
Bachelor’s Thesis

Spelling Correction and Autocompletion
for Mobile Devices

Ziang Lu

Examiner: Prof. Dr. Hannah Bast
Adviser: Matthias Hertel

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair of Algorithms and Data Structures

November 03rd, 2021

Writing Period

04. 08. 2021 – 03. 11. 2021

Examiner

Prof. Dr. Hannah Bast

Adviser

Matthias Hertel

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

With the ubiquity of the Internet, people are used to sending messages, writing

e-mails, and querying search engines with smart mobile devices. To facilitate entering

text with less keystrokes, and thereby save inputting time, ever smarter keyboards

are developed. This paper aims to present how n-gram models and other relevant

techniques could be used for the implementation of smart keyboards. In this paper,

an English system keyboard for Android devices was developed to help in predicting,

completing and correcting the next word. A detailed evaluation shows that n-gram

models could contribute to the development of better keyboards and improve the

user experience.

ii

Zusammenfassung

Mit der Allgegenwart von Internet gewöhnen Leute sich schon daran, auf mobilen

Geräten Nachrichten zu schicken, Email zu schreiben oder auf Suchmaschine ein Query

zu machen. Um Tastendrücken zu reduzieren und Zeit zu ersparen, versucht man

immer eine klugere Tastatur zu entwickeln. In diesem Paper werden wir n-gram Modell

und andere relevante Theorien einführen und die entsprechende Implementierung

zeigen. Und dann werden wir eine englische Systemtastatur auf Android Gerät

entwickeln, die hilfreich bei Vervollständigung, Korrektur und Vorhersage sein kann.

Am Ende beschreiben und analysieren wir die Evaluationsergebnisse und behaupten

dass man mit der Implementierung von einem n-gram Modell eine kluge Tastatur

bauen und Benutzung erlechtern kann.

iii

Contents

1 Introduction 1

2 Theoretical Background 4

2.1 Edit Distance . 4

2.1.1 Levenshtein Distance . 4

2.1.2 Prefix Edit Distance . 5

2.2 Q-gram Index . 6

2.3 N-gram Model . 8

2.4 Grammar Process . 9

2.4.1 POS-Tagging . 9

2.4.2 Hidden Markov States . 10

2.4.3 Viterbi Algorithm . 13

2.5 SQLite . 13

3 Approach 15

3.1 Find Candidates . 15

3.1.1 Similarity calculate . 15

3.1.2 Accelerate calculation . 17

3.2 N-gram probability . 19

3.3 POS-Tag probability . 20

3.4 Integration . 22

3.5 Vocabulary . 24

iv

3.6 Corpus . 25

3.7 Training and data processing . 25

3.8 Model and Data storage . 28

3.8.1 Motivation . 28

3.8.2 Database . 29

4 Keyboard 33

4.1 Implementation and Usage . 33

4.2 Completion, correction and prediction 34

4.3 Usage of RAM . 36

5 Evaluation 38

5.1 Evaluation Method . 38

5.2 Evaluation Results . 40

6 Current Problem and Future work 47

6.1 Current problems . 47

6.2 Future work . 48

7 Conclusion 49

Bibliography 52

v

1 Introduction

Virtual keyboards are becoming ubiquitous with the increasing use of mobile devices

and touch screens. People interact with a keyboard by touching the screen, pressing

keys, and choosing suggestions. A more effective way to input text on mobile devices

could be achieved in many aspects, for example, people find the optimization of

keyboard layout can improve user experiences and accelerate the speed of inputting

[1]. In addition, a better inputting experience also depends on an effective “recom-

mendation system” for the next word, namely, after individuals type a part of a word,

they could choose candidates from a bar on the top of the keyboard. The earlier a

user could find the appropriate candidate, the quicker he could finish his input. In

this paper, we will only pay attention to the program solution: completion, correction,

and prediction.

If you intend to input “something” and have inputted “som” at first, you find you can

directly let “som” completed by clicking a candidate from the bar on the top of the

keyboard, then you have saved at least 6 keystrokes; Imagine that after you finished

typing “I will be there in five ” (with a space), you find three candidates: “days”,

“minutes”, “seconds”. Here you have a chance to complete your next word with only

one keystroke; Or while you are walking, you want to reply to your friend, but you

can not hold your phone very well. You may type “do you need somthing” and the

keyboard shows you the correct version of “something”. Luckily, you do not have to

come back to correct your spelling mistake. All of the work above needs an effective

algorithm and precise language model.

1

Likelihood probabilistic models have been used for text processing for a long time [2].

Such a model is a context-based model which is built by counting the frequency of the

same sequences or combinations. A typical and classical example is the application

of n-gram which is widely used in many areas in Natural Language Processing, such

as text categorization [3], machine translation [4], speech recognition [5] and so on.

Application of the n-gram model in predicting or completing the next word has also

been shown as an efficient and precise way to finish this work [6, 7].

Completing or correcting a word, we need to know which word could be selected

to complete or correct our goal. Other than the use of the n-gram model, we still

should quantify the similarity between two words. Church and Gale (1991) had

developed a correct program that could rank suggestions according to four confusion

matrices which represented probabilities of different ways of making spelling mistakes

[8]. Kondrak (2005) attached importance to the role of edit distance in quantifying

similarity between two strings and also referred to the combination of edit distance

and n-gram model [9]. And we will implement this combination of the n-gram model

and Prefix Edit Distance into an Android keyboard, which could complete, correct,

and predict the next word. Since the papers before only refer to the level of theory

or model’s implementation about such combination, this paper succeeds in realizing

algorithms into an available and function-completed app.

As a comparison, Google Keyboard (Gboard), a keyboard trained by a neural network

language model, will be used to execute part of tasks for evaluation. The applied

language model uses a distributed and on-device learning framework which is called

Federated learning [10]. This framework focuses on the collection and analysis of data

generated by users. One of the outstanding features of Federated learning is that it

could train a language model using “real” data without the invasion of private and

sensible information [10]. Instead of uploading users’ data into the server, Federated

learning uses client data to execute training tasks only in their own devices during

idle time. After finishing pre-defined computation tasks, the updated model weights

2

will be sent in the form of vectors into the server and aggregated for the next step

[10]. That guarantees the privacy of users and the quality of the language model.

Through comparison with Gboard, we will prove that the traditional statistical model

could still have satisfying performance in completing, correcting, and predicting next

words.

3

2 Theoretical Background

We will firstly list the theories that we need and then talk about the application of

theories in the next section.

2.1 Edit Distance

2.1.1 Levenshtein Distance

Edit distance is a way of quantifying how dissimilar two strings are to one another.

It quantifies the difference between two strings by counting the number of operations

needed to transfer one string to the other. Levenshtein Distance is a member of group

edit distance. It is named after Soviet mathematician Vladimir Levenshtein, who first

thought about this method in 1965. To calculate the Levenshtein Distance between

two strings, one can insert, replace or delete letters to transfer one string to the other

string [11]. The total number of such operations is the Levenshtein Distance between

two strings:

insert(i, c): insert character c at position i

delete(i, c): delete character c at position i

replace(i, c): replace character c at position i

4

Let us take a look at an example:

A: similar

B: familiar

We intend to transfer A to B. Available operations: insert, replace and delete.

Figure 1: Edit Distance between similar and familiar

Therefore, we need two replacements and one insertion to finish the transference.

And the Levenshtein Distance between “similar” and “familiar” is 3.

2.1.2 Prefix Edit Distance

Prefix Edit Distance is a variant of Levenshtein Distance.

