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Abstract

We present osmelevation, a tool to annotate OpenStreetMap data with elevation data
obtained from the NASA Digital Elevation Model (NASADEM). By adding a tag
ele=* containing the elevation to each node, we enrich the complete OpenStreetMap
data with elevation data.

NASADEM provides near-global coverage and a horizontal resolution of 1 arc-second,
which is approximately 30 meters. This results in 376GB of uncompressed elevation
data. In combination with the ever-growing OpenStreetMap data, our tool manages
the large amount of data by splitting both the OpenStreetMap and elevation data
into smaller data pieces and processing them one by one.

Furthermore, we provide a second tool correctosmelevation. Based on already with
elevation data annotated OpenStreetMap data from our first tool, we perform simple
corrections on the elevation data. As a basis, we look at OpenStreetMap linear
route map features like roads or rivers. Even with the high horizontal resolution
of approximately 30 meters of the NASA Digital Elevation Model, obvious errors
can be observed. For example, roads suddenly dropping by five meters, or rivers
flowing uphill. Our tool correctosmelevation corrects those errors and updates the
corresponding ele=* tags with the corrected elevation.
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Zusammenfassung

Wir präsentieren osmelevation, ein Werkzeug, um OpenStreetMap Daten mit externen
Höhendaten von dem NASA Digital Elevation Model anzureichern. Wir fügen zu
jedem Node einen Tag ele=* hinzu.

NASADEM stellt eine nahezu globale Abdeckung bereit und verfügt über eine hori-
zontale Auflösung von ungefähr 30 Metern. Das resultiert in 376GB unkomprimierten
Daten. In Kombination mit den immer weiter wachsenden OpenStreetMap Daten
verwaltet unser Werkzeug diese enormen Datenmengen, indem sowohl die Höhen-
daten, als auch die OpenStreetMap Daten aufgeteilt werden. Die aufgeteilten Daten
werden nacheinander abgearbeitet.

Außerdem präsentieren wir ein zweites Werkzeug correctosmelevation. Basierend auf
bereits mit Höhendaten angereicherten OpenStreetMap Daten führen wir einfache
Korrekturen an den Höhendaten aus. Als Basis betrachten wir lineare OpenStreetMap
Kartenmerkmale, wie zum Beispiel Straßen oder Flüsse. Obwohl NASADEM eine
hohe horizontale Auflösung von ungefähr 30 Metern aufweist, können offensichtliche
Fehler erkannt werden. Zum Beispiel können Straßen plötzlich um 5 Meter fallen,
oder Flüsse können bergauf fließen. Unser Werkzeug correctosmelevation korrigiert
solche Fehler und aktualisiert die dazugehörigen ele=* Tags.
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1 Introduction

OpenStreetMap stores, among other data, many different map features, e.g. roads,
buildings or rivers. To represent these map features, a topological data structure of
nodes, ways and relations is used with tags attached to each. Nodes store at least an
id and the location of a single point in space by its longitude and latitude. Nodes can
be expanded by the third dimension by adding a tag ele=* containing the elevation
above sea level in meters of the location. However, this tag is rarely used.

Publicly available elevation data vary in accuracy and coverage. The NASA Digital
Elevation Model (NASADEM) is based on the Shuttle Radar Topography Mission
conducted by NASA in 2000. The elevation data from NASADEM is distributed
in the NASADEM_HGT dataset. The elevation data from this dataset is among
the most accurate by offering a horizontal resolution of 1 arc-second, which is
approximately 30 meters and near-global coverage. This results in large amounts of
raw elevation data that are not directly usable in practical applications.

We present our tool osmelevation that adds the tag ele=* to all nodes in Open-
StreetMap containing the elevation of the node’s location. By using the nodes of
OpenStreetMap as the carriers, the elevation data directly gets propagated to the
map features they are apart of. This significantly reduces the size of the raw elevation
data from the NASADEM_HGT dataset while maintaining the essential data for
the map features.

On uneven terrain, the horizontal resolution of approximately 30 meters used by the
NASA Digital Elevation Model (NASADEM) is not sufficient to accurately represent
the elevation of narrow map features like roads or rivers. Sudden drops and spikes in
elevation by multiple meters can occur. Additionally, noise in NASADEM elevation
data can contribute to such errors.

Therefore, we present a second tool correctosmelevation that performs corrections on
already with elevation data annotated OpenStreetMap data. We apply a smoothing
algorithm to all map features that can be traveled by car, train, bike, foot, or ship.
Additionally, we correct other obvious errors found in roads passing through tunnels
or crossing bridges and make sure that rivers do not flow uphill.
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1.1 Problem

1.1.1 Elevation data in OpenStreetMap

OpenStreetMap proposes to use the tag ele=* [11] to denote the elevation above sea
level of a point or map feature. The elevation value should be measured in meters.
We can use the website taginfo [10] to inspect the usage of this tag. The result can

Type Number of objects Usage of total number of objects

All 7.653.471 0.09%
Node 2.254.791 1.20%
Way 5.259.155 0.63%
Relation 139.525 1.45%

Table 1: key:ele tag usage in OpenStreetMap objects. Data provided by
taginfo [8]. © OpenStreetMap contributors

be seen in Table 1. Clearly, the overall usage of 0.09% indicates that elevation data
in OpenStreetMap is very lacking. Stating the OpenStreetMap wiki [11], this is by
design:

OpenStreetMap does not try to be a general elevation database so you
should not tag elevation of nodes with no other tags and no specific
meaning that suggests an elevation value is significant information in
this case.

1.1.2 OpenStreetMap and elevation data size

We use the NASADEM_HGT1 dataset from the NASA Digital Elevation Model
(NASADEM) as the external source of elevation data. This dataset is available in the
public domain. NASADEM_HGT provides a horizontal resolution of 1 arc-second,
which is approximately 30 meters. With data being available from 180°W to 180°E
and from 56°S to 60°N, it provides near-global coverage.

The elevation data in the NASADEM_HGT dataset is distributed in tiles of size 1
degree longitude by 1 degree latitude. The elevation data of each tile is compressed

1https://lpdaac.usgs.gov/products/nasadem_hgtv001/
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into a single file and can be downloaded over the U.S. Government Computer
FTP-Server2.

For performance, it is essential that the uncompressed elevation data is stored in the
main-memory at the time of access. As seen in Table 2, with an uncompressed size
of 371GB, it is not feasible to just load all data into main-memory at once.

Number of files Total size compressed Total size uncompressed

14520 109GB 376GB

Table 2: NASADEM_HGT dataset size. The NASADEM_HGT dataset also
contains images and meta data files for each tile. These files are excluded
in this table as we do not need them. Additionally, the compressed files
containing the raw elevation data for each tile also contain other data
that we do not need. Hence, this data is not considered in the total
uncompressed size.

Number of nodes Number of ways Number of relations

7.468.758.706 832.784.309 9.611.640

Table 3: Total number of objects in the OpenStreetMap. © OpenStreetMap
contributors

When working with the complete OpenStreetMap data, two challenges arise. First,
OpenStreetMap stores large amounts of data. As shown in Table 3, there are already
over seven billion3 nodes included in OpenStreetMap. This leads directly to the
second challenge: The constant growth of OpenStreetMap data. Currently, about
two million nodes4 are added to OpenStreetMap everyday. That means our tools do
not only need to work today, but also need reserves to still work with hundreds of
millions of additional elements.

To cope with the main-memory constraints the large amounts of data introduce,
we split both the elevation and OpenStreetMap data into smaller pieces of data.
In our tools, we do not use any kind of disk storage as this would greatly reduce
performance.

2https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/
3https://www.openstreetmap.org/stats/data_stats.html
4https://osmstats.neis-one.org/?item=elements
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Figure 1: Uncorrected elevation profile of ascending road. Plot generated
from data of the OpenStreetMap ways 19794411, 30354354, 319722236,
143661523. The dots represent the nodes along the road. Our tool
osmelevation was used the to add the elevation data to OpenStreetMap.
© OpenStreetMap contributors

1.1.3 Errors in the elevation data

For linear map features like roads, railways or rivers, the horizontal resolution of
approximately 30 meters provided by the NASADEM_HGT elevation dataset can
lead to obvious errors. Especially on uneven terrain, errors can be observed due to
the data not being accurate enough. In Figure 1, we can see the elevation profile
graph of a strictly ascending road that runs on a side slope. The shown segment
has a length of 464 meters and gains 31 meters in elevation. The elevation profile
shows short term fluctuations that are not expected for a road that can be traveled
by car.

Furthermore, for specific map features, the correct elevation data is simply not
available. These include roads going through tunnels or crossing bridges. Since
the NASADEM_HGT dataset provides at least the elevation of the ground level,
tunnels or bridges get assigned the elevation of the mountain or valley they cross
respectively.

In Figure 2 the elevation profile of the Gotthard Road Tunnel5 is shown. Clearly,
this elevation data is completely wrong for a road that goes through a mountain.

5https://en.wikipedia.org/wiki/Gotthard_Road_Tunnel
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Figure 2: Uncorrected elevation profile of road going through a tunnel.
Plot generated from data of the OpenStreetMap ways 304476718, 4214708,
49124512, 431339440, 29736069. The dots represent the nodes along the
road. Our tool osmelevation was used the to add the elevation data to
OpenStreetMap. © OpenStreetMap contributors

The same occurs when roads cross steep valleys over bridges.

1.2 Contribution

Our tool osmelevation can be used to enrich OpenStreetMap data with external
elevation data obtained from the NASADEM_HGT dataset from the NASA Digital
Elevation Model. We do so by adding a tag ele=* to each node of OpenStreetMap.

We provide a second tool correctosmelevation that performs simple corrections based
on ele=* tags. We specifically look at linear route map features in OpenStreetMap
data. This includes all routes that can be traveled by car, train, bike, foot, or ship.
Our tool looks at the elevation profiles of these routes. Obvious errors like sudden
drops or spikes in elevation get corrected. As shown in Figure 3, we successfully
smooth short term fluctuations in the elevation data, visualized by the red graph.
Our tool ensures that rivers do not flow uphill. Additionally, the elevation profiles
of routes going through tunnels or crossing bridges get corrected. Nodes that are
affected by our corrections get their ele=* tag updated.

In Figure 4, the corrected elevation profile of our previous example of the Gotthard

5



Figure 3: Uncorrected and corrected elevation profile of ascending road.
Plot generated from data of the OpenStreetMap ways 19794411, 30354354,
319722236, 143661523. The dots represent the nodes along the road.
Our tool osmelevation was used the to add the elevation data to Open-
StreetMap. © OpenStreetMap contributors

Road Tunnel is shown in red. In Figure 18, we can see the uncorrected and corrected
elevation profile of the Kocher Viaduct6. The bridge crosses a deep valley. The node
seen in the middle of the graph takes the elevation of the valley in the uncorrected
profile. With our corrections, we adjust the elevation of the node to the road elevation
level in front of and after the bridge.

Both of our tools work with any size of OpenStreetMap data, ranging from small
regional extracts to the whole planet.

6https://en.wikipedia.org/wiki/Kocher_Viaduct
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Figure 4: Uncorrected and corrected elevation profile of road going
through a tunnel. Plot generated from data of the OpenStreetMap
ways 304476718, 4214708, 49124512, 431339440, 29736069. The dots
represent the nodes along the road. Our tool osmelevation was used the
to add the elevation data to OpenStreetMap. © OpenStreetMap contributors

Figure 5: Uncorrected and corrected elevation profile of road crossing a
bridge over a valley. Plot generated from data of the OpenStreetMap
ways 403909403, 320517373, 320517370, 24625636, 24625669. The dots
represent the nodes along the road. Our tool osmelevation was used the
to add the elevation data to OpenStreetMap. © OpenStreetMap contributors
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2 Related Work

Our tools osmelevation and correctosmelevation both use OpenStreetMap data and
external elevation data. In this chapter we look into already existing OpenStreetMap
tools that also make use of external elevation data.
Before looking into other tools, we give a short overview of external elevation
datasets.

2.1 Global digital elevation models

An important aspect of the usefulness of our tools is the quality of the external
elevation data. There are several digital elevation models (DEMs) freely available.
Coverage and accuracy of the DEMs are most important. Since OpenStreetMap
stores map data for the entire planet, global or near-global coverage of the DEM is a
necessary requirement. As for accuracy, a horizontal resolution of 1 arc-second, or 30
meters is the state of the art of freely available DEMs.
As already mentioned, we use the NASADEM digital elevation model (DEM). It
provides near global coverage and a horizontal resolution of 1 arc-second, which is
approximately 30 meters.

In the following, we will shortly present the three other freely available DEMs with
the same or better characteristics as NASADEM and give a short insight why we
did not choose them. For accuracy comparisons, we use the 2020 article "Vertical
Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30,
MERIT, TanDEM-X, SRTM, and NASADEM)" [2].

