
Bachelor Thesis

Polar - a Centralized Digital
Participation Platform for Political

Groups and Organizations.

Simon Bärmann

Gutachter: Prof. Dr. Hannah Bast
Betreuer: Patrick Brosi

Albert-Ludwigs-Universität Freiburg

Technische Fakultät

Institut für Informatik

Lehrstuhl für Algorithmen und Datenstrukturen

07. Februar 2024

Bearbeitungszeit

09. 11. 2023 – 09. 02. 2024

Gutachter

Prof. Dr. Hannah Bast

Betreuer

Patrick Brosi

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my thesis has not been prepared for another examination

or assignment, either in its entirety or excerpts thereof.

Place, Date Signature

i

Freiburg im Breisgau, 07.02.2024

Abstract

Political groups and organizations, in particular small ones, struggle with using

technology for their political practice. Incomplete email lists or Facebook groups

often define which member has access to group-related information. Internal elections

are still frequently conducted in person or with insecure tools only. We present Polar,

a centralized solution for digital participation, and Eos, a transparent and secure

election service. Polar provides functionality for the typical workflows of political

groups, such as secure chat rooms (through Matrix integration), motion creation and

discussions and an event system. It is integrated with Eos to perform secure elections,

making use of Polar’s single-sign-on functionality. To validate the conception of both

applications, we evaluate Polar and Eos through a user study, which resulted in

predominantly positive feedback.

iii

Zusammenfassung

Politische Gruppen und Organisationen scheitern häufig daran, ihre Arbeit effizient

und effektiv ins Digitale zu verschieben. Häufig verwenden sie datenschutzrechtlich-

fragwürdige Anbieter, um die Kommunikation mit einem (unvollständigen) Teil der

Mitglieder zu ermöglichen. Wahlen werden entweder gar nicht oder mit unzureichend

sicheren Tools im Internet durchgeführt. Als Antwort auf dieses Problem stelle ich in

dieser Arbeit eine Softwarelösung bestehend aus zwei Programmen vor, die sowohl eine

digitale Partizipationslösung als auch eine sichere Platform zum Wählen bieten: Er-

stens, die Platform Polar (’Politische Arbeit’), die es politischen Gruppen ermöglicht,

gemeinsam Anträge zu sammeln und zu bearbeiten, Events zu teilen, miteinander zu

kommunizieren und sich bei anderen Diensten mit ihrem Polar-Account anzumelden.

Zweitens, Eos (’Election Online Service’), mit dem sichere und verifizierbare Wahlen

durchführbar sind. Dabei werden die Stimmen mit dem Eos Ver- und Entschlüs-

selungsprotokoll verschlüsselt, welches so konzipiert wurde, dass es von möglichst

vielen Menschen verstanden werden kann. Eos unterstützt Drittpartei-Trustees, die

sicherstellen, dass selbst korrupte Teilnehmer am Entschlüsselungsverfahren die In-

tegrität nicht gefährden können. Mittels einer Nutzerstudie wurden die beiden Tools

evaluiert. Diese Studie kam zu dem Ergebnis, dass beide Tools für Engagierte im

politischen Kontext sehr relevant sind und sich die Studienteilnehmenden vorstellen

konnten, die Software zu verwenden.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 1

1.3 Approach . 2

1.4 Structure of this Work . 3

2 Related Work 5

2.1 Digital Voting Systems . 5

2.2 Digital Participation Tools . 7

3 The Apps 11

3.1 Polar . 11

3.1.1 The Motion Process . 12

3.1.2 Chats . 16

3.1.3 Events . 17

3.1.4 Single-Sign-On Provider (SSO) 19

3.1.5 Elections . 19

3.2 Eos . 20

3.2.1 Encryption and Trustees . 22

4 Theoretical Analysis 25

4.1 The Architecture . 25

vii

4.2 Eos . 26

4.2.1 En- and Decryption Protocol 26

4.2.2 Setup Trustee Protocol . 34

4.2.3 AuthPartners . 35

4.3 Polar . 37

4.3.1 Events Close to You . 37

4.3.2 Motion Mood . 38

4.3.3 Fuzzy Search . 39

5 Evaluation 43

5.1 Scenario Setup . 44

5.2 About the Participants . 44

5.3 User Interface and Experience . 45

5.4 Eos . 46

5.5 Polar . 47

6 Limitations 51

6.1 Attacking Eos . 51

6.1.1 Corrupt Server . 51

6.1.2 Corrupt Clients . 54

6.1.3 Corrupt Trustees . 55

6.1.4 Flooding Eos . 55

6.1.5 Quantum-safe Encryption . 57

6.2 Eos Limitations . 58

6.2.1 Ballot Size and IDs . 58

6.2.2 Missing Features . 58

6.2.3 Maximum Amount of Voters per Election 59

6.2.4 Limit and Offset . 60

6.2.5 Timezone Mixture . 60

viii

6.3 Polar Limitations . 61

6.3.1 Motion Limitations . 61

6.3.2 Event Limitations . 62

6.3.3 Chat Limitations . 62

6.3.4 Missing Features . 63

6.4 User Study . 64

7 Conclusion 65

Bibliography 69

8 Appendix 71

8.1 User Study Survey . 71

ix

1 Introduction

1.1 Motivation

When the Covid pandemic brought the world to a standstill in 2020, political orga-

nizations and groups were strongly affected and suddenly had to move their work

online. These groups had to find ways to communicate with each other. They often

turned to video chat services like Zoom or Jitsi, messaging services like Telegram

or Signal, or Email distribution lists to stay in contact. Still, many of these groups

were often overwhelmed by this, as can be seen in the example that political groups

were very soon exempted from the contact restrictions and curfews for their work, at

least in Germany. Digital solutions for essential tasks of political organizations and

groups should and neither can replace personal collaboration, but well-thought-out

approaches can facilitate digital and offline work not only in times of a pandemic.

1.2 Objective

The objective of this thesis is to present a software solution that attempts to solve

this problem. This software should offer suitable functionality for the essential tasks

of political groups and organizations. These include the procession of motions (to

create resolutions, compile electoral programs), intra-organizational communication

among members, the collection and sharing of events, and the conduction of (secure

and verifiable) elections. This software solution then is to be evaluated by externals

1

in the form of a user study in order to understand whether the software solution

meets the requirements of political groups and whether the apps appeal to users.

1.3 Approach

In this thesis, we present two applications designed to simplify and centralize the

internal work of political groups in the digital space. Eos (’Election Online Service’)

is an app to conduct encrypted and verifiable elections. Polar (’Politische Arbeit’) is

an app for political organizations to centralize and digitalize their workflow. Polar

provides the functionality for collaborative collection and processing of motions, for

collection and sharing of events and for chatting with other members. It can also

be used as a Single-Sign-On provider, which means that users can use their Polar

account to login at other services (like Eos or NextCloud).

Eos and Polar use the same underlying frameworks and languages. Both are sep-

arated in server (backend) and client (frontend) software. The backend is written

in Python 3.11 and the frontend is written in Dart. Both backends use FastAPI

[1], a “modern, fast (high-performance), web framework for building APIs”. Both

use SQLalchemy [2] as their object-relation mappers (orm) framework, allowing a

’high-level abstraction’ [3] of and access to the data in the relational databases. Both

FastAPI and SQLalchemy are commonly used and well-tested frameworks, making

them a reliable choice as core frameworks. The frontend uses Flutter [4], a relatively

new framework which allows to develop for mobile, web and desktop environments

on a single code base.

The idea behind the conception of Eos and Polar as two separate applications is that

Eos could be used outside the scope of political work. As a standalone application it

is thus available to more users.

We evaluate the applications by conducting a user study in which the participants

were allowed to test the apps live while the conductor guided them through the

2

different features and asked them survey questions in the process. In this study the

apps were rated highly for their design and user experience. The vast majority of

study participants trusted Eos. Polar’s features were consistently described as useful

and necessary. All politically active participants could imagine using Polar in their

organizations.

1.4 Structure of this Work

In Chapter 2 we will take a look at related work on both the question of secure

elections as well as software solutions for digital political participation. Then, in

Chapter 3, we will look at an overview of the features and concepts driving Eos and

Polar. In the following theoretical analysis (Chapter 4), we will pay a closer detail to

algorithms like Polar’s close event algorithm, the Eos’ en- and decryption protocol

and others.

Following this chapter, in Chapter 5, the apps will be evaluated using the conducted

user study. Then we will take a look at the limitations of both apps, and analyze

ways Eos could be attacked. See Chapter 6 for this. Further, we will comment on

future work that needs to be done to enrich both apps. Finally, in Chapter 7, we

will conclude in final remarks on both Eos and Polar and decide whether or not the

objective of this work was met.

3

2 Related Work

In this chapter, we will take a closer look on existing concepts and software solutions

for (secure) digital voting systems and for digital participation.

2.1 Digital Voting Systems

Helios Voting is a paper and a software solution focused on ’open-audit voting’ [5].

Open-audit means that it enables everyone to verify the election. It introduces

the following concepts to make online elections secure and verifiable: Helios allows

everyone to fill out a ballot, encrypt it and analyze this encryption. Authentication is

only required for the actual casting of votes. For the verification of the own encrypted

ballot, all necessary secrets are displayed to the user so that these can be copied into

third-party tools to ensure the correctness of the encryption process. The proposed

encryption protocol was based on shuffle-encryption [5], but later was changed to an

homomorphic encryption protocol [6]. Homomorphic encryption protocols have the

advantage that a single ballot never has to be decrypted as homomorphic encrypted

ballots (if encrypted correctly) can simply be added together arithmetically in their

encrypted state and then be decrypted correctly as one. Helios keeps track of who

the owner of an encrypted ballot is to make sure that no one votes twice and releases

a ’fingerprint’ with which the user can track their vote in the tally [5]. Helios is

still available on the internet (https://vote.heliosvoting.org) and over two

million votes, from around the world, were cast using their system. In their paper the

5

https://vote.heliosvoting.org

authors argue that only one trustee (the Helios server itself) is necessary to ensure the

integrity of the election. They argue that even a fully corrupt Helios server could not

fool everyone to believe that the results of a faked tally are actually correct. Because

a tally is fully auditable, corrupt administrators could not fake the election results

without experts being able to detect their malicious access [5]. Today, Helios supports

multiple trustees ensuring the integrity of an election. Homomorphic encryptions can

be used to decrypt the sum of all encrypted ballots, but homomorphic encryptions

still allow for any vote to be decrypted directly. If the helios server has access to all

secrets needed, for example when no trustee is present or if all trustees are corrupt,

the vote of a voter still can be decrypted directly.

Next to Helios there are multiple commercial online election services available. These

are usually only available to users after a one-off purchase or subscription, connecting

their prices to the expected amount of voters for elections. The main target group

for such services are companies. Tools like nemovote [7] and electionbuddy [8] or

electionrunner [9] offer such services but neither one of them releases how they exactly

encrypt their cast votes. This is as if voters would throw their ballot into a hole in

the wall, not being able to see what the people behind the wall are doing to the ballot.

electionrunner and nemovote also offer features for admins to see the results of an

running election live. electionrunner states that they only update this list every one

to five minutes to make sure that no one can see that ’Voter A has voted and then

sees that Candidate C’s vote count increased by 1’. This means that the secret of the

election on electionrunner actively depends on at least two votes being cast within

periods randomly selected by the server, whereby both votes must not be identical so

that it is not possible to determine beyond doubt what the voter voted for.

There are other tools like STARvote [10] which focuses on secure electronic voting

systems. These are used for in-person voting. Electronic voting systems usually

consist of dedicated machines only on which the voting procedure can be performed.

Electronic voting is used in multiple countries around the world even for (very)

high-stake elections like in the United States for the presidential election. Particularly

6

during the last U.S. presidential election, the use of voting machines fell into disrepute,

especially as they were stigmatized as insecure by those who did not want to accept

their defeat [11].

Digital voting systems exist for both in-person elections as well as for online elections.

These online election services feature different designs, where some are very transpar-

ent and some not so much on how they encrypt the votes of the users. Helios has

introduced many important concepts for the verifiability of online elections, but the

encryption process is not necessarily understandable for the non-expert. Without the

decryption of each vote, users must rely on mathematical proofs like zero-knowledge-

proofs, with which the voters could be convinced that their vote was respected in

the tally. It is open for discussion whether zero-knowledge-proofs really convince the

non-experts on this matter.