Definition Given two strings A and B, we should count the minimal number of

operations that we need to transfer A into a prefix of B. The operation could be

insertion, replacement, or deletion:

PED(x, y) = miny′(ED(x, y′))

where y′ is a prefix of y

Then the Prefix Edit Distance between same and something should look like this:

5

Figure 2: Prefix Edit Distance between same and something

Hence, the Prefix Edit Distance (denoted as PED) between C and D is 1.

2.2 Q-gram Index

Q-grams of a string S are simply a set of all substrings of string S with a length q. If

q = 3, then the 3-grams of “something” should be:

Figure 3: 3-grams of something

Given a string A and threshold δ, we want to find all candidates whose PED from A

is smaller than δ. Because of the size of a vocabulary, calculating PED between string

A and all other words from the vocabulary will take a lot of time. Generally, we

could avoid some unnecessary calculations by comparing the number of the common

Q-gram of two strings. Only if the number of common Q-grams between two strings

6

exceeds a given threshold, we will calculate the PED between them. This could save

us much time.

A q-gram index maps a q-gram to all words which contain that q-gram. Given a

vocabulary with a fixed size, the q-gram index could map a q-gram to tuples which

consist of the index of a word that contains that q-gram and the frequency of q-gram

in that word. Q-gram index could be applied to find words that have enough common

q-grams with a string or the part of the inputted sentence if we have determined a

threshold.

For example, the inputted string is compu and its q-grams are com, omp and

mpu. Assume that the threshold is 3 and we only want to get words who have at

least 3 common q-grams with compu. Given the q-grams indices, we retrieve the

corresponding words (index, frequency) which contain the three q-grams above and

get results as follows:

com (1, 1), (2, 1), (3, 1)

omp (1, 1), (3, 1)

mpu (1, 1), (3, 1)

After merging the three lists, we have an obvious answer:

(1, 3), (2, 1), (3, 3)

Therefore, two words have fulfilled the requirement and they are the first word and

the third word.

7

2.3 N-gram Model

A n-gram is a sequence of n words: a 2-gram is a two-word sequence of words like

“have you”, “seen my” or “my book” and a 3-gram is a three-word sequence of words

like “have you seen”, “you seen my” or “seen my book”. A 1-gram (or unigram) is just

a single word or one-word sequence. It is a type of probabilistic language model for

predicting the next item based on the last n – 1 words.

Let us continue with the example before:

h: “have you seen my”

w: “book”

k is a corpus

we consider h as history and w as a possible candidate. We want to calculate the

probability of w as the next word and denote it as:

P (book|have you seen my)

Since the size of corpus k is limited and combinations like “have you seen my” may not

appear, we will instead approximate the probability just through the last few words,

for instance, “seen my” or “my”. In other words, we could calculate the probability

based on a 2-gram or 3-gram, namely, we look back into only one word or two words.

In this case, we just need to count the frequency of sequence “my book” and frequency

of “my” in the corpus k (here we denote that as C(sequence)). Then we have:

P (book|my) =
C(my book)
C(my)

or

P (book|seen my) =
C(seen my book)
C(seen my)

8

C(my book) is to count how many times the combination “my book” appears in the

corpus. C(my) is to count how many times the word “my” in k appears. To extend

our 2-gram model to general n-gram model, we have this formula as follow:

P (wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(n represents the length of a whole sentence. wI
J represents a sequence which consists

of wI , wI+1, wI+2,, wJ .)

2.4 Grammar Process

2.4.1 POS-Tagging

POS is short for part of speech. A part of speech is a category of words that have similar

grammatical properties. Commonly listed English parts of speech are noun, verb,

adjective, adverb, pronoun, preposition, conjunction, numeral, article, or determiner.

POS-Tagging is literally to categorize every part of a sentence into a tag that denotes

the grammatical property of that part.

For example:

Figure 4: POS-Tags

Annotation for a large corpus takes a lot of time if people manually do it. Nowadays,

9

we get the annotation or an annotated corpus by using the automatic POS tagger. In

this paper, we will use the python package NLTK as the POS-tagger which supports

annotation of 45 kinds of POS tags [12].

2.4.2 Hidden Markov States

Markov Chain

A Markov Chain is a mathematical system that experiences transitions from one state

to another according to certain probabilistic rules. The probability of transitioning

to any particular state is dependent only on the current state but not before that.

We call that the Markov property.

Given a set of states of ground, e.g.

S = {d(damp), n(normal), r(dry)}

with initial probabilities.

Pr(d) = 0.1

Pr(n) = 0.7

Pr(r) = 0.2

and transition probabilities between states

Pr(d→ d) = 0.2, P r(d→ n) = 0.6, P r(d→ r) = 0.2

Pr(n→ n) = 0.6, P r(n→ d) = 0.1, P r(n→ r) = 0.3

10

Pr(r → r) = 0.3, P r(r → n) = 0.6, P r(r → d) = 0.1

With this we could calculate the probability of a sequence of events, for example,

we want to know the probability when the ground is firstly dumped, then becomes

normal, then becomes dry and at last comes back to dump state, namely:

Pr(d→ n→ r → d) = Pr(d) · Pr(d→ n) · Pr(n→ r) · Pr(r → d) (1)

= 0.1 · 0.6 · 0.3 · 0.1 (2)

= 0.0018 (3)

Hidden Markov States

Hidden Markov model is basically a Markov chain whose internal state cannot be

observed directly but only through some probabilistic function [13]. For example, dry,

damp, and normal are states which could be observed, and the weather: rain, sunny

or cloudy we could call them hidden states as causes.

Sometimes we could only perceive observed states and want to know the hidden state

or the cause behind the phenomenon. We could calculate the probability of a given

hidden state through Hidden Markov model.

Given a set of hidden states

H = {y−(rainy), y=(cloudy), y+(sunny)}

and a set of observable states

O = {d(dump), n(normal), r(dry)}

Like we define the probability of observed states before, we also need to determine

initial probabilities and transition probabilities of those hidden states:

11

Pr(y−) = 0.3, P r(y=) = 0.1, P r(y+) = 0.6

Pr(y= → y−) = 0.1, P r(y= → y=) = 0.3, P r(y= → y−) = 0.6

Pr(y− → y−) = 0.3, P r(y− → y=) = 0.1, P r(y− → y+) = 0.6

Pr(y+ → y+) = 0.5, P r(y+ → y=) = 0.3, P r(y+ → y−) = 0.2

As explained above, observable states are usually dependent on hidden states. So we

could define the conditional probability and we will call this emission probability

here:

Pr(r|y−) = 0.1Pr(n|y−) = 0.2Pr(d|y−) = 0.7

Pr(r|y=) = 0.3Pr(n|y=) = 0.6Pr(d|y=) = 0.1

Pr(r|y+) = 0.7Pr(n|y+) = 0.2Pr(d|y+) = 0.1

Now, we could think about how to get the probability of a sequence of hidden states

given a sequence of observable states.

Formula:

Pr(o1, ..., on, h1, ..., hn) = Pr(o1|h1) · Pr(o2, h2|o1, h1) · Pr(o3, h3|o2, h2) · ... (4)

= Pr(h1) · Pr(o1|h1) · Pr(h2|h1) · Pr(o2|h2) · ... (5)

=
∏

n=1..n Pr(hi|hi−1) · Pr(oi|hi) (6)

12

Our goal is to maximize the formula:

∏
n=1..n Pr(hi|hi−1) · Pr(oi|hi)

so that we can find the most likely sequence of hidden states with the highest

probability.