2.1.1 Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER)

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is
an optical instrument operating onboard the Terra spacecraft1. Terra was launched

1https://www.nasa.gov/mission_pages/terra/spacecraft/index.html

9

https://www.nasa.gov/mission_pages/terra/spacecraft/index.html


in 1999 by the National Aeronautics and Space Administration (NASA). It collects
data since 2000. The ASTER instrument acquires images in three bands which allow
the creation of digital elevation models.
In 2019, the ASTER Global Digital Elevation Model (GDEM) Version 3 was publicly
released. It provides data between 83° north latitude and 83° south latitude with an
horizontal resolution of 1 arc-second2.
Also, with ASTER GDEM version 3 redistribution requirements of the data were
removed [1].
We did not choose this digital elevation model (DEM) because it delivers the least
accuracy out of the DEMs with 1 arc-second horizontal resolution [2].

2.1.2 Shuttle Radar Topography Mission (SRTM)

The Shuttle Radar Topography Mission (SRTM) was conducted in 2000 as a cooper-
ative project between the National Aeronautics and Space Administration (NASA)
and the National Geospatial-Intelligence Agency (NGA), as well as participation
from the German and Italian space agencies. On an 11-day flight of Space Shuttle
Endeavour, onboard dual radar antennas acquired elevation data reaching between
60° north latitude and 56° south latitude. The data provided an horizontal resolution
of 1 arc-second [4]. Due to limitations of radar technology, voids are present in the
data, especially over water bodies.
In 2015, the latest version of the SRTM digital elevation model was released by
NASA, namely SRTM NASA Version 3 [5]. Version 3 uses data from the previous
version, SRTM Version 2. Additionally, Version 3 fills voids existing in the previous
version by incorporating data mostly from ASTER Global Digital Elevation Model
Version 2 (GDEM 002)3.
To conclude, the SRTM Version 3 digital elevation model provides near-global cover-
age and a horizontal resolution of a 1 arc-second. As SRTM data is distributed by
NASA’s Land Processes Distributed Active Archive Center (LP DAAC), it is in the
public domain [1].
SRTM Version 3 was overall suitable for our tools, but delivers slightly worse accuracy
than NASADEM [2].

2.1.3 ALOS Global Digital Surface Model

The Advanced Land Observing Satellite (ALOS) was a Japanese Earth-imaging
satellite that operated from 2006 to 2011. The optical PRISM instrument was used

2https://lpdaac.usgs.gov/products/astgtmv003/
3https://lpdaac.usgs.gov/products/astgtmv002/
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for digital elevation mapping4.
From the data obtained with PRISM, the commercial "ALOS World 3D" (AW3D)
digital elevation model was created. It offers global coverage and an horizontal
resolution of 5 meters [7].
Later, the Japan Aerospace Exploration Agency (JAXA) released the "ALOS World
3D-30m" (AW3D30) digital elevation model. It is based on AW3D data and is publicly
available. AW3D30 offers the same global coverage and a horizontal resolution of 30
meters5.
Contrary to the SRTM and ASTER digital elevation models, JAXA must be credited
as the original distributor when using AW3D30 data6.
Out of NASADEM, ASTER GDEM Version 3 and SRTM Version 3, AW3D30
provides the best accuracy [2]. But since AW3D30 is not in the Public Domain, it
can not be used to update OpenStreetMap data. This makes AW3D30 unsuitable
for our tools purposes as it conflicts with the OpenStreetMap license.

2.2 Existing OpenStreetMap tools using external elevation
data

2.2.1 Relief/Contour maps

The vast majority of existing OpenStreetMap tools that use external elevation data
are tools that produce relief/contour maps7. They do so by adding new ways and
their corresponding nodes to OpenStreetMap. These new ways represent contour
lines which each have a constant elevation. Mostly hiking maps make use of these
contours, and there exist several map and tile servers that can visualize the contours8.
This approach adds new elements to the OpenStreetMap which contain the elevation
data while our tools osmelevation and correctosmelevation edits/updates existing
OpenStreetMap objects.

2.2.2 Srtm to Nodes

The tool Srtm to Nodes9 provides, according to the README, the same functionality
as our tool osmelevation by adding a tag with the elevation data to all nodes. It uses

4https://www.eorc.jaxa.jp/ALOS/en/alos/a1_about_e.htm
5https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm
6https://earth.jaxa.jp/en/data/policy/
7https://wiki.openstreetmap.org/wiki/Relief_maps
8https://wiki.openstreetmap.org/wiki/Hiking_Maps
9https://github.com/locked-fg/osmosis-srtm-plugin
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the SRTM digital elevation model.

Srtm to Nodes is an Osmosis10 extension. Osmosis is a command line java application
for processing OpenStreetMap data. Despite our best efforts, we could not get Srtm
to Nodes to run on our machine. The tool was last maintained in November 2017.
What we can say, Srtm to Nodes is, according to the README only compatible with
the SRTMGL3 digital elevation model. SRTMGL3 provides a horizontal resolution of
3 arc-seconds, which is approximately 90 meters. The data was obtained by averaging
the higher resolution data from SRTM Version 3. Since our tool uses NASADEM
data with a horizontal resolution of 30 meters, we assume there is a noticeable
difference in accuracy in favor of our tool. Also, Srtm to Nodes does not perform
any corrections on the elevation data as our second tool correctosmelevation.

10https://wiki.openstreetmap.org/wiki/Osmosis
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3 Background

In this chapter we introduce OpenStreetMap regarding the aspects we use in our
tools. We introduce the NASADEM Digital Elevation Model (DEM) and explain
how elevation data can be retrieved from this DEM. Furthermore, we introduce
the inverse distance weighting interpolation algorithm and a simple moving average
algorithm.

3.1 OpenStreetMap

OpenStreetMap stores huge amounts of data with the main objective being map
features such as roads, buildings, or rivers. Additionally, a wide variety of to the map
features related data is stored in OpenStreetMap, for example public transport data.
All this data was and is contributed by volunteers around the globe who constantly
submit changes and updates to the data. The OpenStreetMap data is free and open
for everyone1. In this section we provide a short overview on how OpenStreetMap
stores map features. We present the underlying data structure of OpenStreetMap.

3.1.1 Tags

To denote map features OpenStreetMap uses tags. A tag is a key=value pair. For
the key and the value, any UTF-8 string can be chosen. For example, the tag
highway=footway is used to denote a footpath for pedestrians. Also, any additional
information for map features can be added as tags such as street names.
The OpenStreetMap wiki2 provides conventions on how to tag common map features
to ensure conformity.

1https://wiki.osmfoundation.org/w/index.php?title=Mission_Statement
2https://wiki.openstreetmap.org/wiki/Tagging
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3.1.2 Objects

Map features in OpenStreetMap are built by using the objects nodes, ways, and
relations. All objects can have one or more tags to denote the meaning of the map
feature. They are the basic components of the data structure of OpenStreetMap.

A node represents a single point on the surface of the earth. A node at least stores a
unique id and its location by longitude and latitude. For standalone map features,
for example a waste basket, a node is used to represent them in OpenStreetMap.

For simple linear map features like roads or rivers, the way objects are used. A way
combines at least two nodes which form a line. The way stores at least an unique id,
a tag, and an ordered list of the node ids it uses.
Ways are also used to represent simple buildings or other closed areas. This is
accomplished by forming a closed line with the nodes, i.e. the first and last nodes in
the ordered list of nodes are the same.
If a map feature has a direction, for example a one-way road, the ordered list defines
the direction with the start at the first and the end at the last node.

For more complex map features that can not be build by a single way, OpenStreetMap
provides relation objects. A relation stores at least a unique id, a tag, and a list
of objects by id, possibly even other relations. The objects are the members of the
relation. The members and tags combined form a complex map feature.
Each member can optionally be assigned a role within the relation. For example, a
member way can be given the role backward. This means the direction of the way
should be used against the order of the way’s node ids list.

To conclude, OpenStreetMap uses a data structure of nodes, ways, and relations
with tags attached to each to store map features. An important property of this
structure is that it is hierarchical. Relations consist of ways and nodes and ways
consist of nodes. This means that changes to nodes directly get propagated to all
objects they are part of, the same applies for ways that are part of relations.

3.2 NASADEM

In this section we present the NASADEM digital elevation model (DEM). We explain
the used file structure and how elevation data can be extracted from the DEM.

The National Aeronautics and Space Administration digital elevation model (NASA-
DEM) is derived from the original telemetry data from the SRTM project as presented
in Section 2.1.2. The data was completely reprocessed with improved algorithms
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which led to fewer data voids and overall higher vertical accuracy. To fill remaining
voids, interpolation and newer data from ASTER Global Digital Elevation Model
(GDEM) and ALOS World 3D 30-meter (AW3D30) digital elevation model were
used3.
The NASADEM digital elevation model provides a horizontal resolution of 1 arc-
second, which is approximately 30 meters, and a near-global coverage by ranging
from 180°W to 180°E and from 56°S to 60°N.

3.2.1 Obtaining NASADEM data

The NASADEM digital elevation model is distributed by the National Aeronautics
and Space Administration’s (NASA) Land Processes Distributed Active Archive
Center (LP DAAC). The data of the DEM is available to download for free over
a U.S. Government Computer FTP-Server4. It is required to create an Earthdata
Login Profile to download from the server. Other than that, the data can be directly
downloaded.
The data from the NASADEM digital elevation model is divided into data tiles of size
1 degree longitude by 1 degree latitude. The elevation data for each tile is stored in
one file. As already shown in Table 2, this results in 14520 single files. Furthermore,
each file is archived using the ZIP file format and includes other meta data. Each
archive must be downloaded individually, there is no bulk download available.

3.2.2 NASADEM data files

Archive: NASADEM_HGT_n31e038.zip

n31e038.hgt
n31e038.num
n31e038.swb

Table 4: Contents of single NASADEM archive file.

In Table 4, the contents of a single NASADEM archive file are shown. Each archive
is labeled with the name of the digital elevation model ("NASADEM_HGT") and
the southwest corner of the tile the archive corresponds to. From the example in
Table 4, the archive is named NASADEM_HGT_n31e038.zip. Thus this archive

3https://lpdaac.usgs.gov/documents/1273/NASADEM_User_Guide_V11.pdf
4https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/
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contains the elevation data from 31°N to 32°N and 38°E to 39°E.
Each tile archive contains 3 files with the same naming scheme for the southwest
coordinate:

• The .hgt file contains the actual elevation data for the tile. We will introduce
this file format in the next section.

• The .num file includes information from which source each data point in the
.hgt file originates. For example, data can come from the SRTM, ASTER, or
AW3D30 digital elevation model as explained in Section 3.2.

• The .swb file provides the water body data of the tile. The file contains coastline
outlines if present in the tile for example.

Since we do not use the data of the .num and .swb files, we will not further elaborate
on their internal formats.

3.2.3 Hgt file format

The elevation data from the NASADEM digital elevation model is provided by files
of type .hgt. A single hgt file contains the elevation data for a tile of size 1 degree
longitude by 1 degree latitude. The tile’s location is encoded into the file name as
we have seen in Table 4. The file n31e038.hgt contains the elevation data for the tile
reaching from 31°N to 32°N and 38°E to 39°E inclusive.
Each hgt file stores a byte array using the following format:

• The elevation data is stored in a 2-dimensional array of size 3601 x 3601 using
row-major order. By using row-major order, the data is arranged from west to
east and then from north to south. This results in 12,967,201 available cells
and corresponds to the 1 arc second horizontal resolution in a 1 degree by 1
degree tile.

• Each cell in the 2-dimensional array stores a signed 16-bit integer (2 bytes) in
big-endian order. The range of -32,767 to 32,767 provided by this type can
store any valid elevation on earth with meter used as the unit.

• The outermost rows and columns of each tile overlap with the corresponding
rows and columns of adjacent tiles.
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Figure 6: NASADEM n31e038.hgt file format. The numbers in the cells
correspond to the ordering of the data in the file. *The east-west meters
resolution decreases with latitude.

This results in the data of each tile, given by the byte array, having a size of 25.93MB
(12,967,201 cells · 2 bytes per cell). In Figure 6, this internal format is visualized
of the file n31e038.hgt. The numbers in the cells correspond to the cells data order
inside the hgt file going from west to east and then from north to south.
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3.3 Inverse distance weighting

Shepard [6] presents “A two-dimensional interpolation for irregularly-spaced data”.
The author defines a finite number N of data points Di which are given as triplets
(xi, yi, zi). The locational coordinates of Di are given by xi, yi, and zi is the
corresponding data value. The author introduces a function to interpolate the value
of any point P in the plane. The function uses a weighted average of the existing data
points where the weighting is the distance to those points. The Cartesian distance
between P and Di is d[P, Di]. Then the interpolated value of P using the inverse
distance weighting function is:

f(P ) =


∑N

i=1 d[P,Di]−uzi∑N

i=1 d[P,Di]−u
if d[P, Di] ̸= 0 for all Di,

zi if d[P, Di] = 0 for some Di,

(1)

where u > 0. By increasing u, the influence of data points closest to P increases.