2.2 Digital Participation Tools

Digital participation tools started with basic online forums. Nowadays they are

used in municipalities, political parties and groups. One of the famous tools is

LiquidFeedback [12] which was used in the German Pirate Party. This tool belongs

to the group of “democrative delegative tools” because it does not only feature a

grassroots approach to organize the party, but also allows members to delegate their

vote to someone else. LiquidFeedback prominently features the ability of collecting

motions in a four-step process lasting several weeks. Everyone can participate and

vote on the adoption of the motion, but if wanted, they can also delegate their vote

to someone they think would make a more profound decision. This could be members

of a group inside the party focusing on the topic the motion is discussing about.

A delegated vote increases the weight of the ’experts’ vote [12]. LiquidFeedback’s

voting system does not encrypt votes. It saw a big rise in users during the ’highs’ of

the Germans Pirate Party, with 10.000 active users in months prior and following

7

important elections and successes. But with the decline of the Pirate Party also the

interest in this tool vanished. The federal organization of the party does not use

LiquidFeedback anymore.

The open-source software adhocracy [13] by the German ’Liquid Democracy e.V.’

(not affiliated with LiquidFeedback) is used by the Berlin city government as an

offer for public participation. ’mein.berlin.de’ is a fork of adhocracy used to share

information by the Berlin administration and for citizens to contribute their own

ideas and suggestions for the city. The tool collects ideas for projects created by

the administration all around Berlin. The citizens can suggest and discuss ideas,

with over 76.000 ideas and comments already shared. The ideas are used to fuel

decision-making in the administrative and in the legislative bodies of the city. This is

also a form of grassroots participation platform [14].

Almost all big democratic parties in Germany use OpenSlides [15], an open-source tool

to support in-person party conventions or assemblies by allowing hybrid participation.

It is a web application to manage assemblies by providing features for managing the

agenda, motions and elections of an assembly. Delegates do not have to be personally

present in the assembly to participate in elections or submit amendments during

the convention. Non-encrypted anonymous and personalized elections can be held

digitally, allowing immediate tallying and live results for elections on motions and

personnel during the convention. The feature to assemble a list of speakers during the

ongoing assembly allows for a regulated discourse. Motions can be collected prior to

the assembly and an agenda can be compiled that incorporates the motions received.

OpenSlides is designed to be used per assembly. There is no real contingency between

assemblies. Once an assembly is over, OpenSlides hibernates till the next assembly is

on the horizon.

We can see that there is a variety of digital participation tools. They have multiple

things in common. First, if they allow to vote on something, these votes are not

encrypted. Even if they claim anonymous votes, a simple lookup in the database

would revoke all secrecy. Second, the apps usually focus on one specific use case. But

8

the work of political groups does not end with assemblies and is not solely focused on

motions. A digital participation platform that unifies the day-to-day tasks of political

groups is therefore still missing, while existing solutions provide good inspiration on

what such a tool should support.

9

3 The Apps

3.1 Polar

Figure 1: The logo of Polar representing the four features (motions, events, chats,
SSO).

To summarize the concept of Polar, imagine it as a permanent online party convention.

Party conventions are usually limited in time. They are representative through

delegates and focus on a specific topic (for example, the determination of the election

program for an upcoming election or the nomination of candidates). They usually

consist, when looking at them in a procedural manner, of debates and motions.

Motions are usually linked to the topic of the convention, and are debated on.

Motions can receive amendments and on these amendments and the general adoption

of the motion will be voted on by the delegates of the party convention. But party

conferences also consist of informal discussions between delegates, which are not part

of the formal organization of the convention.

Many internal organizational processes resemble this pattern, regardless of whether

the political organization is a large national party or a small local association of a club

of bicycle advocates, that just wants safer cycle lanes. They all have topics on which

they have to make resolutions on. But to translate this workflow by copying it into the

11

digital space would render invisible the advantages a digital system could offer. Rather

than forcing members to sit in front of their device for a whole weekend, we propose

to disintegrate the process in longer phases, a permanent online party convention

enabling all members to participate. This idea is influenced by LiquidFeedback [12].

A disintegrated process allows members of Polar to engage whenever they have the

time, be it on their way to work or in the evening at home. Polar summarized as a

question could be understood as: ’What if we turn party conventions into a social

media-like app?’.

3.1.1 The Motion Process

(1) Draft

(3) Quorum phase

(4) Deliberation phase

(6) Negotiation phase

(2) Draft validation phase

(5) Post-deliberation validation phase

(7) Post-negotiation validation phase

(8) Election phase

Rejected Adopted

Rejected manually

Quorum failed
Failed election

Phases can be skipped.

Figure 2: Illustration of the different phases of a motion. The order is not finally
given, admins can set the phase of the motion freely, even if it already
passed this phase before.

Polar allows to group motions in MotionGroups, they can be stacked and reach

unlimited depth. Each MotionGroup has a MotionRules object, which defines which

phases a Motion (in this group) usually goes through, how long these phases are and

which obstacles a motion needs to pass. MotionGroups can share one MotionRule,

12

meaning that for various groups one ruleset is valid.

The aim of a motion for a political organisation or group is to accumulate in a

resolution, be it an electoral program of a political party or a resolution of the local

student council. In the following, the process shall be explained using an imaginary

context of a student council using Polar to allow all students enrolled in the university

to participate in the democratic process.

If a student now proposes a motion which calls for the introduction of an evening

canteen, this motion runs through different phases (as shown in Figure 2 and illus-

trated using screenshots in Figure 3). The motion process uses ideas also used in

LiquidFeedback [12].

1. Draft phase: Motions in this phase can still be edited by the student. The

student sets a proposal and a description/explanation why they propose this

motion. Once the student is finished with this, he can submit the motion.

Motions in this phase are not featured to other users, but they could access

them if they have the unique id of the motion.

2. Draft validation phase: The motion council (Polar users with the special

right to edit motions) can decide on whether to allow this motion or not.

3. Quorum phase: If the MotionRule allows this phase, the motion now is

looking for endorsers. Members can see the motion and endorse it, if they like

it or want it to be dealt with. The MotionRule defines how many endorsers a

motion needs to pass the quorum. In our context this means, if other students

find this motion important, they can endorse it.

4. Deliberation phase: Once a motion passed the quorum phase it reaches

the discussion phase, where members can discuss on the motion by creating

comments. These comments contain a mood (from −2 to +2, where 0 means

neutral), allowing them to display how supportive they are with the motion.

13

(a) The Polar main screen
themed for the StuRa.

(b) Motion in deliberation
phase.

(c) An endorsed motion in
the quorum phase.

(d) The discussion section of
a motion.

Figure 3: Different screens of the Polar client on an Apple iPhone 15 Pro Max.

14

Polar calculates an overall mood for the motion out of these top-level comment

moods, also respecting the amount of likes each comment gets (this is possible

as Polar accounts are linked to one user only, meaning there is no distortion

through bots). For more on this, check out Chapter 4.3.2. During the discussion

phase, a motion can also collect amendments, and these amendments contain a

proposal (what to change of the motion) and a description as well. Another

student could, in our example, submit an amendment which adds a passage to

the proposal of the motion that the canteen should always offer vegan options

in the evening.

5. Post-deliberation validation phase: Once the discussion phase is over,

the motion council can edit or group amendments (respecting the rules of the

organisation), conduct prior negotiations between amendment applicants to

summarize them with the aim to reduce the total amount of amendments.

During this phase, the motion council is presented with tools to automatically

create the election on the integrated election service (Eos).

6. Negotiation phase: the negotiation phase exists to allow members to vote on

the adoption of the amendments through Eos.

7. Post-negotiation validation phase: The motion council checks the results

posted on Eos and adapts the proposal of the motion with all adopted amend-

ments. Polar provides tools to automatically create the final election on Eos.

8. Election phase: The members can vote on the adoption of the Motion on Eos.

Once the election results are available, the motion is either adopted or rejected.

If the motion is adopted, the student council would then release the motion’s

proposal as an resolution.

Each of these phases can take only a few days up to a few weeks, especially the

discussion phase can be set quite long to allow a rich and diverse discussion to happen.

15

The motion process can also be capped at a different stage to, for example, use

Polar as a motion collection tool. This can be achieved by disabling the deliberation,

negotiation and election phase in the respective MotionRules, turning Polar into an

addition to an offline workflow (like a real party convention).

3.1.2 Chats

Figure 4: A chat group on a mo-
tion.

To enable members to discuss on topics outside

of the formal process of motions, Polar enables

chat rooms. Polar uses a Matrix [16] server

for this. Matrix is a chat protocol which al-

lows “an open network for secure, decentralised

communication”. In the context of Polar, the

focus is not mainly on the decentralised aspect

of Matrix. While Polar users can chat with

users from other Matrix homeservers (like ma-

trix.org or other Polar instances), Matrix was

mainly chosen because it allows encrypted chat

rooms, supports various open-source clients and

is reliable and well-tested. To connect a Matrix

server (like Synapse [17]) with Polar, the Matrix

server needs to support OpenID-Single-Sign-On

systems. Furthermore, the Polar server manip-

ulates Matrix only in that way that it creates

new Matrix rooms, all other chat related fea-

tures are completely managed by the Matrix

server. So, as long as the Matrix server sup-

ports OpenID-Single-Sign-On and the creation

of (private) rooms with an alias, Polar is compatible with a big variation of Matrix

16

servers.

The Polar client supports the basic chat features (as can be seen in Figure 4). Members

can join and leave chat rooms, create private chats and accept (or reject) invitations.

They can also see images and receive files as well as use the Matrix ’respond to’

feature (up to a depth of one). The Polar client does not support sending non-text

messages of any kind, does not support Voice-over-IP calls nor displays which user

has read which message (while it does send read receipts). Users can very easily

switch to a full-weight Matrix client like Element [18] and use this app to chat with

other members. The Polar client chat feature therefore is a proof-of-concept, but it

would be out of the scope of this work to fully support all Matrix features.

Polar creates chat rooms for all motions and events, allowing an informal discussion

place for its members. This can be understood as the ground-floor of a political

convention. These chat rooms are not encrypted, but Polar sets the correct flag to

prevent people from other Matrix homeservers to join the room (disallowing any

non-Polar members to access the chat room).

3.1.3 Events

Every (political) group has events it organizes or invites its members to join. Currently,

invitations to these events are spread to the members by email, chat groups or with

the Facebook event tool. Members that are, for any reason, not part of the email or

chat group, or members that don’t want to use Facebook or any other third party

social media service may miss out on important group-related information. That is

why Polar has an Event feature which enables members (that were granted the right

to do so) to create and share events (as can be seen in Figure 5). These events contain

a position or a link to a website like Zoom (or both), a description and a timeframe.

Members can then comment on the event. They can also respond, whether they are

interested, commit to attend or state that they will not. The Polar client asks to

17

Figure 5: Top: The events feed page showing events close to the user. Bottom: A
single page of an event. The Polar web client is accessed using Google
Chrome on an Apple MacBook Pro.

18

access the current position of the device, if the user allows this, it sends this location

to the server. The server responds with the closest events around, as explained in

Chapter 4.3.1.

3.1.4 Single-Sign-On Provider (SSO)

The Polar server, as already stated before, can be used as a Single-Sign-On (SSO)

service. The OAuth2AuthenticationFlow is implemented on a basic level, allowing

the integration of Polar to other services, which support SSO. This was tested with

Eos and Synapse (the Matrix server) but one could also imagine other integrations

with services like NextCloud.

3.1.5 Elections

Polar can not be used to conduct elections, but you can connect it with Eos (or

any other election service, for which you have to implement a new connector class).

Elections, that are created with the Polar admin account on Eos are featured to the

members on the Polar client start page. Also, every member can vote on the elections

on Eos with their Polar account, they do not need to create a second account, even

with Eos and Polar being two independent software systems.

Eos allows to outsource the eligibility check. Polar uses this, and therefore Polar

conducts the eligibility check for the two elections on motions. This means, Polar

will not send a list of the eligible members to Eos.

