relations match but also
include more general features like coverage (ratio of question words matched by an entity
or relation) or result size. The exact features are listed in our publication [17].

For our example above, the candidate covering most words of the question is best. Match-
ing ellen to Ellen Page no longer allows matching Finding Nemo because these aren’t
related in the knowledge base. On the other hand, the character relation matches the
word character in the question, which is not the case for alternative relations like perfor-
mance type. This leaves us with the correct interpretation of asking for Ellen DeGeneres’
character in Finding Nemo.

3.4.3 Experiments and Results

To evaluate our system, we used two established benchmarks: Free917 [30] and WebQues-
tions [20]. Each benchmark consists of a set of questions and their answers (one or more
entities) from Freebase. As our knowledge base, we used the original Freebase data and not
the curated version we described in Section 3.1. This has two reasons. First, we want to
use all available facts in our answering process, and our curation simplifies n-ary relations
(like the film performance or leadership relations above). Second, and more importantly,
this allows a fair comparison with other approaches.

Each benchmark comes with a pre-defined set of training and test questions. The two
benchmarks differ substantially in the types of questions and their complexity.

Free917 contains 917 manually generated natural language questions. The questions cover
a wide range of domains. Two examples are:

who won the 1964 united states presidential election? answer: Lyndon B. Johnson
how many languages has jrr tolkein created?29 answer: 10

Questions are mostly grammatical and tend to be tailored to Freebase. The benchmark
also provides an entity lexicon: a manually constructed mapping from text (the surface
form) to the mentioned entity. This was used for identifying entities by all systems re-
porting results on the dataset so far. We only make use of this lexicon where explicitly
stated. The established evaluation measure on this benchmark is accuracy, the fraction of
queries answered with the exact gold answer.

29The typo in tolkien is indeed part of the dataset.
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WebQuestions consists of 5,810 questions that were selected by crawling the Google sug-
gest API. Contrary to Free917, questions are not necessarily grammatical and are more
colloquial. For example:

who brad pitt has dated? answer: Angelina Jolie, Jennifer Anniston, ...
who plays dwight in the office? answer: Rainn Wilson

Due to the selection process, questions are biased towards topics that are frequently asked
from Google. Furthermore, the structure of questions tends to be simpler. Answers to
the questions were obtained by using crowdsourcing. This introduces additional noise.
In particular, for some questions, only a subset of the correct answer is provided as gold
answer. Therefore, what is usually reported is average F1 : the F1 measure for each
question (obtained by comparing the gold answer set and the system’s answer set of
entities) averaged over all questions.

Table 6 compares the quality of our system, Aqqu, to recent systems:

Free917 WebQuestions
Method Venue Accuracy+ Accuracy Average F1

Cai et al. [30] ACL’13 59 % – –
Jacana [86] ACL’14 – – 35.4%
Sempre [20] EMNLP’13 62 % 52 % 35.7%
Kwiat. et al. [53] EMNLP’13 68 % – –
Bordes et al. [25] EMNLP’14 – – 39.2%
ParaSempre [22] ACL’14 68.5% 46 % 39.9%
Aqqu [17] CIKM’15 76.4% 65.9% 49.4%
STAGG [88] ACL’15 – – 52.5%
Berant et al. [21] TACL’15 – – 49.7%
Xu et al. [83] CoRR’16 – – 53.3%
Reddy et al. [73] TACL’16 78.0% – 50.3%
QUINT [1] WWW’17 72.8% – 51.0%
Aqqu + NN – 78.7% 70.2% 51.8%