3.4 Simple moving average in unevenly spaced time series

In this section we introduce the concept of a time series and a moving average.
Furthermore, we introduce the concept of a simple moving average applied to an
unevenly spaced time series.

Time series

A time series denotes a series of data points indexed in time order. For a time series
X with length N(X), let T (X) = t1, ..., tN(X) be the strictly-increasing sequence
observation times and V (X) = X1, ..., XN(X) the sequence of observation values.
With this notation, a time series X consists of the data points ((tn, Xn) : 1 ≤ n ≤
N(X)).
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Moving average

A moving average5 creates a new time series that contains averages based on a time
series. A moving average iterates over each ((tn, Xn) : 1 ≤ n ≤ N(X)) data point
and does some calculations based on the current and previous data points. The
results of the calculations go into the new time series. In the simplest form of a
moving average, the simple moving average creates a new time series containing the
mean of each data point and the previous k data points. It is assumed that the
observation times T(X) are evenly spaced.

Simple moving average for unevenly spaced time series

Eckner [3] presents “Algorithms for Unevenly Spaced Time Series: Moving Averages
and Other Rolling Operators”. The author uses the notations of time series as above.
The author specifically looks at unevenly spaced time series, meaning the observation
times T(X) are not evenly spaced. In the context of unevenly spaced data points, it
is not appropriate to refer to the last k data points when applying a moving average.
Unlike evenly spaced data points, the actual used observation times can vary vastly
in unevenly spaced data points. Instead, Eckner introduces the parameter τ that
denotes the length of a moving average window. Only data points that fall within
the moving average window are considered when applying a moving average for a
data point.

Furthermore, Eckner introduces the function X[t]linear. For a point t ∈ R, X[t]linear

denotes the linearly interpolated value of X at time t. This function is used to sample
values at the edges of a moving average window.

Will all of the above, Eckner presents a simple moving average (SMA) for unevenly
spaced time series. Eckner defines the function to apply a SMA with linear interpola-
tion at the edges to a single data point as follows: Given an unevenly spaced time
series X with a moving average window of length τ > 0 and an observation time
t ∈ T (X), the function

SMAlinear(X, τ)t = 1
τ

∫ τ

0
X[t− s]linear ds. (2)

As presented, the moving average window is of form (t − τ, t] for a t ∈ T (X).
According to Eckner, this can expanded to a two-sided rolling time window with
form (t− τ, t + µ], where τ > 0 and µ ≥ 0. τ denotes the width of the window before

5https://en.wikipedia.org/wiki/Moving_average
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and µ the width of the window after the current time t ∈ T (X). This yields the
two-sided rolling time window SMAlinear function:

SMAlinear(X, τ , µ)t = 1
τ + µ

∫ τ+µ

0
X[t + µ− s]linear ds. (3)

Both of the presented functions yield the result for a single observation time t ∈ T (X).
To get the complete simple moving average of an unevenly spaced time series, the
functions must be applied to all observation times t ∈ T (X).

3.5 Simple directed graph

In this section we introduce the basic terminology of a simple directed graph. Addi-
tionally, we introduce the concepts of degrees of graph vertices, paths, and cycles in
a graph.

A simple directed graph G = (V, E) consists of a set of vertices V and a set of
directed edges E ⊆ {(u, v)|(u, v) ∈ V × V and u ̸= v}. For example, for the vertices
u, v ∈ V , the edge (u, v) ∈ E represents the directed edge from u to v. The edge
(v, u) ∈ E is the corresponding reversed edge, going from v to u. In Figure 7, a
visualized representation of a simple directed graph is shown.

The in-degree and out-degree of a vertex denote how many incoming and outgoing
the vertex has, respectively. It holds in-degree(u) = |{(v, u) : (v, u) ∈ E}| and
out-degree(u) = |{(u, v) : (u, v) ∈ E}|.

A path in a directed graph G = (V, E) is a sequence u1, u2, u3, ..., un ∈ V , where
(u1, u2), (u2, u3), ..., (un−1, un) ∈ E. A cycle is a path in which the first and last
vertices are identical.

Figure 7: Simple directed graph with two vertices and two edges. The
graph G = ({u, v}, {(u, v), (v, u)}) with two vertices and two edges. For
both of the edges the reversed edge is also present.
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4 Approach

In this section, we present the steps performed by our tools osmelevation and
correctosmelevation. Both of our tools read and write OpenStreetMap data and share
implementation details in this regard. Also, both of our tools are implemented in
C++ using the C++ 13 Standard. We use the GNU Compiler Collection (GCC)
and CMake to build our tools. Before presenting our tools separately in detail, we
explain how we read and write OpenStreetMap data.

4.1 Reading and writing OpenStreetMap data

Our tools read and write valid OpenStreetMap data. The osmium library provides
readers and writers for the common OpenStreetMap data formats [9].

4.1.1 Reading OpenStreetMap data

The osmium library provides a Handler class to process OpenStreetMap data while
reading. This class defines functions for each OpenStreetMap element node, way,
and relation. While reading, the OpenStreetMap objects are fed one by one into
their corresponding function making the data of the individual objects available.

By deriving from the Handler class, we can use our own implementations of the
provided functions. This means we either have to process the OpenStreetMap objects
one by one while reading or store relevant data and process the data later.
We implement several of our own handlers that derive from the Handler class provided
by osmium.

Additionally, the osmium library provides the option to only read specified Open-
StreetMap elements. For example, in our first tool we only need data from nodes. By
omitting to read ways and relations in our first tool, we can save a not insignificant
amount of time.

The osmium library also provides a class RelationsManager. This class gives the
possibility to conveniently work with OpenStreetMap relations. When deriving from
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this class, we can specify relations that we are interested in. RelationsManager
collects these relations and performs a second pass over all OpenStreetMap ways. As
soon as all referenced ways of a relation are found, the relation can be processed.

4.1.2 Writing OpenStreetMap data

We use the Writer class provided by the osmium library to write our output Open-
StreetMap data. This class implements a write function that accepts OpenStreetMap
objects one by one and writes them to the specified output OpenStreetMap file on
disk.

Both our tools only add data to the input OpenStreetMap data or update existing
data. Therefore, to write our results, we read the data from the input OpenStreetMap
file and write the output file at the same time. We implement our own handler
deriving from the Handler class that creates a copy of each object. When needed, an
update or an addition to the copy is performed. The copy then gets moved into the
write function.

4.2 Annotating OpenStreetMap data with elevation data

We start by presenting our first tool osmelevation that enriches OpenStreetMap data
with elevation data.
The input as well as the output of our tool are valid OpenStreetMap data. We
designed our tool specifically for the worst-case input, that is the OpenStreetMap
data containing the whole planet. Therefore, we focus on the worst-case input in
this presentation.

As we have learned in 3.1.2, the OpenStreetMap data is built from the elements
nodes, ways, and relations. Since we only modify nodes by adding a tag ele=* to
each, we can completely ignore ways and relations in our first tool. We can also
ignore any tags attached to the nodes because the elevation is only dependent on the
location.

4.2.1 Problem Definition

In 1.1.2 we introduced the problem of the size of the OpenStreetMap data and the
elevation dataset, NASADEM_HGT. On one side, there are 7.5 billion nodes in the
OpenStreetMap. This leads to two problems:
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• There are 7.5 billion random accesses to the elevation data. For each node’s
location, we need to locate the tile that contains the location, and then we
need to locate the correct cell inside the tile that contains the elevation data.

• Over the course of the tool’s calculations, the elevation data of nodes that have
already been collected have to be stored somewhere. This means there needs
to be storage for 7.5 billion 16-bit integers that can be matched to the node
they belong to.

On the other side, there are 371GB of elevation data from the NASADEM.HGT
elevation dataset. We have shown in Table 2 that the data is packed into 14520 single
compressed files. It is clear that the elevation data can not be loaded all at once.

Both the OpenStreetMap and elevation data are a challenge of their own to handle
concerning the sizes. This makes it a challenge to use both data simultaneously while
not sacrificing too much performance.

4.2.2 Overview

For our first tool, we are only interested in the nodes of OpenStreetMap. This results
in three favorable properties: First, to obtain all the data of the nodes, it is sufficient
to parse the provided OpenStreetMap data only once. Conversely, to obtain all data
of ways and relations, at least two passes over the OpenStreetMap data are necessary.
Secondly, a node contains all the information that is associated with it. When
reading a node from the OpenStreetMap data, the nodes can be processed one by
one without the need to store some data that is needed later. Lastly, since the data
in the OpenStreetMap files are sorted by all nodes first, all ways second, and lastly
all relations, we do not need to parse the complete OpenStreetMap file to obtain the
data of the nodes.

This makes it possible to read the OpenStreetMap data, more precisely only the
nodes, multiple times without a big performance penalty.
We make use of this by partitioning the geographic extent of the input OpenStreetMap
data. The OpenStreetMap nodes are read by the OsmNodesHandler. This handler
specifically skips nodes that are not in the by GeoPartiton provided geographic
partition. With this, only nodes which locations are inside the specified geographic
partition are processed in one pass over all OpenStreetMap nodes. For each node, the
elevation data gets extracted from the NASADEM_HGT dataset by our GeoElevation
component. The only data we need for later is the node id and the elevation of the
node’s location. Both get stored in the ElevationIndex that is accessible by node id.
The just described process gets repeated until all partitions were worked off. Note
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Figure 8: osmelevation dataflow. Solid boxes represent the main components,
dashed boxes are input/output files. Solid edges represent the dataflow,
dashed edges signal repeating components. OpenStreetMap data is read
from the OSM file by the OsmNodesHandler in partitions. GeoPartition
dictates which partition is read. The OsmNodesHandler retrieves for each
node in the partition the elevation data from GeoElevation. GeoElevation
handles getting the requested elevation data from the NASADEM_HGT
dataset. Also, OsmNodesHandler stores the elevation data for each
node in the ElevationIndex tied to their node ids. This just described
procedure is recurring, on basis of GeoPartition until all geo partitions
were handled. When done, the OsmWriter uses the input OSM file and
the ElevationIndex to write a new output OSM file. The output file
contains all the original data of the input OSM file and the elevation
data for each node that was collected before.

again that one such pass of a partition equals one pass over all OpenStreetMap nodes.
When done, the ElevationIndex stores the elevation of all nodes tied to the node
ids. In the next step, the output OSM file gets written, containing the elevation
data. The OsmWriter rewrites the complete input OSM file. This includes all nodes,
ways, and relations as our tool does not lose any data. When writing the nodes, an
elevation tag gets added to each node using the data from the ElevationIndex. The
complete dataflow as just described in visualized in Figure 8.

4.2.3 Reading and processing OpenStreetMap nodes

The OsmNodesHandler is the main component of our tool. We use it to read
OpenStreetMap nodes. One pass of OsmNodesHandler reads all nodes one by one,
several passes may be performed. It represents the connection between the other
components GeoPartition, ElevationIndex, and GeoElevation. The OsmNodesHandler
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is directly derived from the osmium library Handler class. Our OsmNodesHandler
only implements the node function since we are not interested in ways and relations
in our first tool. Nodes are fed one by one into the OsmNodesHandler while reading
and get processed immediately. In the following listing, we explain the connections
to the other components:

• GeoPartition provides a geographic partition to the OsmNodesHandler. In
simple terms, the geographic partition decides whether a node gets processed
in the current pass or not. If a node is not in the geographic partition, it simply
gets skipped. The overall number of geographic partitions is equivalent to the
number of passes OsmNodesHandler performs.

• GeoElevation provides the interface to the NASADEM_HGT elevation dataset.
If a node gets processed in the current pass, the elevation of the node’s location
gets requested from GeoElevation.

• ElevationIndex stores the data that was processed and is needed later. If a
node was processed in the current pass, the node’s id and elevation get stored
in the ElevationIndex.

Listing 1: node implementation of OsmNodesHandler
void OsmNodesHandler :: node( const osmium :: Node& node) {

const double lon = node. location (). lon ();
const double lat = node. location (). lat ();

// Check i f t h e node ’ s l o c a t i o n i s i n s i d e t h e g e o g r a p h i c p a r t i t i o n .
if (lon >= std ::get <0>( _geoPartition ) &&

lon <= std ::get <2>( _geoPartition ) &&
lat >= std ::get <1>( _geoPartition ) &&
lat <= std ::get <3>( _geoPartition )) {

// Get t h e e l e v a t i o n a t t h e node ’ s l o c a t i o n .
const int16_t elevation =

_geoElevation . getInterpolatedElevation ( Coordinate (lon , lat ));

// S t o r e t h e node ’ s i d and e l e v a t i o n in t h e e l e v a t i o n i n d e x .
_elevationIndex . setElevation (node.id(), elevation );

}
}

In Listing 1, the implementation of the node function is shown.
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4.2.4 Geographic partitions

A main problem we encountered in the development of this tool is the size of the
NASADEM_HGT elevation dataset. The data is provided by 14520 single zip
archives. Each archive contains the elevation data for a 1 degree longitude by
1 degree latitude tile, as we have learned in Section 3.2. For performance, it is
essential to have the uncompressed data in main-memory when accessing. With an
uncompressed size of 371GB of this dataset, it is infeasible to have all this data in
main-memory at once. Therefore, we needed to limit the number of elevation data
tiles in main-memory.