These are the main features of Polar. It also supports uploading images and a user

management system, with different user roles defining what each user of this role can

or can not do.

19

Figure 6: The Eos logo.

3.2 Eos

Eos is a software allowing encrypted digital elections. The main focus in the conception

of Eos was to provide an understandable and verifiable en- and decryption process.

Figure 7: The main page of Eos.

Eos (Figure 7) supports the creation of elec-

tions by any user (see Chapter 6.2.2 for a com-

ment on this). Elections contain a ballot, which

consists of questions. These questions encap-

sulate answer options. The creator can set for

each question how many votes a voter has as

a minimum and as a maximum. The creator

can also set for each answer option how many

votes this answer can get as a maximum. This

allows questions to be either of ’only one an-

swer’ type (for example if the election is on the

adoption of a motion) or make it possible to

cumulate and split votes as a voter (useful, for

example, when it comes to elections on political

personnel, as can be seen in Figure 8d). Eos

supports eligibility checks by providing the user

id, the email or the username of a user, and

also a third-party can be added as a eligibility

check system. Voters can fully register or use

a one-time code which is sent to their e-mail

to authenticate themselves. Furthermore they

20

can login with any third-party SSO system that is setup on the server (see Chapter

4.2.3 on this). Once the admin sets the timeframe in which the election happens, the

Eos client will show a countdown. Once the election has started, voters can access

the ballot, verify it and cast their vote. They are only asked to authenticate after

they chose to cast it. Once their eligibility was proven and their encrypted ballot was

uploaded, they receive an alias name for this election, under which the ballot was

cast. Also, before submitting, the client already displays the hash of the encrypted

vote. Everyone who has access to the election can always access all encrypted ballots

in the tally and make sure that the hash and the actual encrypted object have not

changed (as can be seen in Figure 8a and 8b). This means, the Eos server did not

swap votes (see Chapter 6.1.1 for further ideas on this).

Neither Eos nor Polar support the delegation of votes. Each vote has always the

same weight (1 out of v where v is the amount of total voters).

Helios [5] offers various interesting concepts for auditable online elections. But the

homomorphic encryption is complex and zero-knowledge-proofs not really understand-

able for non-experts. The code is also quite old and poorly documented. It was not

possible for me to actually verify my encrypted vote using the tools Helios provides.

Further, Helios is not able to allow different amounts of allowed votes for answers to

the same question of the same election, a problem political groups and organizations

usually face. Therefore, Eos was designed inspired by many of the important design

choices made by Helios. Eos also allows anyone to encrypt a ballot and verify the

encryption (as can be seen in Figure 8e), if the election was not marked as private by

the author. Eos also gives the voter a ’fingerprint’-like combination of an generated

alias and a hash to verify their cast vote in the publicly available cast ballot list

(displayed in Figure 8f). Eos supports trustees, just like Helios introduced them in a

later version. But Eos uses a different encryption protocol (which is much easier to

understand and verify than homomorphic encryption), does not keep a direct link

between cast vote and user account, and Eos decrypts and publishes each cast ballot.

Helios only publishes zero-knowledge proofs, which, arguable, would not actually

21

convince non-experts that their vote was respected in the result. This is why the

data structure of Eos is similar to that of Helios, but Eos does not use Helios code,

nor are the systems compatible with each other. To value the important ideas Helios

established and the connection between the two apps, the name Eos was chosen.

While Helios is the ancient Greek god of the sun, Eos is his sister, the goddess of the

dawn.

3.2.1 Encryption and Trustees

Eos supports third-party trustees. This assures that the Eos server does not decrypt

the votes before the election is over. It also ensures that no participant in the process

manipulates the election results. Each trustee has for each registered decryption job,

an object which tells a trustee which elections it is part of, a public and a private

RSA key. RSA [19] is an asymmetric encryption protocol. Asymmetric encryption

protocols consist of two different keys. A public key used to encrypt content and

a private key used for decryption. The Eos server acts as a trustee as well, though

it has a different role than third-party trustee, as the Eos server orchestrates the

decryption process between the different trustees.

The Eos client encrypts the vote of the user by generating and using an AES [20] (a

symmetric encryption protocol) secret. Symmetric encryption protocol consist of a

single secret used for both en- as well as decryption. This secret then is encrypted by

using the public key of the current trustee. This is done multiple times, starting with

the Eos server trustee, up to the latest trustee.

For the decryption, Eos shares the encrypted votes to the corresponding trustee,

which will decrypt and return the ’partly-decrypted’ votes. The trustees will be

called on in the reversed order of the encryption till only the layer where the secret

is encrypted with the Eos public key is left. Eos will then finally decrypt the votes

and publish the results of the election. Users can then see the results, but also see

22

the encrypted and decrypted vote by any user. If they remember their alias, they

can make sure this equals the vote they cast (even with totally corrupt trustees and

servers, only one vigilant voter is necessary to raise suspicion of a tampered vote).

The detailed explanation on the en- and decryption protocol can be found in Chapter

4.2.1.

The Eos trustee server published together with the Eos client and the Eos server is

written in Python3.11 and uses FastAPI [1] and SQLAlchemy [2].

23

(a) See all cast votes (b) Access any cast vote (c) Analyze trustees

(d) Vote in the election (e) Verify the encryption (f) Cast successfully

Figure 8: Further screenshots of Eos on an Apple iPhone 15 Pro Max.

24

4 Theoretical Analysis

In this chapter the focus is on the overall architecture of both apps as well as on

particularly relevant algorithms.

4.1 The Architecture

Both Eos and Polar use a client-server architecture. The clients (Polar client and

Eos client) communicate by using the internet with the servers (Polar server and

Eos server). Usually, the amount of clients vastly exceeds the amount of servers, as

one server can satisfy the needs of many clients. The communication protocol used

for the communication between the client and the server uses the Representational

State Transfer (REST) [21] architecture, widely used in the World Wide Web. It is

also very easy to debug and easy to understand for third-party experts that want

to analyze the app. Also, it is rather easy to create a third-party inofficial client.

This is especially interesting for Eos, so users do not have to trust the official client

and can use a third-party or their own client to vote on elections. The subtleties of

the REST architecture are handled by the ’FastAPI’ [1] framework which is used

by both server applications. FastAPI allows the developer to focus on working on

their software-specific aspects, while the framework takes over all communication-

specific tasks. With SQLAlchemy [2], an object-relation mapping framework which

converts the database objects into objects in the object-orientated language (Python),

the servers communicate with the relational database which stores the data of the

25

applications. SQLAlchemy converts the function calls in Python code to SQL code,

which adds a heap of a few milliseconds on every call, but this is rather neglectable as

SQLAlchemy caches calls that were already converted. SQLAlchemy sanitizes SQL

calls so that the evil username ’;DROP USERS;’ does not actually drop the users

table.

The clients are made in Flutter [4], which is an open-source framework for creating

multi-platform applications on a single codebase. With Flutter, developers code

almost the full app in Dart. Only platform-specific code needs to be developed

per platform, which was not necessary for neither Polar nor Eos. Flutter supports

Android, iOS, Web, Windows, macOS and Linux as platforms. Both the Polar and

Eos clients can run on all these platforms, but are only tested on Android, iOS and

the Web. The native Polar client can not acquire the current position of the user on

Linux, macOS or Windows. This limitation is based on the package which provides

Polar with the location of the user.

4.2 Eos

4.2.1 En- and Decryption Protocol

The en- and decryption of votes is the crucial feature of Eos. The protocol was

designed to make the verification as easy to understand as possible. This inevitably

means that cuts had to be made elsewhere. Encryption procedures for online elections

must always decide which factor they prioritize: comprehensibility/verifiability or

privacy protection. In the current protocol, it is possible that a corrupt Eos server

maps decrypted votes to their user and thus breaks the principle of secret ballot in

retrospect. However, unless all trustees are corrupt, it is impossible even for the

corrupt Eos server to decrypt the votes before the end of the election. Arguably, even

voting procedures such as Helios, whose encryption methods are more complicated

and whose verifiability cannot be understood by the non-expert, can ultimately enable

26

such a breach of electoral secrecy in the case of a corrupt Helios instance. Even

homomorphic encryption protocols do not stop a server from decrypting all votes

individually, if the server has all the secrets necessary for decryption. A voter must

therefore, to a certain extent, always trust the respective election server. This is also

the case for offline elections, where voters have to trust the organizing party up to

some extent. However, Eos presents the voters with all trustees who are registered

for the respective election. Voters can therefore see for themselves how trustwor-

thy they think all participating trustees of the election are (as can be seen in Figure 8c).

There is a distinction between Voter and User. While a Voter and a User can be the

same real-life entity, the Eos server tries to make sure that a Voter and a User object

can not be linked. Users are Eos objects, which can login. Users are on eligibility

systems, they can create elections and users can, using their sensitive user data (like

email), be traced back to real people. Voters are actually just cast votes (CastVote

objects). The voter is the alias this cast vote got, generated by the server the moment

the user submits their encrypted ballot. The generation works by Eos choosing a

random name of an animal and adding a random 5-digit long number to the name

(see Chapter 6.2.3 for a comment on this). To ensure that no user votes twice, we

map the user id to the corresponding election id they voted on. However, no map is

created that links which user is which voter/cast vote.

After the user completed to answer all questions on the ballot, the client encrypts

the vote. See also Algorithm 1 and Figure 10. First, the client collects all public keys

r0, ..., rn from all trustees n for this election, where r0 is the public key of the Eos

server trustee, sorting the rest ascending by the unique trustee id, so we get r1, ..., rn.

This sorting is important as a vote that is encrypted in a different order can not be

decrypted in the current protocol (while it is possible to adapt the protocol to support

this). The client then loops through the public keys, encrypting the current layer x

which is in the beginning the ballot as a map, then the result of the encryption of

the previous layer as a map.

27

To encrypt, the client generates an AES secret ai. AES is a symmetric encryption

protocol, meaning that this secret is used to encrypt and decrypt data. We use ai

to actually en- and decrypt x. Then we encrypt this secret with the current RSA

public key ri. RSA is an asymmetric encryption protocol, this means that the public

key can be used to encrypt data, but can not be used to decrypt the data. Only

those who have access to the private key can decrypt the data, hence why it should

stay private. Once we have encrypted x with ai, receiving a ciphertext and the AES

nonce, and encrypted ai receiving encAi we create a map with encAi, ciphertext,

nonce and set x to this map. Then we continue this loop till we reached the last trustee.

See Table 1 for benchmark results of this algorithm. The runtime of the encryption

algorithm is dependent on the amount of trustees n and the runtime of the imple-

mentation of the RSA encryption Trsa and the AES encryption Taes protocol, which

both is in Θ(1). The runtime of Tenc is therefore in Θ(n). In practice, on a modern

CPU, the encryption runtime is fast even with a lot of encryption layers (trustees).

The size of the encrypted ballot grows exponentially with the amount of trustees n

used for the encryption. An alteration of the encryption protocol could only generate

one AES secret a and then encrypt this multiple times instead of the whole ballot.

This would reduce the overall size of the encrypted ballot but would also increase the

risk of a brute force attack on the cast votes.

Once the encryption is done, the user can verify the encryption. This displays

a0, ..., an which the client saves till the user presses the cast button so the user can

use any encryption software to verify the result is correct. Also, the user sees the

final encryption layer x and can calculate the hash of this and verify that the hash

the Eos client presents to the user is correct.

Pressing cast, the user has to authenticate or confirm that they want to cast their vote

with the currently logged in account. Users cannot revoke their vote, therefore we ask

for confirmation here. Once the user has confirmed, the server checks the registered

eligibility systems (ES) for this election whether the user is eligible. An Eos election

28

can have a id/username-system ES, an email ES and or multiple third-party ES. If

the logged in user is not part of the id/username or email system, the third-party

eligibility systems are asked whether the currently logged in user is eligible. The

Eos server sends a minimal set of information to the third-party, to make sure the

third-party system does not receive sensitive information. As users can always check

their eligibility, the third-party system also can not be sure if the user is actually

casting their vote right now. Once one of these eligibility systems reacts positively,

the vote is cast and saved in the database, the user is added to the map that links

user ids with the election ids they cast a vote on and the client receives the alias

name and a positive response. The cast process is then finished.

