Fine-Grained Population Estimation

Simon Weidner

Chair of Algorithms and Data Structures

Albert-Ludwigs-University, 2015

Introduction

Estimation of population numbers

Using environmental information

OpenStreetMap as data set

OpenStreetMap

■ Free editable map of the world

Three structures: Nodes, Ways, Relations

 Map Features represented by key value pairs

Problems with the OpenStreetMaps data

■ Varying quality

Misuse of Map Features

■ Incomplete data

Our Approach

- Extracting the OpenStreetMap data
 - Extracting information
 - Preparing information
- Improving the underlying data
 - Area classification
 - Building classification
- Predicting population numbers
 - Distribute census data among building
 - Use machine learning

Data Extraction

Fix misshaped buildings

Connect information from Nodes to buildings

Find informations about the location of a building

Area Classification

Idea

Distinguish between different types of areas, especially between residential and non residential

- Area describing Map Feature: Landuse
- Not all buildings are within an area with a specified Landuse
- Use Machine Learning to compensate

Area Classification

Classify with logistic regression

■ Two groups of buildings

- Find properties describing a certain type of area
 - Map Features in residential areas: Schools, playgrounds and parks
 - Map Features in commercial areas: Craft producers, shops

Building Classification

Idea

Distinguish between different types of buildings by population density

- Three categories: Non residential buildings, single family houses and apartment buildings
- Separate residential from non residential buildings
- Further split residential buildings into single family and apartment buildings

Building Classification - Residential or not

- Classify with logistic regression
- Use Map Features and residential areas to generate the samples
- Use properties describing certain type of area a building resides
 - Map Features as: Schools, playgrounds, parks, leisure facilities, craft producers, shops and more
- Use the type of area where the building resides

Building Classification - Single Family or Apartment Building

- Classify with logistic regression
- Use Map Features to generate samples
- Use the same Map Features as in the last step
- Search for Map Features in multiple ranges
- Use the buildings size

Population Estimation

Goal

Find population values for particular buildings

OpenGeoDB provides population values

Distribute the population among buildings

Estimate the remainder with logistic regression

Population Distribution

Distribute population values among all buildings of a certain area

$$\textit{Population(i)} = \frac{\textit{weight(i)} \cdot \textit{area(i)}}{\sum_{b \in \textit{buildings}} \textit{weight(b)} \cdot \textit{area(b)}} \cdot \textit{totalPopulation}$$

Weight is determined by the buildings location, its type and its purpose

Population Estimation

- Predict with linear regression
- Map Features as shops, supermarkets, parks, leisure facilities
- Features of the building as its size and if there is some facility or a shop within
- Previously obtained information as type of the area and type of the building

Evaluation

- Area Classification
 - 87% coverage in the OpenStreetMap
 - 83% precision
- Building Classification Residential or non Residential
 - 78% of all buildings are classified before learning
 - 90% precision
- Building Classification Single Family or Apartment Building
 - Only 6% of all buildings are classified before learning
 - 91% of all residential buildings are single family houses
 - 66% of all residential buildings should be single family houses

Evaluation

- Population value fits for Germany as a whole
- In most instances too high population numbers
- Results for regions of different sizes
 - Average error of 27% for large cities
 - 31% for medium sized and small cities
 - 29% for villages and urban districts
- All results are within the factor two of the optimum

Evaluation

- Hamlets and villages are populated
- Buildings within industrial and commercial areas are almost never populated
- Multi-part buildings are often partly populated
- Lack of apartment buildings, especially in villages
- High-rise buildings have too low population numbers
- Population numbers for single family houses fit