Instead of solving this optimization problem by brute force (trying all assignments to

hi), we will look at the Viterbi Algorithm.

2.4.3 Viterbi Algorithm

Viterbi Algorithm is especially for obtaining the maximum probability of the most

likely sequence of hidden states. Let Prn(hn) :=
∏

n=1..n Pr(hi|hi−1)·Pr(oi|hi). And

the principle of the algorithm is to express Prn(hn) recursively by Prn−1(hn−1):

Prn(hn) = maxh1,...,hn−1

∏
i=1,..n { Pr(hi|hi−1) · Pr(oi|hi)}

= maxh1,...,hn−1

{
Pr(hn|hn−1) · Pr(on|hn) ·

∏
i=1,..n Pr(hi|hi−1) · Pr(oi|hi)

}
= Pr(on|hn) ·maxhn−1

{
Pr(hn|hn−1) ·maxh1,...,hn−2

∏
i=1,..n Pr(hi|hi−1)·Pr(oi|hi)

}
= Pr(on|hn) ·maxhn−1{Pr(hn|hn−1) · Prn−1(hn−1)}

The detailed expression in the algorithm will be introduced in the next section.

2.5 SQLite

SQLite is a relational database management system. Compared with many other

databases, the most outstanding feature of SQLite is that it is not a server-client

database engine and is embedded into the program. For example, MySQL requires a

server to run. MySQL will require a client and server architecture to interact over

a network. In contrast, SQLite is self-contained [14]. And the DB engine runs as

13

a part of the app. A program could call functions of SQLite by its API defined

in the programming language. This feature could help in reducing delays when an

application or program visits data in the database.

14

3 Approach

In this section, we will talk about approaches to realizing the functionalities of the

keyboard and the application of theories.

3.1 Find Candidates

3.1.1 Similarity calculate

We are going to build a keyboard which firstly could complete and correct our input.

If the keyboard ought to complete our input into a correct word, it needs to know

whether our input could be part of our intended word. In other words, the keyboard

ought to judge if there is a potential candidate that is very similar to our inputted

string.

The same principle could be applied to the correction of the keyboard. Spelling

mistakes could be classified into two types [15]. One is context-sensitive spelling

error which means our “wrong” input exits actually in the dictionary but it does not

correspond to the syntax or grammar of context, such as “I having an idea”. The

other one is called a non-word error. In this paper, we only focus on the non-word

error which can not be found in the dictionary such as “abouuut”. In this case, our

keyboard should know which correct word should be most possibly shown to the user.

That also includes the consideration of similarity.

15

In the section of theoretical background, we have talked about the method to calculate

the similarity between two strings: Levenshtein distance. When we compare two

words with Levenshtein distance, we need to consider two complete words. However,

we input a word by starting the first letter, and the second one until the last letter.

Consequently, if the keyboard could show us something as a candidate, then we must

have inputted somethi or maybe a little bit longer prefix. Because no matter with

which prefix some or somet, the Levenshtein distance between the “something” and

those prefixes would be very large.

That means the Levenshtein distance could not be used as a criterium for the keyboard

to generate a candidate. Because the larger Levenshtein distance implies that the

similarity between the input and an ideal candidate is very small. Hence, we have

introduced a variant of Levenshtein Distance: Prefix Edit Distance. This time we

still calculate the Levenshtein Distance but not between two complete words. In

that way, the keyboard supplies us with candidates only considering the Levenshtein

distance between the prefix of a word and what we have inputted. And if we input

som, then something, sometimes or someone could also be acknowledged as possible

candidates since the PED between them and som is only 1.

Figure 5: Judge similarity by PED

16

3.1.2 Accelerate calculation

A response time feels interactive until around 200ms. It takes us a lot of time if we

compare a string with all other words one by one from the vocabulary. It makes

calculation very inefficient and unnecessarily slow. For example, PED between “movi”

and “cinema” is intuitively larger than 2 and it is unnecessary to make a calculation.

Before we talked about the role of the Q-gram in reducing the number of candidates

which needed to be considered. Intuitively, if two strings are not too short and

δ(threshold of PED) is not too large, they will have one or more Q-grams in common.

Figure 6: Q-gram works just like we quickly have a glance and judge if two strings
may have small PED

That means, given a threshold, we could decide if a word deserves to be taken into

consideration by comparing the number of the common Q-grams between two strings.

If not, we can kick those words out and save the time of calculation.

However, if q = 3, it is impossible to divide a word whose length is less than 3 into

any parts, such as “I”, “if”, “am” and so on. To avoid ignoring important candidates,

17

we will pad two special symbols “$$” into the start of every word, such as $$I, $$am,

$$sometimes. In this way, we could get Q-gram indices of every padded word.

Given a string x and its padded version x′ , we want to find if PED between another

string y (padded version y′) and x is smaller than or equal to 2 (δ = 2). For this, the

number of common Q-grams must reach a value:

comm(x
′
, y
′
) ≥ |x| − q · δ

We could apply the formula to check if a comparison should be executed:

Figure 7: Pre-check

comm(x
′
, y
′
) = 2 ≥ |8| − 3 · 2. Hence, breiberg is a match.

18

3.2 N-gram probability

We have firstly solved the problem of similarity and its calculation speed. In the next

step, we need to consider the ranking of candidates. We may see even thousands

of candidates who fulfill the requirement of PED. But some candidates should be

filtered according to our linguistic experience. For example, given a part of a sentence:

“have you seen my b ”. And you need to complete the word with the prefix “b”.

By the way, the PED between “b” and many words is only 0 such as “be”, “being”,

“back”, “bag”, “book”, “basketball”. If you are a native English speaker, you will

very quickly exclude words like “be”, “being” and “back” without thinking of any

grammatical rules. Because in your memory, you have never seen them before. It is

a very simple statistical problem. You see many combinations like “my book”, “my

basketball” or “my baby” and you will think “book”, “basketball” and “baby” will

have high probabilities than others. What we think about is just how n-gram models

work.

Before in section 2 we have extended our bigram model to a general N-gram model

and we have this formula as follow:

P (wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(n represents the length of a whole sentence. wI
J represents a sequence which consists

of wI , wI+1, wI+2,, wJ .)

With this formula, we can usually find a corresponding bigram or trigram (if the

corpus is big enough) for the candidates. If the corresponding bigram and trigram

do not exist, we still could calculate the probability based on unigram. When we

could find both of the corresponding bigram and trigram in models, we need to assign

different weights to probability based on unigram, bigram, and trigram. The reason

could be described as that the more parts of the sentence we consider, the more

19

precise probability we could get for the next word. Since people produce a sentence

in any language is a sequential process.

For example, the inputted part is: “where are you g?”. If the whole part of “where are

you” is masked, and you could only guess which words should come most likely with

the prefix “g”, and it could be very hard, since no historical information is available.

But as we uncover more and more parts until the last word “where”, it becomes always

clearer which word you should choose. In this paper, the calculation of a n-gram

probability will be so planned:

P (N-gram) =
N∑
i=1

P (wn|wn−1
n−N+1) · λi

We assume that the attendance of longer sequence could improve the performance a

lot since it considers more contexts. The specific values of λi will be determined in

the evaluation.