Trustees Runtime (ms) Encrypted Ballot Size (bytes)

1 10* 1478

2 2 6723

3 5 25551

4 5 93399

5 8 328095

6 17 1170009

7 47 4200842

8 161 14906195

Table 1: Benchmark results of the Eos encryption algorithm. This table
displays the runtime and the encrypted ballot size for an Election with
the given size of trustees. The ballot consists of two questions with each 4
selected answers. Runtime on an Apple MacBook Pro with M1 chip, 16GB
of RAM, RSA keysize was 2048.
*Encryption with one trustee seems to take longer than with several trustees.
The reason behind this is that CPU optimizations took into effect after
the operating system recognized that it was presented the same task (to
encrypt) multiple times.

Everyone who has access to the election can access all cast votes at any time, they are

downloadable and once the decryption is done, also the decrypted ballot is available.

Users and third-party watchers, like experts or security analysts, can always verify

29

compute() Find trustee where
.decryptedVotes = None

ni
ni

Eos server?ni =yes
Call Eos decryption

stop

no Send decrypted votes
from to ni+1 ni

Query database

Save results in database

database

database

Figure 9: Compute is the main method which orchestrates the decryption process.
The Eos server has this method. Compute is called once the election is
over and whenever a trustee delivers their decryption result. Also, if a
trustee is not reachable, Eos will try calling the trustee again after some
time. Compute is therefore an asynchronous function. It does not wait
for an immediate answer of the trustee.

that during the voting no one swaps votes nor that a vote vanishes. Also, the result

map of Eos is easily verifiable by simply calculating it by adding all decrypted vote

results. Trustees provide their decryption result object, which is an incomplete

decryption result, as an api call as well. The Eos client can display this result, so

that experts can use this to verify the decryption process.

The Eos decryption process is orchestrated centrally by the Eos server. See Figure 9,

Figure 11 and Algorithm 2. The method compute is called either by api request, by

the scheduler once the election is over and whenever a trustee delivers their decryption

result. The Eos server keeps track which trustee has already delivered their decrypted

data and provides the current decryption layer to the next trustee. Once the Eos

server is the only remaining encryption layer, the Eos server finally decrypts the

30

votes, which are now the ballots, counts them, and publishes the tally. The Eos

server verifies that the votes fulfill the constraints of the questions and answers of the

election (neither exceeding nor subceeding the max and min votes constraints). It

does not check the eligibility again, as that is not possible because there is no map

linking user and cast vote. Once the results are published, they are immediately

available to users in the client. The runtime of the trustee decryption process is

dependent on the amount of votes v and the runtime of the RSA decryption and

the AES decryption protocol (both in Θ(1)). See Table 2 for runtime details on

the decryption process of trustees. While the final decryption process of Eos is also

dependent on the amounts of questions q the election has.

The runtimes are Ttrusteedec = v and Teosdec = Ttrusteedec + v · q = 2vq. The complete

decryption process then is Tdec = (n− 1) · v + 2vq. Following, Tdec ∈ Θ(n).

Layers Runtime (ms)

1 5.762

2 3.37

3 3.526

4 3.606

5 5.336

6 9.175

7 20.71

8 66.868

Table 2: Benchmark results of the Eos decryption. This table displays the
runtime it takes the Eos trustee to decrypt one layer of one vote, see in
Table 1 what size the vote is. Runtime on an Apple MacBook Pro with
M1 chip, 16GB of RAM.
RSA keysize was 2048

31

Algorithm 1 Eos Encryption Algorithm
Let r1, ..., rn be the RSA public keys of the trustees.
Let r0 be the RSA public key of the Eos server.
Let x be the ballot as a json map.
foreach pubKey ri do

x← toUTF8(x) ▷ Convert ballot to utf8
ai ← aes.generateSecret() ▷ Get AES secret for this round
ciphertext, nonce← aes.encrypt(x,ai) ▷ Encrypt x with AES
encAi ← rsa.encrypt(ai, ri) ▷ encrypt secret with RSA
x←map(encAi, ciphertext,nonce) ▷ Set x to a json map of en-

crypted prev x and encrypted
secret key

end for

Algorithm 2 Eos Decryption Algorithm
Let decV otes be an empty map that stores the id of the question as keys and saves
a list of selected answer ids as value.
Let privKey be the Eos private key for this election.
foreach vote vi do

secret← rsa.decrypt(vi.encAi,privKey) ▷ Decrypt the AES secret
data← aes.decrypt(vi.ciphertext, secret) ▷ Decrypt the data of this vote
vote← fromUTF8(data) ▷ Decode data encoded as utf8
foreach question q in vote.keys do

ans← vote[q] ▷ This is a list of answer ids
the voter has chosen for the
current question.

decV otes[q].append(ans) ▷ append the answers for this
question to the decrypted
votes list

end for
vi.decryptedV ote← vote ▷ Publish decryption result

end for
result← calculateResult(decVotes) ▷ Calculate results for each

question ’qid’: [’aid’: [nu-
mOfVotes, relResult]].

32

Ballot
{1: [5,6]}

Encrypt with
generated AES

secret a0

a0
r0 Encrypt with

trustee public key
 (Eos trustee)

a0
n0

r0

Encrypt with
generated AES

secret a1

Encrypt with
trustee public key

a1
n1

r1

Encrypted ballot with 1 encryption layer

Encrypted ballot with 2 encryption layers

Trustees:

(mandatory)

 (Eos)n0

pubKey

n1

pubKey

r0

r1a1

Eos Encryption Protocol

r1

Figure 10: The Eos encryption protocol using two trustees.

Eos Decryption Protocol

 (Eos)n0 n1

(1) send encrypted ballots to n1

(2) decrypts the layer and sends back

the partially decrypted ballots

n1
(3) decrypt the ballots,

validate all votes and

then release the result:

Encrypted ballots
with 2 layers

Encrypted ballots
with 1 layer

+
 RSA private keyn0 RSA private keyn1

+

Figure 11: The Eos decryption protocol using two trustees.

33

4.2.2 Setup Trustee Protocol

Every election e has n trustees where n ≥ 1 must hold. This first trustee n0 is

always the Eos server on which e resides. To add another trustee, either the client

communicates with both the Eos server and the third-party trustee server and

coordinates the setup or the client transfers this setup to the Eos server which then

directly communicates with the trustee server. The result of this protocol is a new

decryption job object on the trustee server, which consists of a public and private

RSA key, where the public key is available to download at any time. Further, the

trustee has a decryption time object decT ime, which is the earliest time on which

the trustee allows incoming votes to be decrypted. decT ime is always available to

download and signed with the RSA private key. Also, the public key of n0 is saved

on the trustee as is the IP address of the Eos server. decT ime can be changed by

and only by the Eos server, but the trustee will check if the sent new decT ime equals

the time the election ends on the server. To deliver the encryption results to the

Eos server, the trustee also gets a user-like object on the Eos server, with which it

authenticates itself. Still, the decryption results are also signed with the trustee’s

private key. Only when the password is correct, the signature of the decryption

results are validated by the Eos server. This ensures that the server is not flooded

with big maps of falsely signed decryption results, where the validation is abused to

slow down the server. The signature ensures that third-party watchers can be sure

that the decryption result is from the trustee without the leak of the password. The

protocol works as follows:

1. The user provides the Eos client with a jwtToken k with which the Eos client

can authenticate to the new trustee server t.

2. The Eos client generates a secure password s which will be used for the trustee

account on the Eos server.

34

3. In this example, the client transfers the setup to the Eos server and waits for

the final confirmation.

4. The Eos server asks t for information about the trustee server. Receives name

and email of the trustee server.

5. The Eos server creates a new internal trustee object ni which receives an unique

eos id uei(ni) and the server creates the respective trustee user account using s.

6. The Eos server creates a new decryption job object with the previously acquired

information and sends this to t.

7. If successful, t returns an internal job id for this newly created decryption job

and its public key.

8. The Eos server updates its internal ni object. Now the trustee is successfully

registered. The Eos server confirms the Eos client that the setup was successful.

4.2.3 AuthPartners

Eos allows admins to add third-party authentication partners, with which users

can authenticate themselves, as can be seen in Figure 13. A precondition is that

the AuthPartner supports OAuth2-Authentication-Auth-Flow, an open standard for

authentication between two services, where a user with an account at service A wants

to authenticate with this account at service B. The idea of this authentication flow is

that service B and the client of service B do not get the password of the user account

for A. In our case, Eos takes the role of service B, while the third-party authentication

partner is service A. This is pictured in Figure 12.

35

BA

Client
1.

As
k f

or
 A

ut
hP

ar
tn

er
2.

Re
tu

rn
 A

ut
hE

nd
po

int

3. Navigate to AuthEndpoint

4. Return AuthCode

5. Send AuthCode

6. Login with AuthCode

7. Return jwtToken

8/9 Request and get user

10. Send authenticated jwtToken of B

Figure 12: The client tries to authenticate at service B (e.g. Eos) with a user account
from service A (e.g. Polar). This is called the OAuth2 Authentication
Code Flow.

Figure 13: Authenticate at Eos with a one-time-password sent to your e-mail, with
AuthPartners (like Polar) or with a dedicated Eos Account.

36

Next to the name of the AuthPartner Eos needs four strings to enable third-party

authentication partners:

• authentication endpoint: The endpoint where the user can enter their login

credentials at service A. This url is sent to the client which shows this webpage

in a webview. The webview returns an authentication code, which the client

sends to the server.

• token endpoint: The endpoint where the service B (Eos) can exchange the

authentication code for a jwt login token for service A.

• user endpoint: The endpoint where the server can request information about

the user account on service A using the jwt token.

• unique user variable: Eos expects user information by service A in json

format. Using the given unique variable name, it will query the json for the

value of the user, save it in a user object of Eos and return an Eos jwt token

which is authenticated for this Eos account.

4.3 Polar

4.3.1 Events Close to You

To suggest users events that are close to them, the Polar client sends the acquired

current position to the server, if the user allows this. Let p be a position consisting of

a latitude φ and a longitude λ. Let pu be the position of the user. Let every event ei

(offline or hybrid) have such a position pi as well. The distance between two positions

p1 and p2 on a sphere can then be calculated by using the Haversine formula:

a = sin2(
∆φ

2
) + cos(φ1) · cos(φ2) · sin2(

∆λ

2
) (1)

Haversine formular

37

The distance between p1 and p2 is then

d = R · c (2)

Distance

Where c = 2 · atan2(
√
a,
√
1− a)) and R is the average radius of earth (in the desired

output unit: meters or kilometers) [22]. φ and λ need to be radians. Polar performs

this calculation directly on the relational database, first filtering for any event that

is still ongoing (constraint c1) and then applying the formula, which is translated

by SQLalchemy to SQL code. This uses the SQL implementation of the functions

sqrt, sin, cos, radians and atan2 (therefore needing a database that supports these

functions). Using the built-in SQL functions is theoretically more efficient than

loading all (ongoing) events from the database into the Polar server and performing

the check in Python. If not requested differently by the user, the server then filters

for every event where d(pu, pi) ≤ 50km. This calculation is not accurate to the meter

as it assumes that the earth is a uniform sphere. Still, it can be used well for this use

case, as the distances are only needed approximately.

4.3.2 Motion Mood

Polar generates an overall mood mg for each motion. It takes the mood mi ∈ [−2, 2]

for each comment ci and the amount of likes ϕi each comment got. Only top-level

comments, where mi ̸= 0, are respected. The set of non-neutral comments is called

C, and the length of C is c. We introduce a hyper-parameter Φ = 50, that controls

the influence of likes on the overall mood. ϕt =
∑c

i ϕi is the total amount of likes

which all comments received. The formula is the following:

38

mg =

∑c
i (mi +mi · ϕi

Φ)

c+ ϕt

Φ

(3)

Mood formular

This mood is calculated and returned when the client asks for it. The runtime for this

calculation is obviously in Θ(c). See Chapter 6.3.1 for further comments on this.

4.3.3 Fuzzy Search

Polar uses Fuzzy Prefix Search [23] to enable users to search for relevant motions,

events and comments. Fuzzy Prefix Search makes use of several ideas of computer

science to enable users to get results even if they do mistakes in their search query.