Naive approach

A naive approach we tried was to manage the number of data tiles in main-memory
with a first-in, first-out1 (FIFO) queue. New data tiles can be loaded into main-
memory as long as a specified length of the FIFO queue is not exceeded. Otherwise,
the first added data tile gets removed from main-memory to make room for a new
one.
This approach failed miserably. The problem is that the OpenStreetMap nodes are
not geographically ordered. In the worst-case scenario, for every new location we need
the elevation of, the corresponding data tile has to be unpacked from the archive and
loaded into main-memory again. With 7,5 billion nodes currently in OpenStreetMap,
each compressed data tile would be unpacked, and loaded thousands of times. It is
obvious that this approach is incredibly inefficient and would result in a runtime of
months for just the unpacking of the archives.

Partitioning nodes geographically

To solve the problem of the not existing geographic ordering of the nodes, we introduce
geographic partitions. A geographic partition simply is a rectangular boundary on a
map defined by its bottom-left (south-west) and upper-right (north-east) coordinates.
These coordinates are stored in a tuple by (minimum longitude, minimum latitude,
maximum longitude, maximum latitude).

Our OsmNodesHandler performs multiple passes over all OpenStreetMap nodes.
Each pass, a different geographic partition is provided by GeoPartition. In each pass,
we only process the nodes that are located inside the specified geographic partition.
With this approach, we can determine in advance how many data tiles will be loaded

1https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
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into main-memory at maximum by adjusting the partition size. Also, and more
significantly, the data tiles will be unpacked and loaded only once per geographic
partition.

For example, the partition (10, 40, 20, 50 ) reaches from 10°N to 20°N and from 40°W
to 50°W. That means only the nodes that are located between these coordinates
inclusively the edges will be processed. Since the each elevation data tile covers a 1°
by 1° region, there will be 10 · 10 = 100 data tiles in main-memory. Additionally, the
elevation data tiles that are vertically and horizontally adjacent to the geographic
partition are also needed as we will see later. These account to 4 · 10 = 40 elevation
data tiles. Overall, for the geographic partition (10, 40, 20, 50 ) 100 + 40 = 140
elevation data tiles will be unpacked and loaded into main-memory.

4.2.5 Retrieving elevation data

For a location given as longitude and latitude, there are several steps performed to
retrieve the elevation from the NASADEM_HGT dataset.

Resolving the elevation data tile filename

Each elevation data tile is provided compressed in a zip archive with a distinctive
name. The first step we perform is to resolve the filename for the correct archive
containing the elevation data tile.

The zip archive filenames are composed of the dataset name NASADEM_HGT and
the coordinate of the southwest corner of the elevation data tile, as shown in Sec-
tion 3.2.2. The coordinate is given as the unsigned decimal degrees with n/s/e/w spec-
ifiers to indicate the compass direction. For example, NASADEM_HGT_n31e038.zip
is the zip archive filename containing the elevation data tile with the southwest corner
31°N 38°E.

In the OpenStreetMap coordinate representation, the n/s/e/w specifiers are omitted
by using signed decimals to indicate the compass direction. For example, the
OpenStreetMap location lat="47.0288378" lon="7.5252089" gets resolved to the
NASADEM_HGT_n47e007.zip archive file. We perform three simple steps to get
the correct zip archive filename for a coordinate:

1. Use the floor() function on the longitude and latitude of the coordinate. This
yields the southwest corner of the corresponding elevation data tile.
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2. Determine the n/s/e/w specifiers and convert to unsigned integers. The
specifiers can be obtained by simply checking if the longitude/latitude are
signed or unsigned. Signed longitude/latitude result in s/w, otherwise in n/e
respectively.

3. Pad the unsigned integer coordinates with zeros if needed. As seen in the
example NASADEM_HGT_n31e038.zip, the latitude component is presented
by 2 digits and the longitude component by 3 digits. If a coordinate component
does not use 2/3 digits respectively by itself, we have to pad with zeros.

Loading the elevation data tile into main-memory

Priorly, we have located the correct zip archive that contains the elevation data tile
for a coordinate. In the next step, we unpack the compressed .hgt file from the zip
archive. Since we do not need the unpacked data on disk, we unpack directly into
the main-memory. We use the libzip2 library to unpack into main-memory. We then
store the raw unpacked bytes inside a C++ uint8_t[] byte array.

Accessing data from an elevation data tile

In this step, we explain how elevation data can be extracted from an elevation data
tile. In the previous step, we stored the data in an uint8_t[] byte array. In the
following, we refer to this array as the elevation data array.

The characteristics of the elevation data array are consistent with our explanations
from Section 3.2.3. The elevation data array stores a 2-dimensional array of size 3601
x 3601 using row-major order. Since we store the data inside an uint8_t[] byte array,
the elevation data array has a length of 3601 · 3601 · 2 = 25, 934, 402. A cell from the
elevation data tile is represented by two consecutive bytes starting at an even index
position in the elevation data array. Thus, each cell stores a signed 16-bit integer.
Since the 16-bit integers are encoded using the big-endian byte order, we have to
manually decode the data for each cell when needed.

We use the following terms to denote characteristics of the elevation data array:

• samples: The number of rows and columns of the 2-dimensional array stored
inside the elevation data array. For the NASADEM_HGT dataset, this corre-
sponds to 3601 samples.

2https://libzip.org/

28

https://libzip.org/


• cell size: The width and height of one cell in degree. The elevation data array
stores the data of one elevation data tile. In the NASADEM_HGT dataset,
one tile has a width and height of one degree. Thus, the cell size corresponds
to 1

samples−1 .

• cell center offset: The offset of the center of a cell to one of its four edges.
Calculated by cell size

2 .

To extract the elevation of a coordinate given by longitude and latitude, we first
calculate the exact cell that stores the data. This cell corresponds to the geographical
location the coordinate lies in, inside the elevation data tile. We can calculate row
and column of the cell as follows:

row = ⌈(longitude− ⌊longitude⌋ − cell center offset) · (samples− 1)⌉ (4)
column = ⌈(⌊latitude⌋+ 1− latitude− cell center offset) · (samples− 1)⌉ (5)

With the row and column, we can calculate the start index of the cell in the elevation
data array and the center of the cell in the elevation data tile as coordinate:

cell index = (row · samples + column) · 2 (6)
cell center longitude = ⌊longitude⌋+ (column · cell size) (7)

cell center latitude = ⌊latitude⌋+ 1− (row · cell size) (8)

Since the elevation data array stores single bytes and the cells are represented by
two bytes, the factor of 2 is involved in calculating the cell index. We now know that
the elevation data is stored at index cell index and cell index + 1.
The final elevation data represented by a signed 16-bit integer must be calculated
from the big-endian byte order. In Listing 2, we provide an implementation to extract
the elevation from a cell using C++ language features.

Listing 2: Extract the elevation data from a cell inside the elevation data array
int16_t elevation = ( int16_t )(elevation data array [cell index ] << 8) +

elevation data array [cell index + 1];
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Interpolating elevation data

As of now, we use the elevation of the cell in which a coordinate is located in regarding
the elevation data tile. The elevation accuracy can be improved by also using the
elevation data of the neighboring cells the coordinate is located in. To access data
from a neighboring cell, we can simply change the row and/or column from the
original cell by one. For example, given a cell in column and row 100, the neighboring
cell to the right is in column 101 and row 100.

We use the inverse distance weighting interpolation to make use of the additional
data. We use the same notation as presented in Section 3.3. We want to interpolate
the elevation for a coordinate P. The data point D1 represents the center of the cell
the coordinate P lies in. The eight data points from the neighboring cell centers
are represented by D2 to D9. In Figure 9, we provide a visualization of the nine
cells and the coordinate P as explained. The data value zi of each data point Di

corresponds to the elevation of the cell as stored in the elevation data array.

To obtain the center coordinates of the cells, we use Equation (7) and Equation (8).
To calculate the distances d[P, Di] from the coordinate P to each data point, i.e. cell
center, we use an approximation haversine approximate of the haversine formula3.
The approximation omits the curvature of the earth in the calculation of the distance.
We can use the approximation because the distances we need to calculate are always
smaller than 100 meters.

For the exponent u used in the inverse distance weighting, we use the value u = 2 as
Shepard [6] recommends. We now have all information to apply Equation (3.3) on
the data to obtain the interpolated elevation of a coordinate.

4.2.6 Storing processed elevation data of nodes

Over the course of our tool’s calculations, the elevation data for more and more
nodes get collected until all geographic partitions were worked off. When done, the
stored elevation data must be accessible by node id while writing the output OSM
file.

We accomplish this by using a sparse elevation index or a dense elevation index.
Which is used depends on the size of the input OpenStreetMap data, i.e. how many
nodes are present.

3https://en.wikipedia.org/wiki/Haversine_formula

30

https://en.wikipedia.org/wiki/Haversine_formula


Figure 9: Interpolation with data from surrounding cells. Shown is a section
of an elevation data tile. The black dots represent the center of each cell.
The center of each cell also corresponds to its data point Di. The red star
is the coordinate P the elevation is requested for. The distance d[P, Di]
from the coordinate to each data point is needed for the interpolation
and is marked with the dashed lines.

Sparse elevation index

We use a sparse index type for smaller OpenStreetMap inputs that have less than
one billion nodes. For each node we want to store the elevation of, we explicitly
store the id of the node and its elevation. The node id needs to be stored as a 64-bit
unsigned integer and the elevation as a 16-bit signed integer. We use an IdElevation
struct to store both, as seen in Listing 3.
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Listing 3: IdElevation struct to store the elevation of a node
struct IdElevation {

uint64_t id;
int16_t elevation ;

};

Until all all geographic partition were worked off, IdElevation objects get appended to
a std::vector<IdElevation> sparseIndex. When done, we sort sparseIndex by the
id member of IdElevation objects, in ascending order. After the sparseIndex is sorted,
we additionally remove duplicates. Duplicates can occur because the geographic
partitions are overlapping at their borders.

With the sorted sparseIndex, we are ready to write the output osm file. To retrieve the
elevation for a node, we perform simple binary search on the by id sorted IdElevation
objects inside the sparseIndex.

Dense elevation index

For input OpenStreetMap data that contains more than one billion nodes, we use a
dense index to store the elevation data accessible by node id. In the sparse index, we
explicitly stored the node id for each entry since we need the id for later accessing it.
We now directly store the elevation data in a std::vector<int16_t> denseIndex.
The index of an entry directly corresponds to the node id the elevation data belongs
to. This way, we can save the 8 bytes for each node needed by the id.

A problem we encountered was that the number of nodes and the maximum node id
are not identical in OpenStreetMap. As of February 2022, there are 7,5 billion nodes
in total, but the maximum node id present is around 9,5 billion. This results in the
dense index not being as dense as we hoped. There are a lot of unused node ids in
the OpenStreetMap.

To reduce the main-memory consumption of the denseIndex, we reduce the space
needed to store a single elevation. As of now, a single elevation is stored as a 16-bit
signed integer. A 16-bit signed integer provides a range of −32,768 to 32,767. But in
reality, a range of -1000 to 10000 can cover any valid elevation above sea level on
earth. This range of -1000 to 10000 can be stored using only 14 bits as follows:

• A signed 15-bit integer can store a range -16,374 to 16,374. This is still more
than sufficient.
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Figure 10: std::vector<int8_t> denseIndex used to store 14-bit integers.
Shown is the layout of a std::vector<int8_t> array. The cells repre-
sent the individual bits of the array. An int_8 occupies 8 bits (1 byte).
The 14-bit integers are stored continuously on top of the bytes.

• Another bit can be omitted by removing the sign while storing. To still allow
negative elevations, we simply add 1000 when storing the elevation and subtract
1000 when retrieving the elevation.

We implemented a custom 14-bit integer array by wrapping custom set and get
functions around a std::vector<int8_t> denseIndex. Since we can not access
individual bits, we need to work with bit shifts to modify the bytes on a bit level in
the denseIndex. The layout of the denseIndex is visualized in Figure 10.

The 14-bit integers are stored continuously on top of the bytes. The start bit of a
14-bit integer is the bit position in the denseIndex of the most significant bit of the
14-bit integer. Analogously, the start byte is the byte that contains the start bit. The
start byte is the most significant byte of a 14-bit integer.

We define that a 14-bit integer spans over three bytes in the denseIndex. The start
byte, the byte at position start byte + 1, and the byte at position start byte + 2.
With this definition, when looking at any three consecutive bytes in the denseIndex,
there are exactly four possibilities how a 14-bit integer can be layed out in these
three bytes.