Table 6. Results on the Free917 (267 questions) and WebQuestions (2032 questions) test set. Re-
sults of our system, Aqqu, in bold. The bottom part of the table corresponds to work published
after Aqqu [17]. For the results in the third column (Accuracy+), a manually crafted entity lexicon
was used. Note that better performing systems fundamentally relied on external data (see text).
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Most of the systems in Table 6 have only been evaluated on one of the two benchmarks.
Our system, Aqqu, uses a single approach that considerably improved the state of the art on
both benchmarks at the time of publication. The extension with a deep neural network for
relation matching, Aqqu + NN (see Section 3.4.4), is also competitive for the current state
of the art, in particular, since other approaches make considerably more use of external
data than our rather shallow learning of indicator words via distant supervision (see Section
3.4.2). Xu et al. [83] issue queries against a full-text search engine on Wikipedia during
the answering process. STAGG [88] uses large amounts of additional data (derived via
distant supervision) to train their neural network. Without this external data, [83] report
a drop of 6.2% and [88] a drop of 0.9% in average F1. Both techniques are likely to benefit
our approach as well.

To inspect how many questions can be answered by our query templates we analysed oracle
results: the score achievable when assuming perfect ranking. On Free917 Aqqu achieves
an oracle accuracy of 85% (without manual entity identification) and on WebQuestions
an oracle average F1 of 68%. Note that, as explained above, the WebQuestions dataset
consists of frequent but very noisy questions that often have an incomplete ground truth.
In a manual inspection we estimate that the best achievable score is around 80%. This
shows that our patterns allow answering the majority of questions with high quality.

Since we focused on rather short and frequent questions our templates will not work well
for arbitrarily complex questions. The work in [1] shows that templates can also be learned
automatically in order to answer compositional questions such as Which were the alma
maters of the PR managers of Hillary Clinton?. The described approach is orthogonal
to ours and could be integrated on top of our current system. We consider this direction
worthwhile future work.

On both benchmarks we also look at the top-k results of Aqqu. The best candidate is
within the top two in 74% of questions for Free917 and 67% for WebQuestions. This
demonstrates that our learned ranking is very strong. Indeed, in many cases, the top two
candidates are hard to distinguish and often match the question very well. For example,
where is chris paul from? can be answered with his place of birth or his nationality, but
only one interpretation is considered correct in the ground truth.
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Besides quality, we also evaluated efficiency of our system. On average, Aqqu answers a
question within 217ms and 143ms on the test sets of Free917 and WebQuestions, respec-
tively.30 Aqqu + NN requires 193ms and 169ms, respectively. Berant et al. [21] report
291ms per question on average for WebQuestions. For other systems that provide code
and for which we reproduced results, run times are (at least) several seconds per query.

In an error analysis, we found that there is no single large source of errors worth pointing
out. Instead, each of the components (entity recognition, pattern and relation matching,
ranking) fails about equally often for various reasons. The accompanying materials of our
publication [17] provide a list of errors. Our publication also includes a more detailed
evaluation and analyses of, for example, feature and component importances.

3.4.4 Matching Relations in Questions Using Deep Learning

We shortly describe the neural network used in Aqqu + NN above. This is an extension
that is not part of our original publication [17]. The neural network computes a score that
indicates how well a candidate query and its relations matches a question. Essentially, it is
an additional, more sophisticated approach of the supervised relation matching classifier.
The neural network score is used in ranking query candidates. Besides this additional
ranking feature, all other components of the system are identical.

The architecture of the neural network is similar to that of [88]: a Siamese neural net-
work [27] that learns a real-valued vector representation (embedding) of the question and
knowledge base query. The cosine between both vector representations is used as a score
on how well the question matches (translates to) the query. Ideally, the representation of
the correct query is close to the representation of the question and the resulting cosine
similarity is large.

To compute an embedding of the question, we first transform it into a sequence of 128-
dimensional word vectors. Word vectors are learned using word2vec [60] on a corpus of 50
million sentences extracted from ClueWeb [34]. The vectors are kept fixed during training
of the neural network, i.e., we perform no fine-tuning. On the sequence of vectors we
apply a 1-d convolution followed by max-pooling as described in [50]. The convolution
uses filters of size one, two, and three with 300 filters of each size. The output of the
convolution layer is followed by a fully connected feed-forward network with 200 nodes.