These ideas are Prefix Edit Distance, Q-gram indices and inverted lists.

An inverted list is a dictionary which keeps track which words are in which entry.

For each word used in motions, events or comments, it keeps a sorted list with tuples.

Each of these tuples contain the id of the entry o that contains this word and an

occurrence factor so of how relevant this word is for this entry. If the motion M1 and

the event E1 both contain the word snow, the following entry would be part of the

inverted list:

{snow : [(M1, sM1), (E1, se1)]}

The occurrence factor is calculated using the BM25 score [24], which normalizes

the effect of the frequency of the word in relation to both the length of the document

of this entry as well as the average document length.

Once the inverted list in is built based on all titles and descriptions from every entry,

a responsive and fast search is already possible. If the user searches for the query

snow, we can do a simple lookup in our list and find all entries that contain the

39

word snow. If we have sorted the list by the factor so, the most fitting entry will be

returned first. The runtime of a lookup is in O(n).

To allow users to enter a similar but wrong term (snov instead of snow) and still

receive valid results, a feature known from famous search engines, we make use of the

Prefix Edit Distance as well as Q-Gram indices.

Prefix Edit Distance is a variation of the Edit Distance. The Edit Distance ed(x, y)

is a metric which tells us how many REPLACE, INSERT or DELETE operations are

necessary to get from word x to word y. The Prefix Edit Distance ped(x, y) tells us

how many operations are necessary to get from word x to word y′ where y′ is the

word y capped at length of the word x. If x is a word with a mistake like snov, the

(prefix) edit distance to words that are correct like snow is small. Therefore we are

looking for words that have a ped(x, y) ≤ δ, with δ being small. The calculation of

the PED for the search query and every word in the inverted list would be too time

consuming. Therefore, we must make use of a trick.

This trick is called Q-Gram Index. A Q-Gram index Qq(x) is a multi-set of strings

for a given string x dividing x into subsets of q length [23]. See this example:

Q2(polar) = {po, ol, la, ar}

Luckily, there is a corollary that tells us that |Qq(x) ∩Qq(y)| ≥ |Qq(x)| − q · δ must

hold true so that ped(x, y) can be smaller equal δ. See [23] for a proof on this corollary.

This means, that if two words have |Qq(x)| − q · δ Q-Gram indices in common, their

ped(x, y) ≤ δ. Therefore, it is necessary to build another inverted list iq.

This time, we are using each word that is part of in and build the Q-Gram indices

for each. The keys of iq are the indices of length q, the values a list of words that

contain these Q-Gram indices. With iq present, we must only calculate the Q-Gram

index of x. Then we can lookup all Q-Gram indices of x and merge the corresponding

word lists. We count the occurrence of words in the merged list. If one word y occurs

|Qq(x)| − q · δ times, the ped(x, y) ≤ δ. An example entry of iq would be: (in our

40

actual implementation the words are replaced with their index in in)

{ol : [polar, polestar, lol]}

We return all entries in in for words that the user could mean. With this, we make

sure that the user most likely finds what they are looking for, as can be seen in

Figure 14. The runtime for Fuzzy Prefix Search contains multiple lookup and merging

operations. It is therefore a more expensive search algorithm.

Figure 14: Searching for vegn still yields correct results!

41

5 Evaluation

To evaluate the results of this bachelor thesis, we conducted a user study. In this

study, participants were asked on both their political engagements as well as their

general thoughts on digital elections. They were introduced to Eos, guided to cast a

vote in an election and got an explanation on the encryption protocol and how to

verify their vote. Then they were asked on their opinion regarding the user interface,

the intuitiveness of Eos as well as concrete questions on the election process and the

encryption. The goal was to not only figure out how well-designed the app is, but

also to see, whether or not Eos could convince participants to trust online elections

more than they did before using the app. Following, they got introduced to Polar,

guided through the different features and asked questions on each of them. In the

end, they participated in a vote on a motion through the interlink of Eos and Polar.

Finally, those who claimed they were active in political groups were asked how useful

they think Polar would be for their (respective) political engagement.

The study was conducted in January 2024 using pre-release versions of Eos and

Polar. The participants were further asked whether they study or work in the field of

computer science. This information is used to figure out whether there is a correlation

between deep knowledge of computer science and acceptance of online voting systems.

The study was conducted in English and German and took between 40 and 60 minutes

for each participant.

When participants were asked for a rating, they could choose a number between 1

and 5, with 1 being the lowest and 5 being the highest score. The study survey is

attached at the appendix, see Chapter 8.1.

43

5.1 Scenario Setup

Eos was set up with three elections. Two of them were set to ongoing state, one already

completed. The completed election was a mock election on the overall satisfaction of

workers in a company with a variation of answer types. The results of this election

were available and the votes cast by the voters decrypted.

The first ongoing election is an election on the adoption of the Universal Basic Income

into the manifesto of an imaginary political party. This is highly influenced by the

election conducted by the German party “Die Linke” (engl. the left) in 2023, which

was done by mail.

The second ongoing election is an election on an imaginary student council. It is

assumed that there are two chambers of which the first is composed by direct elections

of candidates (a voter has five votes, which they can distribute among candidates),

and the second chamber is composed proportionally, depending on how many votes

are given to the factions (a voter has one vote, which they can give to one faction).

These three elections were picked as examples of what Eos could be used for. They

were meant to showcase the various possible applications.

Polar was filled with example motions copied from the University of Freiburgs StuRa

(student council). These motions were originally submitted to a general meeting,

where all students of the university were invited to. The events are completely made

up, but focus on a StuRa context. The motion and event chat rooms were filled with

made up content. Wherever necessary, ChatGPT was asked for text placeholders to

create an immersive experience.

5.2 About the Participants

Of the 8 participants, 2 identified as male, 6 identified as female and 0 identified as

non-binary/other. All of them were in their twenties. 2 study or work in computer

science. 4 are active in political groups or organizations, some in multiple. Of these

44

politically active participants, all stated that their group already uses means to

conduct their work digitally, where social media apps like Facebook or Instagram and

chat messengers like WhatsApp or Signal were used tools mentioned most often. 1

stated that, in their opinion, these means are not enough. The participants were also

asked whether they ever participated in an online election (4 out of 8), of which 0 said

they actually understood how their vote was secured and how they could verify their

vote. No one said that they really care about how their vote was secured. A comment

here was that “it did not really matter, because it was only an election at university”.

7 participants answered that they would generally trust online elections, 1 participant

does not generally trust online elections. The reasons for this (dis-)trust vary. Those

who trust online elections argued that they “trust the protection protocols”, that they

find online elections “very convenient”, and stated that they simply would not care “if

[their] vote was leaked”. One participant argued that online elections in Germany

would be safe simply because they would be held in Germany, while a participant from

Hungary argued that they do not trust their in-paper-elections so online elections

could only be better. The participant who does not trust online elections reasoned

that they “feel like it is easy to manipulate”.

5.3 User Interface and Experience

App User Interface User Experince

Eos 4.5 ±0.53 4.88 ±0.35
Polar 4.69 ±0.46 4.81 ±0.37

Table 3: User Interface and Experience scores. The participants were asked to
rate the user interface and the overall user experience of both apps. The
highest score participants could give was 5, the lowest 1. Both apps scored
high and were well received.

For both Eos as well as Polar the participants were asked to rate the design of the

user interface and the overall user experience. Both Eos as well as Polar received

45

high scores for their user interface, as can be seen in Table 3.

The user interface of Eos was rated an average of 4.5 points out of 5 points. The

participants praised the “professional” design, the “good overview”, the “pretty colours”

and the overall “simple use” of Eos. Criticism was aimed at the “disproportional”

design and some of the bigger empty spaces. Some elements of the user interface were

also “too small”. However, no participant rated the user interface of Eos lower than 4

points.

The overall user experience of Eos was rated an average of 4.88 out of 5 points. The

participants praised that the user experience of Eos is “pretty clear also to people

who might be new to online elections”.

The user interface of Polar was rated an average of 4.69 out of 5 points. The

participants praised the “clear, well designed” user interface, they found it “very

elegant” and “easy to use”, while there was a suggestion to change the design of the

bottom navigation bar. No participant rated the user interface of Polar lower than 4

points.

The user experience of Polar was rated an average of 4.81 out of 5 points. The

participants acclaimed the “clear” experience on the app. One participant experienced

a bug in the chat feature and criticised this. Overall, no participant rated the user

experience of Polar lower than 4 points.

5.4 Eos

The main goal of the user study on Eos was to figure out whether the voting on Eos is

intuitive, whether participants (think they) understand the Eos en-/ and decryption

protocol and whether they would actually trust an election on Eos.

All participants praised the clean first impression Eos provides to new users. The

intuitiveness of the voting on the Eos client was rated with 4.63 out of 5 points in

average, meaning that the voting on the client is pretty intuitive for users (σ = 0.52).

Out of all participants, 5 stated that they thought they understand the encryption

46

protocol. This was a self-assessment, the participants did not have to pass a test for

this. All 8 believed that their vote is safe using this protocol. Some argued because

the encryption protocol is very “transparent”, others because of the implementation

of “trustees”. The computer scientists/workers both stated that they understood the

encryption protocol as well as they believe that their vote is safe. They both agreed

that they trust elections on Eos, as well as all other participants who also trust online

elections in general. The participant who does not trust online elections in general

also does not trust them on Eos. The participant stated that the reason behind this

is that they do not study computer science and therefore do not really understand

how encryption works. Later, the participant states that they would trust Eos with

low-stake elections. Those who trust Eos argued that it seems “trustworthy”, and

that every voter can “check that the vote was [respected in the tally]”.

Overall, Eos received good feedback in the user study. The user interface as well as

the voting procedure were praised while it could not convince those, who do not trust

online elections in general. The transparent design of the en- and decryption protocol

left a good impression on the participants, with all of them extolling it. However,

it can also be seen that the encryption and decryption protocol in the client should

be explained more simply. Even if 5 participants state that they understand the

procedure, probably only the computer scientists would pass a test on the procedure.

Still, due to the responses received and the small sample size, no conclusion can be

drawn as to whether knowledge of computer science has an influence on the acceptance

of online voting, or specifically on Eos.

5.5 Polar

Four features of Polar (events, chats, motions and the connection between Polar

and Eos) were shown to the participants. For each feature the participants were

presented with the same questions. How they would rate the usefulness of this feature

for political groups, how necessary they believe this feature is for Polar’s goal (to

47

centralize all (digital) workflows of political groups) and what further questions or

comments they have for this feature, as can be seen in Table 4. The motion and

the connection feature both scored a perfect 5 out of 5 points on their usefulness on

average. The motion feature received high praise by the participants, it was called

“very useful”. The connection feature also received many compliments, especially that

users can use their Polar account and are automatically signed in to the Eos client.

The connection feature also scored a 5 out of 5 on average regarding how necessary it

is. The motion feature got 4.88 out of 5 points on average for this question.

The chat feature was ranked lowest on usefulness with 4.5 out of 5 on average, while

it has received the same necessity ranking as the motion feature, with 4.88 out of 5

points on average. Participants questioned whether users really would use the Polar

chat feature and not other chat apps they already frequent often. However, to achieve

Polar’s goal, the feature was still deemed necessary.

The event feature scored 4.75 out of 5 points on average for usefulness, while it scored

4.81 out of 5 points on average regarding how necessary it is for Polar’s goal. The

event feature therefore got the lowest score on this question. Participants praised the

design, but raised concerns on the missing support of “recurring events”.

Feature Usefulness How necessary?

Events 4.75 ±0.46 4.81 ±0.53
Chats 4.5 ±0.76 4.88 ±0.35
Motions 5 ±0 4.88 ±0.35
Connection 5 ±0 5 ±0

Table 4: Feature ranking. The participants were asked for each feature, how
useful they think the feature is for political groups and how necessary
the feature is to achieve Polar’s goal of centralizing (digital) workflows
of political groups. The highest score participants could give was 5, the
lowest 1.