We use bitmasks to set and extract a 14-bit integer from the three bytes it is contained
in. For setting a 14-bit integer, we first want to reset the bits that belong to the
14-bit integer before writing the new bits. In Listing 4, the bitmasks for setting a
14-bit integer are shown. The uint8_t setBits[4][3] 2-dimensional array has four
rows for the four possible layouts of the 14-integer inside the three bytes. In the
columns, the individual bitmasks for the bytes are stored. The 0 entries represent
the 14-bit integer, along a row. To reset the bits of a 14-bit integer, we perform
bitwise AND with the three bytes of the 14-bit integer and the corresponding layout
of a row of setBits.
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To extract a 14-bit integer from the denseIndex, we use the uint8_t getBits[4][3]
2-dimensional array as shown in Listing 5. The approach is analogous. But instead
of resetting the bits of the 14-bit integers, we want to temporarily hide the bits that
do not belong to the 14-bit integer. This means the bits are 1 where they belong to
the 14-bit integer, otherwise 0.

Listing 4: Bitmasks to reset the bits a 16-bit integer
uint8_t setBits [4][3] = { {0 b11111100 , 0b00000000 , 0 b00001111 },

{0 b11110000 , 0b00000000 , 0 b00111111 },
{0 b11000000 , 0b00000000 , 0 b11111111 },
{0 b00000000 , 0b00000011 , 0 b11111111 } };

Listing 5: Bitmasks to hide the bits not belonging to a 16-bit integer
uint8_t getBits [4][3] = { {0 b00000011 , 0b11111111 , 0 b11110000 },

{0 b00001111 , 0b11111111 , 0 b11000000 },
{0 b00111111 , 0b11111111 , 0 b00000000 },
{0 b11111111 , 0b11111100 , 0 b00000000 } };

In Listing 6 and Listing 7, we provide the full implementations of how to set and get
an elevation in the 14-bit integer denseIndex.
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Listing 6: Implementation to store an elevation in the 14-bit integer dense index
void ElevationIndexDense :: setElevation ( uint64_t id , int16_t elevation ) {

elevation += 1000; // Al low s t o r a g e o f n e g a t i v e e l e v a t i o n s .

// The p o s i t i o n o f t h e most s i g n i f i c a n t b i t
// o f t h e 14− b i t i n t e g e r in t h e dense ar ray .
uint64_t startBitPosArray = id * 14;

// The p o s i t i o n o f t h e b y t e c o n t a i n i n g t h e most
// s i g n i f i c a n t b i t o f t h e 14− b i t i n t e g e r in t h e dense ar ray .
uint64_t startBytePos = startBitPosArray / 8;

// The p o s i t i o n o f t h e l e a s t s i g n i f i c a n t b i t o f t h e 14− b i t
// i n t e g e r (LSB) on b a s i s o f t h e l e a s t s i g n i f i c a n t b i t o f t h e
// b y t e a t p o s i t i o n s t a r t B y t e P o s + 2 .
// This can be a t most a t p o s i t i o n 10 .
uint8_t posLSB = 10 - ( startBitPosArray % 8);

// The b i tmask t o c l e a r a l l b i t s not used by t h e
// 14− b i t i n t e g e r .
uint8_t bitmask = ( posLSB - 4) / 2;

// The da ta t h e l e a s t s i g n i f i c a n t b y t e o f t h e 14− b i t i n t e g e r ho l d s ,
// r e s p e c t i v e l y t o t h e p o s i t i o n o f t h e LSB .
uint8_t byte2 = denseIndex [ startBytePos + 2] & setBits [ bitmask ][2];
byte2 |= ( elevation << posLSB );

// The da ta t h e second l e a s t s i g n i f i c a n t by t e ,
// i . e . second l e a s t s i g n i f i c a n t b y t e o f t h e 14− b i t i n t e g e r ho l d s ,
// r e s p e c t i v e l y t o t h e p o s i t i o n o f t h e LSB .
uint8_t byte1 = denseIndex [ startBytePos + 1] & setBits [ bitmask ][1];
if ( posLSB <= 8) {

byte1 |= ( elevation >> (8 - posLSB ));
} else {

byte1 |= ( elevation << ( posLSB - 8));
}

// The da ta t h e most s i g n i f i c a n t b y t e o f t h e 14− b i t i n t e g e r
// ho l d s , r e s p e c t i v e l y t o t h e p o s i t i o n o f t h e LSB .
uint8_t byte0 = denseIndex [ startBytePos ] & setBits [ bitmask ][0];
byte0 |= ( elevation >> (16 - posLSB ));

// Update t h e da ta o f t h e l e a s t ,
// second l e a s t , and most s i g n i f i c a n t b y t e .
denseIndex [ startBytePos + 2] = byte2;
denseIndex [ startBytePos + 1] = byte1;
denseIndex [ startBytePos ] = byte0;

}
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Listing 7: Implementation to retrieve an elevation from the 14-bit integer dense
index

int16_t ElevationIndexDense :: getElevation ( const uint64_t nodeId ) {

// The p o s i t i o n o f t h e most s i g n i f i c a n t b i t
// o f t h e 14− b i t i n t e g e r in t h e dense ar ray .
uint64_t startBitPosArray = ( nodeId ) * 14;

// The p o s i t i o n o f t h e b y t e c o n t a i n i n g t h e most
// s i g n i f i c a n t b i t o f t h e 14− b i t i n t e g e r in t h e dense ar ray .
// Hence , t h e 14− b i t i n t e g e r u s e s t h e s t a r t B y t e ,
// s t a r t B y t e + 1 , and s t a r t B y t e + 2 .
uint64_t startBytePos = startBitPosArray / 8;

// The p o s i t i o n o f t h e l e a s t s i g n i f i c a n t b i t o f t h e 14− b i t
// i n t e g e r (LSB) on b a s i s o f t h e l e a s t s i g n i f i c a n t b i t o f t h e
// b y t e a t p o s i t i o n s t a r t B y t e P o s + 2 .
// This can be a t most a t p o s i t i o n 10 .
uint8_t posLSB = 10 - ( startBitPosArray % 8);

// The b i tmask t o c l e a r a l l b i t s not used by t h e
// 14− b i t i n t e g e r .
uint8_t bitmask = ( posLSB - 4) / 2;

// The da ta s t o r e d in t h e l e a s t , second l e a s t ,
// and most s i g n i f i c a n t b y t e o f t h e 14− b i t i n t e g e r .
uint8_t byte2 = denseIndex [ startBytePos + 2];
uint8_t byte1 = denseIndex [ startBytePos + 1];
uint8_t byte0 = denseIndex [ startBytePos ];

// E x t r a c t t h e e l e v a t i o n from t h e l e a s t , second l e a s t ,
// and most s i g n i f i c a n t b y t e .
// The b i t s t h a t do not b e l o n g t o t h e 14− b i t i n t e g e r g e t
// h idden by t h e c o r r e s p o n d i n g b i tmask from g e t B i t s .
int16_t elevation =

((( byte0 & getBits [ bitmask ][0])) << (16 - posLSB )) +
(( byte2 & getBits [ bitmask ][2]) >> ( posLSB ));

if ( posLSB <= 8) {
elevation += (( byte1 & getBits [ bitmask ][1]) << (8 - posLSB ));

} else {
elevation += (( byte1 & getBits [ bitmask ][1]) >> ( posLSB - 8));

}

// S u b s t r a c t 1000 to a l l o w n e g a t i v e e l e v a t i o n s .
return elevation - 1000;

}
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4.2.7 Runtime

We do not provide a detailed asymptotic runtime analysis of our tool. The runtime
is dependent on the following two aspects:

• The number of nodes in the input OpenStreetMap file. The interpolation used
for each node represents the main processing step of our tool. The complete
processing runtime is linear in the number of nodes.

• The amount of main-memory that is available. Our tool osmelevation highly
benefits from more main-memory. With more main-memory, the size of the
geographic partitions can be increased. It follows that less time is spent parsing
the OpenStreetMap nodes.

Also, the writing the output OSM file can take some time depending on the size of
the input OSM file. In Table 5, three example runtimes of inputs with different sizes
are shown.

germany planet

runtime tool 2 minutes 102 minutes
runtime writing output OSM 4 minutes 61 minutes
maximum used main-memory 10GB 94GB

Table 5: Runtimes of different input OpenStreetMap sizes of our tool
osmelevation. Run on machine with AMD Ryzen 7 3700X 8-Core/16-
Threads and 128GB Ram. Data was read from and written to 2TB NVME
Samsung 970 Evo+.

It is to be noted that the runtime of our tool also highly depends on the read/write
performance of the osmium library. Reading and writing in osmium is multithreaded
and therefore benefits from more CPU cores. On the same machine we ran the tests
in Table 5, osmium can parse all OpenStreetMap nodes in a planet OSM file in just
three minutes.
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4.3 Correcting elevation data in OpenStreetMap

Our second tool correctosmelevation performs corrections on elevation data in Open-
StreetMap. We do not use external elevation data for our second tool. As basis of
the corrections, we look at OpenStreetMap linear route map features like roads or
rivers. In fact, this includes all OpenStreetMap routes that can be traveled by car,
train, bike, foot, or ship.

As our first tool, the input and output of correctosmelevation are valid OpenStreetMap
data. Also, our second tool is specifically designed to handle the worst-case input,
which is OpenStreetMap data containing the whole planet.

Since we look at route map features in OpenStreetMap, we need to work with all three
OpenStreetMap elements nodes, ways, and relations. This induces new challenges as
there is a lot more processing and storing of the data involved.

Before we proceed to explain the steps taken by our second tool in detail, we provide
a short insight into OpenStreetMap routes.

4.3.1 Routes

A route defines an exact path between two points that can be traveled by foot, bike,
vehicle, train, or ship. In OpenStreetMap, routes are stored in ways and relations.
In the following, we refer to routes in relations as route relations and routes in ways
as route ways

Routes in OpenStreetMap ways

An OpenStreetMap way consists of an ordered list of node ids and one or more tags
to construct a map feature. The nodes to which the node ids reference represent the
course of the map feature. To denote if a way, more precisely the course of the way,
represents a route way, the following tags are used:

• highway=* is used for anything that can be traveled by foot, bike, or vehicle4.
The value * of the tag denotes the specific use of the route, for example a
footway or cycleway. Additionally, the tag oneway=yes can be used in route
ways with tag highway=*. This tag indicates that the route can only be traveled
in the direction of the ordered node ids list of route way.

4https://wiki.openstreetmap.org/wiki/Key:highway
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• railway=* is used to tag any routes that are related to train routes5.

• waterway=* is used for anything that has a flow of water from one place to
another, for example rivers6.

Every route way in OpenStreetMap has one of these tags. In Listing 8, we can see
an example route way, in this case a highway=track. The nd ref=* entries represent
the ordered list of node ids.

Listing 8: A route with tag highway=track in an OpenStreetMap way
<way id=" 52707298 ">

<nd ref=" 664607210 "/>
<nd ref=" 668979932 "/>
<nd ref=" 668979920 "/>
<nd ref=" 668979921 "/>
<nd ref=" 668979922 "/>
<nd ref=" 668979923 "/>
<nd ref=" 668979918 "/>
<nd ref=" 668979919 "/>
<nd ref=" 668979912 "/>
<nd ref=" 668979913 "/>
<nd ref=" 668979914 "/>
<nd ref=" 470498978 "/>
<tag k=" highway " v="track"/>
<tag k=" sac_scale " v=" hiking "/>
<tag k=" tracktype " v=" grade4 "/>
<tag k="width" v="2.5"/>

</way >

Routes in OpenStreetMap relations

Relations consist of members and tags to represent a more complex map feature.
Members can be any other OpenStreetMap objects, meaning nodes, ways, or other
relations. Each member is referenced by the id of the specific object. Also, each
member can have a role that the object fulfills in the relation.

Route Relations in OpenStreetMap that can be traveled on land are tagged with
type=route. This includes anything that can be traveled by car, train, bike, or foot.

5https://wiki.openstreetmap.org/wiki/Key:railway
6https://wiki.openstreetmap.org/wiki/Key:waterway
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The tag type=waterway is used for relations that have a flow of water from one place
to another. In Listing 9, a route in a relation with tag type=route is shown.

Listing 9: A route with tag type=route in an OpenStreetMap relation
<relation id="33839">

<member type="way" ref=" 27262946 " role=""/>
<member type="way" ref=" 658516548 " role=""/>
<member type="way" ref=" 186168932 " role=""/>
<member type="way" ref=" 145404642 " role=""/>
<member type="way" ref=" 69340201 " role=""/>
<member type="way" ref=" 69340195 " role=""/>
<member type="way" ref=" 37708541 " role=""/>
<member type="way" ref=" 37708461 " role=""/>
<member type="way" ref=" 27262958 " role=""/>
<member type="way" ref=" 4616941 " role=""/>
<member type="way" ref=" 830987458 " role=" forward "/>
<member type="way" ref=" 830987460 " role=" forward "/>
<member type="way" ref=" 830987459 " role=""/>
<tag k="FIXME" v=" incomplete "/>
<tag k="name" v=" Schauinsland - Radweg "/>
<tag k=" network " v="lcn"/>
<tag k="ref" v="Sch"/>
<tag k="route" v=" bicycle "/>
<tag k="type" v="route"/>

The course of a route relation is determined by the course of its member ways. To
obtain the complete course of a route relation, the member ways must be connected
in the correct order. That is, for each member way there is a successor member
way. The first node of the successor member way is identical to the last node of
the previous member way. Except for the beginning and end of the route, where
no predecessor/successor member way exists. The first/last node of the first/last
member way represent the start and endpoint of the route relation, respectively.