3.3 POS-Tag probability

No matter how big a corpus is, there is still the combination of words that never

appears. However, if we only see “I sleep” a lot of times in the corpus but never see

the combination “she sleeps” or “he sleeps”, it does not mean that “she sleeps” or “he

sleeps” is not grammatically true. The reason is that language or expression is very

flexible and changeable, so a limited corpus is difficult to cover all possibilities. In this

situation, you have known that after a third-person pronoun we need to change the

form of a verb such as “sleep” into “sleeps”, “make” into “makes”, “take” into “takes”,

and so on. The task is to find out if a candidate could be selected as the next word,

which linguistic feature it should have. That means we need to know the maximum

probabilities of POS-Tags for a sentence that ends with different candidates. Here we

20

could apply the Viterbi algorithm to calculate the most likely linguistic property of

the next word.

Hidden states could be instantiated as the POS-Tags of English words and observable

states could be regarded as English words.

In the second section, we have introduced a formula that maximizes our goal recursively.

To calculate the grammatical property of the last word, we start always from the first

left part of the sentence. Our input includes [16]:

• the observation space O = {o1, o2, ..., oN} and in our case this space is composed

of every word from vocabulary.

• the state space S = {s1, s2, ..., SK}. Here the state space is equal to the set of

the POS-tags.

• an array of initial probabilities
∏

= (π1, π2, ..., πK). This describes the proba-

bility of a word under every tag could be the start of a sentence.

• a sequence of observations Y = (y1, y2, ..., yT). That is just which sentence we

have observed and each y belonging to the O.

• transition matrix A of size K ×K such that Aij stores the transition proba-

bilities from tag to tag.

• emission matrix B of size K × N such that Bij stores the probability of a

word belongs to a specific tag.

Output:

• the most likely hidden state sequence, namely the most likely POS-tags sequence

X = (x1, x2, ..., xT)

21

and the whole routine could be represented as the algorithm as follows [16]:

Algorithm 1 Viterbi Algorithm
function VITERBI(O,S,

∏
, Y, A,B): X

for each state i = 1, ..,K do
T1 [i, 1] ← πi ·Biy1 . mark current most likely tag
T2 [i, 1] ← 0 . mark last most likely tag

end for
for each observation j = 2, 3, ..., T do . iteratively calculate possibility

for each state i = 1, 2, ...,K do
T1[i, j] ← max

k
(T1[k, j − 1] ·Aki ·Biyj)

T2[i, j]← arg max
k

(T1[k, j − 1] ·Aki ·Biyj)

end for
end for
zT ← arg max

k
(T1[k, T])

xT ← szT
for j = T, T − 1, ..., 2 do

zj−1 ← T2[zj , j] . find most likely tag backwards until the start
xj−1 ← Szj−1

end for
return X

end function

Since we only want to know the most likely underlying POS-tag of the last word

namely the next word, we do not have to get the whole sequence of most likely tags.

3.4 Integration

Before we assigned different weights to probabilities based on different n-grams. In

this way, the more important factor plays a greater role. Hence, we also need to find

a balance among the effects of PED, n-gram, and POS-Tags. If we assign a very high

weight into PED, then a lot of candidates which are very likely based on n-gram

model but with higher PED would be ignored; If we attach too much importance

to the role of n-gram, then we may see more words which appear in the corpus in

high frequency but with higher PED. In contrast, a lot of words will disappear which

22

match our wish better because of lower PED but they do not come so frequently.

POS-Tagging plays an important role but still faces a similar problem.

Firstly, we put our attention into the case that needs less POS-Tagging. Since we

expect the candidates with high probabilities based on n-gram model and smaller

PED with a given input, we should let the n-gram probability be limited to the PED.

Hence, the weight assigned to PED would be a penalty weight. Then we have the

formula as follows:

probability = n-gram probability − weight · PED

In this paper, the weight above was set to 1.0. We will prove its rationality in the

section of the evaluation.

Lastly, we can think about the attendance of POS-Tagging refer to the method

above. However, we could not directly add the POS-Tagging probability into the

sum, because POS-Tagging probability may be very tiny and it could not bring too

much. For example:

candidate1

n-gram probability = 0.00015 (7)

POS-Tagging probability = 0.000045 (8)

(7) + (8) = 0.000195 (9)

(7) · (8) = 6.75e− 9 (10)

candidate2

23

n-gram probability = 0.00019 (11)

POS-Tagging probability = 0.000021 (12)

(11) + (12) = 0.000211 (13)

(11) · (12) = 3.99e− 9 (14)

POS-Tagging probability should help improve the rank of candidate1. However,

the sum of (7) and (8) is still smaller than that of (11) and (12) and it can not

protrude the effect of POS-Tagging. If we multiply n-gram probability and POS-

Tagging probability, the final results of (10) and (14) show that candidate1 has higher

priority than candidate2, since candidate1 makes more sense from the perspective of

grammatical rules. Therefore, our final formula to integrate these three factors is:

final probability = (POS-Tagging probability · n-gram probability)− 1.0 · PED

3.5 Vocabulary

Before processing the text in the corpus, we have no idea which words the texts may

contain. It is necessary to estimate the n-gram model with a fixed vocabulary. On

the one hand, the corpus sometimes contains a lot of content under the same topics.

So we can not depend on the vocabulary collected from words in the corpus. Because

of limited text cleaning, some words may make no sense but would also be gathered

into the vocabulary, which will affect the performance of the model. On the other

hand, adding words with relatively low frequency would enlarge the model which

causes a long calculating time.

Therefore, we will firstly choose a pre-filtered vocabulary by MIT which contains

10000 words that are commonly used in English dialogue [17]. And then we choose

24

1000 words with the highest frequency from corpus which do not belong to the MIT

words. With these 1000 words, we will replace the 10 percent of the original 10000

words which appear very rarely in the corpus. This will actually work very well

because it has avoided adding nonsensical words and could consider some special

usage of English words like “I’m”, “I’ll”, “we’re” and so on.

3.6 Corpus

The size of a corpus and its content are significant to build n-gram models. The

effectiveness of statistical natural language processing techniques is highly susceptible

to the data size. As a statistical NLP technique, the performance of the n-gram model

is affected not only by the size of the corpus but also by the content of the corpus. If

corpus for training consists of only one or two topics, then the trained n-gram models

will have very bad adaptability and are very theme-specific. Imagine that if you have

a big corpus but only consists of the topic of Brexit (British exit from EU). You may

have such combinations as “Scottish people” or “Camelon decided” at a very high

frequency just because this corpus included too many contents under the Brexit topic.

If you type “sc” then you get the “Scottish” as the first candidate in the list. That is

actually very annoyed because there are a lot of other words which are used more

commonly than “Scottish” like “school”, “scenery”, “scene” or “scholar”. Mostly, you

do need the word “Scottish”. In our application, we take the corpus whose content is

retrieved randomly from 95000 websites that cover different themes and consists of

14 million words [18].

3.7 Training and data processing

Getting the Q-grams of the words from vocabulary will be always repeated and it

takes a lot of time to calculate Q-grams of all words. The best way is to finish this

25

process in advance and store Q-grams Index of all words somewhere so that we do not

have to do this calculation repeatably. As explained before, the number of common

Q-grams decides if two strings intuitively deserve to be compared.

After we determine our vocabulary and corpus, we could train n-gram models. Since

the whole corpus contains about 13 million words and occupies almost 1 GB of

physical storage, we will separate the corpus into 10 small corpora so that size of

the heap could fulfill the requirement. According to the length of a sequence, our

n-gram models consist of 5 kinds of grams: unigram (1-gram), bigram (2-gram),

trigram (3-gram), quadrigram (4-gram), and quinquegram (5-gram). When building

the n-gram models, we will set a threshold of frequency so that we only store bigrams

and trigrams which appear more than 30 times in the corpus. Such threshold for

quadrigram is 20 and for quinquegram is 15, because there are relatively fewer identical

long sequences in the corpus. Hence, we need first to build the unigram model which

contains only a single word, then the bigram until quinquegram separately from

every single corpus. Those n-grams or sequences with n words must be composed of

words from the vocabulary. This could guarantee the adaptability of n-gram models

since the words of vocabulary cover more themes and topics. At last, we combine all

models and filter out n-grams that appear at a low frequency.