We can see that all of these features were overall ranked as useful for political groups,

their implementation seen by the participants as necessary to achieve the goal Polar

48

is tasked with. All politically-active participants stated that they could

see their political group or organization using Polar. Some argued that

political groups consisting of young people could especially benefit from Polar. For

example, the “Jusos” or the “Linksjugend [’solid]” were mentioned, both left-wing

youth organizations. The student council setup of the app was applauded by the

participants, and they stated that the app could be used for the student council. A

member of a small political group stated that they cannot see Polar as an replacement

of their offline workflow but definitely as an “addition”. Overall, all participants rated

the usefulness of Polar for political groups and organizations with 4.88 out of 5 points

on average (σ = 0.35).

Both apps received overwhelming positive responses, while some limitations apply to

these results. Read more about them in Chapter 6.4.

49

6 Limitations

Eos and Polar both come with limitations and a long list of possible features that

could be implemented. Eos, especially if it is used for a high-stake election, could be

attacked by malicious entities. First, we will discuss these attack vectors.

6.1 Attacking Eos

6.1.1 Corrupt Server

The worst case scenario is a corrupted Eos server. This is rather easy for an attacker

with admin rights to the computer where the Eos server runs on, as they can easily

change the code of Eos. Attackers could leak all stored sensitive personal information.

Further, they could simply implement a map between new cast votes and user objects,

hereby removing the secrecy of the election. This is not possible for elections that

have already been completed, but they can leak which voter has voted in general.

Still, for elections with n > 1 where n is the amount of trustees, an attacker could

only decrypt the votes before the election is over if all trustees are corrupt as well.

This kind of attack is easily visible for security-conscious hosts of Eos but rather hard

to see for users of Eos.

A corrupt Eos server could also copy votes in the CastVote table and thus distort

the election result. A corrupt Eos server could also let people vote twice or allow the

casting of votes by non-eligble voters. There are currently no measures against this

51

behavior. A corrupt Eos server set up by a malicious admin would therefore be the

worst-case scenario and could lead to falsified results. Following proposed features

could mitigate this problem to the extent that the corrupt server would have to make

a high effort to bypass them.

1. Voters list: Implement a feature where the admin of the election can see

which eligible voter has already voted. The server could fool the admin that

malicious votes by non-eligible voters belong to eligible voters. But the server

could only spoof a fixed amount of votes. Currently Eos does not release the

list of users who have voted on the election to neither the admin of the election

nor to anyone else. This list is only available by directly accessing the database.

However, if Eos were to publish this list of voters, it would be possible to draw

conclusions about voting behavior, especially in elections with few participants.

2. Shared cast votes list: Changing the design of Eos so that the user submits

their vote to every trustee (therefore having n copies of the castvotes list),

could prevent the Eos server from spoofing votes. First, trustees could prevent

multiple votes from the same IP (or mark them as suspicious) as well as they

could demand a proof from the client submitting the vote that they are human

using Googles ReCAPTCHA for example. This would demand a change in the

eligibility check system, which either needs to happen on every trustee as well

or with a validation code which the Eos server delivers to the client with which

the client then authenticates their eligibility to the trustees. The latter being

the more favorable design choice, as trustees obviously do not have access to

the user system of Eos.

3. Blockchain-like signing of votes: Every client could generate a RSA key

pair when they cast a vote to the server. The client signs the encrypted vote

with the generated private key and submits the signed encrypted vote as well

as the public key to the server. The client saves the private key. (This would

also allow to revoke or change votes once they are cast). The client could also

52

download the hashes of all previous cast votes and then hash and sign this list

as well (with the private key), adding this signed hash to the encrypted vote.

If the server then swaps or drops previous votes, the hash would not match

anymore (this obviously would make the revoking feature obsolete again). This

feature has some downsides as it would basically stop users from casting at the

same time. Also, the size of encrypted votes would grow as would the runtime

needed to cast votes, especially the generation of secure RSA key pairs takes

computation power. Using one general key pair per user would obviously not

work, as it would be equal to signing a ballot with your own signature and

make all secrecy measures obsolete.

4. Signed server proof : The server should sign the hash of the vote the user

has cast to the server as a proof with the private key of the Eos trustee. The

client should receive this proof and save it. By saving it, the client can then

prove if the decrypted vote differs from the actual vote that this client cast.

Even without the proposed features, a corrupt server could not change a submitted

vote without changing the hash of the vote, vigilant voters or experts observing

the elections would notice this. Further, a corrupt server could not simply edit the

calculated result object without also tampering the decryption results. Either the

manual counting (by experts) of the results would not be correct or vigilant voters

would see that their cast vote does not equal the decryption result. Tampering with

trustee results (not actually decrypting the votes but just publishing a made up

result) would therefore also not work. If only one vigilant voter remembers what they

voted for, they could call for the nullification of the election.

We can see that adding further security measures would complicate the casting process

as well as make it more (resource) expensive. The current protocol was therefore

chosen to enable the simplest comprehensibility and verifiability on the one hand,

but also to hold true the following axiom:

The protocol shall be designed so that it is too arduous to manipulate low-stake

53

elections and it is easy to prove that manipulation has taken place in high-stake

elections.

One could argue that this does not completely hold true for corrupt servers. But it

will be visible that the current design is sufficient to fulfil this axiom against other

attack vectors. In addition, the implementation of the proposed functions would

increase the protection even against corrupt servers. Still, users should generally trust

the host of the Eos server and not vote on hosts that look suspicious.

6.1.2 Corrupt Clients

Corrupt Eos clients could either arise from corrupt user devices or from using a

third-party Eos client. Users could either willingly use a third-party client or be

fooled for example by phishing mails into thinking they are using the official client.

Corrupt clients can only ever tamper with the vote of one user, they can not submit

votes of non-eligible voters nor can they change already submitted votes. Corrupt

clients could steal login credentials like username and password as well as steal the

login token used to authenticate users while they are logged in. The official Eos client

allows the user to verify their encrypted vote. If something looks fishy, they should

not cast their vote. If their encrypted vote hash changes from before to after the

cast process, they know their vote was tampered with. If the hash stays the same

and the server reports the same one, if the user furthermore computes the hash for

themselves (the official client and server easily allow to do this) from the cast votes

list, and this computed hash is also the same, they can be pretty sure that their vote

was not tampered with. Once the decryption result is released they can verify one

more time that their vote is correct. The attack vector of corrupt clients therefore is

small and only affects non-vigilant voters. Still, likely this would be the most used

attack vector on elections as it is the most easy one. A possible feature to eradicate

this attack vector would be:

5. Allowed clients: Only accept clients to submit and cast votes, if they were

54

previously allowed. This would prevent phishing attacks as well as make sure

that the cast votes are encrypted correctly. Allowed clients could either be

implemented using standards like the OAuth2CredentialsFlow or by limiting

the access to the server from only the ip of the client web app (this would

render invalid all native Eos clients).

6.1.3 Corrupt Trustees

Corrupt third-party trustees could reveal their private key to malicious attackers.

This would only result in the decryption of one of the layers of each encrypted ballot.

The actual vote of the user can not be decrypted without having access to all private

keys of all trustees n. A corrupt trustee could respond with spoofed decryption result

where decryption results are imagined. This is possible, but would be visible in the

end as the released decryption result of the vote would not equal what the voter has

voted. Vigilant voters would therefore realize that their vote was tampered with.

Corrupt trustees could stop an election from ever being tallied if they simply refuse to

decrypt their encryption layer. The election would have to be started again without

this trustee.

6.1.4 Flooding Eos

Maybe an attacker does not actually want to spoof votes, but rather just disturb

the election process. Eos is currently not rate-limited, so any client could flood the

server with requests. Most queries are not really resource-intensive, simple queries

to the database often only take a few milliseconds. However, uploading of images

in particular could be exploited to bring the server to a standstill with a rather

small amount of requests, as the server currently calculates a so-called blurhash for

uploaded images, which turns the image into a simple and short sequence of bytes

that can be displayed while the user downloads the actual image, as can be seen

55

in Figure 15. This calculation can take a few seconds, a perfect attack vector to

paralyze the server (and thus disrupt elections). Following features/design changes

could mitigate the attack vector:

6. Blurhash client-side: The client could calculate the blurhash and simply

provide it to the server after uploading the image. The server has to accept the

blurhash of the user and will not check it. Image sizes are already limited by

the server-application hosting the Eos server (like uvicorn or apache), reducing

the maximal image size further mitigates the problem.

7. rate limit queries: Introducing rate limits could mitigate the problem, as any

client overexceeding rate limits would be banned from sending new requests

for a defined duration. Working together with DDoS protection services from

commercial providers could secure Eos servers more from attacks like these.

Arguably, that the latter is only necessary for high-stake elections.

Figure 15: The blurhash, an object a few bytes in size that can be used as a
placeholder, is calculated from an image [25].

The positive aspect of this kind of attack vector is that it is very easy to recognize.

An election process attacked under this vector could be interrupted until the attack

is over.

To disturb the decryption process, an attacker could use an open election (where no

eligibility constraints are set) and submit a vast amount of invalid votes. These votes

56

would not change the result but disturb the decryption process. The Eos server does

not currently check whether the encrypted vote is correctly encrypted, it accepts any

map object. A simple millions-of-bytes-big map of gibberish would also be accepted.

The server could therefore be flooded with invalid votes which are expensive size-wise.

To prevent this, refer to former proposals like Feature 5, the implementation of Google

ReCAPTCHA and the following feature:

8. Verify votes during submission: The server should make sure the votes do

match the expected size, as votes with q amount of questions and n amount of

layers are usually in a definable size frame. Votes much smaller or bigger than

this size could be simply rejected.

6.1.5 Quantum-safe Encryption

Neither RSA nor AES are quantum-safe [26]. This means that corresponding progress

in quantum technology will at least enable those who have access to it to crack RSA

and AES. However, this only applies to currently ongoing elections, as cast votes are

decrypted nevertheless after the election is over. Currently and for the foreseeable

future, this attack vector is limited to only a small amount of highly powerful actors

and definitely neglectable for low-stake elections. If RSA and AES are cracked, a lot

of software would be broken [26]. Still, there are so-called post-quantum encryption

protocols. These are much more complicated than RSA and AES but would allow

votes to stay safe even in a post-quantum world. One of these proposed post-quantum

encryption protocols is CRYSTALS-Kyber [27], which also works with public and

private keys.

9. Quantum-safe encryption: Changing the Eos En- and Decryption Protocol

to quantum-safe encryptions would mitigate attacks on RSA and AES as both

are not used anymore.

57

These nine proposed changes or additions to the design of Eos would mitigate attack

vectors on Eos further. But there are also some limitations which are not directly

abusable by attackers.

6.2 Eos Limitations

6.2.1 Ballot Size and IDs

The size of encrypted ballots grows exponentially with the amount of trustees

n. We saw in Table 1 that a ballot with n = 8 is around 15 megabytes big each.

Using a lot of trustees to secure the election is therefore a highly expensive task.

But, arguably, it is rare that there is a need for this many trustees. Eos should not

be used for high-stakes elections in general, as no online election service should be.

n = 3 trustees is completely sufficient for low-stake elections, assuming that the two

third-party trustees are genuinely different. Encrypted ballots for n = 3 are around

26 kilobytes big. This means for every encrypted ballot with n = 8 trustees, around

600 ballots with n = 3 could be stored.

CastVote objects should not use a numeric id as their unique identifier and the

timestamp they were added should be removed from the database before the votes

are being counted. It should not be possible to reconstruct a chronological sequence

of votes.

6.2.2 Missing Features

Some features of Eos were not implemented.

• Users creating an account through an authentication partner (AuthPartner)

like Polar can not convert their account to a full Eos account. AuthPartner

accounts usually do not have a username nor an email. Converting their account

58

to a full Eos account simply means adding an username and an email. This is

currently not possible.

• Clients are not saving the users voter alias nor the hash they showed. Users

can create a screenshot. Without a screenshot they can not be sure which vote

is actually theirs, if they have forgotten their alias.

• It is currently not possible to upload a list of eligible voters in a file. Every

voter has to be added through the user interface and be searched individually.

• Trustees added to an election can only be removed through the database.

• Elections can only be flagged as featured through the database.

• Every user can create elections. There is no user role system.

• Currently the Eos client saves bookmarks locally and not on the server. This

could be argued is strange behaviour because bookmarks are then available to

all users using this end-device. But one could argue that Eos should be only

used on your own device to begin with.