One special case of how routes are stored can occur. If a route has separated forward
and backward directions, the route can be stored by using three different approaches.
For example, this can occur if a road has separated forward and backward lanes.
The three approaches are:

1. The forward and backward direction of a route get merged into a single route
relation.

2. The forward and backward direction of a route are stored separately in two
different route relations.
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Figure 11: OpenStreetMap route relation containing forward and back-
ward direction separately. The course of the route as stored in the
relations is shown by the red lines. As seen, the route separates into
both directions. Shown is a snippet of the end of the route relation with
id 104388. Provided by: OpenStreetMap | Map data © OpenStreetMap contributors

3. Both the first and second approach apply. There are in total three route
relations that refer to the same route. One route relation containing the
forward and backward direction and each one route relation containing the
forward and backward direction separately.

Approach 1 and 3 violate our definition of a route that there is an exact path between
two points. In both approaches, there can be two start and endpoints. In Figure 11,
we can see an example where both directions of a route are stored in a single
OpenStreetMap route relation. But in case of approach 1 and 3, the member ways
that are used as a single direction are marked with role="forward" or role="backward".
Member ways that are used in both directions are marked with role="".

It is to be noted that all route relations consist of route ways. But there are many
route ways that are not part of any route relation.

4.3.2 Problem Definition

The focus of our second tool are OpenStreetMap routes. As we have just explained,
routes are stored in route ways and route relations. The main challenge we faced
were the route relations in OpenStreetMap relations. For the route relations, two
main problems occurred:

• We need all the data that is connected to a route relations. Since Open-
StreetMap relations are built from ways and nodes, these data need to be in

41



main-memory at the time of processing the route relations. For OpenStreetMap
data of the whole planet, this accounts to several hundred gigabytes of data.

• To perform our corrections on route relations, we need to build the full path of
the route from start to end. We call this a route path. A route path is a list
of nodes that represents a path through the route. As we have explained in
Section 4.3.1, it is not trivial to build a path from a route relations as their
can be multiple. The individual member ways of the route relations have to be
connected in the correct order.

To correct route ways is less complex. To obtain the full data of a route way, we only
need the data of the nodes that are referenced by the route way. Also, a route way
does not need to be built. The full path is already in the correct order, represented
by the nodes in the ordered node ids list.

As in our first tool osmelevation, we need to store intermediate results from our
corrections until we write to the output file when done. A simple elevation index
as in our first tool seems be be sufficient at first. But this approach does not work.
For example, two route ways can intersect each other at an intersection. This means
there is a node that is referenced by both route ways. When performing a correction
on both, there will be two correction results for the node in the intersection. Thus,
an ordinary elevation index that stores a single elevation for a node is not sufficient
since conflicts can occur.

4.3.3 Overview

Our second tool correctosmelevation performs corrections on the elevation data in
OpenStreetMap based on routes. In OpenStreetMap, routes are present in route
relations and route ways. We first process and correct all routes found in route
relations. We do so by splitting the route relations into routes ranges. A routes range
defines a fixed number of route relations that we process and correct at once. After
we have corrected all route relations, we correct remaining routes found in route
ways. The route ways also get corrected in routes ranges.

We perform the following corrections on route relations:

• We correct the elevation of tunnels and bridges. Nodes belonging to a tunnel or
bridge should not have the elevation of the mountain or valley the tunnel/bridge
crosses as it is the case in the uncorrected elevation data.
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Figure 12: correctosmelevation dataflow. Solid boxes represent the main com-
ponents, dashed boxes are input/output files. Solid edges represent
the dataflow, dashed edges signal repeating components. Numbered
edges indicate the order in which the input files are read. Route rela-
tions and route ways get processed and corrected in routes ranges by
the OsmRoutesRange. In each OsmRoutesRange the input OSM gets
parsed multiple times to collect all data that is needed. The route ways
get corrected after all route relations were corrected. A set Correct-
edWaysIds is used to exclude all ways that were already corrected in
route relations. These already corrected ways do not get corrected again
in route ways. Corrected elevation data for nodes get stored in the
AverageElevationIndex. After all routes were corrected in route relations
and route ways, the OsmWriter uses the corrected elevation data in the
AverageElevationIndex to update the the old elevation data in the input
OSM file.

• We apply a smoothing algorithm to all route paths that we have found in route
relations to correct fluctuations in the elevation data.

• We correct rivers. Rivers should never flow uphill. We check that this property
applies to rivers that we have found in route relations. If not, we correct the
elevation.

In route ways, we apply a smoothing algorithm to all remaining route paths that
were not already contained in a route relations.

In the last step, the output OSM file gets written, containing the corrected elevation
data. The OsmWriter rewrites the complete input OSM file. This includes all
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nodes, ways, and relations as our tool does not lose any data. When writing the
nodes, the elevation data in existing tags ele=* get updated using the data from the
AverageElevationIndex.

4.3.4 Collecting OpenStreetMap routes in routes ranges

To cope with all that data, we work off the route relations and route ways in ranges.
Our component OsmRoutesRange defines a routes range as follows: Given the original
order of all relations/ways in the OpenStreetMap data, a routes range [i, i + n),
collects the i-th to the (i + n − 1)-th route relation/route way. This happens in
one pass over all relations/ways. With the parameter n, we can specify how many
route relations/route ways we want to collect and subsequently process at once. The
OsmRoutesRange is a recurring component. In each loop, the next routes range gets
applied. For the previous example, the next routes range would be [i + n, i + 2n).
This happens until all route relations/route ways were collected and processed.

4.3.5 Storing OpenStreetMap node data

For our corrections later, we will need access to the locations and elevations of nodes.
We use a NodeIndex to store these data. On the basis, NodeIndex is a sparse index
that maps from node ids to some data. It is built exactly as the sparse index of our
first tool in 4.2.6, except that the we store Node objects in the std::vector<Node>
NodeIndex. The entries of a Node object are shown in Listing 10.

Listing 10: Node struct to store the location and elevation of a node
struct Node {

uint64_t id;
double lon;
double lat;
int16_t elevation ;

};

On the by id sorted std::vector<Node> NodeIndex, we can access the data of the
nodes using binary search.

We build the NodeIndex using the OsmNodesHandler which derives from the osmium
library Handler class. The OsmNodesHandler passes over all OpenStreetMap nodes
and collects all nodes that we specified in a set RequiredNodes.

44



4.3.6 Storing corrected elevation data for nodes

As in our first tool, we need to store corrected elevation data temporarily until the
data gets written to the output OpenStreetMap file. We use an AverageElevationIndex
to do so. This index is a sparse index and the basic concept is similar as in the sparse
index of our first tool 4.2.6. We use IdElevationAverage objects to store an average,
which can be seen in Listing 11.

Listing 11: IdElevationAverage struct to store the average elevation of a node
struct IdElevationAverage {

uint64_t id;
int32_t elevationSum ;
uint16_t count;
bool tunnelOrBridge ;

};

These IdElevationAverage objects are stored in a vector std::vector<IdElevationAverage>
AverageElevationIndex. We use the index as follows:

• Every time we want to add the elevation data for a node, we simply add a new
IdElevationAverage object to the AverageElevationIndex. For the added object,
we set elevationSum to the elevation of node and count to 1.

• Before we can access an average elevation, we need to process the AverageEleva-
tionIndex. The processing merges duplicates the following way, where duplicates
have the same id: The elevationSum and count of duplicates get summed up.
Then the merged IdElevationAverage object stores the new average.

• If tunnelOrBridge is set to true, we do not want to store an average of the
elevation for the node. When merging such an IdElevationAverage object, this
object remains unchanged, nothing is summed up.

Every time the AverageElevationIndex gets processed, we need to sort the index first
to merge duplicates. Also, before we can retrieve elevation data for node ids, we
need to sort the AverageElevationIndex.

To retrieve an elevation for a node, we use simple binary search to get the corre-
sponding IdElevationAverage object of a node. The average elevation can then be
calculated by elevationSum

count .
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4.3.7 Processing route relations in a routes range

There are several steps performed in a single routes range for route relations. In
this section, we explain what steps are taken and how they are connected. In the
following, we brake down the component RoutesFromRelations which is derived from
OsmRoutesRange as shown in the Overview:

• 1. The OsmRelationsManager performs a single pass over all OpenStreetMap
relations. At the same time, route relations that fall within the specified routes
range get collected.

• 2. The OsmRelationsManager performs a second pass, this time over all
OpenStreetMap ways. At the same time, by collected route relations referenced
ways get collected. As soon as all referenced ways of route relations are present,
the route relations directly get processed. The result of the processing are
single route paths consisting of node ids that we could find in the route relations.
While processing, we also store ways that were used in the route paths in a set
CorrectedWaysIds by id. Also, we store all used nodes in a set RequiredNodesIds
by id.

• 3. We perform a pass over all OpenStreetMap nodes with the OsmNodesHan-
dler. The OsmNodesHandler stores the nodes that were present in the set
RequiredNodesIds in the NodeIndex. The NodeIndex maps from node ids to the
locations and the elevations of the nodes.

• 4. We perform corrections on the found route paths. The NodeIndex stores all
remaining data that is needed. At the same time, we add both uncorrected
and corrected elevations of nodes to the AverageElevationIndex.

• 5. We process the AverageElevationIndex. Duplicates get merged and the index
gets sorted.

In Figure 13, the broken down RoutesFromRelations component from Figure 12 is
shown. We will present the step taken in Process route in the next section.
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Figure 13: Processing of route relations in a single routes range. Solid
boxes represent the main components, dashed boxes are input/output
files, and dotted boxes indicate a placeholder component. Solid edges
represent the dataflow. Numbered edges indicate the order in which the
input files are read. The OsmRelationsManager performs two passes.
In the first pass over all OpenStreetMap relations, route relations that
lie within the specified routes range get collected. During the second
pass over all OpenStreetMap ways, by route relations referenced ways
from the first pass get collected. As soon as all referenced ways of a
route relation were collected, the route relation gets processed. Nodes
that were used in the processing get stored in the RequiredNodesIds
set by id. Additionally, all ways that were used in the processing step
get stored in the set CorrectedWaysIds by id. After all route relations
were processed during the second pass of the OsmRelationManager, a
NodeIndex is built. The NodeIndex gets filled by the OsmNodesHandler.
The OsmNodesHandler parses all OpenStreetMap nodes. While parsing,
nodes that are present in RequiredNodesIds get stored in the NodeIndex.
With the processed route relations and the NodeIndex, the route relations
can now get corrected by CorrectRoute.

4.3.8 Processing a route relation

In this section, we look at the steps taken to process a route relation. The data for
the processing is provided by the OsmRelationsManager. This includes the data
from the route relation itself and all referenced ways. Note that we do not need the
referenced nodes of the ways yet.
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Figure 14: Output of processing of a single route relation. Solid boxes
represent the main components, solid edges represent the dataflow.
Shown is the dataflow of the processing of a single route relation. The
OsmRelationsManager provides all data from the route relation and
the referenced ways. ProcessRouteRelation extracts route paths from
the route relation. The route paths get categorized into the output
RoutePaths, TunnelsAndBridges, and River. Tunnels and bridges have
been found before with FindTunnelsAndBridges.

The processing takes place in ProcessRouteRelation and FindTunnelsAndBridges.
Before we look into the processing steps, we explain the output of the processing.
In Figure 14, the dataflow and output of is shown. As we can see, there are three
outputs:

• std::vector<std::vector<uint64_t>> RoutePaths: A list of individual route
paths that could be found in the route relation. A route path consists of the
node ids along the route path and is represented by a std::vector<uint64_t>.

• std::vector<std::vector<std::vector<uint64_t>>> TunnelsAndBridges:
A list of tunnels and bridges found in the route relation. A single tunnel or bridge
is represented by a std::vector<std::vector<uint64_t>> and separated into
three segments. Each segment is represented by a std::vector<uint64_t>
and consists of the node ids along the segment. The first segment is the
OpenStreetMap way directly in front of the tunnel or bridge. The second
segment consists of the way(s) that represent the tunnel or bridge itself. The
third segment is the way directly after the tunnel or bridge.

• std::vector<std::vector<uint64_t>> River : An ordered list of waterways
that belong to the same river. Each waterway is represented by a std::vector<uint64_t>
which represents the node ids along the waterway, ordered in the direction of
the flow. There can be multiple waterways since rivers can split up and merge
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back into a single waterway. In this case the waterways are sorted by their
time of discovery along the direction of flow.