Type Amount

unigram 10000

bigram 84839

trigram 42322

quadrigram 20129

quinquegram 11600

Table 1: Amount of n-grams

Again, a lot of combinations do not exist in the corpus but they follow grammatical

rules. To deal with those cases, we could make the keyboard know about grammar

so that it could return the right candidate. This so-called grammar is supported by

26

two parts: transition probabilities and emission probabilities. Firstly, we need to find

out all parts of the sentence which a word could be and their emission probabilities

(observable). Secondly, we explore the possibilities of all transitions from one group

of words to another sort of words and their transition probabilities (hidden).

With NLTK we could calculate emission probabilities for every word from vocabulary

and transition probabilities of POS-tags. After processing all sentences in corpus,

the results will contain all possibilities of tag a word could be, for example, emission

probabilities of word like:

Tag Frequency

IN 84839

VB 10000

JJ 42322

VBP 10322

...

EX 1

RBR 1

Table 2: Emission probabilities of like

And transition probabilities of the POS-tag RB (adverb) could look like this:

Tag Frequency

JJ 106766

NNP 10035

VBZ 28452

VBP 25094

... ...

SYM 9

Table 3: Transition probabilities of RB

27

Actually, NLTK could not tell third-person pronouns from first-person nouns, for

example, “I” would be categorized as “PRP” in the sentence “I want to have a drink”

and “he” would also be categorized as “PRP” in the sentence “He wants to have a

drink”. Therefore, we created a new label “PRPZ” manually which annotates “he” or

“she” when they appear as third-person nouns in the sentence.

3.8 Model and Data storage

3.8.1 Motivation

The n-gram model, Q-gram index, and other data should be accessible for the keyboard

when it runs, so we should think about an effective way to store data. The first idea is

that we store those data as binary objects into several .txt files. When the keyboard

is called, it can read those .txt files and load binary objects into the memory and

use them directly. Then we will not have to read the file again and again after the

first load. Because all data has been stored in the memory, then we could access it

anytime. However, the disadvantage is difficult to be ignored: it takes a too long

time to load all data at once and the time is highly relevant with the size of files.

That means one needs to wait for a “long” time before the keyboard is ready to use.

That works if people use the keyboard only to make a test or evaluation since the

waiting time does not play a big role here.

However, if we use it as a system keyboard and it should appear on the screen quickly

whenever we call it. No matter where we store the models and other data and no

matter how we visit those files, it takes always very long to read and load them once.

But is it necessary to load all data at once, especially when we still have not inputted

anything? For example, our initial input is “Have ”, and the keyboard just needs to

know which words would come after “Have” at high frequency. That is the only piece

of data we need. Now the new logic is to load data that we need at the moment.

28

Reading and loading data will be carried out with every keystroke but the loading

time is much shorter.

3.8.2 Database

To achieve this goal, we store the model and other data in a database. A single query

will be carried out only when we need pieces of information in a table. Since a single

query in SQLite could take 20 to 500 ms, we should create a proper structure in a

database to store data so that the number of queries could be minimized.

Our data consists of 4 parts. emission probabilities of vocabulary, transition probabili-

ties between two POS-tags, Q-grams of vocabulary, and n-gram models. As explained

above, a response time feels interactive until around 200 ms. Therefore, we ought to

execute as few queries as possible and every query should fetch as much information

as possible.

Figure 8: Q-gran Indices

29

Given a string s and delta as the threshold of PED, we want to firstly find out all

candidates who deserve to be compared in the next step. That means we need to

count the number of common Q-grams between string s and every word by one query,

because it takes too much time to execute a separate query for every word. We

will design the table as shown in Figure 8: we have three attributes for every tuple,

namely, QGRAM, ENTITY, and NUM. Every tuple represents that which Q-gram

appears in which word and at which frequency. In this way, we could get candidates

which fulfill the requirement through one query command:

SELECT count(*), ENTITY from IDX WHERE QGRAM = qgram1

or QGRAM = qgram2 or QGRAM = qgramn)

group by ENTITY having count(*) > threshold

After we find all candidates which fulfill the requirement for PED, we need to calculate

the probability of every candidate based on the n-gram model. To reduce the number

of queries, we could add more sequences with common words to a row as shown in

Figure 9. In addition, we stored corresponding frequencies after every n-gram so that

we could directly use them to make a calculation.

Figure 9: N-gram models

30

Figure 10: Emission probabilities

The structure for transition probabilities and emission probabilities is relatively simple.

To simplify the calculation and avoid unnecessary POS-tags, every word only keeps

three tags with the highest probabilities. Because of the flexibility of language, a

word could sometimes be used in a very strange way, and such extreme cases should

be excluded. Hence, only 3 tags of a word would be kept and it also follows the

grammar rules in daily dialogue. Transition probabilities of POS-tags will be stored

in the form of a string. The time for parsing could be ignored since NLTK only

supports 45 tags.

31

Figure 11: Transition probabilities

32

4 Keyboard

In this section, we will talk about how our implemented keyboard on an Android

device works.

4.1 Implementation and Usage

Implementation of the keyboard is based on the framework of Input Method Editor

(IME) supplied by Android, which enables users to input text. After extending the

framework, we could design a customized keyboard for users.

The visual components consist of two parts: input view and candidates view. In the

input view, users could input by pressing or sliding keys, and the candidates view

will show us options to finish our input quickly.

After the system keyboard is installed successfully, users need to choose the keyboard

in the “settings” and set the keyboard as the default IME, since Android only permits

one IME which runs in the system. The system keyboard could be applied in any field

of input, such as in the browser, notebook, message, and so on. As explained before,

our keyboard reads data only on demand. When the keyboard is called firstly, it will

jump out from the bottom of the screen without observable delay. The keyboard also

supports the input of special symbols and mathematical symbols.

33

Figure 12: Usage of keyboard on Google search

4.2 Completion, correction and prediction

The whole process will run as shown in Figure 13, when any functionality of completion,

prediction, and correction is involved:

• In the state represented by the red circle, the keyboard accepts the user’s input

or a chosen candidate by the user.

• Program splits the input by punctuation and transfers tokenized parts into the

next two states.

34

• Through the golden rhombus the last part will be used to decide whether the

user expects a completion (correction) or prediction.

• In the light orange shadow program computes PED, n-gram probability, and

POS-Tagging probability. In this phase, the keyboard needs to interact with

the database to load and read data.

• After ranking candidates we will return 3 candidates with the highest probabili-

ties

• We come back to the state represented by the red circle and the user chooses

candidate or continue inputting

Figure 13: Keyboard interacts with users

35

4.3 Usage of RAM

RAM is short for Random Access Memory and it could exchange data with the

CPU directly at a high speed. As a limited and expensive resource, RAM should

be carefully and reasonably used. In a mobile device, RAM becomes more precious

because of the physical limit. Most modern mobile devices have at least 2 GB of RAM

which makes developers deal with usage of RAM carefully [19]. Since a keyboard

will be mostly called and used in another app, the keyboard must not take up too

much RAM, otherwise, it will cause an interrupt of the main app or the keyboard

and bring users into trouble.