• Users can not currently reset their password if they have forgotten it. They can

not delete their account.

• Even though the flag exists in the database, write in answers and randomized

answer orders are currently not implemented.

6.2.3 Maximum Amount of Voters per Election

The amount of voters is limited by the possible unique voter alias. This is dependent

on the amount names of animals Eos is provided with. Currently those are 235 animal

names. Eos generates a random number with the length i = 5 in [10000, 99999] and

adds this number to the animal name. If a voter alias for this combination on this

59

election already exists, the voter has to repeat the casting. The amount of voters is

therefore limited by:

235 · 89999 = 21.149.765

voters. Arguably, this limit is not a big problem, as one can easily split elections if

they expect this amount of voters into multiple separated elections. (For comparison:

German federal elections have around 400.000 eligible voters each constituency, the

biggest German union would ask around 2.1 million voters).

Eos should be further adapted to not return an error if it generates a voter alias

which already exists but should generate a voter alias again until it finds one that is

valid. Additionally, it can be easily extended by increasing the amount of digits on

the random number.

6.2.4 Limit and Offset

The Eos client currently hardcodes the length of the requested answer of a query, such

as the request to get all featured elections, to the server. This length l is currently

100. If there are more than l entries in the database they are not sent to the client,

as the client did not request them. The Polar client does not have this issue, as it

features a ’load more’ button. This implementation needs to be added to Eos as

well.

6.2.5 Timezone Mixture

The election start and end times depend on the timezone the server uses. But the

client currently respects only the timezone of the device. So an election could be

displayed as already over, even if the election has not ended on the server yet. This

can be changed by always translating all time objects to a specified timezone and

then only respecting this timezone.

Ballots are still only cast if they are submitted during the start time and end time in

60

regards to the servers timezone. A client that displays that the election is still going

on will not lead to a cast vote after the election is actually over. Obviously the server

will reject votes cast before the election has started as well.

6.3 Polar Limitations

Polar has limitations as well. There are no special attack vectors on Polar, because

Polar does not perform elections or similar things. Attackers could try to get sensitive

personal information of users, but Polar has measures to prevent this. Furthermore

there is only a limited amount of API calls that are available for unauthenticated

users.

6.3.1 Motion Limitations

While the motions feature of Polar can be used for a variety of imaginable use-cases

and while fine-tuning possibilities are given, the automatic motion state switch

algorithm of the server does not respect all use cases. It can be necessary that the

motion commission switches a state manually and deletes previously set timestamps.

The motion commission also needs to check in the end whether the election on the

final adoption of the motion was successful or not and then manually change the

state to adopted or rejected. Polar does not display the results of the election, users

have to navigate to Eos to see the results.

The mood score of motions is made of the mood of top-level comments the motion

got in the deliberation phase. It is factored with the likes a comment got. This score

is an indicator on the moods of the received comments. It is not an indicator on how

the election on this motion will conclude. Motion moods could be calculated directly

on the database, this would make the calculation more efficient.

Comments on motions still can receive likes altering the mood score of the motion

even when the motion has shifted post the deliberation phase. This could be atypical

61

in the understanding of the phase model, as new comments are not allowed outside

of this phase.

6.3.2 Event Limitations

Events have limitations as there are no event series. This means weekly events need

to be created every week. Also, events are only available to logged-in users while one

could argue that it should be possible for unauthenticated users to have access to

events specially marked as public as well.

Events marked as online without a physical address are not as featured as offline

events in the Polar client. The client only sends the request to get events the server

once it has acquired the location of the user or when a timeout has occurred. This

should be changed so that the user does not have to wait for the events till the

sometimes slow location acquisition is done.

6.3.3 Chat Limitations

The chat feature of Polar is practically outsourced to Matrix. The Polar server only

does limited manipulation of the Matrix server as in it only creates new public chat

rooms. The client is limited in supporting only the basic messaging features. Also,

the client does not currently support encrypted chats as well as it does not support

push notifications. However, the usage of Matrix still allows the user to use any

third-party chat service. Implementing encrypted chat rooms into the Polar client is

not very complex as the Matrix package which handles the communication to Matrix

does the most work on this. Still, implementing encrypted rooms was out of the scope

of this work. The chat feature should be more seen as a proof-of-concept for now. It

is possible to use a well established communication protocol (Matrix) and support

chat between users. With more effort being put in, features like sending images or

voice messages could easily be supported.

62

Further, the Polar client currently does not support searching chat rooms for mes-

sages.

6.3.4 Missing Features

Future work of Polar could contain the following missing features:

• Users cannot search for other users. Direct messages can only be established if

the other user can be found through other chats, as the author of an motion,

event or comment or in the responses / endorser lists.

• There is currently no admin page for comments. The moderation capabilities

of comments is limited. Same holds true for amendments.

• There are currently no SSO scopes. The returned token in the SSO authentica-

tion process allows the third-party service to access all API calls. This should

be changed: third-party services should be registered first by the Polar admin,

defining exactly what they are allowed to access.

• Polar users can neither request a new password in case they forgot theirs, nor

can they (or an admin) delete their account yet.

• Amendments should have comments and likes as well.

• While Polar acquires a lot of information on what users like and endorse, this

is not used to tailor personalized recommendations in motion or event feeds.

• Polar should send notifications on when another user significantly interacts with

your motion, event or comment. Also, it should send notifications on starting

elections. An easy implementation would work with the already existing email

system. Another option is to implement notifications like on famous social

media platforms as well as push notifications.

63

• Allowing admins to archive motions and motion groups could really benefit the

user experience on the app from feeling too bloated. Archived content could

appear only in a specific subpage of the app or only be displayed in the search.

• Exporting motions to import them into other services like ’OpenSlides’ [15]

could enable a smooth transition between Polar and existing services. Polar

should also support an import feature to accept motions and events from

third-party services.

6.4 User Study

The user study was performed on a small, homogeneous group. While the study

provides an initial overview of satisfaction with the apps and the design, no universally

valid conclusion can be drawn from it. For one, the study design should have made it

clear that Eos is an app for "low-stake" elections. In addition, the understanding

of the encryption process should not only have been queried via a self-assessment.

The question of whether participants believe that their vote is safe on Eos is biased

to a certain extent, as participants trusted the study conductor overall. The study

should have been done with participants that do not know the conductor, and with

conductors, that are not the developer of the app. Due to the homogeneity of the

participants in terms of their age, the study cannot make any statement about how

appealing Polar is to politically active people who are not young. Thus, the user

interface and user experience could also be rated differently by people who are not

digital natives than it was rated by the young study participants.

64

7 Conclusion

In this thesis, we introduced a proposal to provide political groups and organizations

with a suitable all-in-one software solution that allows them to operate their typical

workflows in the digital space. This software solution consists of two applications: Eos

(Election Online Service) and Polar (Politische Arbeit). Eos supports verifiable online

elections with multiple trustees, various question types and very fast tallies. Polar

supports collecting, processing and voting on motions, sharing and discussing events

and communicating in (private) chat rooms. It works as a single-sign-on provider, so

that other services can use Polar as their identity provider.

We dived into particularly interesting algorithms, like the Eos En- and Decryption

protocol, which aims to enable both secure and easy-to-verify voting using a split-up

system to en- and decrypt votes, where all parties of this systems would have to be

corrupt in order for the secrecy of the election to be in danger. We also analyzed

Polar’s closest events feature, which calculates the distance between user and events

elegantly directly on the relational database. Polar’s fuzzy prefix search allows a fast

lookup of motions, events and comments which is forgiving in the event of minor

input errors (like a missing or wrong letter).

The conducted user study resulted in overwhelmingly positive responses for both

Eos as well as Polar. Not only were both apps and the features of each app rated

highly by the users, all of those who were politically active stated that they could

see the use of Polar in their political group or organization. The user study also

indicated that while the aim of the Eos En- and Decryption protocol was to be easily

understandable, the client should be expanded to include further simple explanations.

65

In the limitations, we tried to shed light on the attack vectors that Eos offers and

how elections can be manipulated and disrupted. We came to the conclusion that

Eos suffers from the typical symptoms of online voting systems, while it easily allows

users to make sure that their vote was cast, respected and correctly valued. This

distinguishes Eos from other online election systems. For low-stake elections, Eos

can therefore be a good choice despite the existing attack vectors. Furthermore, we

introduced feature proposals which would implement further layers of security and

further abilities like the one to revoke cast votes (Feature 3).

We analyzed limitations of both Polar and Eos and came to a list of additional

features that future work on both apps should implement. Most of these features are

of rather low-effort, and only did not make it into this version due to the severe time

constraints of the work.

While future work could further enrich both apps, Eos and Polar are ready to use and

can be deployed today to provide political groups and organizations (and beyond)

with a centralized solution for digital participation.

66

Bibliography

[1] S. t. Ramírez, “Fastapi,” 2024. https://fastapi.tiangolo.com/ [Accessed on

07. February 2024].

[2] M. Bayer, “The python sql toolkit and object relational mapper,” 2024. https:

//www.sqlalchemy.org/ [Accessed on 07. February 2024].

[3] M. Makai, “Object-relational mappers (orms),” 2022. https://www.fullst

ackpython.com/object-relational-mappers-orms.html [Accessed on 07.

February 2024].

[4] Google, “Flutter: Build apps for any screen,” 2024. https://flutter.dev/

[Accessed on 07. February 2024].

[5] B. Adida, “Helios: web-based open-audit voting,” in Proceedings of the 17th

Conference on Security Symposium, SS’08, p. 335–348, USENIX Association,

2008.

[6] M. Ogburn, C. Turner, and P. Dahal, “Homomorphic encryption,” Procedia

Computer Science, vol. 20, pp. 502–509, 2013. Complex Adaptive Systems.

[7] NemoContra, “Security,” 2024. https://nemovote.com/security/ [Accessed

on 07. February 2024].

[8] ElectionBuddy, “Services,” 2024. https://electionbuddy.com/services/

[Accessed on 07. February 2024].

67

https://fastapi.tiangolo.com/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://flutter.dev/
https://nemovote.com/security/
https://electionbuddy.com/services/

[9] electionrunner, “electionrunner,” 2024. https://electionrunner.com/support

/kb/results/election-results [Accessed on 07. February 2024].

[10] S. Bell, J. Benaloh, M. D. Byrne, D. Debeauvoir, B. Eakin, P. Kortum, N. McBur-

nett, O. Pereira, P. B. Stark, D. S. Wallach, G. Fisher, J. Montoya, M. Parker,

and M. Winn, “STAR-Vote: A secure, transparent, auditable, and reliable

voting system,” in 2013 Electronic Voting Technology Workshop/Workshop on

Trustworthy Elections (EVT/WOTE 13), USENIX Association, Aug. 2013.

[11] C. Cassidy, “Explainer: Voting systems reliable, despite conspiracies,” Associated

Press, 2022. https://apnews.com/article/2022-midterm-elections-techn

ology-voting-donald-trump-campaigns-46c9cf208687636b8eaa1864c35ab

300 [Accessed on 07. February 2024].

[12] C. C. Kling, J. Kunegis, H. Hartmann, M. Strohmaier, and S. Staab, “Voting

behaviour and power in online democracy: A study of liquidfeedback in germany’s

pirate party,” CoRR, vol. abs/1503.07723, 2015.

[13] L. D. e.V., “Adhocracy+,” 2024. https://adhocracy.plus/ [Accessed on 07.

February 2024].

[14] Berlin, “Berlin mitgestalten: Ihre meinung ist uns wichtig!,” 2024. https:

//mein.berlin.de [Accessed on 07. February 2024].

[15] OpenSlides, “Funktionen in openslides,” 2024. https://openslides.com/de#fe

atures [Accessed on 07. February 2024].

[16] Matrix-Org., “Matrix specification,” 2024. https://spec.matrix.org/latest/

[Accessed on 07. February 2024].

[17] Synapse, “Synapse,” 2024. https://element-hq.github.io/synapse/latest/

[Accessed on 07. February 2024].

[18] Element, “Secure collaboration and messaging,” 2024. https://element.io/

[Accessed on 07. February 2024].