Note that if the route relation represents a river or not, or does not contain any
tunnels or bridges, the corresponding output(s) are empty. RoutePaths are only used
for route relations that do not represent a river.

Building a graph of a route relation

The main processing step involves building a (simple) directed graph from the
ways of the route relation for later traversal. The ways from the route relation are
represented by edges in the directed graph. The endpoints of the ways of the route
relation are represented by vertices in the directed graph. The endpoints are the first
and last node ids of each way’s ordered node ids list. This produces the following
implementation of an edge in the directed graph, as seen in Listing 12:

Listing 12: struct to store a directed edge
struct Edge {

uint64_t edgeId ;
uint64_t pointsTo ;
bool reversedEdgeExists ;

};

Each edge has an unique id edgeId, which corresponds to the id of the way it represents.
The direction of the edge is signalised by pointsTo. pointsTo stores the id of the
vertex it points to. Additionally, an edge stores the Boolean reversedEdgeExists.
This indicates if the reversed edge, as explained in Section 3.5, exists.

We store the directed graph in an adjacency list std::unordered_map<uint64_t,
std::vector<Edge>> DirectedGraph. This representation maps vertices to their
outgoing edges. To add ways as edges to the undirected graphs, we have to categorize
the ways by their direction. We can accomplish this by looking at the role of the
ways in the route relation:

• role="forward": The direction of the way is identical to the ordering of the
node id list of the way. The edge representing this way points to the last node
id in the way’s node id list. reversedEdgeExists is false.
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• role="backward": The direction of the way is reversed to the ordering of the
node id list of the way. The edge representing this way points to the first node
id in the node’s node id list. reversedEdgeExists is false.

• role="": Both directions, against and in the order of the way’s node id list,
are valid. We add two edges representing one direction each. Also, we set
reversedEdgeExists to true for both edges.

We add edges as just explained for all route relations with tag type=route. For route
relations representing a river, we always add the edges as in role="forward". This is
because the ways of a river always and only point in the direction of their node ids
list ordering as this represents the flow direction of the river.

Traversing the graph of a route relation

For traversing the directed graph, we do not distinguish between type=route and
waterway=river route relations. The goal for both is the same: We want to extract
all route paths from the route relation. The route paths should be as long as possible.
This translates to finding as long as possible paths in the directed graph. Note
that a path in a graph and the route paths are not identical. A route path consists
of the individual nodes of the ways connected in the correct order. A path in our
directed graph represents the edges/ways in a correct order to connect them later.
In a subsequent step, we need to convert the edges/ways to their individual nodes to
gain the route path from the path in the directed graph.

To get paths that are as long as possible, we use a modified depth-first search7 (DFS)
algorithm. The modification we made is as follows: If there is more than one unvisited
edge available for a vertex, we prefer an edge that is set to reversedEdgeExists =
true.

As we have explained in Section 4.3.8, edges that are set to reversedEdgeExists = true
represent ways that can be traveled in both direction. On the other hand, edges set
to reversedEdgeExists = false represent ways in the route relation that can only be
traveled in one direction. By preferring ways that can be traveled in both directions,
we avoid running into very short route paths, as we found out.

We visualized this based on the earlier example of the route with multiple start and
endpoints. The visualization is shown in Figure 15. Shown is a snippet of the end of
an OpenStreetMap route relation. The directed graph of route relation is visualized
as an overlay with colors. The vertices of the graph are shown by the black dots

7https://en.wikipedia.org/wiki/Depth-first_search
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and the ids by the black numbers. There are 4 vertices with the ids 1, 2, 3, and 4.
The edges of the graph are visualized by the orange lines with the orange numbers
as their ids. The edges with ids 10, 11, 12, and 13 are present. The yellow arrows
along the edges indicate the direction of the edge.

Figure 15: Directed graph vertices and edges visualized on an Open-
StreetMap route relation. The vertices are visualized and numbered
in black by id. The edges are visualized and numbered in orange by id.
The direction of the edges is indicated by the yellow arrows. Shown is
a snippet of the end of the route relation with id 104388. Provided by:
OpenStreetMap | Map data © OpenStreetMap contributors

Since the edge marked with 11 and 12 goes in both directions, there are two edges.
Also, edge 11 and 12 are both marked with reversedEdgeExists = true, edge 10 and
13 are marked with reversedEdgeExists = false. The vertex with id 1 is a startpoint
of the route relation. Thus, when starting a traversal of the directed graph, there
are two choices for the next edge at vertex 2. Edge 13 and edge 11 are available.
Without our modification, it can happen that edge 13 gets chosen. This would result
in the path [10, 13]. Clearly, the path [10, 11, ...] is the longer path which would be
taken with our modification.

Generally, we found that if there is the choice between an edge marked with re-
versedEdgeExists = true and an edge marked with reversedEdgeExists = false, the
latter often ends in a dead end regarding the route relation. Edge marked with
reversedEdgeExists = true on the other hand, mostly are part of the main path from
start to end.
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In Algorithm 1, an implementation of the traversal of a single depth-search is
described with the modification of preferring with reversedEdgeExists = true marked
edges. Additionally, there is a set usedEdges that keeps track of priorly traversed
edges. In the queue visitAgain, we insert vertices that have to be traversed again.

Additionally, we make another modification to Algorithm 1 that is not shown. If
a traversal ends early because there was only an already visited edge available, we
continue traversing until we have traversed a specified amount of visited edges. The
already visited edges also get added to the path. We call this padding. We also pad
paths from the front. Instead of having a queue visitAgain that holds vertices, we
keep a queue of unfinished paths. When a branch with more than 1 available edge
gets encountered in the traversal, we add a path consisting of the last n, where n is
the specified padding, edges to the unfinished paths. When traversing the unfinished
path later, we start from the pointsTo vertex of the last edge in the unfinished path.
This is the vertex where the branch was encountered. This way we pad each path
from the front and back. Obviously, nothing can be padded in front of a startpoint
or after an endpoint of the graph.

With the padding, it can occur that paths yielded from traversals started from
unfinished paths were fully seen before. In this case, every edge in the path was
already contained in the set visitedEdges. If that happens, we discard the path since
the path is already covered in another path.
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Algorithm 1 Directed Graph: Traverse
Require: Directed graph dg is a map vertexId → outgoing edges,

usedEdges is a set containing already visited edges from prior traversals by id,
visitAgain is a list where vertices can be added by id
function TraverseGraph(startVertexId)

visitedV ertices← {} ▷ Empty set
path← [] ▷ Empty list
visitedV ertices.insert(startV ertexId)
currentV ertexId← startV ertex
while currentV ertexId ∈ dg do ▷ While the vertex has

outgoing edges ...
nextEdge← null ▷ Empty edge
foundPreferredEdge← false
availableBranches← 0
for edge ∈ dg[currentV ertexId] do ▷ For each outgoing edge ...

edgeUnused← edge.edgeId /∈ usedEdges
noCycle← edge.pointsTo /∈ visitedV ertices
if edgeUnused and noCycle then

availableBranches← availableBranches + 1
preferredEdge← edge.reversedEdgeExists
if not foundPreferredEdge and preferredEdge then

nextEdge← edge
foundPreferredEdge← true

else
if not foundPreferredEdge then

nextEdge← edge
end if

end if
end if

end for
if nextedge is not null then

if availableBranches > 1 then
visitAgain.append(currentV ertexId)

end if
path.append(nextedge)
currentV ertexId← nextedge.pointsTo
visitedV ertices.insert(nextEdge.pointsTo)

end if
end while
return path

end function
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Extracting all route paths of a route relation

We handle route relations with tag waterway=river and tag type=route. Depending
on which one we need to process, we use the just explained graph of the route with
some small differences. For a type=route route relations we perform the following
steps to extract all route paths:

1. Build the graph of the route.

2. Collect the first and last nodes of the route. This is the first node of the first
member way of the route, and the last node of the last member way of the
route, respectively.

3. First, traverse the graph starting from the first node id and then from the last
node id and collect the paths. The node ids correspond to the vertices in the
graph.

4. Find all other startpoints in the graph. A startpoint in the graph is a vertex
with an in-degree of zero. Additionally, vertices that have in-degree and out-
degree of one and the one incoming/outgoing edge are the reversed edges of
each other, it is also a startpoint.

5. Traverse the graph from all found startpoints and collect the paths.

6. Traverse the graph from all unfinished paths that have accumulated over the
prior traversals. The unfinished paths get traversed in the order they were
discovered. That means unfinished paths from step 3 get traversed first. Also,
traverse all newly added unfinished paths that occurred during this step.

The following additional steps take place during steps 3, 5, and 6:

1. Directly after a path was found in a traversal, we search for tunnels and bridges
in the path. Found tunnels and bridges get added to
std::vector<std::vector<std::vector<uint64_t>>> TunnelsAndBridges.

2. After the search for tunnels and bridges on a path, the path gets converted to
its route path representation. Until now, the path consisted of the edges in a
correct order. With each edge along a path, the corresponding way with its
node id list can get retrieved from the OsmRelationsManager. The individual
route paths get added to std::vector<std::vector<uint64_t>> RoutePaths.
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For river route relations, tagged with waterway=river, the same steps get performed
as for a type=route route. The only difference appears in step 3. A river can only
have one startpoint, which is the first node of the first member way. Hence we do not
traverse from the last node. Also, we do not apply any padding for rivers in unfinished
paths. For the later corrections of rivers, padding offers no advantage. The result of
the processing of a river route relation is a std::vector<std::vector<uint64_t>>
River containing the ordered route paths representing the waterways of the river.

Finding tunnels and bridges in a path

Given a path in the directed graph of a route relation, we iterate over the individual
edges of the graph. The edgeId of an edge corresponds to the way id the edge
represents. With the OsmRelationsManager, we then can access the data of the
ways. To find tunnels or bridges along the path, we are interested in specific tags. If
the following properties apply for at least three consecutive ways, we have found a
tunnel or bridge:

• There are one or more consecutive ways that are either tagged with bridge=*
or tunnel=*.

• There is at least one way before and after the bridge/tunnel way(s). Thus, the
ways before and after are not tagged with bridge=* or tunnel=*. Additionally,
the ways before and after the bridge/tunnel are not allowed to have the tags
embankment=* or incline=*. These two tags signalise some kind of ramp that
leads to the bridge/tunnel.

If consecutive ways fulfill the just explained properties, we directly convert the
edges/ways to their route path representation. We store the route path splitted in
three segments in a std::vector<std::vector<uint64_t>> as follows:

• At index 0 of the std::vector, the route path of the way before the tun-
nel/bridge is stored.

• At index 1, the route path containing of all ways that represent the tunnel/bridge
is stored. These are the ways that were tagged with textitbridge=* or tunnel=*.

• At index 2, the route path of the way after the tunnel/bridge is stored.
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4.3.9 Processing route ways in routes ranges

After all route relations were processed and corrected, we correct all remaining
route ways. That includes all route ways that were not already corrected in a route
relation. We kept track of which route ways we do not need to correct in the set
CorrectedWaysIds. We are only interested in route ways that have a tag highway=*.

There is no processing involved to extract route paths from route ways. We simply
iterate over the route ways using routes ranges and collect the route paths from ways
that are not present in CorrectedWaysIds. We use our component OsmWaysHandler
to do so. OsmWaysHandler is derived from the osmium library Handler class, as
introduced in Section 4.1.1.

A route path is represented by the node ids list of a route way. After all route
paths were collected, we build a NodeIndex containing all needed node data with the
OsmNodesHandler. With the route paths and the NodeIndex, we can perform our
corrections on the elevation data of the nodes. In Figure 16, the dataflow of the just
described process is visualized.

Figure 16: Dataflow of the processing of route ways in a routes range.
Solid boxes represent the main components, dashed boxes are input/out-
put files. Solid edges represent the dataflow. Numbered edges indicate
the order in which the input files are read. In a routes range, the
OsmWaysHandler performs a pass over all OpenStreetMap ways. Addi-
tionally to checking if a way is in the specified routes range, it is also
checked that a way is not present in the set CorrectedWaysIds. If not, a
route path is simply created from the way’s ordered node ids list. After
all route paths in a routes range were collected, a NodeIndex is built
by the OsmNodesHandler. Corrections on the elevation can now be
performed.
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4.3.10 Correcting elevation data with route paths

In this section, we explain how we perform corrections on elevation data in the
OpenStreetMap based on route paths. The route paths were before collected and
processed from relations and ways. To perform the corrections, we need the route
paths itself, a NodeIndex where the location and elevation data of the nodes can be
retrieved, and the AverageElevationIndex to store the results.

We use three types of corrections, based on the type of the route paths. In the
following sections, we introduce the types of corrections one by one.