30These numbers differ from our original publication [17] because we have improved the implementation
in obvious ways, e.g., by avoiding unnecessary re-computations of features. Originally we reported 644ms
and 900ms, respectively. New experiments were performed on a system with Intel i7-6700 CPUs, 60GB of
RAM, and a Titan X GPU.
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To compute an embedding of a knowledge base query, we split each involved relation
into its three inherent parts separated by a dot. Each part is then represented as the
average of its word vectors (some parts have several words like place_of_birth in peo-
ple.person.place_of_birth). We use the same word vectors as above that are also fixed
during training. Because a query can have up to three relations (see the templates in
Section 3.4.2) this results in nine 128-dimensional vectors. Their concatenation is passed
through two fully connected feed-forward layers with 200 nodes each.

All nodes of the network use exponential linear units [33] as activation function. The 200-
dimensional outputs for the question and query representation are then compared using
their cosine, which gives the final output of the network.

The training data is the same as for the supervised relation matching classifier, i.e., it is
constructed from the training questions of the benchmark. We train the network using
Adam [51] for a fixed duration of 30 epochs, determined after observing performance on
a development set. As loss function, we use mean squared error.

We also experimented with many variations and extensions: using dropout for regulariza-
tion, different activation functions, different loss functions, and optimizers. In our exper-
iments, none gave performance improvements on the development set over the network
described above.
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3.5 Semantic Search Survey

In this section, we describe our extensive survey (156 pages) on semantic search on text
and knowledge bases [16]. We start by illustrating our motivation for the survey followed
by giving a short outline.

As we stated in the introduction, semantic search is not a single well-defined problem.
Rather, it is understood by many different communities in different ways. As a result,
researchers are often not aware of related work in other communities, though the addressed
problems are similar. This is the main motivation behind the survey. It should give an
extensive overview of addressed problems, their approaches, and state of the art in the
different communities. Crucially, no such overview was available in the literature. Our
survey categorizes the vast research field. It also explains basic techniques which underpin
many of the described approaches and provides details on advanced techniques. This
should make it useful to newcomers as well as seasoned researchers.

To categorize the research, we devised a classification scheme along two dimensions: the
type of data that is searched on and the search paradigm. We consider this classification
scheme a major contribution. It can serve as a guideline to navigate the field, categorize
new approaches and techniques, and find related work in that area. Figure 7 shows
the categories according to our classification scheme. We shortly describe each of the
dimensions.

Keyword Search 
on Text

Structured Data 
Extraction from Text

Question Answering 
on Text

Keyword Search on 
Knowledge Bases

Structured Search 
on Knowledge Bases

Question Answering 
on Knowledge Bases

Keyword Search 
on Combined Data

Question Answering 
on Combined Data

Keyword
Search

Structured
Search

Natural Lang.
Search

Text

Knowledge
Bases

Combined
Data

Semi-Struct. Search 
on Combined Data

Figure 7. Adapted from our survey [16]: Our basic classification of research on semantic search into
categories by underlying data (rows) and search paradigm (columns). Each category corresponds
to a subsection in the survey.
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Data in the form of text usually consists of a collection of documents that contain nat-
ural language. This is the most abundant kind of information available, but completely
unstructured. A typical example is the Web, where each web page corresponds to a doc-
ument. Knowledge bases, on the other hand, contain structured statements, often in the
form of subject predicate object triples. An important trait is that identifiers of entities
and relations are used consistently, that is, the same entity or relation should have the
same identifier in all triples. A typical example of a knowledge base is Freebase. Combined
data refers to a combination of the two previous types. Entities from a knowledge base
can be linked to their mentions in text. This is the kind of data semantic full-text search
(see Section 3.1) uses. Combined data also refers the case where several knowledge bases
(with different naming schemes) are combined into one huge interlinked knowledge base.
In this case, the same entity or relation can exist multiple times with different identifiers.
A typical example is linked open data, the data behind the Semantic Web.