68

https://electionrunner.com/support/kb/results/election-results
https://electionrunner.com/support/kb/results/election-results
https://apnews.com/article/2022-midterm-elections-technology-voting-donald-trump-campaigns-46c9cf208687636b8eaa1864c35ab300
https://apnews.com/article/2022-midterm-elections-technology-voting-donald-trump-campaigns-46c9cf208687636b8eaa1864c35ab300
https://apnews.com/article/2022-midterm-elections-technology-voting-donald-trump-campaigns-46c9cf208687636b8eaa1864c35ab300
https://adhocracy.plus/
https://mein.berlin.de
https://mein.berlin.de
https://openslides.com/de#features
https://openslides.com/de#features
https://spec.matrix.org/latest/
https://element-hq.github.io/synapse/latest/
https://element.io/

[19] E. Milanov, “The rsa algorithm,” 2009. https://sites.math.washington.ed

u/~morrow/336_09/papers/Yevgeny.pdf [Accessed on 07. February 2024].

[20] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and

J. Dray, “Advanced encryption standard (aes),” November 2001.

[21] R. T. Fielding, Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine, 2000. https://ics.

uci.edu/~fielding/pubs/dissertation/top.htm [Accessed on 07. February

2024].

[22] C. Veness, “Movable type scripts: Calculate distance and bearing between two

latitude/longitude points using haversine formula in javascript,” 2020. https:

//www.movable-type.co.uk/scripts/latlong.html [Accessed on 07. February

2024].

[23] H. Bast, “Dbis, lecture 7: Fuzzy search, ped, q-gram index @ 05.12.2023,” 2023.

[24] H. Bast, “Dbis, lecture 2: Ranking and evaluation @ 24.10.2023,” 2023.

[25] Image by Dag Ågren, released under MIT license. https://github.com/w

oltapp/blurhash/blob/master/Media/HowItWorks1.jpg [Accessed on 07.

February 2024].

[26] K. Houston-Edwards, “Quantum-proof secret,” Scientific American Magazine

Vol. 330 No. 2, p. 36, Februrary 2024.

[27] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,

P. Schwabe, G. Seiler, and D. Stehlé, “Crystals – kyber: a cca-secure module-

lattice-based kem.” Cryptology ePrint Archive, Paper 2017/634, 2017. https:

//eprint.iacr.org/2017/634 [Accessed on 07. February 2024].

69

https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://github.com/woltapp/blurhash/blob/master/Media/HowItWorks1.jpg
https://github.com/woltapp/blurhash/blob/master/Media/HowItWorks1.jpg
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634

8 Appendix

8.1 User Study Survey

See the survey on the next page. Explanation texts were read to the participant.

Action steps were performed together with the participant, as in they were either given

the instruction to do something or the conductor performed the action.

71

Explanation:
Welcome to the user study on Polar and Eos. Thank you for agreeing to participate in my
user study and to help me evaluate my results of my bachelor thesis. The results of my
thesis try to centralize the work of political groups and organizations in the digital space
meaning that there should be one software suite for the tasks that such groups generally
have to perform.
First, I will present you Eos, an app to conduct safe online elections. Eos stands for
“Election online service” and is a standalone app. Users and tools can create elections
where predefined eligible voters can vote on. The vote is encrypted using the Eos En-/
and Decryption Protocol. The goal of this protocol is to make sure that your vote is safe
and that you can verify that the released result in the end contains your vote.
Then I will present you Polar, which stands for the German word “Politische Arbeit”. Polar
is meant as the central hub for political groups or organizations in the digital space. It
supports a motion feature, where groups can collect, discuss, and vote on the adoption
of motions. It supports an Event feature where users can share and comment on
interesting events and it supports a Chat feature where users of Polar can chat with each
other. To vote on Motions, Polar uses Eos to ensure that the voting is secure. Polar can
therefore be used as a Single-Sign-On-Provider which means that users can login on
other services (like Eos, or NextCloud) with their Polar account.

But let us start with some basic questions.

User-Study on Eos and Polar
P is the Participant. 1 means low, 5 means high. &/: and or. /: exclusive or. ?: voluntary.

A0 P identifier

A1 What gender do you identify with?
(f/m/nb/?)

A1.1 What is the first number of your age?
(1/2/3/4/5/6/7/8/9/?)

A2 Are you a student of or do you work in
the field of computer science?
(y/n)

A3 Are you active in a political group or
organization?
(y/n)

A3.1 If so, where are you active?
(text?)

A3.2 Does your political group or
organization use any digital means to
communicate or work in the digital
field?
(y/n/?)

A3.3 If so, what means are used?
(text?)

A3.4 Do you think that these means are
enough?
(y/n/? &/ text)

A4 Did you ever conduct an or
participated in an online election?
(y/n)

A4.1 Did you understand how and in what
way your vote was secured /// and

how you could verify the election
result?
(y/n/?)

A4.2 Did you care?
(y/n/?)

A5 Would you trust an online election in
general?
(y/n)

A5.1 Why / Why not?
(text)

Eos
1. Open Eos and display front page, which is filled with three featured Elections (two

ongoing, one completed).
2. Let P click trough the app.
3. Ask E1.
4. Cast a vote with P.

a. Open one of the ongoing Elections.

Show trustees:
This election as you can see has two trustees. One trustee is the Eos server. The other
trustee is a third-party trustee. What do trustees do? Each trustee has a public key, with
which you vote is encrypted and a secret private key, it does not publish, with which it
can decrypt your vote. This means, that only if all trustees agree to decrypt, your vote
will be decrypted. This makes sure, that your vote is not decrypted before the election is
over and that no one can see how you have voted.

Show votes:
Here we can see that some votes were already cast. The name you see is a random alias
this voter got. Each time you vote, you get a new alias only for this election. Below that
you can see the hash of the encrypted vote. If we click on it, you are given tools to
actually build this hash for yourself, to make sure, no one tampered with your vote. Once
the election is over, the decryption result is released here. So if you remember your alias,
you can make sure, that the result of the decryption equals what you have voted for. This
way, you can make sure, that your vote was actually respected in the result.

b. Open ballot page.
c. Let P answer the questions.
d. Show how the verification work.

Verification:
Here you can see how the verification of the vote works. You have voted this (blue box).
These are the internal ids of the answers. If we press on the first encryption layer, we can
see that your vote was encrypted with a generated secret and the public key of the first

trustee (Eos). If you have the tools, you can try this for yourself, to make sure that the
encryption is correct.
If we open the second layer, we can see that this first layer was encrypted with the
public key of the second trustee. We can also see the generated hash of this encryption.
This is your encrypted vote. Because your secrets were exposed now, we have to re-
encrypt your vote again, with new secrets, but you can verify this again until you trust the
encryption protocol.

e. Let P cast the ballot and display the authentication process.
As you can see, here is the alias you got assigned and the hash. With this, we can go
back.

f. Show the cast vote in the votes list.
Here is your vote in the voters list.

5. Ask E2, E3.
6. Let P cast a vote again for the same election.
7. Ask E4, E5.
8. Let P click through the app till they are done exploring.
9. Ask remaining E questions.

E1 What is your first impression of Eos?

(text)

E2 How intuitive did you think the cast
process was?
(1-5 &/ text)

E3 Are there any questions remaining?
(text?)

E4 Are you understanding the encryption
protocol?
(y/n)

E5 Do you think your votes are safe?
(y/n)

E5.1 If not, why not? If yes, why?
(text?)

E6 Are there any questions remaining?
(text?)

E7 How would you rate the user
interface?
(1-5)

E7.1 Why would you rate it this way?
(text?)

E8 How would you rate the overall user
experience?
(1-5 &/ text?)

E9 (à see A5)
Would you trust an online election on
Eos (now)?
(y/n)

E9.1 Why (not)?
(text?)

E10 Any further comments on Eos?
(text?)

Polar
1. Open Polar, which contains multiple motions, events and is connected to Matrix.
2. Show P the front page.
3. Start with Events. Go to Events, where multiple events are located.
4. Show an Event page.
5. Ask P1, P2 and P3.
6. Press on the user that created the event and start a chat room with them.
7. Then go back and enter the group chat of the event.
8. Write some messages.
9. Ask P4, P5, and P6.
10. Go to Motions. Open Motion P is most interested in. Show the user interface,

explain the motions current process and where in the motion process its
situated.

Motion Process:
A motion can be in dieerent phases. They start as drafts, then they reach the quorum
phase, where they are looking for supporters. If they find enough endorsements, they
reach the deliberation phase where they can both collect comments as well as
amendments. Next they are in the negotiation phase, where users can vote on the
amendments. And then it reaches the election phase, where users vote on the general
adoption of motions. Between these phases are validation phases, where users with
special rights (the motion council) perform organizational tasks: checking whether the
motion is allowed, summarizing amendments or adapting accepted amendments into
the proposal. Motions do not have to follow this order, the motion council can freely shift
them through these phases.

11. Let P explore the motions. Show comments and Amendments.
12. Ask P7, P8 and P9.
13. Open Motion with currently ongoing election. Go to the Election-button and

navigate to election. Let P vote.
14. Ask P10, P11 and P12.
15. Let P roam through Polar till they are done.
16. Ask remaining questions.

P1 How useful do you find the Event

feature (for political groups)?
(1-5&/text?)

P2 How necessary do you think this
feature is in the context of Polars
goal*?
(1-5)
* Centralizing digital workflows of
political groups.

P3 What are further
comments/questions to Events.
(text?)

P4 How useful do you find the chat
features of Polar (for pol. Groups)?
(1-5 &/ text)

P5 How necessary do you think the
chat features are in the context of
Polars goal?
(1-5)

P6 What are further
comments/questions to chats?
(text?)

P7 How useful do you find the
motions feature of Polar (for pol.
Groups)?
(1-5 &/ text)

P8 How necessary do you think the
motions feature is in the context
of Polars goal?
(1-5)

P9 What are your further
comments/questions to Motions?
(text?)

P10 How useful do you think the direct
interlink of Eos and Polar is?
(1-5)

P11 How necessary do you think this
interlink is?
(1-5)

P12 What are your further
comments/questions to this?
(text?)

P13 How would you rate Polars user
interface?
(1-5)

P14 Why would you rate it this way?
(text)

P15 How would you rate the overall
user experience?
(1-5 &/ text?)

P16 How would you rate the
usefulness of Polar in general for
political groups?
(1-5 &/ text?)

P17 If A3:
Could you see the use of Polar in
your political group? Why (not)?
(y/n & text)

P18 What do you think is missing for
Polars goals?
(text)

P19 Are there any remaining
comments/questions?
(text)

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Approach
	1.4 Structure of this Work

	2 Related Work
	2.1 Digital Voting Systems
	2.2 Digital Participation Tools

	3 The Apps
	3.1 Polar
	3.1.1 The Motion Process
	3.1.2 Chats
	3.1.3 Events
	3.1.4 Single-Sign-On Provider (SSO)
	3.1.5 Elections

	3.2 Eos
	3.2.1 Encryption and Trustees

	4 Theoretical Analysis
	4.1 The Architecture
	4.2 Eos
	4.2.1 En- and Decryption Protocol
	4.2.2 Setup Trustee Protocol
	4.2.3 AuthPartners

	4.3 Polar
	4.3.1 Events Close to You
	4.3.2 Motion Mood
	4.3.3 Fuzzy Search

	5 Evaluation
	5.1 Scenario Setup
	5.2 About the Participants
	5.3 User Interface and Experience
	5.4 Eos
	5.5 Polar

	6 Limitations
	6.1 Attacking Eos
	6.1.1 Corrupt Server
	6.1.2 Corrupt Clients
	6.1.3 Corrupt Trustees
	6.1.4 Flooding Eos
	6.1.5 Quantum-safe Encryption

	6.2 Eos Limitations
	6.2.1 Ballot Size and IDs
	6.2.2 Missing Features
	6.2.3 Maximum Amount of Voters per Election
	6.2.4 Limit and Offset
	6.2.5 Timezone Mixture

	6.3 Polar Limitations
	6.3.1 Motion Limitations
	6.3.2 Event Limitations
	6.3.3 Chat Limitations
	6.3.4 Missing Features

	6.4 User Study

	7 Conclusion
	Bibliography
	8 Appendix
	8.1 User Study Survey