Correcting a tunnel or bridge

In our correction process, we do not differentiate between a tunnel and a bridge. For
both, we assume that the elevation data along the tunnel/bridge section is either
incorrect or not available. The elevation data of the nodes along a tunnel/bridge
should represent the elevation of the road itself that uses the tunnel/bridge to bypass
an obstacle. But for a tunnel, this incorrect elevation data can correspond to the
elevation of a mountain the tunnel crosses, for instance. The same applies to a road
using a bridge to cross a deep valley.

The input of the correction is as already explained in Section 4.3.8 a
std::vector<std::vector<uint64_t>> TunnelOrBridge that stores the follow-
ing:

• TunnelOrBridge[0]: The route path directly in front of the tunnel/bridge
segment.

• TunnelOrBridge[1]: The route path that represents the complete tunnel/bridge
segment.

• TunnelOrBridge[2]: The route path directly after of the tunnel/bridge segment.

For our correction, we assume that the route paths in front of and after the tun-
nel/bridge have correct elevation data. We make use of this by spanning a 3-
dimensional plane between a point on the route path in front of and a point on
the route path after the tunnel/bridge. To obtain corrected elevation data for the
tunnel/bridge section, we simply sample z-coordinates from the plane using the
x-y-coordinates of the nodes locations. Before we can go into detail on how we do
this, we need to build some data for the route paths nodes.
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The data is extracted from the NodeIndex which stores node ids mapped to the
locations and elevations of the nodes.

• std::vector<std::vector<Coordinate>> NodeCoords: Stores the coordi-
nates by longitude and latitude of each node along the three route paths
of the tunnel/bridge. NodeCoords has a size of three. For example, for the node
TunnelOrBridge[1][0], which is the first node of the tunnel/bridge segment,
the location can later be retrieved with NodeCoords[1][0]. The locations can
simply be retrieved from the NodeIndex.

• std::vector<std::vector<double>> Elevations: Stores the elevation of each
node as retrieved from the NodeIndex. They can be accessed in the same way
as we explained for NodeCoords.

With the NodeCoords and Elevations we can start spanning the plane. We first
need a start and endpoint of the plane. For this we define tunnel/bridge start
as the first node TunnelOrBridge[1][0] and tunnel/bridge end as the last node
TunnelOrBridge[1][−1] of the of the tunnel/bridge section. We then choose the
plane start and plane end as following:

• The plane start is the first node in TunnelOrBridge[0] that has a distance of
more than 30 meters from tunnel/bridge start. The distance is measured along
the route path of TunnelOrBridge[0].

• The plane end is the first node in TunnelOrBridge[2] that has a distance of
more than 30 meters from tunnel/bridge end. The distance is measured along
the route path of TunnelOrBridge[2]. We use an approximation haversine
approximate of the haversine formula8 to calculate the distances along the route
paths.

We want to obtain the parametric form of the plane which can be transformed to
obtain the z-coordinate given x- and y-coordinates. The elevation of plane start
and plane end can be retrieved from Elevations. Then, the longitude represents the
x-coordinate, the latitude represents the y-coordinate, and the elevation represents

8https://en.wikipedia.org/wiki/Haversine_formula
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the z-coordinate of the plane start and plane end. Thus,

startV ector = (plane start lon, plane start lat, plane start elevation) (9)
endV ector = (plane end lon, plane end lat, plane end elevation) (10)

directionV ector1 = endV ector − startV ector (11)
directionV ector2 = (−1 · directionV ector1.y, directionV ector1.x, 0) (12)

planeNormalV ector = directionV ector1× directionV ector2 (13)
d = −1 · (planeNormalV ector · startV ector) (14)

directionVector2 is parallel to the x-y-plane and normal to directionVector1. d
is obtained by solving the linear equation ax + by + cz + d = 0 where a, b, c are
the coordinates of the planeNormalVector and x, y, z are the coordinates of the
startVector.

With this, we can create the formula

z = −d− planeNormalV ector.x · x− planeNormalV ector.y · y
planeNormalV ector.z

(15)

to obtain the z-coordinate for given x-y-coordinates.

Using this formula (15), we can directly plug in longitude-latitude coordinates to get
the elevation for a point in the tunnel/bridge section. We do this for all nodes of the
tunnel/bridge section.

To store the results of the sampled elevation data from the plane, we add the sampled
data to the AverageElevationIndex. Additionally, we update the elevation entries in
the NodeIndex of the nodes that are in the tunnel/bridge segment. We will see in
the next section why we do this.

Smoothing of route paths

The second type of corrections we perform is to apply is smoothing algorithm.
We apply this to all route paths except for rivers. The route paths come from
route relations and route ways. The input for the smoothing is a single route path
represented by std::vector<uint64_t> RoutePath.

As in the correction of tunnels and bridges, we first need to extract some data from
the NodeIndex:
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• std::vector<Coordinate> NodeCoords: Stores the coordinates by longitude
and latitude of each node along the route path. For example, the coordinate
of the 6-th node along the route path can be extracted with NodeCoords[5].
NodeCoords[1][0]. The location data are retrieved from the NodeIndex.

• std::vector<double> Elevations: Stores the elevation of each node as re-
trieved from the NodeIndex. They can be accessed in the same way as we
explained for NodeCoords.

• std::vector<double> Distances: Stores the distance in meters from each node
along the route path to the first node in the routepath. For example, Distances

can start with [0, 5, 15, 20, ...]. This means the second node has a distance of 5
meters from the first node. The fourth node has a distance of 20 meters from
the first node. We build these distances by using the haversine formula9.

We use the simple moving average for unevenly spaced time series as the smoothing
algorithm. We have presented this algorithm in Section 3.4. The algorithm asks
for a sequence of strictly-increasing observation times T (X) = t1, ..., tN(X), and a
sequence of observation values V (X) = X1, ..., XN(X). We can directly use Distances
as the sequence of observation times and Elevations as the sequence of observation
values:

T (X) = t1, ..., tN(X) = Distances (16)
V (X) = X1, ..., XN(X) = Elevations (17)

We use a two-sided rolling window with a window width of 30 on both sides. This
means we smooth each node’s elevation along the route path using other nodes that
are within distance 30 meters. We chose this rather small window size of 30 meters
because we want to smooth short-term fluctuations only. Eckner [3] also provides an
implementation in form of a C library on Github10 of his presented simple moving
average algorithm. We use this library in our implementation.

A shortcoming of this approach are the first few and last few observation val-
ues/Elevations values. Especially the first and last value get biased towards the
trend of the subsequent and prior values, respectively. The first Elevations value
does not have prior values available, thus only subsequent values will be used. If the
corresponding route path is on a slope, the first smoothed value will be too high in
comparison, the last value will be too low. This is the reason we try to extract route

9https://en.wikipedia.org/wiki/Haversine_formula
10https://github.com/andreas50/utsAlgorithms
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paths that are as long as possible in the processing of route relations. The longer the
route paths are, the less these biased first and last smoothed values can occur.

We store the smoothed elevation data in the AverageElevationIndex. The reason
we stored the corrected elevation data from the tunnel/bridge corrections from
Section 4.3.10 in the NodeIndex is as follows: We always perform the corrections on
tunnels/bridges first. Bridges and tunnels were extracted from route paths that also
get smoothed. This way the route paths containing the tunnels/bridges have access
to the already corrected elevation data. If we would store the corrected elevation
data of the tunnels/bridges only in the AverageElevationIndex, we would access the
uncorrected elevation data. The result would be worse.

Correcting rivers

For rivers that we could find in route relations, we make sure that the rivers do not
flow uphill. From the origin of the river onwards, the elevation of the nodes along
the route paths should not increase.

A river is given as std::vector<std::vector<uint64_t>> River. A river can
consist of multiple route paths. This happens if the river has side streams that split
up from the main stream at some point. Side streams can also flow back into the
main stream. The origin of the river is always contained in the first route path and
represented by the first node, thus River[0][0]. Any subsequent route paths River[1],
River[2], River[3], ... in the river are sorted by their time of first discovery.

To perform the corrections, we build the following data:

• std::vector<std::vector<double>> Elevations: Stores the elevation of each
node as retrieved from the NodeIndex. The indices from River applied to
Elevations yield the elevation for the nodes.

• std::unordered_map<uint64_t, RiverNode> RiverNodes: Stores all nodes of
all route paths. Maps from the ids of the nodes to additional data. RiverNode
stores the elevation of the node and a set std::set<size_t> RoutePaths.
RoutePaths stores in which route paths the node is present by the index of the
route path in River. Corrections in the elevation get stored in the RiverNode.

In Listing 13, the struct RiverNode is shown.

Listing 13: RiverNode struct to store the elevation and all route paths of the node
struct RiverNode {
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int16_t elevation ;
std ::set <size_t > RoutePaths ;

};

The trivial case represents a river that has a single main stream and no side streams.
In this case it is sufficient to iterate over the nodes of the single route path and simply
check if the current node’s elevation is not higher than the prior node’s elevation.
But if there are multiple streams splitting and merging back together, hence multiple
route paths, multiple passes over the route paths are necessary.

To cope with more complex cases, we iterate over the route paths until no more errors
in the elevation were found. We use a set std::set<size_t> CorrectAgain to keep
track of route paths that we need to check and correct again. We use the RoutePaths
set in RiverNode to know all route paths the node is part of. If a correction was
made to a node, all route paths in the RoutePaths set of the node are added to
CorrectAgain and subsequently get checked again.

After no more errors could be found, the corrected elevation data gets stored in the
AverageElevationIndex.

4.3.11 Runtime

We do not provide a detailed asymptotic runtime analysis of our second tool correc-
tosmelevation. The runtime is dependent on the following two aspects, similarly as
in our first tool:

• The number of route relations and route ways in the input OpenStreetMap
file. The route ways have a lot more influence on the runtime as there are a lot
more. The processing and correcting of route paths is linear in the total count.

• The amount of main-memory that is available. For our second tool, this
is even more important than in our first tool. With more memory, we can
decrease the number of routes ranges to cover all OpenStreetMap routes. This is
important because in an OsmRoutesRange, there are non-linear data structures
involved, mainly the sorting of the NodeIndex and AverageElevationIndex each
OsmRoutesRange.

As for our first tool, the read and write performance of the osmium library benefits
our second tool a lot.

62



In Table 6, a short example of the runtimes with of different input OpenStreetMap
sizes is shown.

germany planet

runtime tool 4 minutes 102 minutes
runtime writing output OSM 4 minutes 61 minutes
maximum used main-memory 9GB 95GB

Table 6: Runtime of different input OpenStreetMap sizes of our tool
correctosmelevation. Run on machine with AMD Ryzen 7 3700X 8-
Core/16-Threads and 128GB Ram. Data was read from and written to
2TB NVME Samsung 970 Evo+.
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5 Experiments

In this section, we shortly present our results of using correctosmelevation. We
compare the elevation data from our first tool with our second tool.

5.0.1 Results of our corrections on routes

In Figure 17, the uncorrected and corrected elevation profile of the Gotthard Base
Tunnel1 is shown.
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Figure 17: Uncorrected and corrected elevation profile of the Gotthard
Base Tunnel. Plot generated from data of the OpenStreetMap ways
410992902, 646970587, 646970586, 199658003, 733561106. The dots
represent the nodes along the rails. Our tool osmelevation was used the
to add the elevation data to OpenStreetMap. © OpenStreetMap contributors

This tunnel is a newly constructed railway tunnel. The tunnel has a length of around
57 km. In blue, we can see the uncorrected nodes along the railway. Uncorrected,

1https://en.wikipedia.org/wiki/Gotthard_Base_Tunnel
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they represent the elevation of the mountain surface, the profile of the mountain. As
for the elevation data from the NASA Digital Elevation Model (NASADEM), this is
correct. But we want to represent the elevation of the map feature with the nodes
elevation, in this case the railway which goes through the mountain. With our second
tool correctosmelevation, we can correct this. As seen by the red marked nodes, our
corrected elevation data for the nodes is more plausible for the railway.

In the introduction, we showed an elevation profile of a bridge.

Figure 18: Uncorrected and corrected elevation profile of road crossing a
bridge over a valley. Plot generated from data of the OpenStreetMap
ways 403909403, 320517373, 320517370, 24625636, 24625669. The dots
represent the nodes along the road. Our tool osmelevation was used the
to add the elevation data to OpenStreetMap. © OpenStreetMap contributors

We use this example again, as shown in Figure 18. For a bridge, the exact opposite to
a tunnel happens. As we can see in the blue uncorrected elevation data, the elevation
of the deep value is used by our first tool. Our second tool successfully corrects this.
The corrected elevation proceeds as expected for a bridge.

66



6 Conclusion

Our tool correctelevation provides a simple way to enrich the complete OpenStreetMap
data with elevation data. The elevation data can be taken as a basis to develop other
tools that benefit from elevation data.

With our second tool correctosmelevation, we also provide a first use case for the
elevation data in OpenStreetMap. We perform corrections on the elevation data we
added before. Especially in tunnels and bridges, we can see good improvements with
our corrections.
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