The classification into our three search paradigms is as follows. Keyword search accepts
a list of (typically few) keywords. It places no restriction on the structure of the query.
This is still the best known and most ubiquitous search paradigm. Structured search uses
a query language, like SQL or SPARQL. Queries must adhere to the syntax defined by
the language. This is the obvious choice when the data to be searched is structured. The
language can also be extended to incorporate search in unstructured data, for example
with keyword search in text, as in semantic full-text search (Section 3.1). Natural lan-
guage search answers complete questions as a human would pose them. We presented an
approach for question answering on a knowledge base in this document in Section 3.4.

Our classification leads to a total of nine categories. Each category corresponds to a
subsection that contains: a profile of the corresponding line of research (including strengths
and limitations) and a description of the basic techniques, important systems, benchmarks,
and the state of the art. These nine categories form the core section of the survey.

In addition, our survey provides a lot of supplementary information, for example, we list
and reference important datasets for each category. We also provide introductory and
background information, for example, we dedicate a whole section to fundamental natural
language processing techniques. In a final section on advanced techniques, we address
ranking, indexing, ontology matching and merging, as well as inference.

Altogether, we believe the survey is a valuable contribution to the semantic search com-
munity that was missing and long overdue, especially since the field is so vast, hard to
delineate, and difficult to get an overview of.
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4 Future Work

The ultimate semantic search engine is one that has human-like understanding of the world.
It is able to perfectly determine the intent of each query, whether given as keywords or
complete question. And it can reason about the answer using whatever data it has at its
disposal, much like a human. Such a level of understanding and where it might come from
is still elusive. Nonetheless, we consider the following three directions of future research
as promising steps (albeit comparably small) towards this ultimate goal.

First, extending the question answering approach presented in Section 3.4.2 to use full
text in addition to a knowledge base will allow answering a wider range of questions. The
obvious way to achieve this is to make use of the occurs-with relation from semantic full-
text search (see Section 3.1). The main challenge will be to determine when to make use of
the text in addition to the knowledge base. For example, for questions like who is the ceo
of apple? results could always be kept up-to-date with a combined search in full text and
a knowledge base. However, searching full text is not necessary and possibly detrimental
in other cases, for example, for who founded apple?, which is answered perfectly from the
knowledge base alone.

Second, using semantic completions may direct a user to formulate questions that are less
ambiguous and better understood. For example, after typing “who played rick deckard
in” the user can be presented suggestions for the different Blade Runner movies. If she
selects one of the suggestions, no ambiguity arises compared to typing blade runner, which
can mean the movie from 1982 or 2017. This requires that the question typed so far is
sufficiently understood, for example, that the movie character Rick Deckard has been
identified and that the list of suggestions contains movies in which he appears. Sugges-
tions could be provided for all words of the question, not only for entities. In particular,
words that describe relations between entities, such as played above, are a major source
of ambiguity (see Section 3.4) and could be suggested as well. There is a large body of
work on auto-completing keyword queries summarized in [29]. However, only a few works
make use of entities or knowledge bases, and no work seems to address the problem for
question answering. Preliminary experiments indicate that a class-based language model
can learn meaningful suggestions. There is also recent work showing how knowledge base
facts can be incorporated in a neural language model [2].

Finally, it will be interesting to apply recent advances in learning neural networks in an
end-to-end fashion to answer questions [55, 67, 66]. This has the potential to enable
search on multiple data sources by learning which data source is reliable for which kind
of information. For example, it may be possible to learn when to query text in addition
to a knowledge base as in the example above. However, to achieve good results, large
amounts of training data may be required, and to answer a wide range of questions, it will
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be necessary to transfer the learnings from one domain or dataset to others - which is still
an open research problem.

The problems we have addressed in this thesis have a wide range of applications in semantic
search. In particular, they can serve as building blocks in the suggestions outlined above.
Together, this represents a promising direction of future work which may bring us a step
closer to the ultimate semantic search engine.
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