Figure 14: Usage of RAM of implemented keyboard

Our implemented keyboard has achieved the goal that it always takes up a suitable

amount of memory. After installing the keyboard on an Android mobile device, we

could choose this keyboard as the default IME (Input Method Editor). After this

service starts, 33 megabytes of RAM will be allocated for the running service until

the 37th second in Figure 14. Then, we call the keyboard in the input field of an

app and more RAM will be allocated for the keyboard and now it takes up about

50 megabytes. From the 50th second, we try to enter letters, space, and choose

candidates and we could see the occupied RAM varies always between 50 megabytes

and 60 megabytes. Because of the event of garbage collection, the unused RAM

36

will be released back into the heap (see the icons at the bottom) [20]. Since the

modern smartphone has at least 2 gigabytes of RAM, we think the usage of RAM is

acceptable and reasonable.

37

5 Evaluation

In this part, we evaluate different aspects of our keyboard. We will test its performance

in completion and correction. And then we will show by experiments that how factors

such as POS tag, probabilities’ weights could influence the performance and if they

are useful to build the keyboard.

5.1 Evaluation Method

Data for the evaluation consists of two parts: 5% of the whole corpus and subset

of emails generated by Enron’s employees [21]. Even the corpus was retrieved from

webs under many different themes, its content sometimes does not look like a daily

dialogue. Hence, the usage of emails as a test set makes much sense, since emails are

more similar to what we use a keyboard on a mobile device to input. The evaluation

criterion is the number of saved keystrokes (percentage) by using the keyboard. For

the calculation of the number of saved keystrokes, we assume that one needs to type

every letter in a sentence by pressing keys without the functionalities of a keyboard.

For example:

sentence: Let’s have a drink.

length(including space): 19

38

We assume that one needs 19 keystrokes to finish the input without functionalities of a

keyboard. With the functionalities of the keyboard, the number of keystrokes needed

will be reduced to 10. In this case, there are two types of keystrokes that we will

count into the sum of strokes needed. The first one is to press a key that represents

any character, punctuation, or space. The second one is to choose a candidate which

has been shown in the candidates’ list on the top of the keyboard. So the percentage

of saved keystrokes will be:

19− 10

19
≈ 47.3684%

The number of keystrokes used to change capital mode or to find symbols will not

be counted into the total number of strokes, since this paper will only focus on the

program solution but not the layout design.

At first, we will determine the weights that are assigned to different n-gram probabil-

ities. Through experiments and adjustments, we will apply different combinations of

weights to achieve the most optimal performance. The first combination of weights

as initial values for unigram, bigram and trigram is as follows [22]:

λ1 = 0.1 λ2 = 0.3 λ3 = 0.6

After determining values of λ1, λ2 and λ3, we assign different values to λ4 for the

weight of quadrigrams and then to λ5 for the weight of quinquegrams. Then we could

find out the best combination.

Secondly, we want to test if POS-Tagging could help improve the performance of

our keyboard. On the set of 5% of the corpus, we will separately execute our test

program with POS-tagging probability and without POS-tagging probability. That

effect of grammar rules will be shown by the difference between the two experimental

results.

39

And then with different penalty values based on PED, we aim to find which value

would maximize the improvement by penalty weight.

In the next, we want to verify if a n-model with longer sequences will work better,

for example, with trigrams or quadrigrams. In the meanwhile, we also aim to find if

the 5-gram could bring more improvements.

After that, for the test of correction rate, we will replace the first letter of every word

with a wrong one. It is assumed that if we find one spelling mistake in the word, we

need two more keystrokes to correct it (delete and insert). As a consequence, the

total number of keystrokes to input a wrong word should be two more than that

of a non-error intend word. We will choose 100 sentences from the set of Enron

emails and input them separately with our implemented keyboard and the newest

version of Gboard which was published in May 2021. And then we can compare the

performance of our keyboard with that of Gboard.

At last, we make tests for the time which the keyboard spends in making queries for

candidates from the database, calculating the PED of candidates, and selecting the

best candidates by probabilities. In addition, we want to know how long on average

it takes from keystroke is pressed to candidates will be shown.

5.2 Evaluation Results

We first test the performance of the keyboard with different combinations of n-gram

weights as shown in Table 4. The initial combination, namely λ1 = 0.1, λ2 = 0.3 and

λ3 = 0.6 works better than without any weights (λ1 = 1.0, λ2 = 1.0 and λ3 = 1.0).

When we test different combinations of weights, we will only change the value of

one weight in an experiment and keep the other two weights unchanged. As we

constantly increase the weight to trigram probability λ3, the performance has been

being improved until λ3 becomes 3.0. Then we also try to increase the weight to

40

λ1 λ2 λ3 Saved keystrokes(%)

1.0 1.0 1.0 39.7598%

0.1 0.3 0.6 39.8926%

0.1 0.3 1.0 39.9020%

0.1 0.3 2.0 39.9092%

0.1 0.3 3.0 39.9095%

0.1 0.3 4.0 39.9091%

0.1 0.5 3.0 39.9354%

0.1 0.8 3.0 39.9537%

0.3 1.0 3.0 39.9588%

0.3 1.5 3.0 39.9589%

0.3 1.8 3.0 39.9596%

0.3 2.0 3.0 39.9597%

0.3 2.5 3.0 39.9603%

0.3 3.0 3.0 39.9563%

0.5 2.5 3.0 39.9159%

0.01 2.5 3.0 39.9668%

0.005 2.5 3.0 39.9670%

0.001 2.5 3.0 39.9667%

Table 4: Test for n-gram weights

bigram probability λ2 and the performance comes to the top when λ2 = 2.5. After

that, we apply the same method to tune λ1. However, increasing the value of λ1

brings a negative effect on the performance. Therefore, we reduce the value of λ1

until 0.005 since there is no more improvement for performance in the trend. Hence,

the combination of values of λ1, λ2 and λ3 we choose is as follows:

λ1 = 0.005, λ2 = 2.5, λ3 = 3.0

Besides, we also want to evaluate the performance of the keyboard with attendance of

quadrigram and quinquegram. Therefore, based on fixed values of λ1, λ2 and λ3 that

41

we have explored, we intend to find out the most suitable weights for quadrigram and

quinquegram, namely λ4 and λ5. We increased the weight of λ4 at first and find the

λ1 λ2 λ3 λ4 Saved keystrokes(%)

0.005 2.5 3.0 3.0 39.9772%

... 4.0 39.9776%

... 5.0 39.9778%

... 6.0 39.9778%

Table 5: Test for quadrigram weights

optimal value should be 5.0. To find if a small value could bring more improvements,

we set the value as 3.0 (same as the value of λ3) and it proves that the performance

gets even worse in this way.

λ1 λ2 λ3 λ4 λ5 Saved keystrokes(%)

0.005 2.5 3.0 5.0 4.0 39.9790%

... 6.0 39.9790%

... 7.0 39.9790%

Table 6: Test for quinquegram weights

Applying the same method to determine the value of λ5, we found that the performance

does not change with the different values of λ5 as shown in Table 6. At last, we

choose 6.0 as the value of λ5.

