Spelling Correction and Autocompletion for Mobile Devices

Ziang Lu Bachelor's Thesis

Computer Science Department University of Freiburg

Examiner: Prof. Dr. Hannah Bast Adviser: Matthias Hertel

Number of smartphone users from 2016 to 2026 (in billions)

IBURG

NNI FREI

we are going to watch a movie

correct the next word

current input: Wee (expecting correction)

candidates to choose: We Lee Bee

predict the next word

current input: We (expecting prediction) candidates to choose: are do were

complete the next word

current input: We are g (expecting completion) candidates to choose: going gone getting

University of Freiburg - Computer Science Department

BURG

Implementation and usage

Implementation as an Android System Keyboard

- choose candidates from vocabulary according to simalarity
- rank candidates and show the best three candidates to the user

0	t O					
÷	how big is <u>ear</u>	×				
Q	how big is ear th 6,371 km					
Q	how big is earth compared to the sun					
Q	how big is ear th in m	niles 🛛				
Q	how big is earth compared to $$\nabla$$ other planets $$\nabla$$					
Q	how big is earth's atmosphere \square					
Q	how big is earth compared to the $$\mathbbmss{moon}$$					
Q	how big is ear th godzilla					
<	> 8	\equiv \bigcirc				
ea	rly earth	earning				
q ¹ v	$\overset{2}{w} \overset{3}{e} \overset{4}{r} \overset{5}{t} \overset{6}{y}$	⁵ ⁷ ⁸ ⁹ ⁰ ¹ ⁰ ⁰ ⁰				
а	s d f g	hjkl				
	zxcv	bnm 🔀				
Ŵ	123 🖵	., Q				

Prefix Edit Distance

We input always from the start of a word

Edit Distance (som, something) = 6

Prefix Edit Distance (PED):

 $PED(x, y) = min_{y'}(ED(x, y'))$

where y' is a prefix of y

5

PED(same, something) = ?

Given a threshold of PED and prefix "som"

UNI FREIBURG

6

Filter impossible candidates to accelerate response

UNI FREIBURG

7

Some words are very short like "I", "am", "a"

Pad special symbols: "\$\$I", "\$\$am" ...

I want to drink w____

sequence of n words

Example:

h: have you seen myw: book

 $P(\text{book}|\text{my}) = \frac{C(\text{my book})}{C(\text{my})} \qquad \text{based on bigram}$ $P(\text{book}|\text{seen my}) = \frac{C(\text{seen my book})}{C(\text{seen my})} \qquad \text{based on trigram}$

University of Freiburg - Computer Science Department

FREIBURG

N-gram probability

Extend the formula to N-gram:

$$P(w_n|w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

(n represents the length of a whole sentence. w_J^I represents a sequence which consists of $w_I, w_{I+1}, w_{I+2}, \dots, w_J$.)

Combination of different N-gram probabilities:

$$P(\text{N-gram}) = \sum_{i=1}^{N} P(w_n | w_{n-N+1}^{n-1}) \cdot \lambda_i$$

University of Freiburg - Computer Science Department

BURG

For absence of some combinations:

Ι	have	а	cat
PRON	VERB	DET	NOUN

Example:

"she sleeps" never appears in the corpus

candidates: sleeping sleeps sleep

FREIBURG

11

Corpus and Vocabulary

9000 words from MIT word list + 1000 most frequent words from corpus

14 million words make up of the corpus, which was retrived from web texts.

12

- avoid reading data on startup => store n-grams and q-gram index in a database
- load data only on demand
- lower delay of startup and low memory footprint

resume	2185	my resume	32	my	331930	null	null	null	null
resume	2185	your resume	228	your	597852	null	null	null	null
click	24403	the click	143	the	6719158	null	null	null	null
click	24403	can click	407	can	475829	you can click	246	you can	138502

13

Methods and test set

Testset: 5% of corpus and Enron Emails

Criterion of evaluation: number of saved keystrokes(%)

Example:

sentence: Let's have a drink.

length(including space): 1919 - 10keystrokes needed with keyboard: 1019 - 10

14

Results and analysis

Performance based on different grams

Gram	Saved keystrokes $(\%)$
bigram	39.30%
trigram	39.97%
quadrigram	39.98%
quinque gram	39.98%

FREIBURG

Test for the POS-Tags

Evaluate the performance with the attendance of POS-Tags

Mode	Saved keystrokes(%)
Without POS-Tags	39.31%
With POS-Tags	39.98%
+	0.67%

She sleeps very well and he walks into the forest

Test for the correction

The first letter of every word will be changed

100 sentences from Enron Emails

Keyboard	No mistake	With mistakes
Gboard	48.81%	19.84%
Nboard	45.64%	21.57%

17

Current problems and Future work

Problems:

- POS-tagger was not precise
- Paied little attention to more parts of a sentence

TODOs:

- customized and preciser POS-tagger
- more complicated language model => Transformer

Conclusion

- Theories and their application
- Implementation of the keyboard
- Evaluation

Any other questions?

20