We have before attached much importance to the role of the trigram model since

it considers more contexts. However, the results of the experiment in Table 7 show

that the role of trigram has been overestimated. And quadrigram (4-gram) and

quinquegram(5-gram) could only bring tiny improvements. An important reason is

when the trigram probability of candidate 1 is higher than that of candidate 2, mostly

the bigram probability of candidate 1 is also higher than that of candidate 2. For

example:

42

Gram Saved keystrokes(%)

bigram 39.2942%

trigram 39.9670%

quadrigram 39.9778%

quinquegram 39.9790%

Table 7: Test for different grams

Finished part of sentence: Maybe he is one of th

Candidate 1: them

bigram probability : 0.0069

trigram probability : 0.0318

Candidate 2: these

bigram probability : 0.0091

trigram probability : 0.0360

No matter we take the sum of two probabilities or use the trigram probability directly

as result, the trigram probability cannot influence the rank of two candidates in this

case. Therefore, trigrams could help reduce the number of keystrokes only if trigram

probability could greatly compensate for the disadvantage of the bigram probability

of a candidate. And the results show those cases only account for a small part. The

insignificance of quadrigram(4-gram) and quinquegram(5-gram) could also be owed

to the same reason. In addition, longer grams can very rarely match a finished part

of a sentence, especially for quinquegram.

In the next, we look into the results of the evaluation for the role of POS-tags. The

improvement by POS-tags is observable but also limited like in Table 8. The reason

43

Mode Saved keystrokes(%)

Without POS-Tags 39.3114%

With POS-Tags 39.9790%

+ 0.6676%

Table 8: Test for the POS-tagging

is that our n-gram model has also done the same work as POS-Tagging. We have

previously pointed out that the absence of some combination is the biggest motivation

to add the role of POS-tagging. Therefore, if an n-gram appears repeatedly at high

frequency in the corpus, it has implied such a combination follows a grammar rule.

Once a combination exists, the function of POS-tagging will not stand out.

Value Saved keystrokes(%)

0.0 25.3724%

0.0005 33.6434%

0.005 37.8342%

0.05 39.7523%

0.5 39.9719%

1.0 39.9790%

Table 9: Test for the penalty weight

We could see from Table 9 that at the very beginning the performance could be

improved by the increased value of penalty value strongly. After the penalty value

reaches 0.5, the performance has been very stable and will not change a lot with the

penalty value. Therefore, ranking the candidates by the penalty value is reasonable

and necessary to improve the performance of our keyboard. So 1.0 will be set to the

value of the penalty weight.

Then we selected 100 sentences from Enron emails to evaluate the functionality of

correction. Enron emails are the ones of very few collections of “real” emails that are

public. Here we also make a comparison between Gboard and our keyboard (denoted

44

as Nboard).

Keyboard No mistake With mistakes

Gboard 48.8138% 19.8448%

Nboard 45.6404% 21.5652%

Table 10: Test for the correction

We could see that Gboard has performed very well in reducing the number of strokes

since it has saved almost half of the keystrokes needed. And Nboard has also achieved

a similar level with Gboard which is about 3.2% less than that of Gboard. Gboard

was trained by a modern neural model and is being trained constantly by millions

of users by the framework of Federated Learning [10]. The decentralized learning

method makes it possible to train the language model of Gboard based on the user’s

input and language habits.

Nboard wins Gboard slightly in correcting the wrong words. Since we added spelling

mistakes by replacing the first letter of every word with “a” or “b” (“A” or “B”) and

deactivated the functionality of prediction, the correcting work became very hard for

two keyboards. Even though this design could not completely simulate the inputting

habits of users, the result still shows the performance of our keyboard is acceptable

in correcting mistakes, compared with the performance of Gboard on the identical

experimental method.

No mistake With mistakes

40.9789% 20.7947%

Table 11: Test with 2400 sentences from Enron emails

After that, we choose a larger set from Enron emails to test the adaptability of

our keyboard. The test set from corpus was retrieved randomly from websites, so

the syntax and grammar could be more complicated than that of normal emails.

Therefore, the result shows the keyboard performs better on the test set of emails

45

than on the 5% of the corpus. Nboard could improve user experience better when it

processes such dialogue in life and work.

User experience will also be affected by the running speed of the app. We tested the

total and average running speed of different stages when our keyboard processes a

user’s input (100 keystrokes) and reacts with the corresponding calculation:

Type Duration Average

From keystrokes to candidates 6947 ms 69.47 ms

PED 580 ms 5.80 ms

Query 2047 ms 20.47 ms

Generating candidates by model 6370 ms 63.70 ms

Table 12: Test for the running speed at different stages

As shown in Table 12, after a user presses the key, he or she could expect to see the

three best candidates after 69.47 ms on average. Every time when a user presses a key,

the keyboard will judge which calculation should be executed. If the last character

is not a space, then the keyboard will look for all candidates by calculating PED

between the last part of the input and possible words. This process takes 5.80 ms pro

keystroke as shown in the second line in Table 12. During the calculation of PED,

the keyboard needs to load Q-grams of candidates from the database. In addition,

queries will also be made by the keyboard when it needs to read the frequency of a

word or POS-tags of candidates. All those queries take about 20.47 ms pro keystroke.

Then we use a cursor as an interface to access the result set from queries, namely, to

read every row in the result. After fetching necessary data, the keyboard calculates

n-gram probabilities and POS-tagging probabilities of candidates. After integrating

different factors and weights, our keyboard will generate the three best candidates

for the user. The model generates the best candidates by reading data and executing

calculations and this process takes 63.70 ms on average. Hence, a person could use

our keyboard to save much work in inputting and also without time issues.

46

6 Current Problem and Future work

6.1 Current problems

POS-tags could help improve the performance of our keyboard in some situations and

it depends mostly if we could determine extensive and precise linguistic features for

vocabulary. We used NLTK to make the grammatical annotation for every word in

the corpus and this tool has saved us a lot of time. However, NLTK could not always

make a correct annotation and may cause a problem. For example, in our corpus

there is such a sentence: “I have had Tado now for around 2 months, everything

works perfectly apart from Auto app on android phone.” Obviously, “everything” is a

noun here, and “works” plays a role of a verb in third-person form. Unexpectedly,

NLTK has taken “works” as a form of a plural noun. In the process of annotation by

NLTK, this mistake appears so many times that the frequency of the combination of

singular noun + plural noun is higher than that of the combination of singular noun

+ verb in third-person form. This causes a problem directly. When a sequence does

not appear in the corpus, for instance, “a dog drinks” is never to find in the corpus

and the keyboard should complete the next word based on a part of the sentence “a

dog dri” with grammar rules. But the keyboard can not show the “drinks”, because

the probability of noun + verb in third-person form is apparently lower than other

combinations.

In addition, NLTK can only annotate part of a sentence from a limited set of tags.

As mentioned in section 3, the subject of a sentence could only be annotated as PRP

47

no matter it is a third-person form or first-person form. We have applied an interim

solution so that “he” or “she” as the subject of a sentence could be annotated as

“PRPZ”. There are still other similar unknown and known cases that could reduce

the accuracy of the probability of POS tags.

It is assumed that a user always knows what he or she needs to input. That means

when a user is trying to input a complete sentence, every part of the sentence has

a close connection with each other. For example, given a sentence “he is going to a

bank in downtown now because he needs money”, the existence of “now” could be due

to the status of the person’s action “going”, and because “bank in downtown” refers

to a financial institution but not a geographical location, “money” should be placed

after “needs” but not “mussel”. Hence, no matter which method we are applying,

the context we take care of is still not enough to ensure a very precise prediction or

completion.

6.2 Future work

In the light of limited time and computational resources, this paper was not able to

pay enough attention to the referred problems above. In the future, there should be

more work to be done to extend the language model. Especially when completing or

predicting the next word given the context, the keyboard should be trained to pay

more attention to every part of inputted part of the sentence. The model Transformer

developed by Google could be a potential solution since the “self-attention” mechanism

just fulfill the requirements. Besides, people could customize existing NLP tools

like NLTK on-demand and improve the performance of the tool so that it could be

adapted to a specific training task. With further development of NLP technology,

there will be more user-friendly and efficient keyboards coming into the view.

48

7 Conclusion

In this paper, we described how classical n-gram models and other relevant theories

could be applied to complete, correct, and predict the next word. Based on these

theories, we have implemented a system keyboard that could be used on an Android

device. Then we evaluated different aspects of the keyboard, such as assignments of

penalty weights, the performance of different n-gram models in saving keystrokes, and

so on. In addition, we used Google Board (Gboard) to execute some same tasks as

an important comparison, since it was trained by a modern neural network. Through

analysis of experiment results and comparison with Gboard, we demonstrate that the

application of classical n-gram models could still have a satisfying performance in

completing, correcting, and predicting the next word and the implemented keyboard

could bring users a good experience.

49

Bibliography

[1] S. Jain and S. Bhattacharya, “Virtual keyboard layout optimization,” in 2010

IEEE Students Technology Symposium (TechSym), pp. 312–317, 2010.

[2] S. Ghosh and P. O. Kristensson, “Neural networks for text correction and

completion in keyboard decoding,” arXiv preprint arXiv:1709.06429, 2017.

[3] W. B. Cavnar, J. M. Trenkle, et al., “N-gram-based text categorization,” in

Proceedings of SDAIR-94, 3rd annual symposium on document analysis and

information retrieval, vol. 161175, Citeseer, 1994.

[4] J. B. Marino, R. E. Banchs, J. M. Crego, A. de Gispert, P. Lambert, J. A. Fonol-

losa, and M. R. Costa-jussà, “N-gram-based machine translation,” Computational

linguistics, vol. 32, no. 4, pp. 527–549, 2006.

[5] L. Bahl, P. Brown, P. de Souza, and R. Mercer, “A tree-based statistical language

model for natural language speech recognition,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 37, no. 7, pp. 1001–1008, 1989.

[6] S. Mani, S. V. Gothe, S. Ghosh, A. K. Mishra, P. Kulshreshtha, M. Bhargavi,

and M. Kumaran, “Real-time optimized n-gram for mobile devices,” in 2019

IEEE 13th International Conference on Semantic Computing (ICSC), pp. 87–92,

2019.

50

[7] S. Bickel, P. Haider, and T. Scheffer, “Predicting sentences using n-gram lan-

guage models,” in Proceedings of Human Language Technology Conference and

Conference on Empirical Methods in Natural Language Processing, pp. 193–200,

2005.

[8] K. W. Church and W. A. Gale, “Probability scoring for spelling correction,”

Statistics and Computing, vol. 1, no. 2, pp. 93–103, 1991.

[9] G. Kondrak, “N-gram similarity and distance,” in International symposium on

string processing and information retrieval, pp. 115–126, Springer, 2005.

[10] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein,

H. Eichner, C. Kiddon, and R. Ramage, “Federated learning for mobile keyboard

prediction (2018),” arXiv preprint arXiv:1811.03604, 1811.

[11] V. I. Levenshtein et al., “Binary codes capable of correcting deletions, insertions,

and reversals,” in Soviet physics doklady, vol. 10, pp. 707–710, Soviet Union,

1966.

[12] B. Steven and T. Liling, “Natural Language Toolkit.” https://www.nltk.org/.

[Online; accessed 26-October-2021].

[13] H. Antti, “Hidden States.” https://www.cs.helsinki.fi/u/ahonkela/dippa/

node34.html. [Online; accessed 26-October-2021].

[14] S. Edward, “SQLite vs MySQL – What’s the Difference.” https://www.

hostinger.com/tutorials/sqlite-vs-mysql-whats-the-difference/. [On-

line; accessed 26-October-2021].

[15] J.-H. Lee, M. Kim, and H.-C. Kwon, “Deep learning-based context-sensitive

spelling typing error correction,” IEEE Access, vol. 8, pp. 152565–152578, 2020.

51

https://www.nltk.org/
https://www.cs.helsinki.fi/u/ahonkela/dippa/node34.html
https://www.cs.helsinki.fi/u/ahonkela/dippa/node34.html
https://www.hostinger.com/tutorials/sqlite-vs-mysql-whats-the-difference/
https://www.hostinger.com/tutorials/sqlite-vs-mysql-whats-the-difference/

[16] Wikipedia, “Viterbi algorithm — Wikipedia, the free encyclopedia.”

http://en.wikipedia.org/w/index.php?title=Viterbi%20algorithm&

oldid=1049907873, 2021. [Online; accessed 25-October-2021].

[17] E. Price, “MIT word llist.” http://www.mit.edu/~ecprice/wordlist.10000.

[Online; accessed 26-October-2021].

[18] Corpusdata, “iWeb sample.” https://www.corpusdata.org/iweb_samples.asp.

[Online; accessed 26-October-2021].

[19] E. Collins, “How Much RAM Does a Smartphone Need?.” https://www.

makeuseof.com/how-much-ram-smartphone-need/. [Online; accessed 26-

October-2021].

[20] Google, “Inspect your app’s memory usage with Memory Profiler.” https:

//developer.android.com/studio/profile/memory-profiler. [Online; ac-

cessed 26-October-2021].

[21] L. Kaelbling and M. Gervasio, “Enron Email Dataset.” https://www.cs.cmu.

edu/~enron/. [Online; accessed 26-October-2021].

[22] J. Coleman, “Trigram model calculations .” http://www.phon.ox.ac.uk/

jcoleman/old_SLP/Lecture_6/trigram-modelling.html. [Online; accessed

26-October-2021].

52

http://en.wikipedia.org/w/index.php?title=Viterbi%20algorithm&oldid=1049907873
http://en.wikipedia.org/w/index.php?title=Viterbi%20algorithm&oldid=1049907873
http://www.mit.edu/~ecprice/wordlist.10000
https://www.corpusdata.org/iweb_samples.asp
https://www.makeuseof.com/how-much-ram-smartphone-need/
https://www.makeuseof.com/how-much-ram-smartphone-need/
https://developer.android.com/studio/profile/memory-profiler
https://developer.android.com/studio/profile/memory-profiler
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
http://www.phon.ox.ac.uk/jcoleman/old_SLP/Lecture_6/trigram-modelling.html
http://www.phon.ox.ac.uk/jcoleman/old_SLP/Lecture_6/trigram-modelling.html

	1 Introduction
	2 Theoretical Background
	2.1 Edit Distance
	2.1.1 Levenshtein Distance
	2.1.2 Prefix Edit Distance

	2.2 Q-gram Index
	2.3 N-gram Model
	2.4 Grammar Process
	2.4.1 POS-Tagging
	2.4.2 Hidden Markov States
	2.4.3 Viterbi Algorithm

	2.5 SQLite

	3 Approach
	3.1 Find Candidates
	3.1.1 Similarity calculate
	3.1.2 Accelerate calculation

	3.2 N-gram probability
	3.3 POS-Tag probability
	3.4 Integration
	3.5 Vocabulary
	3.6 Corpus
	3.7 Training and data processing
	3.8 Model and Data storage
	3.8.1 Motivation
	3.8.2 Database

	4 Keyboard
	4.1 Implementation and Usage
	4.2 Completion, correction and prediction
	4.3 Usage of RAM

	5 Evaluation
	5.1 Evaluation Method
	5.2 Evaluation Results

	6 Current Problem and Future work
	6.1 Current problems
	6.2 Future work

	7 Conclusion
	Bibliography

